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SO(8) pairing model

We show that the symmetry-restored paired mean-field states (quasiparticle vacua) properly account for 
isoscalar versus isovector nuclear pairing properties. Full particle-number, spin, and isospin symmetries 
are restored in a simple SO(8) proton-neutron pairing model, and prospects to implement a similar 
approach in a realistic setting are delineated. Our results show that, provided all symmetries are restored, 
the pictures based on pair-condensate and quartet-condensate wave functions represent equivalent ways 
of looking at the physics of nuclear proton-neutron pairing.

 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

A key question in nuclear structure physics is do proton-

neutron (pn) pairs form collective condensates in nuclei in the 
same way that like-particle pairs do? Ever since the existence of 
like-particle nuclear pairing was suggested in 1958 by Bohr, Mot-

telson, and Pines [1], this simple question has been addressed in 
numerous studies [2]. As late as in 2004, the authors of Ref. [3]
concluded that in spite of many attempts to extend the quasiparti-
cle approach to incorporate the effect of pn correlations, no symmetry-

unrestricted mean-field calculations of pn pairing, based on realistic 
effective interaction and the isospin conserving formalism have been car-
ried out. This conclusion still holds even today.

In this Letter, we show that sometimes contradicting conclu-
sions about the existence of the pn pair condensate may have 
resulted from using a mean-field formalism without full symme-

try restoration. Here we apply this formalism within simultane-

ous breaking and then restoration of three major symmetries: 
particle-number, angular-momentum, and isospin. In the shell-
model framework these symmetries are not broken and hence do 
not have to be restored. A number of such studies already exist, 
see, e.g., Ref. [4]. However, the shell-model interprets the pn pair-
ing as an effect of a strong nucleon-nucleon isoscalar interaction, 
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and is less concerned with the analysis of wave functions in terms 
of collective condensates. In this sense, the question of existence 
of the putative pn condensate remains open.

Due to the attractive nature of the nuclear interaction, atomic 
nuclei are strongly correlated systems exhibiting superfluid proper-
ties. The theoretical description of nuclear superfluidity is directly 
related to the theory of electronic superconductivity, wherein 
Cooper pairs of electrons in time-reversed states condensate near 
the Fermi level. In the nuclear case, we may expect a possible for-
mation of six types of pairs, corresponding to the four degrees of 
freedom of the nucleon: spin and isospin, up and down. More pre-
cisely, we may have scalar-isovector Cooper pairs P̂+

ν , with three 
projections of the total isospin ν ≡ T z=0, ±1, and vector-isoscalar 
pairs D̂+

μ , with three projections of the total spin μ ≡ Sz=0, ±1. 

The condensation of spin-aligned D̂+
μ pairs has recently attracted 

increased attention, see Refs. [5,6] and references cited therein.
The most general pair condensate is represented by a quasipar-

ticle vacuum. This can be written in terms of the Thouless state [7,

8], which may be expressed as |�〉 = N exp{ Ẑ+}|0〉, for the Thou-
less pair Ẑ+ given by

Ẑ+ =
∑

ν=0,±1

pν P̂
+
ν +

∑

μ=0,±1

dμ D̂+
μ. (1)
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In the above equation, pν and dν are complex isovector and 
isoscalar amplitudes, respectively, |0〉 is the particle vacuum and 
N is the normalization constant.

It is now obvious that in the Thouless state all symmetries: 
particle-number, spin, and isospin, are strongly mixed. Therefore, 
the standard paired-mean-field minimization of the average en-
ergy, which in nuclear physics is called Hartree-Fock-Bogolyubov 
(HFB) theory [8], may or may not give the best result. A great 
number of studies based on the HFB approach already exist, see, 
e.g., Refs. [9–13] and reviews in Refs. [2,3]. In this Letter, we argue 
that in order to analyze the problem of the pn pairing it is neces-
sary to employ a more sophisticated approach that is based on the 
minimization of energy after all symmetries are restored.

The relevant method corresponds to the so-called variation-
after-projection (VAP) [8] method, which employs the projected 
Thouless states,

|�AST
MK ,NL〉 = P̂ A P̂

S
MK P̂ T

NL |�〉, (2)

as variational trial states. The projection operators: P̂ A on parti-
cle number A, P̂ S

MK on total spin S and its projection M , and P̂ T
NL

on total isospin T and its projection N , involve one-dimensional 
integration over the gauge angle, three-dimensional integration 
over the spin-rotation Euler angles and three-dimensional inte-
gration over the isospin-rotation Euler angles [8,14], respectively. 
In this Letter, we report on the implementation of a complete 
seven-dimensional integration which allows us to fully restore all 
relevant symmetries that are broken in an arbitrary symmetry-

unrestricted Thouless state. Although such a technology has al-
ready been previously applied in the shell-model context [15], 
below we argue that it is essential for analyzing the physics of 
pn pairing.

However, before embarking on full-scale VAP calculations in a 
realistic nuclear DFT setting, one would like to know if such a 
complete and demanding approach is capable of bringing better 
solutions when applied in a simple model. For that, in this Letter 
we perform a full VAP analysis of the well-known SO(8) model [2,

16–21]. To make the properties of the model as clear as possible, 
we begin by a novel discussion of its building blocks and symme-

tries, and later we recall its Hamiltonian and dynamics.

The building blocks of the model are the isovector and isoscalar 
pairs within a single-particle phase space of a few degenerate ℓ
shells,

P̂+
ν =

∑

ℓ

√

2ℓ+1
2

(

a+

ℓ 1
2

1
2

a+

ℓ 1
2

1
2

)L=0,S=0,T=1

M=0,Sz=0,T z=ν

, (3)

D̂+
μ =

∑

ℓ

√

2ℓ+1
2

(

a+

ℓ 1
2

1
2

a+

ℓ 1
2

1
2

)L=0,S=1,T=0

M=0,Sz=μ,T z=0

, (4)

where a+

ℓ 1
2

1
2

are the creation operators of a particle with orbital 

angular momentum ℓ, spin 1
2
, and isospin 1

2
. The round brack-

ets denote triple standard Clebsch-Gordan coupling to the total 
orbital angular momentum L, spin S , and isospin T , having, re-
spectively, projections M , Sz , and T z . The maximum number of 
particles allowed in this phase space is equal to 4� for � =
∑

ℓ(2ℓ + 1). For deformed nuclei with spin-orbit coupling taken 
into account, the notion of spin should, in fact, be understood 
as that of the alispin [22], which pertains to a pair of deformed 
Kramers-degenerate single-particle states.

In the past, much of the discussion related to properties of pn 
pairing concentrated on the question of whether real or complex 
quasiparticle amplitudes have to be used. In order to solve this 
problem in the context of the most general Thouless pairs, defined 

in Eq. (1), we briefly touch upon their symmetries. To begin, let us 
consider a system described by a scalar and isoscalar Hamiltonian, 
such as that in the SO(8) model, which is defined below.

In the first instance, we note that unabridged spin and isospin 
projections involve rotating the Thouless pair over the full spin and 
isospin SO(3) groups, hence, we can freely choose its initial ori-
entations in the spin and isospin spaces, respectively. This means 
that the vector and isovector pair-creation operators, Eqs. (4) and 
(3), can be arbitrarily aligned along one of the directions in space 
and isospace, respectively. Without any loss of generality, we can 
choose orientations along the z axes, that is, we can keep in Eq. (1)
only spherical amplitudes p0 and d0 . Then, the Thouless states be-
come eigenstates of spin and isospin projections with Sz = T z = 0. 
Such a choice has an enormous advantage, namely, it allows for re-
ducing the integrations over the spin and isospin Euler angles to 
one dimension only, which reduces seven dimensions of integra-
tion to just three. We have also been able to test and benchmark 
all of our results by performing unrestricted integrations.

Second, we note that by a simple expansion of the exponen-
tial function, the particle-number projection of the Thouless state 
|�〉 = N exp{ Ẑ+}|0〉 is equal to |�A〉 = N ′( Ẑ+)A/2|0〉 for N =

N ′(A/2)!. Therefore, an overall multiplicative factor of the Thou-
less pair, and its phase, can be absorbed in the normalization con-
stant N ′ , and are thus irrelevant. This allows us to parametrize the 
most general Thouless pair expressed in Eq. (1) in terms of two an-
gles 0 ≤ α < π and 0 ≤ ϕ < π only, that is, Ẑ+(p0, d0) ≡ Ẑ+(α, ϕ)

for

p0 = sin( 1
2
α)e−iϕ and d0 = cos( 1

2
α)eiϕ . (5)

The angle α (ϕ) controls the relative amplitude (phase) between 
the isovector and isoscalar pairs.

Third, we have to take into account the fact that every scalar 
and isoscalar Hamiltonian is also invariant with respect to the spin 
and isospin signatures, Ŝ ≡ exp(iπ Ŝ y) = iσ̂y and T̂ ≡ exp(iπ T̂ y) =
iτ̂y , respectively, which rotate spins and isospins by angle π about 
the corresponding y axes. Transformation rules of the isovector 
and isoscalar pairs under such rotations follow directly from the 
general rules of how scalars and vectors are transformed. Indeed, 
any scalar is invariant with respect to the rotation by angle π , and 
any vector then changes sign. It thus follows that the scalar pairs 
are S-even-T -odd and the isoscalar pairs are S-odd-T -even, and 
thus the Thouless pairs (1) transform as:

Ŝ Ẑ+(α,ϕ)Ŝ+ = i Ẑ+(α,ϕ + π
2
), (6)

T̂ Ẑ+(α,ϕ)T̂ + = i Ẑ+(α,ϕ − π
2
). (7)

Finally, we have to fix the phase convention. Here we adopt the 
one of Condon-Shortley in the LS basis, by which all single-particle 
states transform under time-reversal T̂ as,

T̂ a+

ℓm; 12 sz;
1
2 tz

T̂+ = (−1)ℓ+m(−1)
1
2+sza+

ℓ−m; 12−sz;
1
2 tz

. (8)

This convention carries over to the isovector and isoscalar pairs, 
Eqs. (3) and (4), which turn out to be time-even and time-odd, 
respectively. As a consequence, the Thouless pairs transform under 
time reversal as

T̂ Ẑ+(α,ϕ)T̂+ = i Ẑ+(α, π
2

− ϕ). (9)

Altogether, we see that the invariance of the Hamiltonian with 
respect to the spin or isospin signature renders the average ener-
gies periodic in ϕ with period of π

2
, whereas that with respect to 

the time reversal renders them symmetric with respect to the line 
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Fig. 1. Average values of the SO(8) Hamiltonian (10), calculated for the unprojected (upper panels) and projected (2) (lower panels) Thouless states, parametrized by angles 
α and ϕ as in Eqs. (1) and (5). Calculations were performed for � = 12, with projection on A = 24 and T = S = 0. From left to right panel we show results for x = −0.95, 
−0.25, 0, 0.5, and 0.9, and color bands correspond to steps of �E = 20, 15, 13, 17, and 20, respectively. All results are in units of g .

at ϕ = π
4
. At this line, the Thouless pairs are time-even (up to an 

irrelevant phase factor).
Since our entire analysis of symmetries is performed for the 

Thouless states, we avoid any possible ambiguities related to defi-
nitions and phase conventions of quasiparticle states, density ma-

trices, and pairing tensors, which can be now consistently deter-
mined from the Thouless pairs using generic expressions [8].

For the Hamiltonian of the SO(8) model we use the representa-
tion introduced in Ref. [21],

Ĥ = −g(1− x)
∑

ν=0,±1

P̂+
ν P̂ν − g(1+ x)

∑

μ=0,±1

D̂+
μ D̂μ. (10)

The model makes it possible to study the dynamical properties and 
relative importance of the isoscalar and isovector modes of pairing. 
Indeed, with the overall pairing strength controlled by parameter 
g , the relative importance of the isovector vs. isoscalar pairing is 
governed by the mixing parameter x. For x = +1(−1), the Hamil-

tonian has a pure isoscalar (isovector) character, whereas within 
the interval −1 < x < 1, we should expect a competition between 
the two possible types of pairing. Using group-theory methods the 
Hamiltonian, specified by Eq. (10), can be diagonalized exactly [17,

21].

In Fig. 1, we show average values of the SO(8) Hamiltonian 
(10) calculated for the unprojected Thouless states (upper panels) 
and for Thouless states projected for particle number A = 24 and 
T = S = 0 (lower panels). The red dots and red band indicate the 
minima of energies, that is, in the upper and lower panels they 
indicate solutions of the HFB and VAP equations, respectively. We 
see that in all cases the minima of energies appear at ϕ = π

4
, that 

is, for time-even Thouless states.
For the unprojected states, for x < 0 the minima stay at α = π

(purely isovector pairs) and then for x > 0 they flip over to α = 0

(purely isoscalar pairs). At x = 0, the HFB energy is entirely in-
dependent of α, so that states with any isovector-isoscalar pair 
mixing are exactly degenerate. Our HFB results confirm the obser-
vations of Ref. [19] that the unprojected mean-field states do not 
exhibit isovector-isoscalar pairing mixing. However, as we see in 
the lower panels of Fig. 1, our VAP states do exhibit such a mixing. 
Indeed, even a small departure from the pure isovector or isoscalar 
interaction moves the VAP solutions away from the unmixed states 
characterized by α = 0 or α = π . As expected, at x = 0 the VAP 
solution appears at α = 1

2
π , so that the pairs are then maximally 

mixed.

Let us now discuss the VAP solutions, that is, properties of 
states |AST 〉 that are projected on good particle number A, spin 
S , and isospin T with energies minimized over α at ϕ = π

4
. Fig. 2

summarizes our VAP results obtained for different isospins (left 
panels) and particle numbers (right panels).1 As one can see in 
the top panels of the figure, when plotted on a linear scale, the 
VAP energies (symbols) are indistinguishable from the exact val-
ues (lines).

Only by plotting energy differences on a logarithmic scale (up-
per middle panels) can one appreciate the fact that at x = 0 the 
VAP energies are precise up to 1.5%, and that with growing |x|

their precision rapidly improves by many orders of magnitude. In 
the limits of x = −1 or x = +1, the Thouless pairs correspond to 
S = 0 or T = 0, respectively, and thus it is enough to restore either 
the isospin or spin symmetry. Then, as already noted in Ref. [20], 
the VAP results become exact. Here we have shown that even in 
a more realistic case of mixed pairing the VAP results constitute 
an excellent approximation to the exact ones. We also note that 
for the multi-level T = 1 pairing model very good results were ob-
tained in Ref. [23] by using the GCM mixing of the isospin-restored 
HFB states, with pairing gaps used as generator coordinates. In 
light of our findings, one can interpret such a GCM approach as 
leading to analogous solutions to those that we obtain by employ-

ing the full VAP method. Finally, as one can see in Fig. 2(d), the 
VAP results obtained for A = 4 and 6 are for all values of x exact, 
that is, precise up to the numerical accuracy, see discussion below.

The lower middle panels of Fig. 2 show norms of the VAP 
Thouless isoscalar pairs defined as |d0|2 = cos2( 1

2
αmin), cf. Eqs. (1)

and (5). Again we see that for arbitrary strengths of the isoscalar 
vs. isovector interactions, the VAP isoscalar and isovector pairs do 
coexist. As illustrated in Fig. 2(e), at a given interaction strength 
x > 0, the role of the isoscalar pairs gradually decreases with 
isospin T , however, even for high values of T their contributions 
are still significant.

A possible experimental evidence of coexistence between iso-
scalar and isovector pairing can be the observation and analysis of 
deuteron transfer reaction [24–26], which depends on the reduced 
isoscalar-pair transfer matrix element 〈A + 2, S = 1, T ||D+||A, S =

0, T 〉. In the bottom panels of Fig. 2, we compare the VAP and ex-
act values of these matrix elements calculated in the SO(8) model. 
Here we show results normalized by the maximum values ob-

1 We plot VAP results only for projected states |AST 〉 that have numerically sig-
nificant norms.
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Fig. 2. Top panels: Energies in units of g . Upper middle panels: Relative errors of the VAP energies shown in the logarithmic scale. Lower middle panels: Norms of the 
isoscalar Thouless pairs |d0|2 . Bottom panels: Deuteron-transfer matrix elements. In the top and bottom panels, results obtained within the VAP method (symbols) are 
compared with those corresponding to the exact solutions (lines). Left panels show results obtained for A = 24, with the isospin increasing from T = 0 to 8, and spin S = 0

or 1 for even and odd T , respectively. Right panels show results obtained for T = 0, with the particle number increasing from A = 4 to 22, and spin S = 0 or 1 for even and 
odd A/2, respectively.

tained at x = 1, whereas the insets show these maximum values 
plotted in the absolute scale. Again we see that the VAP results 
(symbols) are indistinguishable from the exact values (lines).

On the one hand, the relative deuteron transfer amplitudes in-
crease with the strength of the isoscalar interaction, but this in-
crease is fairly gradual, especially at higher isospins. On the other 
hand, absolute values of these amplitudes gradually decrease with 
the isospin. So, as expected, the observation of the strong deuteron 
transfer is most likely in N = Z nuclei, however, for N �= Z , the ef-
fect does not abruptly disappear. The SO(8) model is too simplistic 
to draw quantitative conclusions and an analysis performed in a 
realistic shell-structure setting is very much required.

The fact that the projected pair condensates properly describe 
isovector and isoscalar pairing correlations can be best seen by 
analyzing the simplest case of four particles. Then, the particle-
number projected condensate is given by the square of the Thou-
less pair (1), that is, by |�4〉 = N ′( Ẑ+)2|0〉. However, the square 
of the Thouless pair is equal to a linear combination of five 
quartets: (P+P+)(00) , (D+D+)(00) , (P+D+)(11) , (P+P+)(02) , and 
(D+D+)(20) , where superscripts (ST ) denote values of the total 
spin S and isospin T . Restoration of the spin and isospin sym-

metries corresponds in this case to keeping only the first two, 
scalar-isoscalar quartets, and removing the other three. Thus the 
symmetry-projected |AST 〉 = |400〉 state becomes an exact lin-
ear combination of the two basic quartets [27]. Similarly, the 
symmetry-restored state |610〉 corresponds to an exact linear com-

bination of these same two basic quartets supplemented by one 
vector-isoscalar pair D+ (4). As a result, the A = 4 and 6 VAP so-
lutions shown in Fig. 2(d) are identical to the exact ones. For larger 
particle numbers or isospins, the success of the VAP approach in 
describing the pair condensation relies on the fact that it properly 

accounts for the main components of the wave functions being 
given by the two basic scalar-isoscalar quartets.

We note here that the pn pairing models have already been 
intensely analyzed within the quartet-condensation models, see 
Refs. [27,28] and references quoted therein. These references 
have often compared results with those obtained within pair-
condensation models employed without full VAP symmetry res-
torations and concluded that the latter ones were inferior. At vari-
ance with those conclusions, our results show that the obtained 
inferiority was not related to the pair-condensate approximation 
itself, but rather to the lack of the full VAP symmetry restora-
tion. We stress that approaches aiming to mix the isovector and 
isoscalar pairing necessarily mix the isovector (T = 1) and vec-
tor (S = 1 or J = 1) pairs, and thus a simultaneous restoration of 
isospin and angular momentum is mandatory [29].

It is now obvious that the effects of the pn-pair condensation 
should be analyzed in a more sophisticated setting than that en-
visaged up to now. Within a mean-field approach, it appears that 
only by performing the VAP calculations one can fully account for 
a subtle balance between the isovector and isoscalar pairing corre-
lations.

Methods to obtain full VAP results for realistic density function-
als have already been formulated [30], and implemented [31], in 
the simplest case of the particle-number restoration. When com-

bined with the full restoration of rotational and isospin symme-

tries, which were implemented without pairing in Ref. [32], and 
with the seven-dimensional symmetry restoration implemented in 
this Letter, a complete approach is possible and is now being con-
structed.

For the Coulomb isospin mixing included together with pair-
ing, a reduction of the three-dimensional isospin restoration to 
one dimension is not possible. Moreover, the former will anyhow 
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be required if the isocranking technology [10,11,33,34] is used to 
control the isospin degree of freedom. However, for axial nuclei, 
a one-dimensional integration suffices, so altogether we are then 
faced with five-dimensional integrals – which is a fully manage-

able task. Before attacking the full VAP approach, the results of 
this Letter indicate that a restricted minimization of the projected 
energies with respect to relative amplitudes of the isovector and 
isoscalar pairs could be a viable simplifying option.

The possibility of implementing such a methodology in a re-
alistic setting of microscopic density functionals crucially depends 
on developing functionals based on density-independent genera-
tors [35] with controlled isoscalar vs. isovector pairing strengths. 
We have already implemented the second aspect by adding to the 
inventory of generators terms separable in the pairing channel, 
cf. Refs. [36–39]. The work towards obtaining functionals suitable 
for the full VAP treatment of the pn pairing is now being intensely 
pursued.

In conclusion, within a simple SO(8) pairing model, we have 
shown that the symmetry-projected condensates of mixed isovec-
tor and isoscalar pairs very accurately describe properties of the 
exact solutions, including the coexistence of the isovector and 
isoscalar pairing. Lack of symmetry restoration thus explains the 
limited success in describing such a coexistence in the standard 
mean-field approaches to date. Symmetry restoration is also key 
to reconciling the pair-condensation and quartet-condensation pic-
tures of paired systems. Our study suggests that further work on 
properties of the proton-neutron nuclear pairing should be, and 
can be, carried out within the variation-after-projection approach 
to mean-field pairing methods.
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