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Abstract 

Particle or powder coating with viscous liquids has been essential in industry for surface 

modification purposes to induce and enhance specific functionalities. This paper evaluates the 

performance of using foams (of different bubble diameters) versus liquids as a means of coating 

powder beds based on viscous liquid formulations. Coating with viscous liquids present 

numerous industrial challenges and therefore preparing foam equivalents can render the liquid 

component weak enough (through pre shearing to form the foam), to allow it to break up and 

coat particles under the shear forces exerted in a mixing device.  

In this study, two shear mixers are used; the first type consists of paddles in different 

configurations attached to a single rotating shaft, whilst the second type is a commercial twin 

screw mixer (TSM). The quality of coating achieved on the bulk powder bed using liquids and 

foams (stained with a dye) is assessed by image analysis to determine the homogeneity of the 
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colour distribution. In addition, Scanning Electron Microscopy provides a tool to further 

investigate the coating quality of individual particles from the bulk product.  

The results show that large bubble foams (centimetre size) are much more effective at 

distributing within the fluidised powder bed compared to the starting viscous liquid and small 

bubble foams (sub-millimeter size). Furthermore, there is a maximum ratio of foam to powder 

beyond which agglomeration occurs and is insufficient to fully coat the particles. Coating of 

individual particles is achieved in the case of the TSM, whereas SEM proves that the single 

shaft paddle mixer crushes the particles and subsequently granulates them together to form 

granules of a size comparable to the size of coated particles seen after coating with the TSM. 

Keywords: Powder coating; viscous liquid; foam; image analysis; foam rheology; surface 

modification 

 

1. Introduction 

The ability to coat individual particles existing in powder form is an important unit operation 

within the pharmaceutical, food, personal care and agrochemical industries. It is a process 

wherein a thin film of liquid coats or shells individual solid particles to provide properties and 

value that the base product does not offer. Coatings are added to serve numerous applications 

including; physical and chemical protection, improving aesthetics, taste masking, controlled 

and targeted release, improving powder flowability, dust reduction and density modification 

etc.[1-4] Often a complete coating of the particle is not needed to provide the desired effect 

however, all such processes require a good even distribution of the coating material. 

 



Numerous techniques can be employed to coat the particulates including; fluidised bed, 

panning and dipping. The choice of technique used is mostly governed by the characteristics 

of the powders to be coated and the properties of the coating material. Fluidised bed coating, 

and in particular the Wurster process[5], utilises an atomised bottom spray to coat and a hot 

fluidised air flow to fluidise and dry the wetted particles is the most extensively used technique 

in industry. It offers increased control over residence time distribution and homogeneity of 

coating compared to other methods,[6] however it is an expensive and slow process.[7] Part of 

the reason for this is that a high level of solvent (often water) is needed to achieve the low 

viscosities needed to atomise and spread over the particle surface, sometimes as much as 85% 

by weight of the solution.[8] This drives up the drying cost required and reduces the product 

throughput. 

 

An alternative is to use agitator mixers/blenders that comprise of a fixed static shell with 

mechanical mixing arising only from paddles (other designs utilise plow and ribbon designs) 

attached on either a single or twin shaft system. The paddles are orientated to impart lateral 

and/or axial mixing.[9] The mixer can be operated both in batch and continuous modes (with 

cycle times of 10 seconds to a few minutes). The twin shaft paddle mixer (often referred to as 

a twin screw mixer (TSM)) is based on a screw conveyor (auger) design which conveys the 

material from the inlet zone to the outlet. The paddle blades are fitted such that they mimic the 

auger screw design that not only conveys the material but also eliminates potential dead spaces 

during the mixing process within the vessel, by overlapping the screw paths. The paddle blades 

in a counter-rotating TSM, lift the particles up from the bottom of the trough to the middle of 

the mixer vessel known as the fluidised zone, this is where the mixing process takes place in a 

weightless state due to the centrifugal force generated by the paddles. This zone allows the 

particles to move in all directions which cause them to mix as random as possible. The blades 



operating at high speeds (200 – 3500 rpm)[10] create the force needed to crush any soft lumps 

that may form in the product.[11, 12]  

 

The fundamental processes involved in coating/mixing particles and in wet granulation 

(particle size enlargement process) using aqueous liquid formulations are inter-related and are 

well described by regime maps.[13] Clearly, for coating there is usually a desire to avoid the 

agglomeration regime. In wet granulation processes, recent studies investigating aqueous foam 

binders found that the granules and tablets produced, exhibited similar properties to those 

created with the conventional liquid spray granulation method and could be scaled up 

reproducibly.[14-16] These studies conclude that using foam binders provide numerous 

advantages over liquid binders such as improved binder dispersion, wetting throughout the 

powder, need for less binder, and simpler addition methods as there is no need for nozzles.[17, 

18]  

 

The benefits of using foams over aqueous liquids have also been realised in other industrial 

processes. In textiles, foams are used as they lead to a reduction in the amount of liquid present 

on the fabric thus reducing the drying time needed. Furthermore foams offer versatility in how 

they can be added within different unit operations and are not material dependent with regards 

to coating.[19] In the paper industry, foams are used due to reduced water consumption and 

energy costs to add insulation, fireproof and pigment coatings onto the surface.[20-22]    

 

The interaction penetration time comparing liquids and foams into a loosely packed powder 

bed was studied by Tan et al.[23]. The viscosity of the liquid was modified using 

hydroxylpropyl cellulose (HPC) and hydroxylpropyl methylcellulose (HPMC), to achieve a 

viscosity range of ~5 – 83 mPa.s. Since the foams were dispensed using a foam dispenser, the 



amount of foam varied with each stroke. In order to compare the penetration times of both 

liquid and foam binders, the times were normalised with mass of binder added. It was found 

that that the penetration time of foams is generally slower than liquid droplets, particularly if 

the foam drainage rate is slow due to the foam drainage cycle. This is further affected by the 

foam bubble size, its interstitial viscosity and volume ratio of air vs. total volume of foam.  

 

When a liquid droplet sits on a powder bed it becomes absorbed as a whole into the powder 

pores. In contrast, in foams (air bubbles connected by a series of interconnected thin films of 

liquid) the liquid has to drain in a tortuous manner before it reaches the powder surface and 

penetrates the powder through the pores. This tortuous path is further complicated as the 

bubbles undergo rupture, growth and rearrangement as the liquid drains. This is likely the rate 

limiting step in foam penetration time.[23-25]  

 

In 2011, Tan and Hapgood confirmed their initial observations of foam-powder interactions by 

adding small amounts of foam (using a relatively low viscosity liquid, ~20 mPa.s) on a moving 

powder bed with a lab scale granulator.[17] When using foams with a low air fraction, wide 

granule size distributions were obtained due to rapid drainage of the foam. In the case of when 

foams with high air fraction were used they wetted the powder slowly as the foam remained 

stable. The wetting was dictated by high intensity mixing to get efficient dispersion of the foam 

within the powder bed.[17] These tests were performed with small amounts of foam binder and 

was later tested with larger volumes of the binder.[26] Bubble size and size distribution data 

for the foams studied were not highlighted, instead they were expressed as foam quality 

(referred to as the gas volume fraction vs. total foam volume).  

 



To date the majority of studies investigating the interaction between liquids (and their 

subsequent foams) and powders are based on liquids with relatively low viscosities (below 1 

Pa.s).[14, 23, 26, 27]  There are numerous studies which investigated liquids with higher 

viscosities (up to 10 Pa.s.),[28-31] and ultra-high viscosities (~800 Pa.s.),[32, 33] but in all 

these cases the liquid was distributed onto the powder by simply pouring. The reasons being 

the following: liquids above 1 Pa.s can be a) difficult to atomise using conventional nozzles as 

they are resistant to the deformation process[34], b) lead to blockages within the nozzles and 

c) often difficult to pump.  

 

The present work examines, for the first time the coating of powders within industrial mixers, 

comparing the coating performance using highly viscous liquids and their subsequent foams. 

A mechanically agitated powder bed was generated for this work using a) a paddle mixer and 

b) a commercial TSM.[35] This study looks at factors which impact the mixing/coating 

efficiency such as liquid viscosity, comparison of foams vs. liquids, influence of foam bubble 

size produced from these liquids and the Liquid/Powder ratio. The influence of particle type, 

shaft rotational speed and mixing time were also studied.  

 

2. Materials and Methodology 

2.1 Materials 

Granular Sodium Sulphate (Grupo Crimedesa, Spain) (median size = 250 µm), Granular 

Sodium Carbonate (Tata Chemicals Ltd., U.K.) (median size = 280 µm) and Blown Powder 

(P&G, U.K.) (median size = 150 µm) were used as model particle systems. The particle median 

size was calculated via sieve analysis.  

 



Granulated sugar (Tate & Lyle) and green food grade dye (Langdale) was purchased from a 

local supermarket (Leeds, U.K.). Whey protein concentrate (unflavoured Whey protein 80) was 

purchased from The Protein Works. Distilled water was used in the preparation of all solutions.  

2.2. Methodology:  

2.2.1. Preparation of sugar-protein solutions:  

Liquid viscosity was controlled by changing the ratio of added sugar to distilled water. The 

viscosities of these liquids were measured using a Bohlin Gemini Rheometer (Malvern 

Instruments, U.K) with a cup and bob geometry. The gap size used was 150 microns at all 

experiments were conducted at 25C. To prepare the solutions, typically, 400 g of water was 

heated in a beaker to 80 °C using a magnetic hot-plate stirrer. Afterwards, the required amount 

of sugar was added slowly and allowed to mix using a magnetic stirrer until the sugar fully 

dissolved (full formulation details outlined in Table 1). This sugar solution was left to cool at 

room temperature before adding it to a 1.5 L Kenwood blender (FDM781BA model). To this 

80 g of whey protein powder and 2 mL of food dye was added and blended at maximum blender 

speed for 20 minutes. The resulting sugar-protein solution was allowed to rest after mixing to 

remove any entrained air. 

 

Table 1: Details of the formulations used in this study to control the liquid viscosity 

Formulation 
Sugar 

(g) 

Water 

(g) 
Protein (g) 

Dye added 

(mL) 

Density 

(g/mL) 

Viscosity 

(Pa.s) 

1 400 400 80 2 1.21 0.06 

2 600 400 80 2 1.26 0.17 

3 800 400 80 2 1.31 0.32 

4 1000 400 80 2 1.38 4.80 



2.2.2. Preparation of foam:  

For large bubble sized foams the sugar-protein solutions were placed in a 10 L beaker and were 

foamed using a 20 micron porous ceramic sparger at an air flowrate of 1 L min-1. This was 

typically done for around 20 – 60 mins to achieve a beaker full of foam. This foaming process 

was affected by room temperature and although the quality of the foam did not change at 

different temperatures, the time needed for foaming was affected. A higher room temperature 

resulted in faster rate of foam generation. For small bubble sized foam, the Kenwood blender 

was used to foam the initial sugar-protein solutions. Digital images of the large bubble and 

small bubble foams are presented in Figure 1 highlighting the large difference in bubble size. 

  

(a) (b) 

  
 

(c) (d) 
Figure 1: Comparison of the size of the two foams. (a)-(c) is the big bubble foam and (d) is the 

small bubble foam.  



 

2.2.3. Liquid/Foam coating of powders:  

In this study two mixers were used; a) single shaft paddle mixer and b) a commercial TSM. 

The custom made single shaft paddle mixer was fabricated with the internal dimensions of 150 

mm (l) × 62 mm (w) × 90 mm (h) (Figure 2a) with four different paddle designs as illustrated 

in Figure 2b. The paddles were attached to a central shaft (6 mm) and this shaft was rotated 

using an overhead mixer (Heidolph RZR 2041). The speed range tested was from ~30 to 70 

rpm. The TSM supplied by Ajax, U.K. was set up in batch mode such that the screw like 

paddles conveyed all the material towards the middle of the mixer and then back to the edges 

(like a fountain flow) to encourage ample back mixing (Figure 3). The speed range of the motor 

driving the shaft was investigated from 10 to 70 Hz, since there is no reduction gearbox the 

corresponding rpm’s are 600 to 4200 (corresponding to tip speeds of 0.2 to 1.2 m/s). In both 

mixers the powder fill level was recorded in relation to the total paddle height and then liquid 

(poured) and foam (scooped) was introduced into the middle section of the mixer. The mixing 

time was varied from 5 to 120 mins.   

 

 

Figure 2: Custom built single shaft paddle illustrating (A) System in operation and (B) 

schematic of mixer and the four different paddle configurations used in the present study. The 



large flat paddle (left) has a radius of 25 mm on top of a 5mm shaft radius and is 5 mm larger 

in width compared to the other paddles resulting in a low paddle to wall clearance (1mm).    

 
 

 
Figure 3: Commercial TSM setup in Batch mode. The image illustrates a) configuration of the 

paddle orientation in the central zone between the two shafts to allow material to be conveyed 

in the middle of the mixer and back out again, b) Mixer filled with test powder and c) ‘fountain’ 

like mixing of the powder, d) Schematic of the TSM (illustration courtesy of AJAX Equipment 

Ltd). 

2.2.4. Image analysis methodology 

After each subsequent run, samples were taken and spread onto flat trays for colour imaging, 

using a Nikon D3200 digital SLR camera mounted on a tripod. Imaging of the powders were 

done in the laboratory under a controlled environment. The colour was represented in the sRGB 

(standard Red Green Blue) colour space and had a resolution of 300 dpi. Prior to image analysis 

the images were normalised to avoid shadow issues by using a colour threshold between the 

values of 4 and 200. The images were analysed using a custom-made software developed 

within MATLAB®, which plots the histograms of red, green and blue intensities. After a 

second normalisation, differences in colour distribution were highlighted. For each test 

condition studied, at least 3 different powder samples were subjected to image analysis and the 

typical error encountered during processing was within 3 - 5%.   



To determine which component of RGB could be used for colour distribution analysis, images 

of the white sulphate powder as well as the green dye were analysed. RGB data for both 

materials are illustrated in Figure 4. It is evident from these plots that for this particular particle 

(Figure 4a) and dye (Figure 4b), the green histogram produced both the sharpest and narrowest 

peak compared to the red and blue components. For this reason, all further analysis was 

conducted with the green colour component only.  
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(b) 

Figure 4 (a) Normalised histograms of red, green and blue light components for the sodium 

sulphate particles used for this study. Notice green peak as it appears to be much sharper (and 

taller) than the others. Intensity of red and green has a slight difference (2%). (b) Normalised 

histograms of red, green and blue light component of the dye used for this study. Notice that 

green and blue show similar peak heights (3% difference) and similar distribution widths.  

 

2.2.5. SEM/EDX Measurements 

Scanning electron microscopy (SEM, Hitachi SU8230 equipped with a 1-30 kV cold field 

emission gun) was used to investigate the size and shape of the coated and uncoated particles. 

The microscope was equipped with an Oxford Instruments 80 mm2 SD detector for energy 

dispersive X-ray (EDX) spectrometry with Aztec processing software to enable compositional 

analysis of the particles to determine the quality of the coating (distribution of coating on 

particle surface). For better spatial resolution the samples were vacuum cleaned for 10 min 

(Quorom Technologies sputter coater and vacuum cleaner), so that the electrostatic charging 

during SEM analysis would be minimised.  

3. Results and Discussion 

3.1 Effect of material parameters  

In order to understand the mechanism and performance of coating particles using foams 

prepared from viscous liquids, there are several material parameters that can be examined. For 

this study the following parameters were considered; i) effect of using viscous liquids vs. 

equivalent foams consisting of either large (cm) or small (sub mm) sized bubbles, ii) influence 

of initial liquid viscosity and c) amount of foam added (i.e. influence of liquid content). The 



coating performance of these was evaluated by examining the colour distribution within the 

bulk powder.  

Sugar-protein solutions were used as a model liquid system to investigate, as the viscosities of 

sugar syrups are very sensitive to the sugar content especially at high content values[36]. In 

these solutions the purpose of the protein was to act as a stabiliser for the generation of foams 

of different bubble sizes only and thus was kept fixed. It should be highlighted that the protein 

would also play a role in liquid viscosity, but since it was fixed the effect would apply across 

all the formulations investigated. 

3.1.1 Paddle mixer 

To evaluate the influence of material properties within the paddle mixer, the large flat paddle 

(i.e. low paddle to wall clearance) was used as the default paddle setup. This was to allow the 

low paddle-wall clearance to force agitation of the whole powder whilst minimising any 

potential make-up at the walls. In addition the shaft speed was kept constant at 34 rpm and 

operated for 30 minutes, with a powder fill level that covered half of the paddle (i.e. up to the 

central shaft). 

To compare the effect of viscous liquid vs. small and large bubble foam, formulation 2 was 

used as the default formulation. The total mass of liquid/foam added was kept constant at 16 g 

to 200 g powder equating to a liquid to solid ratio of around 8%. The effect of liquid viscosity 

and amount of foam added were also subsequently investigated. Figure 5 shows resulting 

histograms of the green distribution on the coated particles, when using; a) a viscous liquid, a 

small bubble foam and a big bubble foam (both fabricated from the same liquid), b) foams 

comprised of similar bubble size (in this case cm sized) produced from liquids with increased 

viscosities and c) the effect of foam mass added (corresponding to an increase in the liquid 

content inside the mixer).  



In Figure 5a it can be seen that the quality of the final coated particles (evenness of colour 

distribution on bulk powder) is increased when a big bubble foam is used in comparison to the 

viscous liquid. The resultant peak yields a narrower distribution and has a sharper taller peak 

indicating improved colour distribution. When the viscous liquid is poured onto the moving 

powder bed it is unable to move laterally initially, instead it penetrates in a vertical 

direction[17] forming a narrow band in the centre of the mixer. As the mixing time progresses 

this narrow band begins to grow laterally due to the cascading effect of the wetted particle 

tumbling on the downward strike of the paddle blade. As a result, over time this continual 

lateral movement will lead to an improved colour distribution within the whole powder bed.  

When using large bubble foams, the foam deforms and elongates laterally across the powder 

bed. This deformation is most likely due to the low elastic shear modulus that is also seen in 

detergent foams.[37] Deformation of the foam leads to an in increased contact area between 

the foam and the interacting powder bed. The agitation of the paddle causes the foam to get 

roped into the powder and become mechanically dispersed.[38] Furthermore coating 

distribution within the powder bed will occur via wetted particles contacting and transferring 

liquid onto non-wetting particles. This has been alluded to by Smith and co-workers as the 

‘contact spreading’ mechanism that occurs within a tumbling drum. [39, 40] This mechanism 

was also confirmed in the paddle mixer by mixing spray dyed spheronised beads with non-

dyed beads as shown in Figure S1 in the supplementary information.  

Small bubble foam results in poor distribution of the colour within the powder bed. This is 

likely due to its high shear modulus and therefore behaves more like a solid (in comparison to 

the viscous liquid). This means it is much more difficult to break down from the shear forces 

generated by the agitation of the paddles. This corresponds well with the viscosity 

measurements illustrated in Figure S2 in the supplementary information, where small bubble 



foam has an increased viscosity and behaves like a non-Newtonian liquid compared to the 

initial liquid.  

To get representative information on the rheological properties of foams with the large bubble 

sizes is more challenging. The instrumentation needs to have a large geometry in order to get 

representative rheological information of the bulk foam. In addition, transferring the foams 

from a beaker after formation into a rheometer geometry is difficult, as the foam structure is 

affected prior to any rheological measurements being carried out. It was assumed that the 

apparent viscosity of big bubble foams was lower than the small bubble foam indicated by the 

ease to deform them.[41, 42] Obtaining information on the rheology of big bubble foams is the 

subject of current on-going work within the group.  

When the liquid viscosity is increased the resulting big bubble foam leads to an improvement 

in the colour coating distribution of the particle as shown in Figure 5b. Although the rheological 

properties of these foams are unknown, it is hypothesised that this will also lead to an increase 

in the viscosity of the liquid films that interconnect the bubbles to create the foam, whilst the 

overall viscosity of the bulk foam will be lower than that of the initial liquid. As a result, the 

foam will have an increased residence time within the powder bed as the deformation and 

elongation process will take longer. Furthermore, increasing the initial liquid viscosity will lead 

to an increase in thin liquid film viscosity within the foam. This increases the viscous 

component of the adhesion force acting between the film and the particle leading to increased 

contact time between the thin films and the powder bed, resulting in improvements in colour 

distribution.[43-46] The influence of added foam mass on colour coating distribution is 

presented in Figure 5c. It shows minimum difference (<5%) in both axes so it can be considered 

that the amount of foam inserted into the paddle mixer does not affect the final coating quality 

(evenness of coating on bulk powder).  
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(c) 

Figure 5. Histograms showing the quality of coating using the paddle described in section 2.2.3. 

(a) Comparison of the use of liquid, small bubble foam and big bubble foam (b) effect of 

viscosity, where F1, F2, F3, F4 are foams produced from liquids of increasing viscosities (c) 

effect of the increase of liquid content. 

 

Further increase in the amount of foam (foam to powder mass ratio = 15%) leads to excessive 

agglomeration (Figure 6a) and over-wetting. This results in dough-type (foam to powder ratio 

= 20%, Figure 6b) or paste like samples (excess of foam to powder ratio >25%, Figure 6c). 

This behaviour has limited the ability to investigate any effect on the increase of the liquid 

content (i.e. foam mass). To be able to research this effect further, an intermediate step of 

drying between two additions of foam mass, should be introduced. This study is beyond the 

scope of the specific paper and is not described in this study.   



 

Figure 6. Effect of increased amount of foam added on agitated powder bed; A) formation of 

large aggregates when foam to solid ratio = 15%, B) formation of dough-like sample at foam 

to solid ratio = 20% and C) paste formation at foam to solid ratios in excess of 25%. 

 

The influence of particle type was also investigated and it was found that sodium carbonate 

and the blown powder easily agglomerated (even at low liquid contents) when using both 

viscous liquids and foams. As a result, the rest of the study was conducted with sodium sulphate 

only.  

To conclude, the best material parameters for achieving the optimum coating quality when 

using the paddle mixer are i) use of the large bubble sized foam,  ii) use Sodium Sulfate (i.e. 

materials that do not hydrate easily), and iii) selecting the highest viscosity liquid to produce 

the subsequent foam.  

3.1.2 TSM 

The TSM was configured into a batch setup, such that the quadrant paddles conveyed the 

powder (which was filled up to the shaft) into the centre of the mixer. To compare the 

performance of the TSM vs. the paddle mixer, the effect of; i) liquid vs. different sized bubble 

foam based on formulation 2 using identical liquid/foam mass (liquid/foam to powder ratio = 

6%) (Figure 7a), ii) initial viscosity of liquid (Figure 7b) and iii) added foam mass (Figure 7c) 

on the green colour distribution of coated particles were again investigated. The shaft speed 

was kept constant at 10 Hz. 
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(c) 

Figure 7. Histograms showing the quality of coating on sodium sulphate particles using the 

TSM. (a) Comparison of the use of liquid, small bubble foam and big bubble foam (b) effect 

of viscosity, where F1, F2, F3, F4 are foams produced from liquids of increasing viscosities (c) 

effect of the increase of liquid content. 

 

When using the TSM, the behaviour in the colour distribution profiles is similar to that 

observed with the paddle mixer as illustrated in Figure 7 when comparing the use of liquid, 

small and big bubble foam, and when increasing the viscosity of the initial liquid. In Figure 7a 

we can clearly see that the quality of the final coated particles is increased when a big bubble 

foam is used. This again is due to its ability to elongate, deform, and as well as due to the high 

surface contact area. Furthermore, in the TSM, since the paddle configuration is such that the 

powder is conveyed into the middle of the mixer, addition of the foam here causes it to ‘bump’ 

or float on top of the powder bed.[38] The foam bumps along towards the edge of the mixer, 



where the powder level progressively decreases, and it is there that it gets ‘roped’ within the 

bed and becomes mechanically dispersed.[38]  This leads to a homogeneous colour distribution 

of the powder bed. Small bubble foam again performs the worst (due to the high shear modulus 

meaning it is difficult to break up the foam to coat the particles within the powder bed), whilst 

using the liquid results in a middling coating distribution. In Figure 7b it is evident that 

increasing the viscosity of initial liquid when using the large bubble foams, leads to 

improvement in the coating distribution. This is due to an increase in the adhesive force via the 

viscous component, and subsequently leads to an increased contact time between the particles 

and the thin liquid films. When increasing the amount of foam added (Figure 7c) (i.e. changing 

the foam to solid ratio), the quality of the final product (in terms of colour distribution) 

improves, a fact that is indicated by a narrower distribution and a taller peak. The reason for 

this improvement is because the mechanical dispersion in the TSM is much more efficient, as 

the paddles are able to chop the foam into smaller segments within the powder bed. This means 

that the localised liquid-solid ratio is maintained at a low level, preventing the formation of 

large aggregates and over-wetting of the powder into a paste. This mechanism allows for the 

use of increased foam to solid ratio providing more coating material to the coating process. 

To conclude, the best material parameters for achieving the optimum coating quality when 

using the TSM mixer are i) use of the large bubble sized foam,  ii) increased foam to solid ratio 

(to allow more coating material to be present) without reaching the agglomeration regime, and 

iii) selecting the highest viscosity liquid to produce the subsequent foam.  

 

  



3.2. Effect of process parameters on the coating of particles using foams 

In order to determine the feasibility of coating powder beds with big bubble foams prepared 

from viscous liquids, there is a need to understand the effect of the process parameters of the 

mixers on the coating distribution. Therefore in this study, the influence of the following factors 

were considered; i) paddle configuration, ii) mixing time, iii) mixer speed and iv) powder fill-

level. Formulation 2 was used as the default starting liquid and the foam to solid ratio was 

maintained at 7% (although this was altered in the TSM when investigating the powder-fill 

level). 

3.2.1. Paddle mixer 

The influence of paddle geometry, mixer speed and mixing time on the powder colour 

distribution (green component of RGB) using the paddle mixer is presented in Figure 8.   
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Figure 8. Histograms showing the effect of different process parameters on the quality of 

coating using the paddle mixer. Influence of; (a) paddle geometry (b) paddle agitation speed 

and (c) residence time (total mixer operation time). Plots b and c were conducted with the large 

flat paddle configuration. 

Four paddle configurations were designed to develop understanding of how the paddle design 

affects the mixing and coating operation. The large flat paddle (paddle to wall clearance ~0.5 

mm) ensured that the entire powder was picked up and moved with every paddle stroke. This 

however sometimes caused particles to get caught in the clearance between the end of the 

paddle and the wall (largest particle size = 300 µm), and jam the mixer. The small flat paddle 

had a large clearance (~5.5 mm) that was designed to reduce potential jamming issues, and 

subsequently was made more complex by adding 2 and 3 splits along the paddle length (see 

Figure 2b).  

The plot in figure 8a shows the histograms after the analysis of the final product comparing the 

performance of the four paddles operating at a default mixer speed of 34 rpm (slowest speed 

feasible with the Heidolph drive) for 30 minutes. It is shown that the best coating distribution 

is achieved with the large flat paddle, indicated by the sharpest and tallest distribution.  

The small flat paddle and the 2-split paddle perform comparatively showing very similar 

profiles with the minor difference attributed to experimental error. The lower peak values as 

well as a broader distribution width indicate that an increased wall clearance acts as a hindrance 

in achieving homogeneous coating. The histogram for the 3 split paddle shows a very wide and 

poor distribution attributed to bad coating distribution in the final product. The paddle is 

constructed such that along the length there are 3 paddles that are 90° to each other. As the 

paddles rotate, this sudden change in paddle orientation allows the particles to simply drop 

through in between the gap. This means that the foam and the powder bed does not mix 



efficiently and leads to an environment of over-wetting, resulting in the formation of large 

aggregates and in extreme cases, the formation of a dough or paste. 

Since the large flat paddle results in the most homogeneous and even colour distribution, it is 

used as the default paddle throughout the rest of the processing parameters study. The mixer 

speed regulates the shear forces that the paddle imposes on the powder bed. Investigating the 

effect of speed (Figure 8b) shows that the best quality of coating (in terms of colour 

distribution) is achieved when the paddle mixer operates at lowest speed. It is postulated that 

this can be attributed with the time that the foam spends deforming and breaking up within the 

powder bed. A lower mixer speed allows the foam to stretch and deform over a much larger 

area (especially laterally) before getting roped into the bed which causes subsequent breakage 

into thin films. This increases the contact time with the particles leading to improved 

mechanical dispersion and thus providing a homogeneous coating. When the mixer speed is 

increased the shear induced on the foam also increases, limiting the lateral movement of the 

foam. Instead it is deformed radially giving rise to a high local liquid to powder ratio and 

prevents contact spreading. This results in a poor coating distribution.  

For the residence time, and how it effects the quality of coating, histograms of the final coated 

particles from 5 to 120 mins are illustrated in Figure 8c. In the plot it is illustrated that for 

mixing times of 20 minutes and above, the quality of coating achieved remains consistent, i.e. 

appears to be optimised. The histograms show minimum difference in the peak height and 

distribution width (sharpness) indicating that 20 mins is the shortest time needed to achieve the 

best coating and thus colour distribution. Below this mixing time, there simply is not enough 

time for the foam to undergo breakage, and become mechanically dispersed, so the resultant 

samples exhibit poor coating distribution.  



To conclude, the optimised conditions for achieving the best coating quality when using the 

paddle mixer are i) use of the large flat paddle,  ii) mixing for a period of at least 20 mins, and 

iii) selecting the lowest shaft speed of 34 rpm.  

3.2.2 TSM 

In the TSM the paddle type could not be changed and thus the study was conducted with 

quadrant blades. It was deemed that the properties of the mixer that would cause the greatest 

impact on the coating distribution was different powder fill levels, shaft speed and the total 

mixing time.  
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Figure 9. Histograms showing the effect of different process parameters on the quality of 

coating using the TSM; (a) influence of powder fill level (b) TSM shaft rotational speed and 

(c) residence time (total time of operation). 

 



Powder fill level will dictate how the foam interacts with the agitated powder. Three fill levels 

were chosen; i) covering 50% of the paddle height based on the paddles below the shaft 

equating to ~1000 mL, ii) up to the shaft (1500 mL) and iii) covering 50% of the paddle height 

based on paddles above the shaft (2000 mL). Figure 9a shows the histograms after the analysis 

of the final product when the three different powder fill levels are used. The plot indicates that 

the sharpest and tallest distribution is observed using the highest fill-level, followed by mid 

and low levels consequently. Since the powder is conveyed into the centre of the mixer, 

increasing the fill level will result in more of the paddles being covered by the powder bed. 

When the foam is added on top of the powder bed in the centre of the mixer, it ‘bumps’ on the 

surface of the bed longer covering a larger lateral distance when the initial fill level is high. 

This results in a high contact time between the foam and powder bed before it finally gets 

‘chopped up’ and ‘roped’ into the powder at the edge of the mixer where the fill level drastically 

decreases.  This provides indication that the TSM operates better at high fill levels (shaft and 

above). Following this outcome the TSM was operated at the highest fill levels as the default 

set-up when investigating the effect of mixer shaft speed and residence time.  

Regarding the effect of speed, Figure 9b shows that the best quality of coating (in terms of 

distribution) is achieved when the TSM operates at middle and low speeds. At these mixer 

speeds the foam has the ability to deform much slower and occupy a higher contact area axially 

over the powder bed. At the highest speed studied, this is no longer the case, as the increased 

speed rapidly chops up the foam limiting lateral (axial) movement, such that the bulk resides 

in the centre of the mixer. This equates to less homogeneity in the coating distribution, and as 

a result the peak height is much lower.   

For the residence time, histograms of the final coated particles for a mixing time of 5 to 120 

mins is presented in Figure 9c. In this plot the behaviour of the TSM is different than the one 

previously encountered with the paddle mixer. The quality of mixing in the TSM is already 



optimised in the first 5 minutes, with just minor changes in the histograms up until 20 minutes. 

As the mixing time increases further, the histograms start to exhibit a falling peak height up to 

17% when comparing to the peak height observed at 5 mins. Since a good coating distribution 

is already achieved at 5 mins, we hypothesize that an increased mixing time causes increasing 

hydration of the particles, as the dye absorbs further into the pore network of the particles, 

reducing overall colour intensity. Furthermore, the friction between the powder bed and the 

paddles will give rise to the overall temperature, leading to some drying effects. This again will 

cause a reduction in the intensity of the colour coating observed. 

To conclude, the optimised conditions for achieving the best coating quality when using the 

TSM in batch operation with the large bubble foams are i) high powder fill-level, for ii) a 

mixing period of 5 min, with iii) a shaft speed of 35 Hz.  

3.3. SEM/EDX Analysis 

Image colour analysis is a powerful tool when trying to characterise the quality of coating on 

a bulk powder bed, however it does not distinguish the quality of coating on individual 

particles. Therefore samples were characterised using SEM in backscatter mode to determine 

how the coating on individual particles differed when using the paddle mixer and TSM. The 

presence of coating on the particles was further confirmed using EDX.  

Characteristic micrographs of coated particles produced using the paddle mixer with a large 

flat paddle are presented in Figure 10. These particles were coated with the large bubble foam 

made from an initial viscous liquid based on formulation 2. The images show a clear contrast 

between the coated and non-coated regions of the particle surface. The indication of non-coated 

and coated regions are further confirmed by the EDX spectroscopy data presented in Figure 

11. Elemental analysis clearly defines and distinguishes the presence and locations of the 



carbon-based coating on the particle surface, in comparison to the base composition of the 

particle i.e. sodium, sulphur and oxygen. 

The micrographs in Figure 10, also show that is not necessary for a full shell of coating on 

every individual particle to produce an apparent colour change in the bulk powder with a 

homogeneous coating distribution. Another key finding from the SEM analysis is that in the 

paddle mixer the resultant finished product are aggregates made up of particles of different 

sizes glued together by the coating in the size range of around 250µm. Since this size is 

comparable to the original sieved sodium sulphate powder used in this study, it indicates that 

the low clearance of the large paddle is breaking the initial particles into different smaller sizes, 

and subsequently binds them together.  

  
Figure 10. Scanning electron micrographs of particles coated using large bubble foams in the 

paddle mixer using the large flat paddle. Dark areas on the particle surface indicate coating 

sites. 



 

Figure 11. Energy dispersive X-ray spectroscopy of a particle partially coated within the paddle 

mixer. The elemental analysis shows clear difference in the coated and non-coated regions 

determined by analysis of the carbon content across the particle surface.  

 

For the TSM, the SEM micrographs of particles that have been coated with the large bubble 

foam made from an initial viscous liquid based on formulation 2, are presented in Figure 12.  

The snapshots are taken of particles at different mixing times, and all of them indicate a partial 

coating on the particle surface. It is evident that the bulk of the coating resides in the cracks 

and surface defects of the particle. This observation points towards a capillary force 

phenomenon, as a possible mechanism, which anchors the coating much more at these rough 

surfaces, rather than at the smoother ones. The presence of coating within these particle surface 

cracks, is again confirmed by EDX spectra presented in Figure 13. 
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Figure 12. Scanning electron micrographs of particles coated using large bubble foams in the 

TSM mixer. Dark areas on the particle surface indicate coating sites with clear concentration 

of the coating material in the particle surface cracks. 

 



 

Figure 13. Energy dispersive X-ray spectroscopy of a particle partially coated within the 

TSM. The elemental analysis shows clear difference in the coated and non-coated regions 

determined by analysis of the carbon content across the particle surface.  

 

When samples coated using large bubble foams based on formulation 4 (highest viscosity tested 

in this study) within the TSM were investigated, the resultant SEM and EDX analysis showed 

interesting features (Figure 14). Although the sodium sulphate powder had been sieved, the 

end product still contained a large amount of small particles. Due to their irregular shape it is 

postulated that some of these fines were retained. The SEM micrographs show a large 

percentage of these smaller particles to have a full shell of coating around them. This indicates 

that the adhesion force between the viscous thin films of the foam and particle is such that they 

undergo a large contact time with each other, allowing the smaller particles to become fully 

enveloped by the thin film. This may also indicate why powders coated with large bubble foams 

based on the highest liquid viscosity gave the best colour distribution i.e. coating distribution.   



 
 Figure 14. Energy dispersive X-ray spectroscopy of particles coated with foams made from 

the highest viscosity liquid studied using the TSM. The elemental analysis shows clearly that 

some particles are fully coated as determined by analysis of the carbon content across the 

particle surface.  

 

4. Conclusions 

This work proposes the use of foams with mm size bubbles for the coating of particles when 

high viscous liquids need to be used. To the best of the authors’ knowledge this is the first 

systematic study that investigates distributing of viscous liquids and their subsequent foams 

within fluidised powder beds as a means of coating particles. The proof of concept for this 

method is provided, and coating of particles in a high shear industrial mixer is performed and 

validated. The samples are analysed with the use of image analysis, and the coating quality is 

considered to be proportional to good colour distribution of the coating formulation. For 



validating the quality of the particle coating further, SEM analysis was performed on several 

different samples. There, the difference between the final outcomes of the use of the two 

different mixers was evident. Partial and full coating of the particles was achieved in the case 

of the TSM, whilst granulation was the mechanism of creating the final coloured particles for 

the case of the paddle mixer.     

Milimeter bubble sized foams lead to improved coating performance when compared to the 

initial high viscosity liquids and micron sized foams (equivalent to those of a shaving foam). 

Surprisingly, the increase in initial liquid viscosity improves the coating performance of the 

millimetre sized foams, while as expected the increase in the foam mass and thus liquid content, 

increased the coating quality.   

For the best results regarding coating, one should use the TSM, fill it up above the height of 

the shaft when operating at the specific configuration. Lower speed will favour better 

distribution of foam and 5 minutes is enough time for it to mix. 

Additional drying steps in between the introduction of foam in the system might help to 

improve the coating of particles when using foams of high viscous liquids analogous to the 

Wurster fluidised bed coater. For further improvement of the proposed process, there should 

be an effort on understanding the mechanism of coating when foams are used especially 

relating the rheological behaviour (based on bubble size) to coating performance. This way, 

this process of coating powder beds could be used for a continuous operation in an industrial 

unit, where coating with viscous liquids is essential.  
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S1. Contact mechanism  

 

The dyed beads were placed centrally in the mixer amongst the non-dyed beads and 

snapshots of the colour distribution was taken with respective to time. It was found that 

excess surface liquid on the dyed beads transferred onto the non-dyed beads such that the 

whole bed became homogenous in colour as the mixing progressed. This is illustrated in 

Figure S1 of the supplementary information. 

   

Figure S1. Illustrating the transfer of liquid from dyed beads placed centrally in the mixer 

onto plain beads and the distribution of colour laterally throughout the mixer with time. 

Suggests that this occurs via ‘contact mechanism’ as the dyed beads were dried so liquid 

transfer occurs from any excess dye bound to the surface of the beads after the drying 

process.  



S2. Viscosity measurements 
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Figure S2. Effect of shear rate on apparent viscosity of small bubble foam compared to initial 

sugar-protein liquids (formulations 1-4). (Closed symbols represent liquid and open symbols 

represent the fine foam). 

The data indicates that the viscosity of the liquid formulations at near zero-shear increases with 

increasing sugar content (F1 to F4) and all exhibit Newtonian behaviour (closed symbols). The 

apparent viscosity of small bubble sized foams (open symbols) prepared from these liquids 

using a food blender is significantly higher than the liquid. Furthermore small bubble foams of 

F3 and F4 exhibit shear-thinning behaviour due to the stick-slip motion of the bubbles as they 

rearrange and undergo structural changes with increasing shear. At around a shear rate of 2000 

s-1 the viscosity matches that of the initial liquid as the shear causes complete breakdown of 

the foam structure. For small bubble foams of F1 and F2, a Newtonian behaviour is observed. 

This may be due to a) relatively lower gas volume fraction in the foams formed meaning a 

reduction in the stiffness of the foams i.e. do not shear thin or that b) much higher shear rates 



are needed to obtain significant changes in the foam structure to show non-Newtonian 

behaviour.  

 

 

 

 

 

 


