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ABSTRACT
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The early 20th century warming (EW; 1910-1945) and the mid-20th century

cooling (MC; 1950-1980) have been linked to both, internal variability of the

climate system and changes in external radiative forcing. The degree to which

either of the two factors contributed to EW and MC, or both, is still debated.

Using a two-box impulse response model, we demonstrate that multidecadal

ocean variability was unlikely to be the driver of observed changes in global

mean surface temperature (GMST) after 1850 A.D. Instead, virtually all (97-

98%) of the global low-frequency variability (> 30 years) can be explained

by external forcing. We find similarly high percentages of explained vari-

ance for inter-hemispheric and land-ocean temperature evolution. Three key

aspects are identified which underpin the conclusion of this new study: inho-

mogeneous anthropogenic aerosol forcing (AER), biases in the instrumental

sea surface temperature (SST) datasets, and inadequate representation of the

response to varying forcing factors. Once the spatially heterogeneous nature

of AER is accounted for, the MC period is reconcilable with external drivers.

SST biases and imprecise forcing responses explain the putative disagreement

between models and observations during the EW period. As a consequence,

Atlantic Multidecadal Variability (AMV) is found to be primarily controlled

by external forcing too. Future attribution studies should account for these im-

portant factors when discriminating between externally-forced and internally-

generated influences on climate. We argue that AMV must not be used as a

regressor and suggest a revised AMV index instead (North Atlantic Variability

Index; NAVI). Our associated best estimate for the transient climate response

(TCR) is 1.57 K (±0.70 at the 5-95% confidence level).
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1. Introduction47

The global temperature evolution over the instrumental period is conventionally attributed to the48

combination of external forcing and internal variability (Stott et al. 2000; Bindoff et al. 2013; Flato49

et al. 2013). Virtually all of the warming since 1950 is attributed to human influences (Stocker50

et al. 2013; Jones et al. 2013, 2016; Ribes et al. 2017). Yet due to the loosely constrained nature51

of magnitude and evolution of AER, there continues to be a fierce debate about the cause of52

multidecadal GMST fluctuations present in the instrumental record (Shiogama et al. 2006; Booth53

et al. 2012; Zhang et al. 2013; Thompson et al. 2015). Most prominently, the origin of the EW54

and MC periods, thought to be linked with North Atlantic (NA) ocean variability and commonly55

expressed in terms of AMV (Delworth and Mann 2000; Knight et al. 2005, 2006), is still hotly56

contested because of the difficulties to disentangle the contributions from internal and external57

drivers at different timescales (Brönnimann 2009; Mann et al. 2014; Zhang et al. 2016; Clement58

et al. 2016; Vecchi et al. 2017; Sutton et al. 2017; Hegerl et al. 2018).59

Conventionally, the AMV has predominantly been attributed to internal ocean variability, which60

in turn has been linked to changes in the Atlantic Meridional Overturning Circulation (AMOC)61

as a deep ocean driving mechanism on multidecadal timescales (Zhang and Wang 2013; Yeager62

and Robson 2017). While stochastic atmospheric flux forcing is thought to influence SSTs on63

shorter timescales (Roberts et al. 2013; Duchez et al. 2016; Josey et al. 2019), associated with64

changes in the North Atlantic Oscillation (NAO) index (Hurrell and Deser 2009), the prevailing65

view regarding NA SST changes on longer timescales is that large internal variations are superim-66

posed on the anthropogenic warming trend. However, in recent years, external forcing has been67

shown to contribute to multidecadal swings in the AMV region (Otterå et al. 2010; Murphy et al.68

2017; Bellucci et al. 2017), suggesting a reduced role for internal ocean dynamics. Changes in69
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AER (Booth et al. 2012; Bellomo et al. 2018) as well as periods of strong volcanic activity (Iwi70

et al. 2012; Knudsen et al. 2014; Pausata et al. 2015; Swingedouw et al. 2017) have been linked71

to these changes. Also, it has been demonstrated that AMV-like SST pattern can be reproduced in72

slab-ocean experiments (Clement et al. 2015, 2016; Bellomo et al. 2018). Hence internally gen-73

erated low-frequency GMST variations are increasingly thought to play only a smaller role, with74

Pacific ocean variability to be more recognised as a pacemaker for global temperature (Schurer75

et al. 2015; Dong and McPhaden 2017).76

While there is no debate about the existence of aerosol-related dimming and brightening (Wild77

et al. 2007; Wild 2009) due to a huge array of supporting data from observations (Boers et al.78

2017; Dumitrescu et al. 2017; Manara et al. 2017) and modelling (Shindell et al. 2013; Wilcox79

et al. 2013; Rotstayn et al. 2015; Dallafior et al. 2016; Chung and Soden 2017), its impact on the80

AMV is less certain. Many studies do not (Huss et al. 2010; Chylek et al. 2014) or insufficiently81

(Ting et al. 2009; Zhang et al. 2013) incorporate or acknowledge AER, which potentially leads to82

misattribution of cause (Zhang et al. 2016; O’Reilly et al. 2016) and effect (Chylek et al. 2009;83

Wyatt et al. 2012; Tung and Zhou 2013; Pasini et al. 2016; Levine et al. 2018). Arguments for84

the presence of an internally-generated AMV based on ostensible pseudo-oscillatory behaviour in85

instrumental, proxy, or model data are unconvincing (Singh et al. 2018), and it is noted that such86

behaviour can arise from statistical artefacts alone (Vincze and Jánosi 2011; Cane et al. 2017).87

Regression-based methods are thereby particularly susceptible to conflating internal variability88

with forced responses because of strong covariance between the predictors (Mann et al. 2014;89

Stolpe et al. 2017), yet studies that use the AMV as regressor or explanatory factor continue to90

be published despite the lack of an unequivocal physical underpinning (Lewis and Curry 2018;91

Rypdal 2018; Shen et al. 2018; Zhang et al. 2018; Folland et al. 2018).92
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We argue that any attribution exercise that does not sufficiently account for the spatio-temporal93

AER changes will invariably produce unreliable and erroneous results. Incorporating now better94

quantifiable biases in the instrumental SST record, we demonstrate that a carefully designed anal-95

ysis (that avoids overfitting) yields a surprisingly high level of agreement between our model and96

observations without the need to infer additional unexplained internal variability. We endeavour97

to highlight the pitfalls associated with attributing and identify the shortcomings in representing98

the externally forced temperature responses.99

Since attempts to estimate the magnitude of internal variability by means simple climate models100

are plagued from dissatisfying low correlations with observations (Aldrin et al. 2012; Skeie et al.101

2014), here we use a refined two-box impulse response model framework which accounts for fast102

and slow responses to forcing perturbations in the climate system. To constrain the complexity of103

the model, we introduce a novel TCR adjustment factor for different forcing agents that is gov-104

erned by robust physical factors. Apart from Northern Hemisphere (NHem) and GMST (Global),105

we also analyse Southern Hemisphere (SHem), land surface air temperature (Land) and SSTs106

(Ocean), expanding on previous GMST-only analyses (Mann et al. 2014; Dong and McPhaden107

2017) to better understand the impact of radiative forcing changes on surface temperatures. We108

recommend all impulse response or energy balance model studies use land, ocean, and hemi-109

spheric temperature records with our dedicated set of model parameters as separate benchmark110

tests to robustly evaluate model performance.111

2. Radiative forcing and observational data112

We use the latest well-mixed greenhouse gas (WMGHG) radiative forcing (Etminan et al. 2016;113

Meinshausen et al. 2017) and the gridded aerosol community emission dataset (CEDS) (Hoesly114

et al. 2017), including sulphur dioxide (SO2), ammonia (NH3), black carbon (BC), and organic115
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carbon (OC). For solar forcing, we use sunspot numbers from the Greenwich Royal Observatory116

(Wilson and Hathaway 2006), scaled to solar forcing according to Dewitte and Nevens (2016).117

Stratospheric aerosol optical depth (AOD) data from explosive volcanic eruptions (Crowley et al.118

2008; Crowley and Unterman 2013) are scaled to match NASA-GISS volcanic forcing data (Sato119

et al. 1993), and updated to include recent smaller eruptions (Vernier et al. 2011; Solomon et al.120

2011; Arfeuille et al. 2014; Schmidt et al. 2018). Fig. 1a shows our revised forcing estimates.121

The global direct radiative forcing for each aerosol component (SO2, NH3, BC, OC) is derived122

by scaling the current emissions to the AR5-forcing estimate for 2011 (Myhre et al. 2013; Stocker123

et al. 2013). Using BC emissions over North America, we account for enhanced Arctic warming124

during the first half of the 20th century (Johannessen et al. 2004; McConnell et al. 2007; Mc-125

Connell and Edwards 2008; Suo et al. 2013) (orange shading in Fig. 1b). The indirect forcing126

of -0.45W/m2 is mostly a function of SO2 (90%; 10% for OC). While considerable uncertainty127

regarding aerosol-cloud effects exist (Carslaw et al. 2013; Regayre et al. 2014; Nazarenko et al.128

2017; Lohmann 2017), the best estimate for indirect AER in AR5 has not been fundamentally129

challenged since. Together with the direct effects, we obtain a total AER of ∼-0.55W/m2 in ac-130

cordance with AR5 (Fig. 1b), which is set to -0.75W/m2 pseudo-effective global aerosol radiative131

forcing (ERF) in our response model framework (Fig. 1b, c). The total ERF estimate is guided132

by a recent review by Forest (2018), which is slightly lower than the best estimate for ERF of133

-0.9W/m2 published in AR5. We note that other recent research has also suggested that AER ERF134

might be lower (Stevens 2015; Myhre et al. 2017), essentially reflecting arguments for stronger BC135

warming effects (Bond et al. 2013; Myhre and Samset 2015) and less cooling due to noticeable136

SO2 reductions in China since 2006 (Smith et al. 2011; Klimont et al. 2013).137

We use Berkeley Earth Land/Ocean (BE) (Rohde et al. 2012), HadCRUT4-Cowtan/Way138

(Cru4CW) (Cowtan and Way 2014; Cowtan et al. 2015), HadISST2 (Titchner and Rayner 2014;139
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Kennedy et al. 2017) and OSTIA (Donlon et al. 2012) as observational data. We note that there140

are indications that the land datasets may still underestimate warming in northern areas (Wang141

et al. 2017; Way et al. 2017). Since Cru4CW uses HadSST3 data (Kennedy et al. 2011) over142

oceans, we developed an additional composite product with Cru4CW over land and HadISST2143

(1850-1985; preliminary release available only until 2010) and OSTIA data (1986-now; calibra-144

tion period 1986-2005) over ocean to reflect the full range of available SST products (hereinafter145

referred to as HadOST). To obtain land and ocean proxies, ocean points that are covered with sea146

ice are treated as land points. The sea ice extent to generate the ice mask is taken from HadISST2147

and OSTIA. The same mask is applied to Cru4CW and BE.148

Due to continuous problems in currently available SST datasets, mainly manifest as warm bias149

as a result of changing SST sampling methods (from bucket to engine-room intake measurements)150

during World War II, associated with changing fleet composition (Karl et al. 2015; Hansen et al.151

2016; Kent et al. 2017), Cowtan et al. (2017) have recently proposed a novel method to address152

the WWII bias using island and coastal weather stations only. Inspired by the idea, we replicate153

their analysis with a slightly simplified methodology. We use a mask where grid boxes over land154

(adjacent to ocean) and over ocean (along coastlines) are selected, including islands. The global155

average of all such subsampled ocean grid boxes establishes our new SST proxy. The two coastal156

time series are scaled to match the 1980-2016 global SST trend (see Cowtan et al. (2017) for157

details on the scaling method) as it is deemed the most reliable period in the marine instrumental158

record (Rahmstorf et al. 2017).159

The results are shown in Fig. 1d for HadOST and BE and in Fig. 1e for ERSSTv4 and GHCNv3160

as used in GISTEMP (Hansen et al. 2010). The scaling factors are provided in the figure legend.161

In both cases, the two coastal records (derived from HadISST2 and ERSSTv4) show excellent162

agreement during the calibration period. As expected, the land scaling factor is lower in agreement163
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with amplified warming trends over land. The land and ocean proxies agree after 1920 and show164

only minor deviations before 1920 (Fig. 1d). The HadOST proxies (land and ocean), suggest that165

HadISST2 is reliable with marginal biases between 1880-1940. We find much less agreement166

between GHCNv3 and ERSSTv4 before 1980. Our analysis further suggests that ERSSTv4 has167

a substantial cold bias between 1900-80 as well as a spurious warm bias during WWII (Fig. 1e).168

While by no means perfect, this straight-forward analysis is at least indicative that SSTs in general169

and ERSST in particular (versions 4 and 5 are almost identical throughout the period of coverage)170

are still impacted by substantial unresolved inhomogeneities. In our main analysis we discard171

GISTEMP and apply the following correction factors to HadOST, Cru4CW and BE during four of172

the WWII years (1942-45): NHem = -0.04◦C, Global = -0.08◦C, SHem = -0.12◦C and Ocean =173

-0.18◦C. The remaining years in the time series remain unchanged. We discuss the implications in174

section 4.175

Finally, we use historical climate simulations from the Coupled Model Intercomparison Project176

(CMIP5) (Taylor et al. 2012) and an ensemble of the UK MetOffice HadCM3 model (Euro500)177

(Schurer et al. 2014) to estimate warming ratios and multidecadal internal variability.178

3. Impulse response model and uncertainty179

Following the method introduced in earlier work (Otto et al. 2015; Haustein et al. 2017),180

(vaguely similar to the analysis presented in Lean and Rind (2008) and Lean (2018)) we employ181

a two-box impulse response model framework that accounts for fast and slow temperature (T)182

changes in response to external forcing factors (comp: WMGHGs, anthropogenic aerosols (AER)183

and volcanic eruptions (VOL)). The fast component can be associated with the ocean mixed layer184

response whereas the slow component approximates the response of the deep ocean (Li and Jarvis185

2009):186
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dTj

dt
=

q j ·F −Tj

d j
;Tcomp =

2

∑
j=1

Tj (1)

TCRcomp = F2xCO2
·

(

q1 ·

(

1−
d1

70

(

1− e
−

70
d1

)

)

+ q2 ·

(

1−
d2

70

(

1− e
−

70
d2

)

))

(2)

ECS = F2xCO2
· (q1 +q2) (3)

More details can be found in Millar et al. (2017). The forcing due to doubling of CO2 (F2xCO2
) is187

3.71 W/m2. The factor q j (integrated contribution for response j) can be determined using Equa-188

tion (2) and (3) with a defined set of values for TCR and ECS. Our chosen TCR range encompasses189

values from 1.1-2.1K, with an associated ECS range of 2.0-4.0K, in line with IPCC AR5 estimates190

(Stocker et al. 2013). As TCR/ECS-ratios derived from observational data are plagued by a vari-191

ety of shortcomings (Armour 2017; Proistosescu and Huybers 2017; Marvel et al. 2018), we apply192

the CMIP5 mean of ∼0.53 as our central TCR/ECS-ratio estimate, supported, for example, by a193

reasonably good match of measured and simulated ocean heat uptake (Cheng et al. 2016). The194

associated adjustment factors for NHem, SHem, Land and Ocean as well as for AER and VOL195

forcing are introduced below.196

The slow response time (d2) is taken from Geoffroy et al. (2013a) (320 years), which included197

deep ocean feedbacks in contrast to accompanying work (Geoffroy et al. 2013b). Given that198

the fast response time (d1) of 4 years suggested in the same study (Geoffroy et al. 2013a) relies199

on estimates from GCM simulations, we follow the approach presented in Rypdal (2012) and200

double d1 to 8 years, which is in line with coefficients presented in Boucher and Reddy (2008)201

based on idealised simulations undertaken with the HadCM3 model. It is argued that observed202
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temperatures show a prolonged/delayed response due to mediating effects intrinsic to our climate203

system (Emile-Geay et al. 2008; Santer et al. 2014; McGregor et al. 2015) which may be less well204

represented in many GCMs (Le 2017). These estimates of d1 and d2 yield the highest correlation205

with observations.206

As far as the response to AER is concerned, Shindell (2014) and Marvel et al. (2016) have207

highlighted the importance of different hemispheric treatment of the heterogeneous aerosol load.208

The conceptual idea is to have an enhanced TCR for AER due to its preponderance over land209

as a result of the skewed spatial distribution of aerosols. Differential heat capacities over land210

and ocean (and therefore implicitly the hemispheres) lead to considerably different response times211

over land and ocean, associated with inhomogeneous hemispheric warming rates that are medi-212

ated by cross-equatorial energy transports (Loeb et al. 2016; Stephens et al. 2016) for all forcing213

agents. Having said that, aerosols are transported over vast distances (Uno et al. 2009; Schulz et al.214

2012), affecting oceans directly (due to albedo effect) and indirectly as well (due to cloud effects,215

particularly over formerly pristine areas), despite very low direct emissions over oceans mainly216

from ship exhaust (Kunkel et al. 2013; Shindell et al. 2013). Therefore, Ocean aerosol emissions217

are not a suitable proxy for the associated ocean temperature response. To remedy the problem,218

the inter-hemispheric exchange of aerosol-induced temperature responses has to be accounted for219

appropriately using coupling factors (introduced below).220

The differential warming requires dedicated TCR calibration factors for the WMGHG, VOL221

and AER induced temperature responses. To obtain a plausible and robust set of such calibration222

factors, we use observed Transient Warming Ratios (TWR) between NHem and SHem as well as223

Land and Ocean. In Fig. 2, the temperature responses to total anthropogenic (a, b), WMGHG (c,224

d), AER (e, f) and VOL (g, h) are shown. Decadally averaged warming ratios are provided above225
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or under each graph. All data are low-pass filtered with an smoothing radius of 5 years. The TWR226

is obtained during the 30 year period of strongest transient warming.227

Given that TWRs for WMGHG, AER and VOL can only be inferred from GCMs, we apply a228

scaling factor which represents the difference between observed and all-forcing TWRs. Assuming229

that the observed TWR (red shaded area in Fig. 2a, b) is our target ratio, the responses in HadCM3230

are scaled accordingly. HadCM3 is used because it provides a small ensemble of simulations231

(mainly drawn from the Euro500 experiment) which is consistent across the experiments. The232

TWR in the historical HadCM3 ensemble is 1.7, compared to 2.8 in HadOST (Fig. 2a). Hence a233

scaling factor of ∼1.6 is applied to the TWR deduced from the WMGHG and AER ensemble of the234

same model in order to correct for the underestimated TWR in the historical HadCM3 simulations.235

The resulting inferred TWR (hereinafter referred to as TWRD; D = diagnosed), which is then used236

in the response model, is provided in the boxes at the bottom of Fig. 2.237

Since the bulk of the VOL response takes place on the fast timescale (1-10 years) and thus differ238

from WMGHG related responses (Ding et al. 2014), we refrain from scaling and use the TWR239

from HadCM3 directly (consistent with above-mentioned findings in Boucher and Reddy (2008)240

regarding HadCM3’s fast response time). Note that the VOL responses in Fig. 2g, h are shown241

for the full 1500-1999 period in contrast to the shorter 1850-1999 (1850-2017) period for all other242

scenarios.243

In addition, since we do not know the resulting warming ratios in the response model a priori244

when we impose the inferred TWRD, we compare them with the posteriori TWRs (hereinafter245

referred to as TWRE; E = estimated) in order to validate our approach. We find that, for example,246

the TWRD for WMGHGs (TCR of 2.65K over Land and 1.11K over Ocean) of ∼2.4 results in a247

TWRE of ∼2.2 (see Fig. 2d). We therefore argue that our method is reasonably well constrained248

to provide a robust answer.249
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All TCR calibration factors based on the deduced TWRDs (and shown at the bottom of Fig. 2)250

are summarised in the upper box in Fig. 3. We would like to point out that these calibration factors251

modulate the TCR/ECS ratio and are used for the full range of TCR and ECS values, respectively,252

not only the best estimate. The latter is provided at the top of Fig. 3 as well, together with the TCR253

for AER effective forcing which is ∼40% higher (best estimate = 2.2K) than that of WMGHGs254

(best estimate = 1.6K), consistent with findings in Rotstayn et al. (2015) and in pursuit to reflect255

the higher aerosols load over land.256

To estimate the TCR calibration factor for AER, hemispheric and land-ocean coupling factors257

need to be determined. They reflect the above-mentioned fact that inter-hemispheric energy ex-258

changes in response to the heterogeneous distribution of AER need to be balanced. Conveniently,259

the coupling factors are an emergent property and as such a function of the hemispheric area260

weighting factors, which are strictly interlinked and hence constrained as follows (example for261

WMGHGs):262

T Global
GHG = 0.5 ·T NHem

GHG +0.5 ·T SHem
GHG

= 0.32 ·T Land
GHG +0.68 ·T Ocean

GHG (4)

Note that the Land fraction is marginally >30% because areas covered with sea ice are treated263

as land throughout the analysis. Apart from the area-weighted constraint, the coupling factors264

are also dependent on the emission ratio, i.e. the ratio between the hemispheric (and land/ocean)265

and the total global aerosol emission strength, which in turn determines the appropriate fractional266

contribution to match the inferred AER-TWRD (see Appendix A for more details). The resulting267

coupling factors are 3.9 (ratio of 1.47 and 0.38, which corresponds to 85% NHem and 15% SHem268

AER contribution for NHem AER and vice versa for SHem AER) and 2.1 (ratio of 1.46 and 0.7,269
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which corresponds to 70% Land and 30% Ocean AER contribution for Land AER and vice versa270

for Ocean AER). These factors are also provided in the bottom box of Fig. 3, together with all271

other parameters used in the response model. Global temperature trends for the 1978-2017 period272

in HadOST (a), CMIP5 (b) and HadCM3 (c) are also shown in Fig. 3. The spatial distribution273

of the trend highlights why observed and modelled TWR do not agree, which is primarily caused274

by delayed southern ocean warming (Armour et al. 2016), and partly by an accelerated Arctic275

amplification (Serreze and Barry 2011). Both physical processes are not satisfactorily reproduced276

in most GCMs.277

Lastly, as apparent from the discrepancy between the AER factor provided at the bottom of Fig. 2278

(3.5 and 2.4 for NHem/SHem and Land/Ocean, resp) and that shown in the top box of Fig. 3 (5.1279

and 2.9 for NHem/SHem and Land/Ocean, resp), we increased the inferred AER-TWRD slightly.280

While the adjustment of the AER-TWRD does not change our conclusions (see Fig. S1 and S2 for281

the same result without AER-TWRD tuning), it does lead to better agreement between HadOST282

and the response model during the period of strongest AER cooling between 1960-80. Given283

that the HadCM3 AER ensemble is not a strict AER-only simulation rather then the difference284

between the allforcing and a non-aerosol ensemble of HadCM3, the results likely do not reflect285

the full extent of the aerosol-induced TWR. Therefore we think it is a defensible decision and well286

within the realm of the uncertainty of our AER-TWR estimate. The resulting AER timeseries is287

shown in Fig. 1c.288

For the uncertainty analysis, response model, radiative forcing and internal variability uncer-289

tainty is considered. Apart from the TCR (1.1...2.1K) and ECS (2.0...4.0K) range, we also include290

a range of fast response times (3...13 years) in our response model uncertainty estimate. For the291

forcing, 200 total radiative forcing realisations are used (Forster et al. 2013) and converted into292

response model temperature equivalents to estimate the associated error range. The resulting σ293
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(32-68th percentiles) of the fractional uncertainties is shown in Fig. 4a (response model error294

in green and radiative forcing error in blue). If we assume that potential internally generated,295

low-frequency variability adds linearly to the externally forced response, we need an estimate of296

(modelled) unforced multidecadal variability. As introduced in Haustein et al. (2017), we use297

equidistant intervals of selected CMIP5 pre-industrial control simulations that do not drift (Knut-298

son et al. 2013) and possess a similar range of unforced variability as our response model based299

estimate of the residual observational variability. In Fig. 4b, the low-pass filtered residuals for Ha-300

dOST, Cru4CW and BE between 1850-2017 and low-pass filtered sample intervals of 168 years301

from selected CMIP5 models are shown together with their standard deviation (σ ). The obtained302

5-95th percentiles of their internal variability span ±0.17◦C (σ=0.1◦C and σ
2=0.01◦C2) as shown303

in Fig. 4a in grey.304

We note that there is additional parameter uncertainty, which is not fully included here as it305

is difficult to objectively constrain the upper and lower bounds of the respective parameters. In306

order to rectify this problem, in Fig. S3, we have plotted the response model results for a set307

of reasonable model parameters, including aerosol sensitivity, TWRs, coupling strength, TCR308

efficiency, varying SOL and VOL forcing, as well as high and low AER ERF (dashed line for -0.5309

and -1.0 W/m2). The resulting uncertainty is small compared to the total uncertainty, which is310

dominated by the forcing uncertainty. Hence we conclude that the our results are insensitive to the311

parameter choices, even if our observationally constrained estimates were biased.312

4. Model performance and evolution313

In Fig. 5, the response model results for Land (a; brown), NHem (b; red) and Global (c; green),314

Ocean (d; purple) and SHem (e; blue) are shown. The central allforcing temperature response es-315

timate is shown as the bold line in the lower graph in each panel, while thin lines indicate slightly316
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higher/lower alternative TCR estimates as indicated at the right hand side (1.2...2.0K). The 5-317

95th percentiles and the inter-quantile (25-75th) uncertainties are added as shaded grey contours.318

The low-pass filtered (30 year smoothing radius) instrumental data from HadOST (dark green),319

Cru4CW (yellow) and BE (black) are shown for comparison, including the WWII correction in-320

troduced in section 2. Before filtering, the influence of ENSO (Deser et al. 2012) is removed from321

the observational timeseries in order to minimise short-term noise (Stuecker et al. 2015), following322

the multiple regression approach of Foster and Rahmstorf (2011).323

Conversely, in the upper graphs in Fig. 5a - 5e we have added ENSO variability to the response324

model results by scaling the multivariate ENSO index (MEI) (Wolter and Timlin 1998) for each do-325

main and applying the lag coefficient obtained from the multiple regression. Other than the WWII326

bias correction, the observational data in the upper graphs show the annual mean temperatures. On327

the top left in each panel, the explained variance (R2) for non-ENSO corrected, model-adjusted328

(MEI), and observation-adjusted correlations between model and the observational datasets are329

shown. The correlations are based on the low-pass filtered timeseries (30 year smoothing radius).330

To avoid problems due to autocorrelation, the associated non-filtered R2 between Global HadOST331

and model-adjusted (MEI) timeseries is 0.935 (not shown; 0.92 for Cru4CW and 0.912 for BE).332

We would like to highlight that our R2 for HadOST exceeds the explained variance found in Ryp-333

dal (2018) and Folland et al. (2018), without the need to invoke any contribution of the contentious334

AMV.335

We find excellent agreement between our response model and observations in all three time-336

series. NHem and Land are well reproduced over the entire duration of the instrumental period,337

including the EW and the MC periods (Fig. 5a, 5b). SHem and Ocean are similarly well re-338

produced, with notable deviations before and after WWII when compared with Cru4CW or BE339

(Fig. 5d, 5e). Using HadOST, the SHem and Ocean model results can be almost entirely reconciled340
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with observations (Fig. 5d). HadOST and Ocean only start to diverge before 1900. But overall,341

the Global results (Fig. 5c) leave little room (of the order of ∼0.1◦C) for unforced low-frequency342

temperature variations.343

Before we investigate other notable excursions in light of the role of unforced Pacific and At-344

lantic ocean variability, in Fig. 6 the evolution of the response model for all five domains is shown.345

The top graph in each panel shows the response model result using WMGHG and aerosol forc-346

ing based on IPCC AR5 (Meinshausen et al. 2011), extrapolated to 2017, volcanic forcing from347

NASA-GISS (Sato et al. 1993) updated to 2017 and a fast response time of 4 years. As such, it348

corresponds to the results published in Haustein et al. (2017). The middle graph in each panel is349

using our slightly modified VOL and solar forcing and a fast response time of 8 years. All what350

is otherwise different compared to our final response model result as shown in the lower graph351

in each panel is AER. The results based on the new CEDS AER show significant improvements352

in each domain, resolving most of the discrepancies associated with the EW and MC period. As353

far as EW is concerned, the improved response model performance is partly linked with the SST354

bias correction during WWII which is only applied in the lower graph in Fig. 6. Accordingly,355

the warming spike particularly over Ocean (Fig. 6d) and SHem (Fig. 6e) disappears, leading to a356

visibly better agreement between model and observations.357

With the current AER lowered by >10% (Fig. 1a), here we briefly explore the implications for358

TCR, including a cautionary remark regarding the lack of robustness when estimating ECS. In359

Fig. 5, the TCR range from 1.2-2.0K is indicated with our best estimate using a TCR of 1.6K360

(bold lines). Based on linear regression between HadOST and the Global response model re-361

sult, our most precise TCR estimate is 1.57K with an associated inter-decile uncertainty range of362

0.87-2.27K (10-90th percentiles). This is in good agreement with other recent work (Richardson363

et al. 2016), despite the lower AER estimate. While others have suggested that TCR might be364

18



time-dependent (Gregory et al. 2015), our results do not provide evidence for a change over the365

instrumental period.366

With the TCR/ECS-ratio held constant, ECS is tied to TCR by construction in our analysis367

(3.0K with an associated inter-decile uncertainty range of 1.7-4.3K). Nonetheless, it is instructive368

to investigate the impact of different ECS values upon the model results when the TCR/ECS ratio369

is permitted to vary. As shown in the lower graphs of Fig. 6 where we have added the response370

model result for the low-end (2.0K) and high-end (4.0K) ECS range, neither of the two estimates371

provides sufficient guidance as to which ECS value is more likely to be correct. The small range372

of possible outcomes severely hampers a robust ECS estimation. We therefore agree with others373

(Armour 2017; Proistosescu and Huybers 2017; Marvel et al. 2018) who found that ECS cannot374

reliably be inferred from historical observations alone, and recommend caution as ECS is easily375

conflated with the Effective Climate Sensitivity, the latter of which is likely to be lower (Knutti376

et al. 2017; Andrews and Webb 2018). Hence such attempts (Aldrin et al. 2012; Otto et al. 2013;377

Skeie et al. 2014; Lewis and Curry 2015; Mauritsen and Pincus 2017; Lewis and Curry 2018)378

should be viewed with extreme skepticism.379

5. Role of unforced Pacific ocean variability380

Returning to Fig. 5, here we assess a few noteworthy remaining excursions that are arguably381

related to unforced internal variability. To facilitate quantifying those excursions, in Fig. 7 the382

residuals between the HadOST and response model temperature timeseries are plotted for the five383

domains. In Fig. 7b, the low-pass filtered MEI evolution is provided (black line). Cru4CW and384

BE are shown in Fig. 7e for completeness.385

We note that MEI shows signs of multidecadal variability, which is linked to the Pacific Decadal386

Variability (PDV) index (Newman et al. 2016; Henley 2017). Whether or not the unique behaviour387
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of the North Pacific variability (Williams et al. 2017; Kohyama and Hartmann 2017) and the388

associated observed strengthening of the Walker circulation (L’Heureux et al. 2013; McGregor389

et al. 2014; de Boisséson et al. 2014; Ma and Zhou 2016; Kajtar et al. 2017) are unforced or partly390

caused by changes in WMGHG (DiNezio et al. 2012; Xiang et al. 2014; Cai et al. 2015), AER391

(Dong et al. 2014; Takahashi and Watanabe 2016), or VOL (Emile-Geay et al. 2008; Le 2017) is a392

matter of intense debate and beyond the scope of this paper. However, the residuals as well as the393

explained variabilities provided in Fig. 5 suggest that low-frequency ENSO variability has little394

bearing on the outcome of our response model results. Merely the timing of the modern warming395

is slightly better aligned with observations when MEI rather than NINO3.4 (Trenberth 1997) is396

used (not shown), which is indicative of a minor role for additional decadal PDV impacts indeed.397

Modelled Land (Fig. 7d) shows only a few peaks that are not explained by ENSO (e.g. 1884,398

1913, 1939, 1949, 1980, 1991, 2010). Such excursions should be expected given the large standard399

deviation over land due to the stochastic nature of continental interannual variability (Mahlstein400

et al. 2012). There are a few years between 1950-60 which appear to be cooler than the response401

model suggests, but since no such deviation shows up over Ocean (see Fig. 7f), it might be related402

to European aerosol emissions (Persad and Caldeira 2018).403

The positive residual after 2000 (also visible in the NHem residual in Fig. 7a) is perhaps more404

interesting as it relates to the infamously dubbed ”hiatus” period in the wake of the strong El405

Niño in 1997/98. While primarily caused by a clustering of La Niña events around 2010 (Kosaka406

and Xie 2013; England et al. 2014; Schurer et al. 2015; Dong and McPhaden 2017), upon closer407

inspection another feature stands out. There has been a succession of anomalously cold years408

between 2010-2013, which is exclusively linked with boreal winter. More precise, this period409

is linked with extremely cold Eurasian winters (Cohen et al. 2012) which may or may not have410

been assisted by forced atmospheric circulation changes in response to declining sea ice (Tang411
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et al. 2013; Cohen et al. 2014; Overland 2016; Francis 2017; Hay et al. 2018). But other than412

that, SHem (Fig. 7c) and Ocean (Fig. 7f) residuals are inconspicuously smooth and only diverge413

before 1900 as outlined above already. Overall, our results support previous work that has shown414

that using updated external radiative forcing (Huber and Knutti 2014; Schmidt et al. 2014) and415

accounting for ENSO-related variability explains the so-called ”hiatus”. We refer to Medhaug et al.416

(2017) for a comprehensive review of the unprecedented flurry of publications on the subject. That417

said, despite being less sensitive to small changes near the endpoints compared to higher degree418

polynomial fits, we caution that the lowess smoother is still susceptible to overestimating trend419

changes at the beginning and end of the time series.420

With explained variabilities ∼98% for HadOST for the Land (Fig. 5a), NHem (Fig. 5b) and421

Global (Fig. 5c) response model results, we conclude that almost all low-frequency variability422

is explained by external forcing factors independent of ENSO. The Ocean (Fig. 5d) and SHem423

(Fig. 5e) results reveal similar explanatory skill with explained variabilities between 93-95%. In-424

terestingly, BE shows lower correlation factors than Cru4CW over Ocean (even more so over425

SHem), despite their common use of HadSST3. Thus, differences in data processing alone can426

explain much of the discrepancies. The fact that HadOST not only fares considerably better in427

terms of correlation, but also performs best regarding the coastal proxy analysis (Fig. 1d), justifies428

its inclusion in our analysis. However, more work needs to be done to reconcile the differences429

between the available SST products and to reduce associated biases (Davis et al. 2019). In Ap-430

pendix B, we briefly analyse the spatio-temporal characteristics of those products with regard to431

decadal means.432
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6. Role of unforced Atlantic ocean variability433

While the accurate reproduction of the EW and MC period in our response model framework434

does not require multidecadal temperature variability to attribute to the ostensible AMV, we do not435

dispute the existence of internal variability associated with AMOC variations. Therefore here we436

aim at quantifying the AMOC’s role in setting NHem temperatures and its relation to the AMV. In437

order to facilitate the assessment, we would like to propose a more adequate, straight-forward and438

intuitive definition of the AMV index itself. Rather than using the standard definition (Delworth439

and Mann 2000) or an improved definition thereof (van Oldenborgh et al. 2009), we define the440

AMV as average SST at 25-60◦N and 7-75◦W (red box in Fig. 8d) minus NHem temperature. The441

resulting revised timeseries is shown in Fig. 7a (bold black line).442

The revised AMV index (which we more appropriately propose to be named North Atlantic Vari-443

ability Index or NAVI) is essentially reflecting and reliably mirroring the long-term AMOC decline444

in response to anthropogenic warming. The unprecedented dip aound 2015 is associated with the445

continued advection of very cold air of Arctic origin over the Canadian archipelago region during446

the winters of 2014/15 and 2015/16. Atmospheric forcing has been recognised to drive short-term447

AMOC variability (Roberts et al. 2013; Duchez et al. 2016) as opposed to gradual changes in sea448

ice cover (Sévellec et al. 2017), temperature, salinity and pressure gradients that eventually cause449

the slower long-term AMOC changes that are indeed already detectable Rahmstorf et al. (2015)450

and concomitant with the well-known Atlantic Warming Hole (AWH) (Menary and Wood 2018).451

Arguably, asymmetric land-ocean warming is a more mundane explanation for the colder NA re-452

gion relative to NHem, as it is physically consistent with a transient warming scenario, but the453

slow pace of the NAVI decline suggests a contributing role for AMOC.454
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In order to qualitatively explore the role of longer-term effects associated with low-frequency455

modes of variability, we have conducted a simple correlation analysis. In Fig. 8, we have plotted456

the spatial map of correlation coefficients between Global and NHem timeseries obtained from the457

response model versus global observations (HadOST). The correlation between the older, slightly458

more advanced AMV index (van Oldenborgh et al. 2009) and HadOST is provided as well (Fig. 8d,459

g, k). We notice that the AWH in the subpolar NA region appears uncorrelated with the forcing460

timeseries (Fig. 8a, b, e), regardless whether we use the Global or NHem timeseries. Another461

noteworthy feature is the accompanying anti-correlation between the AMV index and most world462

regions.463

Since we are not aware of a robust mechanism that would cause multidecadal AWH variability464

as opposed to a steady decline, in the following we test three potential reasons for why the AWH465

region may or may not follow externally forced changes: (1) A long-term warming trend differ-466

ence, (2) a different spectrum of high-frequency SST variability, or (3) true internal low-frequency467

variability. To investigate whether (3) is a viable explanation, we applied running means from 5-20468

years (Fig. 8e, h, m; middle panel), we linearly detrended model and observations (Fig. 8c), or we469

did both (Fig. 8f, j, n; rhs panel).470

What we find is that the AWH is robust against temporal averaging as far as non-detrended471

data are concerned. In contrast, if detrended data are used, the temporal averaging aligns the472

NAVI/AWH region with the NHem forcing response in terms of correlation, maintaining its473

(forced) multidecadal low-frequency variability. In fact, detrending alone considerably reduces474

the unique behaviour of the AWH region already (Fig. 8c). What we infer from this is that the475

secular warming trend (1) is responsible for the specific characteristic of the AMV region. The476

root cause of this cooling trend is well known and one of the key features in GCM projections477

(Rahmstorf et al. 2015; Menary and Wood 2018). The high-frequency variability over the wider478
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NA region is higher than on global average, but comparable in magnitude to the western North479

Pacific (equally high supply of baroclinicity) or Eurasia (Fig. 8b).480

After a decade, not much multi-annual stochastic variability is left (Fig. 8e). Together with481

the Indian ocean, the wider NA region shows high correlations with the NHem model after trend482

removal in both (Fig. 8f), suggesting substantial dependencies on externally forced low-frequency483

variability. It is a different story over land (and much of the Pacific), where the signal-to-noise484

ratio is lower on decadal scales due to limited radiative constraints on winter temperatures (Cohen485

et al. 2012; Knutson et al. 2013; Deser et al. 2017). The positive correlation between the 20 year486

low-pass filtered, detrended AMV and the Arctic (Fig. 8k) is physically very plausible as amplified487

Arctic warming relies on heat transport via the NA region, governed by the NAO index and the488

associated strength of the AMOC. However, it is the forced long-term warming trend that is the489

driver as evident from Figs. 8m and 8n.490

Since no noticeable low-frequency signal can be detected over the key AWH region (Fig. 8n),491

we conclude that it is unlikely that internal variability on timescales > 5 years plays an important492

role in the North Atlantic. There is room for 1-5 year unforced feedbacks, but apart from the493

cooling due to the long-term decline in AMOC strength (Fig. 8m), high- and low-frequency AMV494

pattern appear to be externally forced according to our response model results. This is in line with495

an empirical model study that uses multiple regression to attribute forcing contributions globally496

(Suckling et al. 2017), and also supported by other studies that show that subpolar NA variability497

is largely driven by AMOC changes, with little evidence for a strong AMV-AMOC link (Marini498

and Frankignoul 2014; Frankignoul et al. 2017).499

In conclusion, combined with the recent downward trend in the new NAVI index, our analysis500

strongly suggests that the impact of internally generated NA ocean dynamics on Global, NHem501

and Land temperatures is rather limited. Remaining AMOC related to low-frequency variability502
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(Zhang 2017) may have regional implications, but a strong influence beyond that is unlikely. The503

results are supported by another simple exercise in which NA SSTs are weighted by the surface504

area of the AMV/NAVI region, divided by the NHem surface area. This way, the fractional fin-505

gerprint of the AMV on NHem temperatures can be inferred. The peak contribution would be506

<0.03◦C, assuming all NA SST variability is of internal origin, which we have shown not to be a507

very plausible conjecture. Helped by a more advanced (yet still debatable) regression analysis, we508

note that Folland et al. (2018) also found almost no AMV contribution to global temperature.509

7. Conclusions510

With explained variabilities of observed global temperatures of up to 98% (30 year smooth) or511

∼93% (with ENSO variability), respectively, our impulse response model performs exceptionally512

well. We are able to match the historical temperature evolution since at least 1850 in general, and513

succeed in reproducing both the EW and the MC period with high precision in particular, with-514

out the need to invoke unexplained internal multidecadal temperature variability as an additional515

driver.516

Three key aspects are crucial for an appropriate attribution of the temperature response to ex-517

ternal radiative forcing perturbations. (1) Careful treatment of the spatially heterogeneous AER518

forcing as its temporal evolution has major repercussions for both the EW and the MC period. (2)519

Removal of the WWII warm bias in the current generation of SST datasets as there is now solid520

evidence that 1942-1945 period is biased warm to differing degrees, causing a spurious warming521

trend at the end of the EW period. (3) Calibration of the fast response time in order to account for522

the mediating effects of ENSO as far as the response to volcanic eruptions is concerned.523

While others (Mann et al. 2014; Folland et al. 2018) have found similarly good agreement as524

far as the GMST evolution is concerned, our analysis demonstrates that it is possible to reproduce525
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the temperature evolution separately for NHem, SHem, Land and Ocean with equal precision. We526

achieve this by introducing a set of suitable TCR calibration factors that are informed by observed527

(HadOST) and modelled (HadCM3) TWRs and traceable throughout the analysis. Apart from528

minor fine-tuning related to the deduced TWR for AER, every response model parameter used in529

our study is backed up by independent analysis and/or based on well-established research. The530

use of updated aerosol emission and volcanic forcing data as well as the application of a longer531

fast response time (complemented by a hemispherically more uniform fast VOL response) are532

otherwise the only changes that we made compared to previous iterations within the response533

model framework. Owing to the introduced analytical constraints, which are designed to avoid534

model tuning, our results warrant robustness against overfitting.535

With the introduction of HadOST, which includes a coastal temperature analysis inspired by536

Cowtan et al. (2017) that appears least biased with regard to the incorporated HadISST2 and OS-537

TIA SSTs, we add another option to the existing batch of GMST datasets. We recommend to use538

it more widely as it resolves some of the discrepancies present in HadSST3 before 1940. Despite539

a smaller warm bias during WWII in HadISST2 compared to HadSST3, we still have to impose540

a correction factor (-0.08◦C for GMST) to reconcile it with the coastal hybrid temperature time-541

series. As a result, almost all of the EW warming could ultimately explained by external forcing542

changes, which - if confirmed by future research - may call the current partition of attributable EW543

causes, as recently reviewed in Hegerl et al. (2018), in considerable doubt.544

In our assessment of potential contributions from Atlantic and Pacific multidecadal variability,545

we demonstrate that with the exception of prolonged periods of El Niño or La Niña preponderance,546

there is little room for internal unforced ocean variability beyond subdecadal timescales, which is547

particularly true for the NA region. This finding is buttressed by our demonstration that despite548

high co-variability, cause (VOL and AER) and effect (AMV) are clearly distinguishable. That549
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does not mean AMV cannot have internal mechanisms (Zhang 2017), rather only that the signal550

cannot be detected in Global or NHem (nor is necessary to explain their temporal evolution).551

Hence the traditional AMV index must not be used as predictor or explanatory variable, as it may552

lead to demonstrably incorrect or flawed attribution results (Hetzinger et al. 2008; Chylek et al.553

2009; Huss et al. 2010; Wyatt et al. 2012; Tung and Zhou 2013; Chylek et al. 2014; Pasini et al.554

2016; Hodgkins and Wilson 2017; Yan et al. 2017; Shen et al. 2018; Zhang et al. 2018). We555

suggest a revised AMV index formulation (NAVI) which avoids such pitfalls as it better mirrors556

the long-term AMOC decline as suggested, for example, in (Rahmstorf et al. 2015).557

On that note, we also caution against confusing atmospherically driven short-term variability558

(noise) with changes due to anthropogenic or natural external forcing factors (signal). As demon-559

strated in the supplementary analysis, anomalous atmospheric NHem winter circulation features560

explain most of the short-term AMOC variability, acting as the control knob on multi-monthly561

timescales. Longer timescales are conceivable: (1) Via changing wind stress related to anoma-562

lous NAO phasing, which in turn affects the subpolar horizontal gyre circulation (Piecuch et al.563

2017). (2) Via atmospheric teleconnections associated with ENSO such as the PNA-NAO rela-564

tionship (Pinto et al. 2011), which in turn links to the emerging paradigm of the Pacific basin as565

pacemaker for global temperature (Guan and Nigam 2009; Kosaka and Xie 2013; England et al.566

2014; Schurer et al. 2015; Dong and McPhaden 2017; Frankignoul et al. 2017). (3) Via ocean567

memory effects, which may favour the reoccurrence of certain large-scale weather patterns in the568

Euro-Atlantic region during successive boreal winter seasons via air-sea coupling (Scaife et al.569

2014). But generally, progress in understanding Atlantic decadal climate variability has been slow570

(Yeager and Robson 2017). Taken together, our analysis underscores that despite the complexities571

of the climate system, changes to the mean state are dominated by radiative forcings on longer572

timescales and ENSO-related variability on shorter timescales.573
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By virtue of these findings, we are confident that our associated best TCR estimate of 1.57574

(±0.70) K is robust, despite a substantial error range due to the large forcing uncertainty. We575

strongly advise against the use of ECS estimates based on the instrumental record alone with-576

out considering further evidence (from paleo-archives or GCMs), as they cannot be reliably con-577

strained with data of such a short time interval.578

In a future analysis, we aim to quantify another important response model feature which also579

contributes to an improved representation of the EW period. In a nutshell, it can be demonstrated580

that failure to initialise the response model (or GCMs for that matter) before a series of strong581

volcanic eruptions will very likely bias the beginning of the simulated EW period warm, leading582

to an artificially low warming trend in models.583
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APPENDIX A597

Calculation of coupling factors598

As outlined in Section 3, inter-hemispheric energy exchanges in response to the heterogeneous599

distribution of AER need to be balanced by virtue of so-called coupling factors. As shown in600

Fig. 3, for AER there is a notable discrepancy between the TCR scaling factors (2.5/1.9 for601

NHem/SHem and 2.7/1.95 for Land/Ocean) and the diagnosed AER-TWR (5.1 for NHem/SHem602

and 2.9 for Land/Ocean). A discrepancy that does not appear for WMGHG and VOL (for instance:603

TWRDWMGHG = 2.23/0.97 = 2.3). This is where the coupling factor comes into play. Since the604

TCR scaling only works under the assumption that the NHem aerosol response is governed by605

NHem aerosol emissions (and vice versa for SHem; same problem for Land and Ocean), we have606

to find a way to accommodate the additional temperature response from SHem emissions in case607

of the NHem response.608

We have applied two-stage methodology: (1) We derive the emission ratio, i.e. the ratio between609

the hemispheric (and land/ocean) and the total global aerosol emission strength. It is a function of610

the fractional contribution of each hemisphere (or land/ocean) and could vary between 95% to 5%,611

up until 50% to 50%. (2) We determine the optimal fractional contribution or coupling strength.612

For this to work, we balance the ratio of the TCR scaling factors (e.g. 2.5 for NHem and 1.9613

for SHem) and the TWRD (e.g. 5.1 for NHem/SHem). Since the effective forcing of the SHem614

emissions will be lower (due to the lower TCR scaling factor), a secondary scaling factor has to be615

applied to NHem and SHem emission strength. This factor is only be equal for one particular set616

of coupling strengths. For NHem/SHem, the fractional contributions are 85% and 15%, associated617

with a NHem emission ratio (fractional NHem emission divided by Global emissions) of 1.58618

and a SHem emission ratio (fractional SHem emission divided by Global emissions) of 0.42. The619
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additional secondary scaling factor is 0.93. Hence the NHem/SHem emission ratio is reduced to620

1.47 and 0.38. Their ratio defines the coupling factor, which is 3.9 accordingly (=1.47/0.38).621

Applying the same method for Land/Ocean, the fractional contributions are 70% and 30%, asso-622

ciated with a Land emission ratio (fractional Land emission divided by Global emissions) of 1.35623

and an Ocean emission ratio (fractional Ocean emission divided by Global emissions) of 0.65. The624

secondary scaling factor is 1.08, which is explained by the fact that the Ocean sensitivity is lower,625

but instead covers a much larger area fraction compared to Land (area fractions are equal in case626

of NHem/SHem). Hence the Land/Ocean emission is increased to 1.46 and 0.70. The associated627

ratio to determine the coupling factor is 2.1 (see lower box in Fig. 3 and fine-print below it).628

APPENDIX B629

Decadal temperature evolution630

As highlighted in the main text, SST observations are still afflicted with considerable uncertain-631

ties. Having investigated time series of field means, here we provide the spatiotemporal context632

and discuss potential causes for some of the discrepancies noted above. In Fig. B1, the GMST633

dataset used in this study are plotted as decadal average from 1850-1859 to 2010-1817 (BE,634

Cru4CW, HadOST), accompanied by GISTEMP during 1880-1889 to 2010-2017. In addition,635

the 20th Century reanalysis (20C Rean) (Hirahara et al. 2014), the ensemble mean of a subset of636

CMIP5 simulations are plotted, together with NorESM1-M (Bentsen et al. 2013) which is found637

to represent the temperature evolution since 1850 very well compared to observations. We also638

added the recently proposed Hybrid SSTs (Cowtan et al. 2017). The decade 1940-1949 is high-639

lighted by the red box. Note that HadOST and Cru4CW use the same infilled HadCRUT4 (Morice640

et al. 2012) data over land. We also note that both, Cru4CW and BE have shown to carry a small641
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negative trend bias in recent years (Hausfather et al. 2017). If that is not enough, it has also been642

suggested that the Arctic region might still be biased cold (Wang et al. 2017; Way et al. 2017).643

As noted above, the 1880-1935 period is too cold in HadSST3 (Cru4CW) compared to644

HadISST2 (HadOST), most pronounced during 1890-1920. Looking at those three decades, at645

least the first two show a noteworthy feature near Cape Cauldron off the southern tip of South646

Africa, presumably associated with the Agulhas and Brazil currents. The otherwise distinct cold647

SST anomalies in the turbulent exit region where the Agulhas current leaks into the South Atlantic648

ocean (compare HadOST) turns into a vast area of cold SST anomalies that essentially covers649

most of the South Atlantic. Given the poor observational coverage and the intrinsic shortcomings650

of any infilling technique (Kriging in case of Cru4CW), it is likely that the cold South Atlantic651

SST anomalies in Cru4CW, BE and GISTEMP are exaggerated to varying degrees.652

Since the only bias in HadOST with regard to our response model results was found during the653

1850-1879 period, mainly caused by warmer NH SST conditions, it is interesting to ask whether654

the warm SST anomaly in the North Pacific in HadOST is real given it does not show up in other655

observational datasets. While such a pattern is consistent with a prolonged PDV negative phase,656

the amplitude of the anomaly appears very strong, especially during the 1860s. The pattern re-657

occurs during the 1950-80 period, but background SSTs are less cold than during the 1850-79658

period. This is arguably a feature which deserves to be investigated in more detail, particularly in659

light of recent work by Huang et al. (2018).660

Regarding the WWII period, even though we have plotted decadal averages, what stands out661

is the sudden warming of all ocean basins in ERSST during the 1940s (and to a much lesser662

extent HadSST3 and HadOST). As evident from Fig. 5a, Land did not notably warm during the663

same period, which strongly suggests an artifactual feature, related to biases due to the previously664

explained change in fleet composition during WWII. The final feature we would like to mention665
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concerns the cold bias during 1950-80 in ERSST. While the general NHem ocean cooling due666

to increased anthropogenic SO2 emissions is visible in all observations (and CMIP5 simulations,667

irrespective of some temporal misalignments), ERSST seems to exaggerate the cooling slightly668

given that the spatial pattern of the SST anomalies are indistinguishable from other datasets. We669

speculate that this might be a general theme in ERSST given that it draws heavily from maritime670

nighttime measurements in contrast to other products. We note that ERSSTv5 (Huang et al. 2017)671

has not changed notably compared to ERSSTv4.672

As we cannot provide robust conclusions with regard to causes for the mismatch between dif-673

ferent observational dataset at this point, we would like to close by encouraging the research674

community to address the oftentimes under-appreciated problems in more depth. Insights from675

energy balance models such as presented in this study can guide such efforts. With clever new676

strategies to combine the various information available, we are confident that the remaining gaps677

in our understanding will be eliminated and instrumental data brought into better agreement.678
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LIST OF FIGURES1189

Fig. 1. Global radiative forcing components used in our study (a), decomposition of the four AER1190

components including indirect aerosol effects (b), and spatial decomposition of the effective1191

and non-effective AER (c). Scaled coastal HadOST (blue) and coastal BE anomalies (red)1192

in comparison with 60N-60S HadOST (black) in (d) and the same for coastal ERSSTv4,1193

coastal GISTEMP and 60N-60S ERSSTv4 in (e). . . . . . . . . . . . . . 591194

Fig. 2. Transient Warming Ratios (TWR) to estimate the TCR adjustment factors for WMGHGs,1195

AER and VOL for NHem/SHem (lhs) and Land/Ocean (rhs). Allforcing warming contri-1196

butions in CMIP5, HadCM3, HadOST and the response model (a, b). WMGHG only (c,1197

d), AER only (e, f) and VOL only (g, h) contributions in HadCM3 and the response model.1198

Modelled VOL (negative) temperature response is shifted by +10 and +25 years merely for1199

better readability. The timeline of volcanic eruptions (scaled radiative forcing) is shown in1200

black (g, h). All data are low-pass filtered to remove interannual variability. The boxes at1201

the bottom show the inferred (diagnosed) warming ratios (TWRD) for WMGHG and AER1202

using the product of the ratios of observed (red) and modelled (orange) allforcing TWRs (a,1203

b), multiplied by the modelled TWRs (orange) for WMGHG (c, d) and AER (e, f). The es-1204

timated warming ratios (TWRE) refer to the simulated response model TWR using TWRD.1205

Both values are given in light purple. Only the 30 year period of strongest differential warm-1206

ing is used for the central TWR estimates. VOL TWR is only a function of the fast response.1207

611208

Fig. 3. Summary panel for all the necessary response model parameter, including their justification.1209

Global, hemispheric and Land/Ocean TCR scaling factors for WMGHGs, anthropogenic1210

aerosols (AER) and volcanic eruptions (VOL) based on the findings shown in Fig. 1 (top1211

box). Forcing response time estimates and sensitivities used in this analysis are provided,1212

including their source (bottom box). Colour codes for better readability. The pink labels1213

in the lower box refer to the original AER-TWRD. In grey the associated coupling factors.1214

Surface temperature trends in HadOST (a), CMIP5 (b) and HadCM3 (c) from 1978-2017. . . 621215

Fig. 4. Fractional variance (square of the model error) for impulse response model uncertainty1216

(green), total radiative forcing uncertainty (blue) and internal variability uncertainty (grey)1217

in (a). The 1σ (32-68th percentiles) range is shown. We note that internal variability is1218

no response model uncertainty in a strict sense as it is added post-hoc (i.e. onto the cal-1219

culated temperature). The peaks in the response model uncertainty coincide with volcanic1220

eruptions (e.g. Tambora in 1816) eruption. The Internal variability from selected CMIP51221

piControl runs is contrasted with the unforced residuals from the GMST datasets used in this1222

study (b). Observed and modelled timeseries are low-pass filtered with a 30 year smoothing1223

radius. The standard error is provided in brackets. . . . . . . . . . . . . . 631224

Fig. 5. Illustration of the ENSO influence on our results. In the upper graph in each panel, the ob-1225

servations are plotted against the response after adding MEI variability to the time series.1226

The lower graph shows the raw impulse response model results against the ENSO-corrected1227

suite of observational data. Land (including sea ice grid points) is shown on the upper left1228

(brown), NHem on the lower left (red), GMST on the upper right (green), Ocean (excluding1229

sea ice grid points) in the centre right (purple), and SHem on the lower right (blue). Ob-1230

servations from the HadOST composite (pale grey), Cru4CW (yellow), and BE (black) are1231

shown. Explained variances (R2) are given for non-ENSO corrected, model-adjusted (MEI),1232

and observation-adjusted (MEI) (Foster and Rahmstorf 2011) low-pass-filtered correlations.1233

The WWII correction factors are applied to both instrumental temperature timeseries in each1234

panel (except Land). TCR values associated with alternative response model results are pro-1235

vided on the right of each panel (1.2-2.0K). . . . . . . . . . . . . . . 651236
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Fig. 6. Evolution of the response model from forcing and response times as applied in Haustein1237

et al. (2017) (H17), with AER as used in CMIP5 (old AER) and the current version using1238

CEDS AER (new AER). Note that the WWII bias correction is only applied in case of new1239

AER in order to illustrate the impact (no change in Land only). The results are shown for1240

Land (a), NHem (b), Global (c), Ocean (d) and SHem (e). The two dashed lines in the1241

lower graph of each panel indicate the variability of the result as a function of the ECS1242

value applied in the response model. The default value of 3.0K corresponds with our central1243

estimate. . . . . . . . . . . . . . . . . . . . . . . . . 671244

Fig. 7. Unforced residual observed variability. Impulse Response Model (IRM) minus HadOST for1245

NHem (a), Global (b), SHem (c), Land (d), and Ocean (f). HadOST Global as in (b) is1246

compared to CruCW4 and BE Global in (e). A 30 year lowess smooth is added in each plot.1247

The revised AMV index is shown in (a). The Multivariate ENSO Index is added in (b). Note1248

that the rhs y-axis labels for AMV (a) and MEI (b) are different. . . . . . . . . . 681249

Fig. 8. Spatial map of correlation coefficients (R) over time between 1850-2016. Positive correla-1250

tions in red and negative correlations in black. Annual means are used. (a) Time series of the1251

global response model vs HadOST composite. (b) As (a) but with MEI noise added to the1252

global response model time series. (c) Timeseries of the NHem response model vs HadOST.1253

(d) The improved AMV index (van Oldenborgh et al. 2009) vs HadOST. The AMV/NAVI1254

region is highlighted with a red box. (e) As (c), but with 5 year running means applied1255

to both NHem and HadOST. (f) Combination of (c) and (e) where both regressors are de-1256

trended and low-pass filtered with a 5 year running mean. (g) As (d), but with both AMV1257

and HadOST being detrended. (h) As (e) but with 10 year running mean. (j) as (f) but with1258

10 year running mean. (k) As (d), but with both AMV and HadOST being detrended and1259

low-pass filtered with a 20 year running mean. (m) As (e) but with 20 year running mean.1260

(n) As (f) but with 20 year running mean. SHem area is shown in semi-transparent colours1261

to highlight the NHem region of interest. . . . . . . . . . . . . . . . 691262

Fig. B1. Decadal GMST anomalies for the 20th century Reanalysis, all observational data used in1263

this study including the new Hybrid SST dataset (Cowtan et al. 2017), CMIP5 subset and1264

the NorESM1-M global circulation model. Decade from 1850-59 (top) to 2010-17 (bottom)1265

are shown in each row. All anomalies are given relative to the 1901-2000 baseline period.1266

The 1940-49 decade that is affected by the WWII warm bias is highlighted by the red box. . . 711267
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FIG. 1. Global radiative forcing components used in our study (a), decomposition of the four AER components

including indirect aerosol effects (b), and spatial decomposition of the effective and non-effective AER (c).

Scaled coastal HadOST (blue) and coastal BE anomalies (red) in comparison with 60N-60S HadOST (black) in

(d) and the same for coastal ERSSTv4, coastal GISTEMP and 60N-60S ERSSTv4 in (e).
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FIG. 2. Transient Warming Ratios (TWR) to estimate the TCR adjustment factors for WMGHGs, AER

and VOL for NHem/SHem (lhs) and Land/Ocean (rhs). Allforcing warming contributions in CMIP5, HadCM3,

HadOST and the response model (a, b). WMGHG only (c, d), AER only (e, f) and VOL only (g, h) contributions

in HadCM3 and the response model. Modelled VOL (negative) temperature response is shifted by +10 and +25

years merely for better readability. The timeline of volcanic eruptions (scaled radiative forcing) is shown in

black (g, h). All data are low-pass filtered to remove interannual variability. The boxes at the bottom show the

inferred (diagnosed) warming ratios (TWRD) for WMGHG and AER using the product of the ratios of observed

(red) and modelled (orange) allforcing TWRs (a, b), multiplied by the modelled TWRs (orange) for WMGHG

(c, d) and AER (e, f). The estimated warming ratios (TWRE) refer to the simulated response model TWR using

TWRD. Both values are given in light purple. Only the 30 year period of strongest differential warming is used

for the central TWR estimates. VOL TWR is only a function of the fast response.
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FIG. 3. Summary panel for all the necessary response model parameter, including their justification. Global,

hemispheric and Land/Ocean TCR scaling factors for WMGHGs, anthropogenic aerosols (AER) and volcanic

eruptions (VOL) based on the findings shown in Fig. 1 (top box). Forcing response time estimates and sensitiv-

ities used in this analysis are provided, including their source (bottom box). Colour codes for better readability.

The pink labels in the lower box refer to the original AER-TWRD. In grey the associated coupling factors.

Surface temperature trends in HadOST (a), CMIP5 (b) and HadCM3 (c) from 1978-2017.
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FIG. 4. Fractional variance (square of the model error) for impulse response model uncertainty (green), total

radiative forcing uncertainty (blue) and internal variability uncertainty (grey) in (a). The 1σ (32-68th percentiles)

range is shown. We note that internal variability is no response model uncertainty in a strict sense as it is added

post-hoc (i.e. onto the calculated temperature). The peaks in the response model uncertainty coincide with

volcanic eruptions (e.g. Tambora in 1816) eruption. The Internal variability from selected CMIP5 piControl

runs is contrasted with the unforced residuals from the GMST datasets used in this study (b). Observed and

modelled timeseries are low-pass filtered with a 30 year smoothing radius. The standard error is provided in

brackets.
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FIG. 5. Illustration of the ENSO influence on our results. In the upper graph in each panel, the observations

are plotted against the response after adding MEI variability to the time series. The lower graph shows the

raw impulse response model results against the ENSO-corrected suite of observational data. Land (including

sea ice grid points) is shown on the upper left (brown), NHem on the lower left (red), GMST on the upper

right (green), Ocean (excluding sea ice grid points) in the centre right (purple), and SHem on the lower right

(blue). Observations from the HadOST composite (pale grey), Cru4CW (yellow), and BE (black) are shown.

Explained variances (R2) are given for non-ENSO corrected, model-adjusted (MEI), and observation-adjusted

(MEI) (Foster and Rahmstorf 2011) low-pass-filtered correlations. The WWII correction factors are applied to

both instrumental temperature timeseries in each panel (except Land). TCR values associated with alternative

response model results are provided on the right of each panel (1.2-2.0K).
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FIG. 6. Evolution of the response model from forcing and response times as applied in Haustein et al. (2017)

(H17), with AER as used in CMIP5 (old AER) and the current version using CEDS AER (new AER). Note that

the WWII bias correction is only applied in case of new AER in order to illustrate the impact (no change in Land

only). The results are shown for Land (a), NHem (b), Global (c), Ocean (d) and SHem (e). The two dashed lines

in the lower graph of each panel indicate the variability of the result as a function of the ECS value applied in

the response model. The default value of 3.0K corresponds with our central estimate.

1307

1308

1309

1310

1311

1312

67



FIG. 7. Unforced residual observed variability. Impulse Response Model (IRM) minus HadOST for NHem

(a), Global (b), SHem (c), Land (d), and Ocean (f). HadOST Global as in (b) is compared to CruCW4 and BE

Global in (e). A 30 year lowess smooth is added in each plot. The revised AMV index is shown in (a). The

Multivariate ENSO Index is added in (b). Note that the rhs y-axis labels for AMV (a) and MEI (b) are different.
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FIG. 8. Spatial map of correlation coefficients (R) over time between 1850-2016. Positive correlations in

red and negative correlations in black. Annual means are used. (a) Time series of the global response model

vs HadOST composite. (b) As (a) but with MEI noise added to the global response model time series. (c)

Timeseries of the NHem response model vs HadOST. (d) The improved AMV index (van Oldenborgh et al.

2009) vs HadOST. The AMV/NAVI region is highlighted with a red box. (e) As (c), but with 5 year running

means applied to both NHem and HadOST. (f) Combination of (c) and (e) where both regressors are detrended

and low-pass filtered with a 5 year running mean. (g) As (d), but with both AMV and HadOST being detrended.

(h) As (e) but with 10 year running mean. (j) as (f) but with 10 year running mean. (k) As (d), but with both

AMV and HadOST being detrended and low-pass filtered with a 20 year running mean. (m) As (e) but with 20

year running mean. (n) As (f) but with 20 year running mean. SHem area is shown in semi-transparent colours

to highlight the NHem region of interest.
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Fig. B1. Decadal GMST anomalies for the 20th century Reanalysis, all observational data used in this

study including the new Hybrid SST dataset (Cowtan et al. 2017), CMIP5 subset and the NorESM1-M global

circulation model. Decade from 1850-59 (top) to 2010-17 (bottom) are shown in each row. All anomalies are

given relative to the 1901-2000 baseline period. The 1940-49 decade that is affected by the WWII warm bias is

highlighted by the red box.
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