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Abstract We study the optimal dividend problem for a firm’s manager who has par-
tial information on the profitability of the firm. The problem is formulated as one of
singular stochastic control with partial information on the drift of the underlying pro-
cess and with absorption. In the Markovian formulation, we have a two-dimensional
degenerate diffusion whose first component is singularly controlled. Moreover, the
process is absorbed when its first component hits zero. The free boundary problem
(FBP) associated to the value function of the control problem is challenging from the
analytical point of view due to the interplay of degeneracy and absorption. We find a
probabilistic way to show that the value function of the dividend problem is a smooth
solution of the FBP and to construct an optimal dividend strategy. Our approach es-
tablishes a new link between multidimensional singular stochastic control problems
with absorption and problems of optimal stopping with ‘creation’. One key feature
of the stopping problem is that creation occurs at a state-dependent rate of the ‘local
time’ of an auxiliary two-dimensional reflecting diffusion.
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1 Introduction

We study a singular stochastic control problem on a linearly controlled, one-dimen-
sional Brownian motion X with (random) drift μ. The problem is motivated by the
dividend problem, where X denotes the revenues of a firm and the firm’s manager
needs to distribute dividends to the shareholders in an optimal way but being mindful
of the risk of default. Similarly to the existing literature, we account for the risk of
default by letting the process X be absorbed upon reaching zero.

As one may expect, the optimal distribution of dividends is very sensitive to the
profitability of the firm, which is encoded in the drift μ of the process X. A positive
drift reflects a company in good health, and as a rule of thumb, dividends are paid
when revenues are sufficiently high (which is expected to occur rather often) so to
keep a low risk of default. On the other hand, a negative drift indicates a firm that
operates at a loss and therefore should be wound up as soon as possible by paying
out all dividends.

Estimating profitability is a challenging task in many real-world situations and has
already received attention in the mathematical economic literature; see e.g. Décamps
et al. [20] for investment timing, De Marzo and Sannikov [22] for contract theory,
Daley and Green [14] for asset trading. In order to capture this feature in a nontrivial
but tractable way, we assume partial information on the drift of the process X. This
is a novelty compared to existing models on dividend distribution.

We remark that statistical estimation of the drift of a drifting Brownian motion
from observation of the process is a much less efficient procedure than estimation of
its volatility. Indeed, over a given period of time [0, T ], the variance on the classical
estimator for the volatility can be reduced by increasing the number of observations,
whereas this is not the case for the variance on the estimator for the drift μ. The latter
depends on 1/T (see Ekström and Lu [24, Example 2.1] for a simple example); hence
an accurate estimate of μ requires a long period of observation under the exact same
market conditions, which in reality is not feasible.

Our study shows how the flow of information affects the firm’s manager optimal
dividend strategy. A as in the informal discussion above, dividends are paid only
when revenues exceed a critical value d∗; however, in contrast to the existing lit-
erature, this critical value changes dynamically according to the manager’s current
belief on the profitability of the firm. As we explain in more detail below, that belief
is described by a state variable π ∈ (0,1), where a value of π close to 1 indicates a
strong belief in a positive drift and a value of π close to 0 indicates a strong belief in
a negative drift. We observe that the critical value d∗ of the revenues increases (but
stays bounded) as π increases, which is in line with the intuition that a firm with
high profitability expects good performances and chooses to pay dividends when
large revenues are realised, so that the risk of default is kept low and the business
can be sustained over longer times. On the contrary, if there is a weak belief in the
profitability of the firm, then dividends will be paid also for lower levels of the rev-
enues, as there is no expectation that these will increase in the future. The partially
informed manager of our firm learns about the true value of profitability by observing
the stream of revenues X and adjusts her strategy accordingly, so that dividends are
paid dynamically at different levels of revenue depending on the learning process.
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The observation of X will in the end reveal the true drift μ, so that the belief of
the firm’s manager will eventually converge to either π = 0 or π = 1. Her dividend
strategy will then converge to the corresponding strategy for the problem with full
information (see Proposition 5.14). This shows that our model complements and ex-
tends the existing literature, which is reviewed in the next section, by displaying a
richer structure of the optimal solution and by effectively adding a new dimension to
the classical problem (i.e., the belief). For a broader discussion on the economic foun-
dations and implications of a dividend problem with partial information, we also refer
the reader to the introduction of the preprint Décamps and Villeneuve [21], where a
special case of our problem is studied with different methods (a detailed comparison
is given in the final three paragraphs of the next section).

1.1 Mathematical background and overview of main results

Our specific mathematical interest is in the explicit characterisation of the optimal
control in terms of an optimal boundary arising from an associated free boundary
problem. To the best of our knowledge, the study of free boundaries for singular
stochastic control problems associated to diffusions with absorption and partial in-
formation has never been addressed in the literature. Recently Øksendal and Sulem
[39] studied general maximum principles for singular control problems with partial
information. Their approach relies mostly on backward stochastic differential equa-
tions (BSDEs), and they provide general abstract results linking the value of the sin-
gular control problem to the solution of suitable BSDEs. Here we focus instead on
a specific problem with the aim of a more detailed study of the optimal control. It is
worth noticing that [39] does not consider the case of absorbed diffusions, which is a
source of interesting mathematical facts in our paper, as we discuss below.

For the sake of tractability, we choose a model in which μ is a random variable
that can only take two real values, i.e., μ ∈ {μ0,μ1}, with μ0 < μ1. The company’s
revenue at time t net of dividend payments reads

XD
t = Xt − Dt := x + μt + σBt − Dt, (1.1)

where B is a Brownian motion, σ > 0 and Dt denotes the total amount of dividends
paid up to time t (notice that D is an increasing process and we choose it to be
right-continuous). As in the most canonical formulation of the dividend problem, the
firm’s manager wants to maximise the discounted flow of dividends until the firm
goes bankrupt. Moreover, the manager can infer the true value of μ by observing the
evolution of X.

By using standard filtering techniques, the problem can be rewritten in a Marko-
vian framework by considering simultaneously the dynamics of XD and of the pro-
cess πt := P [μ = μ1|FX

t ], where FX
t = σ(Xs, s ≤ t). This approach has a long and

venerable history in optimal stopping theory, with early contributions dating back to
work of Shiryaev in the 1960s in the context of quickest detection. See Shiryaev [45]
for a survey, and Johnson and Peskir [34] for some recent developments and further
references. However, it seems that this model has never been adopted in the context
of singular control.
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One difficulty that arises by the reduction to a Markovian framework is that the
dynamics of the state process is two-dimensional and diffusive. This leads to a varia-
tional formulation of the stochastic control problem in terms of PDEs, and therefore
explicit solutions cannot be provided in general.

The literature on the optimal dividend problem is very rich with seminal math-
ematical contributions by Jeanblanc and Shiryaev [32] and Radner and Shepp
[42]. More recent contributions include, among many others, the survey by Avanzi
[2], Akyildirim et al. [1] and Eisenberg [23] who consider random interest rates,
Avram et al. [3] who allow jumps in the dynamics of X, Jiang and Pistorius [33]
who consider a regime-switching dynamics for the coefficients in (1.1), or Bayraktar
et al. [6] who consider jumps in the dynamics of X and fixed transaction costs for
dividend lump payments. However, research so far has largely focused on explicitly
solvable examples. This means that in the majority of papers, the underlying stochas-
tic dynamics are either one- or two-dimensional but with one of the state processes
driven by a Markov chain. Moreover, the time horizon γ D of the optimisation is usu-
ally assumed to be the first time of XD falling below some level a ≥ 0. Alternatively,
capital injection is allowed and the optimisation continues indefinitely, i.e., γ D = ∞.
These choices of γ D make the problem time-homogenous and easier to deal with. In
the absence of capital injection, even just assuming a finite time-horizon for the div-
idend problem, i.e., taking γ D ∧ T for some deterministic T > 0, introduces major
technical difficulties. The latter were addressed first by Grandits in [29] and [30] with
PDE methods, and then by De Angelis and Ekström [16] with probabilistic methods.
Interestingly, the finite time-horizon is more easily tractable in the presence of capital
injection, as shown in Ferrari and Schuhmann [26] using ideas originally contained
in El Karoui and Karatzas [25].

Here we take the approach suggested in [16], but as we explain below, we sub-
stantially expand the results therein. First we link our dividend problem to a suit-
able optimal stopping one. Then we solve the optimal stopping problem (OSP) by
characterising its optimal stopping rule in terms of a free boundary π �→ d(π). Fi-
nally, we deduce from properties of the value function U of the OSP that the value
function V of the dividend problem is a strong solution of an associated variational
inequality on [0,∞) × [0,1] with gradient constraint. Moreover, using the bound-
ary d(·), we express the optimal dividend strategy as an explicit process depending
on t �→ d(πt ). It is worth noticing that we can prove that V ∈ C1((0,∞) × (0,1)),
with the second derivatives Vxx and Vxπ belonging to C((0,∞) × (0,1)) and
Vππ ∈ L∞((0,∞) × (0,1)). This type of global regularity cannot be easily obtained
with PDE methods due to the degeneracy of the underlying diffusion. Here we obtain
these results with a careful probabilistic study of the value function U . In particu-
lar, the argument used to prove Vππ ∈ L∞((0,∞) × (0,1)) in Proposition 6.2 seems
completely new in the related literature.

As in [16], the presence of an absorbing point for the process XD ‘destroys’ the
standard link between optimal stopping and singular control. Such a link has been
studied by many authors. Bather and Chernoff [5] and Beneš et al. [7] were the first
to observe it, and Taksar [47] provided an early connection to Dynkin games. Exten-
sions and refinements of the initial results were obtained in a long series of subse-
quent papers using different methodologies. Just to mention a few, we recall Boetius
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and Kohlmann [10], El Karoui and Karatzas [25] and Karatzas and Shreve [35] who
address the problem with probabilistic methods, Benth and Reikvam [8] who use
viscosity theory, and Guo and Tomecek [31] who link singular control problems to
switching problems.

Departing from the literature mentioned above, we prove here that Vx = U ,
where now U is the value function of an OSP whose underlying process is a two-
dimensional, uncontrolled, degenerate diffusion (̂X, π̂), which lives in [0,∞)×[0,1]
and is reflected at {0} × (0,1) towards the interior of the domain along the direction
of a state-dependent vector v(π̂) (see Sect. 4.1). Moreover, upon each reflection, the
gain process that is underlying the OSP increases exponentially at a rate that de-
pends on the ‘intensity’ of the reflection and on the value π̂t of the process. We call
this behaviour of the gain process ‘state-dependent creation’ of the process (̂X, π̂)

at {0} × (0,1) (cf. Peskir [40]). Indeed, it is interesting that the ‘creation’ feature
of our reflected process links our paper to work by Stroock and Williams [46] and
Peskir [40] concerning a type of non-Feller boundary behaviour of one-dimensional
Brownian motion with drift. Notice, however, that in those papers, the creation rate
is constant and the problem is set on the real line, so that the direction of reflec-
tion is fixed. Here we deal instead with an example of a nontrivial, two-dimensional
extension of the problem studied in [46, 40].

A striking difference with the problem studied in [16] is the much more involved
dynamics underlying the OSP and the behaviour of the gain process. In [16], the
state dynamics in the control problem is of the form (t, X̌D

t ), with X̌D as in (1.1)
but with deterministic constant drift. This leads to an optimal stopping problem in-
volving a one-dimensional Brownian motion with drift which is reflected at zero, and
which is created (in the same sense as above) at a constant rate. The state variable
‘time’ is unaffected by the link between the dividend problem and the stopping one.
Here instead, the correlation in the dynamics of XD and π in the control problem
induces two main effects: (i) it causes the reflection of the process (̂X, π̂) to be along
the stochastic vector process t �→ v(π̂t ) (see (4.5) and (4.6)), and (ii) it generates a
nonconstant creation rate that depends on the process π̂ (see (4.8)).

The reflection of (̂X, π̂) at {0}× (0,1) is realised by an increasing process (At )t≥0
which we can write down explicitly (see (4.14)) and which we informally refer to as
‘local time’ of (̂X, π̂) at {0}× (0,1). Despite its use in solving the dividend problem,
the OSP that we derive is interesting in its own right and belongs to a class of prob-
lems that, to the best of our knowledge, has never been studied before. In particular,
this is an optimal stopping problem on a multidimensional diffusion, reflected in a
domain O, with a gain process that increases exponentially at a rate proportional to
the local time spent by the process in some portions of ∂O (moreover, this rate is
nonconstant).

In conclusion, we believe that the main mathematical contributions of our work
are the following: (i) for the first time, we characterise the free boundary associated
to a singular stochastic control problem with partial information on the drift of the
process and absorption; (ii) we obtain rather strong regularity results for the value V

of the control problem, despite degeneracy of the associated HJB operator; (iii) we
find a nontrivial connection between singular control for multidimensional diffusions
with absorption, and optimal stopping of reflected diffusions with ‘state-dependent
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creation’; (iv) we solve an example of a new class of optimal stopping problems
whose popularity, we hope, will increase with the increasing understanding of their
role in the dividend problem.

After completing this work, we learned about the preprint by Décamps and Vil-
leneuve [21] where the same problem is addressed in the special case of μ1 = −μ0. In
that setting, the problem’s dimension can be reduced by a transformation that makes
one of the two state processes purely controlled (a closer inspection reveals that this
is in line with the case of a null drift in our equation (4.46)). The problem in [21]
can be solved by ‘guess-and-verify’ via a parameter-dependent family of ODEs with
suitable boundary conditions. The methods of [21] cannot be used for generic μ0
and μ1 because the dimension reduction is impossible and the ODE becomes a two-
dimensional free boundary problem involving partial derivatives.

Besides the methodological differences between the two papers, the optimal strat-
egy obtained in [21] shares similarities with ours but also features a remarkable dif-
ference. Due to the fact that one of the state variables is purely controlled, in [21], the
level of future revenues at which dividends will be paid can only increase after each
dividend payment. As stated in [21], this can be understood as the firm’s manager
‘becoming more confident about the relevance of her project’. When revenues reach
a new maximum, this suggests to the manager that the drift is positive; however, the
symmetric structure μ1 = −μ0 is such that she does not subsequently change her
view, even if revenues start fluctuating downwards. This stands in sharp contrast with
our solution, which instead allows the manager to increase/decrease her revenues’
target level depending on the new information acquired.

The rest of the paper is organised as follows. In Sect. 2, we cast the problem
and provide its Markovian formulation. Section 3 introduces the verification theorem
which we aim at proving probabilistically in the subsequent sections. The main tech-
nical contribution of the paper is contained in Sects. 4–6. In the first part of Sect. 4,
we introduce the stopping problem for a two-dimensional degenerate diffusion with
state-dependent reflection. Then, in the rest of Sect. 4 and in Sect. 5, we study prop-
erties of the associated value function and obtain geometric properties of the optimal
stopping set. In Sect. 6, we prove that the value function and the optimal control of the
dividend problem can be constructed from the value function of the optimal stopping
problem and its optimal stopping region. A short appendix contains a rather standard
proof of the verification theorem stated in Sect. 3.

2 Setting

We consider a complete probability space (�,F ,P ) equipped with a one-dimen-
sional Brownian motion (Bt )t≥0 and its natural filtration (FB

t )t≥0 completed with
P -nullsets. On the same probability space, we also have a random variable μ which
is independent of B and takes two possible real values μ0 < μ1, with probability
P [μ = μ1] = π ∈ [0,1]. Further, given x > 0 and σ > 0, we model the firm’s revenue
in the absence of dividend payments by the process (Xt )t≥0 defined as

Xt = x + μt + σBt , t ≥ 0. (2.1)
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We denote by (FX
t )t≥0 the filtration generated by X, augmented with P -nullsets, and

we say that a dividend strategy is an (FX
t )t≥0-adapted, increasing, right-continuous

process (Dt )t≥0 with D0− = 0. In particular, Dt represents the cumulative amount
of dividends paid by the firm up to time t , and we say that the firm’s profit under the
dividend strategy D is

XD
t = x + μt + σBt − Dt, t ≥ 0. (2.2)

Notice that for D ≡ 0, we have X0 = X. As it is customary in the dividend problem,
we define a default time at which the firm stops paying dividends and denote it by

γ D := inf{t ≥ 0 : XD
t ≤ 0}.

Equipped with this simple model for the firm’s profitability, the manager of the firm
wants to maximise the expected flow of discounted dividends until the default time,
where discounting occurs at a constant rate ρ > 0, i.e.,

maximise the value of E

[∫ γ D

0−
e−ρtdDt

]

over D ∈ A, (2.3)

where A denotes the set of admissible dividend strategies. In particular,

D ∈ A iff D is (FX
t )t≥0-adapted, increasing, right-continuous,

with D0− = 0 and such that Dt − Dt− ≤ XD
t− for all t ≥ 0, P -a.s.

It is important to notice that X = XD + D. Moreover, the control process D is
chosen by the firm’s manager based on her observation of the process X and it is
therefore natural that Dt should be FX

t -measurable.
It is well known that the dynamics (2.2) may be rewritten in a more tractable

Markovian form, thanks to standard filtering methods (see for instance Shiryaev
[44, Sect. 4.2]). In particular, denoting πt := P [μ = μ1

∣

∣FX
t ], one can construct

an ((FX
t )t≥0,P )-Brownian motion (Wt )t≥0 and write the dynamics of the couple

(XD
t ,πt )t≥0 in the form

dXD
t = (μ0 + μ̂πt )dt + σdWt − dDt , XD

0− = x, (2.4)

dπt = θπt (1 − πt )dWt , π0 = π, (2.5)

under the measure P , with μ̂ := μ1 − μ0 and θ := μ̂/σ . We notice that (2.4) can
be obtained from (2.2) by formally replacing μ with E[μ|FX

t ]. Moreover, (πt )t≥0
in (2.5) is a bounded martingale; hence it is a martingale on [0,∞] and in par-
ticular, π∞ ∈ {0,1} by noticing that μ = lims→∞ Xs/s P -a.s. and therefore μ is
FX∞-measurable.

Intuitively, we can say that at any given time t ≥ 0, the amount of new information
which becomes available to the firm’s manager is measured by the absolute value of
the increment 	πt . Then, the learning rate depends on the so-called signal-to-noise
ratio θ and on the current belief πt , which appear in the diffusion coefficient in (2.5).
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Given an increment 	Wt of the Brownian motion, the value of |	πt | is increasing in
the signal-to-noise ratio, as expected. Further, the maximum of the diffusion coeffi-
cient (hence the maximum learning rate) occurs when πt = 1/2, which corresponds
to the most uncertain situation.

Since (XD
t ,Dt ,πt ,Wt )t≥0 is (FX

t )t≥0-adapted and we do not need to consider
any other filtration, we write from now on Ft = FX

t to simplify the notation. In the
new Markovian framework, our problem (2.3) reads

V (x,π) = sup
D∈A

Ex,π

[∫ γ D

0−
e−ρtdDt

]

for (x,π) ∈ [0,∞) × (0,1), (2.6)

where Ex,π [ · ] := E[ · |X0 = x,π0 = π].
The formulation in (2.6) of the optimal dividend problem with partial informa-

tion corresponds to a singular stochastic control problem whose underlying pro-
cess is a two-dimensional degenerate diffusion which is killed upon leaving the set
(0,∞) × [0,1] (recall that if π0 ∈ (0,1), then πt ∈ (0,1) for all t ∈ (0,∞), whereas
if π0 ∈ {0,1}, then πt = π0 for all t > 0). In the economic literature, the value func-
tion V of (2.6) is traditionally considered as the value of the firm itself.

Remark 2.1 The case of full information corresponds to π ∈ {0,1}. In this case, it is
known that if μ ≤ 0, it is optimal to pay all dividends immediately and liquidate the
firm. On the other hand, if μ > 0, then dividends should be paid gradually according
to a strategy characterised by a Skorokhod reflection of the process XD against a
positive (moving) boundary; see Jeanblanc and Shiryaev [32] for the stationary and
De Angelis and Ekström [16] for the nonstationary case.

In our setting with partial information, it is clear that μ0 < μ1 ≤ 0 would lead to
an immediate liquidation of the firm. The cases μ1 > μ0 ≥ 0 and μ0 < 0 < μ1 in-
stead need to be studied separately as they present subtle technical differences which
would make a unified exposition rather lengthy. In this paper, we start with the case
μ0 < 0 < μ1, which seems economically the most interesting as it represents the un-
certainty of a firm which cannot predict exactly whether its line of business has an
increasing or decreasing future trend.

Motivated by the above remark, we make the following standing assumption
throughout the paper:

Assumption 2.2 We have μ1 > 0 > μ0.

We close this section by introducing the infinitesimal generator LX,π associated
to the uncontrolled process (Xt ,πt )t≥0. Given any function f ∈ C2([0,∞) × [0,1]),
we set

(LX,πf )(x,π) := 1

2

(

σ 2fxx + 2σθπ(1 − π)fxπ + θ2π2(1 − π)2fππ

)

(x,π)

+ (μ0 + μ̂π)fx(x,π)
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for (x,π) ∈ [0,∞) × [0,1] and where fxx , fxπ , fππ are second derivatives and fx a
first derivative. For simplicity, in the rest of the paper, we also define

O := (0,∞) × (0,1).

Moreover, given a set A, we denote by A its closure.
Following the approach introduced in [16], we start our analysis in the next section

by providing a verification theorem for V . Then we use the latter to conjecture an
optimal stopping problem that should be associated with Vx . It will soon become
clear that the construction of [16] is substantially easier than the one needed here.
Our new construction also leads to a much more involved optimal stopping problem.

3 A verification theorem

A familiar heuristic use of the dynamic programming principle suggests that for any
admissible control D, the process

e−ρ(t∧γ D)V
(

XD
t∧γ D ,πt∧γ D

) +
∫ t∧γ D

0−
e−ρsdDs, t ≥ 0, (3.1)

should be a supermartingale, and if D = D∗ is an optimal control, then (3.1) should
be a martingale. Moreover, given a starting point (x,π), one strategy could be to pay
immediately a small amount δ of dividends, hence shifting the dynamics to the point
(x − δ,π), and then continue optimally. Since this would in general be suboptimal,
one has

V (x,π) ≥ V (x − δ,π) + δ, which implies Vx(x,π) ≥ 1.

If the inequality is strict, then the suggested strategy is strictly suboptimal. Hence,
the firm should pay dividends when Vx = 1 and do nothing when Vx > 1. It is also
clear from (2.6) that V (0,π) = 0 for all π ∈ [0,1].

Based on this heuristic, we can formulate the following verification theorem. Its
proof is rather standard (see e.g. Fleming and Soner [27, Theorem VIII.4.1]) and we
give it in the Appendix for completeness.

Theorem 3.1 Let v ∈ C1(O) ∩ C(O) with vxx, vxπ ∈ C(O) and vππ ∈ L∞
loc(O).

Assume that 0 ≤ v(x,π) ≤ cx for all (x,π) ∈ O and some c > 0, and that v solves

max{(LX,π − ρ)v,1 − vx}(x,π) = 0 for a.e. (x,π) ∈ O (3.2)

v(0,π) = 0 for π ∈ [0,1]. (3.3)

Then v ≥ V on O.
Let us denote

Iv := {(x,π) ∈O : vx(x,π) > 1}. (3.4)
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In addition to the above, assume that v ∈ C2(Iv ∩ O) and there exists Dv ∈ A such
that for P -a.e. ω ∈ � and for all 0 ≤ t ≤ γ Dv

(ω), we have

(XDv

t ,πt ) ∈ Iv, (3.5)
∫ t

0
1{(XDv

s− ,πs )∈Iv}dDv
s = 0, (3.6)

∫ 	Dv
t

0
1{(XDv

t− −z,πt )∈Iv}dz = 0. (3.7)

Then V = v on O and D∗ := Dv is an optimal dividend strategy.

If V ∈ C1(O), we can define

I := {(x,π) ∈O : Vx(x,π) > 1}, (3.8)

and we refer to I as the inaction set for problem (2.6). For future reference, we also
recall that if V ∈ C2(O) solves (3.2) and (3.3), then we have in particular

(LX,πV − ρV )(x,π) = 0, (x,π) ∈ I. (3.9)

4 Stopping a two-dimensional diffusion with reflection and creation

In this section, we construct an optimal stopping problem (OSP) which involves a
two-dimensional degenerate diffusion. This diffusion is kept inside O by reflection
at {0} × (0,1) and it also undergoes creation upon each new reflection, in a sense
which will be mathematically clarified later. Here we also start a detailed study of
the optimal stopping region and of the value function of this OSP, which will be
instrumental to solve problem (2.6).

4.1 Construction of the stopping problem

Assume for a moment that V ∈ C2(O) so that the boundary condition V (0,π) = 0
would also imply Vπ(0,π) = Vππ(0,π) = 0. Then for all π ∈ (0,1) for which
(0,π) ∈ I (see (3.8)), we get from (3.9) that

1

2
σ 2Vxx(0,π) + σθπ(1 − π)Vxπ (0,π) + (μ0 + μ̂π)Vx(0,π) = 0. (4.1)

Setting u := Vx we notice that I = {(x,π) ∈ O : u(x,π) > 1} and that u ≥ 1 in O.
Moreover, formally differentiating (3.9) and using (4.1), we obtain that u solves

(LX,πu − ρu)(x,π) = 0, (x,π) ∈ I, (4.2)

u(x,π) = 1, (x,π) ∈ ∂I, (4.3)

1

2
σ 2ux(0,π) + σθπ(1 − π)uπ(0,π)

+ (μ0 + μ̂π)u(0,π) = 0, (0,π) ∈ I. (4.4)
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We claim that the variational problem (4.2)–(4.4) should be connected to the optimal
stopping problem (4.8) given below. First we state the problem, then we give a heuris-
tic justification of our claim and finally we prove, in several steps, that our conjecture
is indeed correct.

Let (̂X, π̂) be solution of the system, for t > 0,

d̂Xt = (μ0 + μ̂π̂t )dt + σdWt + dAt , ̂X0 = x, (4.5)

dπ̂t = θπ̂t (1 − π̂t )

(

dWt + 2

σ
dAt

)

, π̂0 = π, (4.6)

where (At )t≥0 is an increasing continuous process with A0 = 0 and such that P -a.s.,

̂Xt ≥ 0 and dAt = 1{̂Xt=0}dAt for all t ≥ 0. (4.7)

Notably the process (̂X, π̂) is a two-dimensional degenerate diffusion which is re-
flected at {0} × (0,1) towards the interior of O, along the state-dependent unitary
vector

v(π) :=
(

1

c(π)
,

2θ
σ

π(1 − π)

c(π)

)

with c(π) :=
√

1 +
(

2θ

σ

)2

π2(1 − π)2.

Although existence of this reflected process may be deduced by standard theory (see
e.g. Bass [4, Sects. I.11 and I.12] for a general exposition and references), we do
not dwell here on this issue. In fact, in the next section, the reflected SDE (4.5),
(4.6) is reduced to an equivalent but simpler one (see (4.12), (4.13) below) for which
a solution can be computed explicitly – hence implying that (4.5), (4.6) admits a
solution as well.

For (x,π) ∈ O, let us now consider the problem

U(x,π) = sup
τ

Ex,π

[

exp

(∫ τ

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρτ

)]

, (4.8)

where the supremum is taken over all Px,π -a.s. finite stopping times.
Associated with the above problem are the so-called continuation and stopping

sets, denoted by C and S , respectively. They are defined as

C := {(x,π) ∈ [0,∞) × (0,1) : U(x,π) > 1}, (4.9)

S := {(x,π) ∈ [0,∞) × (0,1) : U(x,π) = 1}, (4.10)

and it is immediate to observe that if U = Vx , then C = I (recall (3.8)).
The heuristic that associates (4.8) to (4.2)–(4.4) goes as follows. Suppose that

u ∈ C2(O) is a solution of (4.2)–(4.4) and that

t �→ e

∫ t
0

2
σ2 (μ0+μ̂π̂s )dAs−ρt

u(̂Xt, π̂t ) is a P -supermartingale.
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Then (LX,π −ρ)u ≤ 0 on O, and an application of Dynkin’s formula, combined with
the use of (4.4) and u ≥ 1, gives

u(x,π) ≥ Ex,π

[

exp

(∫ τ

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρτ

)

u(̂Xτ , π̂τ )

]

≥ Ex,π

[

exp

(∫ τ

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρτ

)]

for any stopping time τ . Then u ≥ U . Moreover, by (4.2) and (4.3), the two inequal-
ities above become equalities if we choose τ as the first exit time from I , and this
concludes the heuristic.

The rest of this section is devoted to the analysis of problem (4.8) in order to show
that indeed U = Vx and that U solves (4.2)–(4.4).

4.2 A Girsanov transformation

It turns out that the problem may be more conveniently addressed under a different
probability measure. As it is customary in problems involving the process (πt ) (see
e.g. Ekström and Lu [24], Klein [38] or Peskir and Johnson [34]), we introduce here
the analogue for π̂t of the so-called likelihood ratio process, namely

̂
t := π̂t

1 − π̂t

, t ≥ 0.

By direct computation, it is not hard to derive the dynamics of ̂
, for t > 0, in the
form

d̂
t

̂
t

= θ

(

2

σ
dAt + dWt + θπ̂t dt

)

, ̂
0 = ϕ := π

1 − π
.

With the aim of turning W + θ
∫

π̂sds into a Brownian motion, we follow the same
steps as in [24] and introduce a new probability measure Q on FT by its Radon–
Nikodým derivative

ηT := dQ

dP

∣

∣

∣

∣

FT

= exp

(

−
∫ T

0
θπ̂sdWs − 1

2

∫ T

0
θ2π̂2

s ds

)

, (4.11)

for some finite T > 0. Under the new measure Q, we have that

W
Q
t := Wt + θ

∫ t

0
π̂sds, t ∈ [0, T ],

is a Brownian motion and the dynamics of (̂X,̂
) for t ∈ [0, T ] read

d̂Xt = μ0dt + σdW
Q
t + dAt , ̂X0 = x, (4.12)

d̂
t = θ̂
t

(

dW
Q
t + 2

σ
dAt

)

, ̂
0 = ϕ. (4.13)
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One advantage of this formulation is that the process ̂X is decoupled from the
process ̂
, and thanks to (4.7), we see that it is just a Brownian motion with drift
μ0 reflected at zero. In particular, this allows computing a simple expression for A.
Indeed, Qx,ϕ -a.s. on [0, T ], we have (see Karatzas and Shreve [36, Lemma 3.6.14])

At = x ∨ sup
0≤s≤t

(−μ0s − σWQ
s ) − x. (4.14)

Moreover, we can express the dynamics for ̂
 as

̂
t = ϕ exp

(

θW
Q
t − θ2

2
t + 2θ

σ
At

)

Qx,ϕ-a.s., (4.15)

where the dependence on x is given explicitly by (4.14). Sometimes we also use
the notation (̂Xx,Ax,̂
x,ϕ) to express the dependence of (̂X,A,̂
) on the initial
point (x,ϕ).

In order to rewrite problem (4.8) in the new variables, we introduce the process

Zt := 1 + ̂
t

1 + ϕ
Px,ϕ-a.s.

and notice that Px,ϕ[Z0 = 1] = 1 and that under measure Px,ϕ , we have

dZt

Zt

= θπ̂t

(

2

σ
dAt + dWt + θπ̂t dt

)

, t > 0.

Recalling (4.11) and rewriting the above SDE in terms of an exponential gives

Zt = 1

ηt

exp

(∫ t

0

2θ

σ
π̂sdAs

)

, t ∈ [0, T ],

with the same T > 0 as in (4.11) and ηt = E[ηT |Ft ].
Since the stopping times in (4.8) are unbounded, changing measure requires a bit

of care. In particular, we proceed in two steps: we first change measure for a fixed T

and then pass to the limit as T → ∞. For any τ and any (x,ϕ), we get

Ex,π

[

exp

(∫ τ∧T

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρ(τ ∧ T )

)]

= Ex,π

[

exp

(

2μ0

σ 2
Aτ∧T − ρ(τ ∧ T )

)

exp

(∫ τ∧T

0

2θ

σ
π̂tdAt

)

ητ∧T

ητ∧T

]

= Ex,π

[

exp

(

2μ0

σ 2
Aτ∧T − ρ(τ ∧ T )

)

Zτ∧T ητ∧T

]

= (1 + ϕ)−1EQ
x,ϕ

[

exp

(

2μ0

σ 2
Aτ∧T − ρ(τ ∧ T )

)

(1 + ̂
τ∧T )

]

. (4.16)
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Defining for all (x,ϕ) ∈ [0,∞) × (0,∞) the problems

U(x,π;T ) := sup
τ

Ex,π

[

exp

(∫ τ∧T

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρ(τ ∧ T )

)]

,

UQ(x,ϕ;T ) := sup
τ

EQ
x,ϕ

[

exp

(

2μ0

σ 2
Aτ∧T − ρ(τ ∧ T )

)

(1 + ̂
τ∧T )

]

,

we immediately see that (4.16) implies that

UQ(x,ϕ;T ) = (1 + ϕ)U
(

x,ϕ/(1 + ϕ);T )

. (4.17)

We should like to extend this equality to the case T = ∞ and this requires a short
digression as Girsanov’s theorem does not directly apply.

Since we are interested in properties of the value functions, we can define a new
probability space (�,F,P ) equipped with a Brownian motion W and a filtration

(F t )t≥0, and let (̂X,̂
) be the unique strong solution of the SDE (4.12), (4.13) driven
by W (instead of WQ) with a corresponding process A as in (4.14). Notice that indeed

the couple (̂X,̂
) has an explicit expression for all t ≥ 0. In this setting, we can define
the stopping problems

U(x,ϕ;T ) := sup
τ

Ex,ϕ

[

exp

(

2μ0

σ 2
Aτ∧T − ρ(τ ∧ T )

)

(1 + ̂
τ∧T )

]

,

U(x,ϕ) := sup
τ

Ex,ϕ

[

exp

(

2μ0

σ 2
Aτ − ρτ

)

(1 + ̂
τ )

]

,

where E is the expectation under P and stopping times are with respect to (F t )t≥0.
Now, UQ(x,ϕ;T ) = U(x,ϕ;T ) due to the equivalence in law of the process

(̂X,̂
,A,WQ) under Q, and (̂X,̂
,A,W) under P , on [0, T ]. Further, if we show
that

lim
T →∞U(x,ϕ;T ) = U(x,ϕ) and lim

T →∞U(x,π;T ) = U(x,π), (4.18)

then combining these facts with (4.17), we obtain

U(x,ϕ) = lim
T →∞U(x,ϕ;T ) = lim

T →∞UQ(x,ϕ;T )

= (1 + ϕ) lim
T →∞U

(

x,ϕ/(1 + ϕ);T ) = (1 + ϕ)U
(

x,ϕ/(1 + ϕ)
)

. (4.19)

For the proof of (4.18), notice that U(x,π;T ) ≤ U(x,π), so that

lim sup
T →∞

U(x,π;T ) ≤ U(x,π).

For the converse inequality, given any τ , Fatou’s lemma and continuity of paths give
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Ex,π

[

exp

(∫ τ

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρτ

)]

≤ lim inf
T →∞ Ex,π

[

exp

(∫ τ∧T

0

2

σ 2
(μ0 + μ̂π̂t )dAt − ρ(τ ∧ T )

)]

≤ lim inf
T →∞ U(x,π;T ).

Hence (4.18) holds for U , and by the same arguments also for U .
Finally, with a slight abuse of notation we relabel

(̂X,̂
,A,W) = (̂X,̂
,A,W),
(

�,F , (F t )t≥0,P
) = (

�,F , (Ft )t≥0,P
)

,

so that

U(x,ϕ) = sup
τ

Ex,ϕ

[

exp

(

2μ0

σ 2
Aτ − ρτ

)

(1 + ̂
τ )

]

. (4.20)

Problem (4.20) is somewhat easier to analyse than the original (4.8) because the dy-
namics (4.12), (4.13) for (̂X,̂
), driven by W under P x,ϕ , are more explicit than
those of (̂X, π̂), driven by W under Px,π ; see (4.5), (4.6).

It is clear from (4.19) that C and S in (4.9), (4.10) now read

C = {(x,ϕ) ∈ [0,∞) × (0,∞) : U(x,ϕ) > 1 + ϕ},
S = {(x,ϕ) ∈ [0,∞) × (0,∞) : U(x,ϕ) = 1 + ϕ}.

Remark 4.1 The choice ϕ = 0 corresponds to full information on the drift of (2.1)
(i.e., μ = μ0), in which case there is no dynamics for ̂
. Since problem (2.3) has
a well-known explicit solution in that setting (see [32]), and given that for all t ≥ 0
and any (x,ϕ) ∈ [0,∞) × (0,∞), we have Px,ϕ[̂
t > 0] = 1, we do not include
[0,∞) × {0} in our state space.

4.3 Well-posedness and initial properties of the stopping problem

At this point, we start looking at elementary properties of problem (4.20) which guar-
antee its well-posedness. Recall the following known fact (see [36, Sect. 3.5.C]): for
β > 0 and S

β,σ
t := sup0≤s≤t (−βs − σWs), we have

P [Sβ,σ∞ > x] = exp

(

−2β

σ 2
x

)

for x > 0. (4.21)

For α > 0, setting β = α + σ 2ρ
2α

, the use of (4.21) and

2α

σ 2
sup

0≤s≤t

(−αs − σWs) − ρt ≤ 2α

σ 2
sup

0≤s≤t

(−βs − σWs)

gives the following bound: for any stopping time τ ,
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E
[

e
2α

σ2 S
α,σ
τ −ρτ

]

≤ E
[

e
2α

σ2 S
β,σ
τ

]

≤ E
[

e
2α

σ2 S
β,σ∞

]

= 2β

σ 2

∫ ∞

0
e

2α

σ2 x
e
− 2β

σ2 x
dx = 2β

σ 2

∫ ∞

0
e− ρ

α
xdx < ∞. (4.22)

A great deal of standard results in optimal stopping theory rely on the assump-
tion that

Ex,ϕ

[

sup
t≥0

(

e
2μ0
σ2 At−ρt

(1 + ̂
t)
)

]

< ∞. (4.23)

In particular, (4.23) would normally be used to show that

τ∗ := inf{t ≥ 0 : (̂Xt,̂
t) /∈ C} (4.24)

is the minimal optimal stopping time in (4.20), provided P x,ϕ[τ∗ < ∞] = 1; other-
wise it is the minimal optimal Markov time (see [44, Chap. 3.3, Theorem 3]), and
notice also that for problem (4.8), we rewrite (4.24) in terms of (̂X, π̂). Moreover,
(4.23) would also guarantee the (super)martingale property of the discounted value
process: the process (Nt )t≥0 defined as

Nt := e
2μ0
σ2 At−ρt

U(̂Xt,̂
t)

has the properties that

(Nt )t≥0 is a right-continuous P -supermartingale, (4.25)

(Nt∧τ∗)t≥0 is a right-continuous P -martingale. (4.26)

Assumption (4.23) may be fulfilled in our setting by choosing ρ sufficiently large
in comparison to the coefficients (μ0,μ1, σ ). In fact, we notice that the process

e
2μ0
σ2 At−ρt

̂
t = exp

(

2μ1

σ 2
At − ρt + θWt − θ2

2
t

)

is not uniformly integrable in general. As it turns out, by following a slightly different
approach, we can still achieve (4.24)–(4.26) but with no other restriction on ρ than
ρ > 0.

For n ≥ 1, let us denote ζn := inf{t ≥ 0 : ̂
t ≥ n} and consider the sequence of
problems with value function

U
n
(x,ϕ) := sup

ζ≤ζn

Ex,ϕ

[

exp

(

2μ0

σ 2
Aζ − ρζ

)

(1 + ̂
ζ )

]

. (4.27)

It is clear that these truncated problems fulfil condition (4.23) since the process
(̂X,̂
) is stopped at ζn. Hence

ζ n∗ := inf{t ≥ 0 : Un
(̂Xt,̂
t) = 1 + ̂
t } ∧ ζn (4.28)
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is an optimal stopping time for (4.27). Moreover, the process (Nn
t )t≥0 defined as

Nn
t := e

2μ0
σ2 At−ρt

U
n
(̂Xt,̂
t) (4.29)

satisfies the analogue of conditions (4.25), (4.26), and we obtain the next useful re-
sults.

Proposition 4.2 The sequence (U
n
)n≥1 is increasing in n with

lim
n→∞U

n
(x,ϕ) = U(x,ϕ), (4.30)

for all (x,ϕ) ∈ [0,∞) × (0,∞). Moreover, there exists a universal constant c1 > 0
such that

0 ≤ U
n
(x,ϕ) ≤ U(x,ϕ) ≤ 1 + c1ϕ, (4.31)

for all (x,ϕ) ∈ [0,∞) × (0,∞).

Proof Clearly, U
n ≤ U for all n, and the sequence is increasing because the set of

admissible stopping times is increasing. For any P x,ϕ-a.s. finite stopping time τ ,
Fatou’s lemma gives

Ex,ϕ

[

exp

(

2μ0

σ 2
Aτ − ρτ

)

(1 + ̂
τ )

]

≤ lim inf
n→∞ Ex,ϕ

[

exp

(

2μ0

σ 2
Aτ∧ζn − ρ(τ ∧ ζn)

)

(1 + ̂
τ∧ζn)

]

≤ lim inf
n→∞ U

n
(x,ϕ).

The latter implies U(x,ϕ) ≤ lim infn→∞ U
n
(x,ϕ) and therefore (4.30).

Let us now analyse (4.31). For any stopping time τ , using (4.15) gives

Ex,ϕ

[

exp

(

2μ0

σ 2
Aτ∧ζn − ρ(τ ∧ ζn)

)

(1 + ̂
τ∧ζn)

]

= Ex,ϕ

[

e
2μ0
σ2 Aτ∧ζn−ρ(τ∧ζn)

]

+ ϕEx,ϕ

[

e
2μ1
σ2 Aτ∧ζn−ρ(τ∧ζn)

eθWτ∧ζn− θ2
2 (τ∧ζn)

]

, (4.32)

and we can study the two terms separately. For the first one, given that μ0 < 0, the
expectation is trivially bounded above by one.

For the second term in (4.32), we first change measure using

dP θ

dP

∣

∣

∣

∣

Ft∧ζn

= eθWt∧ζn− θ2
2 (t∧ζn) for t ∈ [0,∞), (4.33)

and then notice that Wθ
t∧ζn

= Wt∧ζn −θ(t ∧ζn) for t ∈ [0,∞) is a (stopped) Brownian

motion under P θ since the Radon–Nikodým derivative is a bounded martingale. This



88 T. De Angelis

gives

Ex,ϕ

[

e
2μ1
σ2 Aτ∧ζn−ρ(τ∧ζn)

eθWτ∧ζn− θ2
2 (τ∧ζn)

]

= Eθ
x,ϕ

[

e
2μ1
σ2 Aτ∧ζn−ρ(τ∧ζn)

]

≤ c1,

where the final inequality uses (4.22) with α = μ1 and

sup
0≤s≤t

(−μ0s − σWs) = sup
0≤s≤t

(−μ1s − σWθ
s ).

Notice that c1 > 0 depends only on (μ0,μ1, σ,ρ). In summary, U
n

fulfils (4.31) for
all n ≥ 1, and then (4.30) implies that the bound holds for U as well. �

It is also useful to state a continuity result for U
n
.

Proposition 4.3 For any n ≥ 1, we have U
n ∈ C([0,∞) × (0,∞)). Moreover, there

exists a universal constant c > 0 such that for any couple of points (x1, ϕ1) and
(x2, ϕ2) in [0,∞) × (0,∞) with ϕ2 > ϕ1, we have

∣

∣U
n
(x1, ϕ1) − U

n
(x2, ϕ2)

∣

∣ ≤ c
(

(1 + ϕ2)|x1 − x2| + (ϕ2 − ϕ1)
)

. (4.34)

Finally, ϕ �→ U
n
(x,ϕ) is increasing for all x ∈ [0,∞).

Proof Take x1 < x2 and ϕ ∈ (0,∞). Let ζ1 = ζ n∗ (x1, ϕ) be optimal for U
n
(x1, ϕ);

then by direct comparison,

U
n
(x1, ϕ) − U

n
(x2, ϕ)

≤ E
[

e
2μ0
σ2 A

x1
ζ1

−ρζ1 − e
2μ0
σ2 A

x2
ζ1

−ρζ1
]

+ ϕEθ
[

e
2μ1
σ2 A

x1
ζ1

−ρζ1 − e
2μ1
σ2 A

x2
ζ1

−ρζ1
]

,

where as in (4.33), we have used dP θ = eθWt∧ζn− θ2
2 (t∧ζn)dP to change measure.

Next we use that 0 ≤ Ax1 − Ax2 ≤ x2 − x1 and (4.22) to conclude that

Eθ
[

e
2μ1
σ2 A

x1
ζ1

−ρζ1 − e
2μ1
σ2 A

x2
ζ1

−ρζ1
]

≤ (x2 − x1)E
θ
[

e
2μ1
σ2 A

x1
ζ1

−ρζ1
]

≤ c1(x2 − x1),

E
[

e
2μ0
σ2 A

x1
ζ1

−ρζ1 − e
2μ0
σ2 A

x2
ζ1

−ρζ1
]

≤
∣

∣

∣

∣

2μ0

σ 2

∣

∣

∣

∣

(x2 − x1).

Therefore we have U
n
(x1, ϕ) − U

n
(x2, ϕ) ≤ c(1 + ϕ)(x2 − x1) for a constant

c = c1 ∨ |2μ0/σ
2|. Symmetric arguments allow proving the converse inequality.

Let us now fix x ∈ [0,∞) and ϕ1 < ϕ2 in (0,∞). Denote

ζ ϕi
n = inf{t ≥ 0 : ̂
x,ϕi ≥ n} for i = 1,2

and let ζi = ζ n∗ (x,ϕi) be optimal for U
n
(x,ϕi). Since ζ2 ≤ ζ

ϕ2
n ≤ ζ

ϕ1
n , we have that

ζ2 is admissible for U
n
(x,ϕ1). Then using the same arguments as above, we get

U
n
(x,ϕ2) − U

n
(x,ϕ1) ≤ (ϕ2 − ϕ1)E

θ
[

e
2μ1
σ2 Ax

ζ2
−ρζ2

]

≤ c(ϕ2 − ϕ1).
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For the converse inequality, we notice that given any stopping time ζ , the stopping
time ζ ∧ ζ

ϕ2
n is admissible for U

n
(x,ϕ2). Using that ̂


x,ϕ1
ζ ≤ n for ζ ≤ ζ

ϕ1
n and

̂

x,ϕ2

ζ
ϕ2
n

= n, we get

U
n
(x,ϕ1) − U

n
(x,ϕ2)

≤ sup
ζ≤ζ

ϕ1
n

(

(1 + n)E
[

1{ζ>ζ
ϕ2
n }

(

e
2μ0
σ2 Ax

ζ −ρζ − e

2μ0
σ2 Ax

ζ
ϕ2
n

−ρζ
ϕ2
n

)]

+ (ϕ1 − ϕ2)E
[

1{ζ≤ζ
ϕ2
n }e

2μ0
σ2 Ax

ζ −ρζ
̂


x,1
ζ

])

≤ 0, (4.35)

where the last inequality also uses that t �→ 2μ0
σ 2 Ax

t − ρt is decreasing. The above
estimates imply (4.34), while (4.35) implies monotonicity in ϕ. �

We can now state some properties of U .

Proposition 4.4 The value function U of (4.20) has the following properties:

(i) U ∈ C([0,∞) × (0,∞)) and there exists a universal constant c > 0 such that

∣

∣U(x1, ϕ1) − U(x2, ϕ2)
∣

∣ ≤ c
(

(1 + ϕ2)|x2 − x1| + (ϕ2 − ϕ1)
)

(4.36)

for all x1, x2 ∈ [0∞) and 0 < ϕ1 < ϕ2.
(ii) ϕ �→ U(x,ϕ) is convex and increasing for any x ∈ [0,∞).

(iii) We have limϕ→0 U(x,ϕ) = 1.
(iv) We have the transversality condition

lim
t→∞Ex,ϕ

[

e
2μ0
σ2 At−ρt

U(̂Xt,̂
t)
]

= 0, (4.37)

for all (x,ϕ) ∈ [0,∞) × (0,∞).

Proof In order to prove (i), it is enough to take n → ∞ in (4.34) and use (4.30). Let
us now show (ii). Thanks to (4.15), we know that the map

ϕ �→ exp

(

2μ0

σ 2
Ax

τ − ρτ

)

(1 + ̂
x,ϕ
τ ) (4.38)

is P -a.s. linear for any stopping time τ . As sup(f + g) ≤ sup(f )+ sup(g), we easily
obtain

U
(

x,αϕ1 + (1 − α)ϕ2
) ≤ αU(x,ϕ1) + (1 − α)U(x,ϕ2)

for α ∈ (0,1), ϕ1, ϕ2 ∈ (0,∞) and each given x ∈ [0,∞). Since the map (4.38) is
increasing, it also follows that ϕ �→ U(x,ϕ) is increasing as claimed. (The latter
could also have been deduced by monotonicity of ϕ �→ U

n
(x,ϕ).)
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Next, we observe that (iii) follows immediately by (4.31) upon noticing also that
U(x,ϕ) ≥ 1 + ϕ. It only remains to prove (iv). From (4.31) and using (4.15) and

dP θ = eθWt− θ2
2 t dP ,

we have

Ex,ϕ

[

e
2μ0
σ2 At−ρt

U(̂Xt,̂
t)
]

≤ E
[

e
2μ0
σ2 Ax

t −ρt
]

+ c1ϕEθ
[

e
2μ1
σ2 Ax

t −ρt
]

≤ e− ρ
2 t + c1ϕe− ρ

2 tEθ
[

e
2μ1
σ2 sup0≤s≤t (−μ1s−σWθ

s )− ρ
2 t

]

,

where we recall that Wθ is a P θ -Brownian motion. Using now (4.22), we can find a
universal constant c′

1 > 0 such that

Ex,ϕ

[

e
2μ0
σ2 At−ρt

U(̂Xt,̂
t)
]

≤ e− ρ
2 t (1 + c′

1ϕ).

Then (4.37) follows by taking t → ∞. �

There are several conclusions that one can draw from Proposition 4.4. First we
notice that (U − U

n
)n≥1 is a decreasing sequence of continuous functions that con-

verges to zero; therefore Dini’s theorem implies that

lim
n→∞ sup

(x,ϕ)∈K

∣

∣U
n
(x,ϕ) − U(x,ϕ)

∣

∣ = 0 (4.39)

for any compact K ⊆ [0,∞) × (0,∞). Now we can use this fact and an argument
inspired by Chiarolla and De Angelis [12, Lemma 4.17] and [11, Lemma 6.2] to
prove the next lemma.

Lemma 4.5 The sequence (ζ n∗ )n≥1 defined in (4.28) is increasing in n and for all
(x,ϕ) ∈ [0,∞) × (0,∞), we have, with τ∗ as in (4.24), that

P x,ϕ

[

lim
n→∞ ζ n∗ = τ∗

]

= 1. (4.40)

Proof Since (U
n
) is increasing in n, it is clear that the sequence (ζ n∗ )n≥1 is also

increasing and ζ n∗ ≤ τ∗ for all n ≥ 1, P x,ϕ -a.s. For (x,ϕ) ∈ S , it is clear that (4.40)
holds. For fixed (x0, ϕ0) ∈ C, we argue by contradiction and assume that

P x0,ϕ0

[

lim
n→∞ ζ n∗ < τ∗

]

> 0.

Letting �0 := {ω : limn→∞ ζ n∗ < τ∗}, we pick an arbitrary ω ∈ �0. Then there is
δω > 0 such that τ∗(ω) > δω. This implies that there also exists cω > 0 such that

inf
t∈[0,δω]

(

U(̂Xt,̂
t) − (1 + ̂
t)
)

(ω) > cω, (4.41)
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thanks to (i) in Proposition 4.4 and because the process t �→ (̂Xt,̂
t) is continuous
up to a null subset of �. Then the image of (̂Xt,̂
t)(ω) for t ∈ [0, δω] is a compact
that we denote by Kω,δ , and (4.41) is equivalent to

inf
(x,ϕ)∈Kω,δ

(

U(x,ϕ) − (1 + ϕ)
)

> cω. (4.42)

Thanks to (4.39), we can find Nω,δ ≥ 1 such that (4.42) holds with U
n

instead of U ,
for all n ≥ Nω,δ . This implies limn→∞ ζ n∗ (ω) ≥ δω. As δω < τ∗(ω) is arbitrary, we get

lim
n→∞ ζ n∗ (ω) ≥ τ∗(ω)

and hence a contradiction with the definition of �0. �

The above lemma implies optimality of τ∗ as explained in the next proposition.

Proposition 4.6 The stopping time τ∗ in (4.24) is optimal for problem (4.20) in the
sense that for all (x,ϕ) ∈ [0,∞) × (0,∞), we have

U(x,ϕ) = Ex,ϕ

[

e
2μ0
σ2 Aτ∗−ρτ∗(1 + ̂
τ∗)1{τ∗<∞}

]

. (4.43)

Moreover, the (super)martingale properties (4.25), (4.26) hold.

Proof We start by showing (4.25) and (4.26). Recall the process (Nn
t )t≥0 defined in

(4.29) and notice that (4.25) and (4.26) hold for this process. Then for any s ≥ t , we
have P x,ϕ-a.s. that

e
2μ0
σ2 At∧ζn−ρ(t∧ζn)

U
n(

̂Xt∧ζn ,
̂
t∧ζn

)

≥ Ex,ϕ

[

e
2μ0
σ2 As∧ζn−ρ(s∧ζn)

U
n(

̂Xs∧ζn ,
̂
s∧ζn

)

∣

∣

∣Ft

]

.

Letting n → ∞, dominated convergence and (4.30) imply that (4.25) holds. Similarly
we have P x,ϕ-a.s. that

e
2μ0
σ2 At∧ζn∗ −ρ(t∧ζ n∗ )

U
n(

̂Xt∧ζ n∗ ,̂
t∧ζ n∗
)

= Ex,ϕ

[

e
2μ0
σ2 As∧ζn∗ −ρ(s∧ζ n∗ )

U
n(

̂Xs∧ζ n∗ ,̂
s∧ζ n∗
)

∣

∣

∣Ft

]

.

Then taking n → ∞ and using dominated convergence, (4.39) and (4.40), we obtain
that (4.26) holds, too.

In order to prove (4.43), we notice that (4.26) implies for any t ≥ 0 that

U(x,ϕ) = Ex,ϕ

[

e
2μ0
σ2 At∧τ∗−ρ(t∧τ∗)U

(

̂Xt∧τ∗ ,̂
t∧τ∗
)

]

= Ex,ϕ

[

e
2μ0
σ2 Aτ∗−ρτ∗(1 + ̂
τ∗)1{τ∗≤t} + e

2μ0
σ2 At−ρt

U(̂Xt,̂
t)1{τ∗>t}
]

,
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where we have used continuity of U in the second equality. Letting t → ∞, the
transversality condition (4.37) gives (4.43). �

Before closing this section, we illustrate consequences of Proposition 4.4 for the
shape of the continuation and stopping sets C and S . These are summarised in the
next corollary.

Corollary 4.7 The continuation set C is open and the stopping set S is closed. The
continuation set is connected in the ϕ-variable, i.e., for all ϕ′ > ϕ, we have

(x,ϕ) ∈ C =⇒ (x,ϕ′) ∈ C.

Proof The first statement is trivial due to (i) in Proposition 4.4. The second statement
follows from the fact that ϕ �→ U(x,ϕ) − (1 + ϕ) is convex due to (ii) in Proposi-
tion 4.4, is nonnegative and (iii) in Proposition 4.4 holds. �

For frequent future use, we define, for any x ∈ [0,∞),

ψ(x) := sup{ϕ ∈ (0,∞) : (x,ϕ) ∈ S},
with the convention that sup∅= 0. Clearly, C and ψ are related by

C = {(x,ϕ) ∈ [0,∞) × (0,∞) : ϕ > ψ(x)} (4.44)

(see also Remark 4.1).
Next we infer monotonicity of ψ(·) and therefore the existence of a generalised

inverse c(·), which is more convenient for a fuller geometric characterisation of C.
This is done in the next subsections.

4.4 A parabolic formulation

Since the process (̂X,̂
) is driven by the same Brownian motion, we can equiva-
lently consider a two-dimensional state dynamics in which only one component has a
diffusive part. This is done by a method similar to the one used in several papers ad-
dressing partial information, including De Angelis et al. [18] and Johnson and Peskir
[34].

Let us define a new process (̂Yt )t≥0 by setting, P x,ϕ -a.s. for all t ≥ 0,

̂Yt := σ

θ
ln ̂
t − ̂Xt .

Then letting y := σ
θ

lnϕ − x, it is easy to verify that the couple (̂X,̂Y ) evolves under
P x,y according to

d̂Xt = μ0dt + σdWt + dAt , ̂X0 = x, (4.45)

d̂Yt = −1

2
(μ1 + μ0)dt + dAt , ̂Y0 = y. (4.46)
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In order to rewrite our problem (4.20) in terms of the new dynamics, we set

̂U(x,y) := U

(

x, exp
( θ

σ
(x + y)

)

)

, (x, y) ∈ [0,∞) ×R, (4.47)

and from (4.20), we obtain

̂U(x,y) = sup
τ

Ex,y

[

exp

(

2μ0

σ 2
Aτ − ρτ

)(

1 + exp
( θ

σ
(̂Xτ + ̂Yτ )

)

)]

. (4.48)

It is convenient in what follows to set

g(x, y) := 1 + exp

(

θ

σ
(x + y)

)

, (x, y) ∈ [0,∞) ×R, (4.49)

and notice that

C = {(x, y) ∈ [0,∞) ×R : ̂U(x,y) > g(x, y)}.
Another formulation of the problem, which will be useful below, may be obtained

by an application of Dynkin’s formula (up to standard localisation arguments). In-
deed, we can write

û(x, y) := ̂U(x,y) − g(x, y)

= sup
τ

Ex,y

[∫ τ

0
e

2μ0
σ2 At−ρt

2σ−2(μ0 + μ1e
θ
σ

̂Yt
)

dAt

− ρ

∫ τ

0
e

2μ0
σ2 At−ρt

g(̂Xt,̂Yt )dt

]

, (4.50)

where we have also used that dAt = 1{̂Xt=0}dAt (cf. (4.7)). Recalling from Proposi-

tion 4.4 that ϕ �→ U(x,ϕ) − (1 + ϕ) is convex and nonnegative with U(x,0+) = 1,
it follows that the mapping is also increasing. Then we have that

y �→ û(x, y) is increasing. (4.51)

For frequent future use, we introduce the second-order operator LX,Y associated
to (̂X,̂Y ). That is, for f ∈ C1,2([0,∞) ×R) and (x, y) ∈ [0,∞) ×R, we set

(LX,Y f )(x, y) :=
(

− 1

2
(μ1 + μ0)fy + 1

2
σ 2fxx + μ0fx

)

(x, y).

Notice that (i) in Proposition 4.4 implies that ̂U and û are both continuous on
[0,∞)×R. Thanks to the parabolic formulation and recalling the martingale property
(4.26), we can rely on standard optimal stopping theory and classical PDE results to
state the next lemma (see e.g. Karatzas and Shreve [37, Theorem 2.7.7]).

Lemma 4.8 Given any open set R whose closure is contained in C, the function ̂U

is the unique classical solution of the boundary value problem

(LX,Y − ρ)f = 0 in R and f |∂R = ̂U |∂R. (4.52)

Hence ̂U is C1,2 in C ∩ ((0,∞) ×R).
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Now we turn to the analysis of the geometry of C. First we show that C �= ∅.

Proposition 4.9 We have C �= ∅ and in particular {0} × (y�,∞) ⊆ C, where we set
y� := σ

θ
ln(−μ0

μ1
).

Proof Fix ε > 0, take y > y� + ε and let

τ� := inf{t ≥ 0 : (̂Xt,̂Yt ,At ) /∈ [0,1) × (y� + ε,∞) × [0,1)}.
Notice that there exist c1,ε > 0, c2,ε > 0 such that P 0,y -a.s.,

g(̂Xt∧τ�
,̂Yt∧τ�

) ≤ c2,ε and μ0 + μ1e
θ
σ

̂Yt∧τ� ≥ c1,ε

for all t ∈ [0,1], given that y� + ε ≤ ̂Yt∧τ�
≤ y + 1

2 |μ0 + μ1| + 1. Then recalling
(4.50) and that

At = sup
0≤s≤t

(−μ0s − σWs) = S
μ0,σ
t P 0,y -a.s. for all t ≥ 0,

we immediately obtain that

û(0, y) ≥ E0,y

[∫ u∧τ�

0
e

2μ0
σ2 At−ρt 2

σ 2

(

μ0 + μ1e
θ
σ

̂Yt
)

dAt

− ρ

∫ u∧τ�

0
e

2μ0
σ2 At−ρt

g(̂Xt,̂Yt )dt

]

≥ E0,y

[

c′
1,εS

μ0,σ
u∧τ�

− c′
2,ε(u ∧ τ�)

]

for some c′
1,ε > 0, c′

2,ε > 0 and all u ∈ (0,1]. Next we obtain (cf. also Peskir [41,
Lemma 13]) that

û(0, y) ≥ c′
1,εE0,y

[

1{u≤τ�}Sμ0,σ
u

] − c′
2,εu

≥ c′
1,εE0,y[Sμ0,σ

u ] − c′
1,εE0,y

[

1{τ�<u}Sμ0,σ
u

] − c′
2,εu

≥ c′
1,εE0,y[Sμ0,σ

u ] − c′
1,ε

√

P 0,y[τ� < u]
√

E0,y[(Sμ0,σ
u )2] − c′

2,εu. (4.53)

Notice now that for each u ≥ 0, one has

Law

(

sup
0≤s≤u

Ws

)

= Law(|Wu|) = Law(|W 1|√u).

Then, for some suitable c > 0 that may vary from line to line but is independent of
u > 0, we obtain

E0,y[(Sμ0,σ
u )2] ≤ c

(

u2 + E[(S0,−1
u )2]) = c

(

u2 + uE
[|W 1|2

])

. (4.54)

Moreover, we observe from (4.46) that if μ0 +μ1 ≤ 0, the process ̂Y will never reach
y� + ε, whereas if μ0 + μ1 > 0, then ̂Yt ≤ y� implies that

t ≥ 2(y − y� − ε)/(μ0 + μ1) =: t�.



Dividends with partial information 95

Hence without loss of generality, we may take u < t� and get

P 0,y[τ� < u] = P 0,y

[

sup
0≤s≤u

̂Xs ≥ 1 or Au ≥ 1
]

≤ P 0,y

[

sup
0≤s≤u

̂Xs ≥ 1
]

+ P 0,y[Au ≥ 1].

For the first term on the right-hand side above, we have

P 0,y

[

sup
0≤s≤u

̂Xs ≥ 1
]

= P
[

sup
0≤s≤u

(

sup
0≤v≤s

(

μ0(s − v) + σ(Ws − Wv)
)

)

≥ 1
]

= P
[

sup
0≤s≤u

(μ0s + σWs) ≥ 1
]

≤ E
[

sup
0≤s≤u

(μ0s + σWs)
2
]

≤ c
(

u2 + uE
[|W 1|2

])

,

where we have used Markov’s inequality in the penultimate inequality. It is easy to
check that we have the same bound also for P 0,y[Au ≥ 1], and therefore

P 0,y[τ� < u] ≤ 2c
(

u2 + uE
[|W 1|2

])

. (4.55)

Finally, we also notice that since μ0 < 0, we have

E0,y[Sμ0,σ
u ] ≥ σE

[

sup
0≤s≤u

Ws

]

= σ
√

uE
[|W 1|

]

. (4.56)

Plugging (4.54)–(4.56) into (4.53), we obtain

û(0, y) ≥ c′′
1,ε

√
u − c′′

2,ε(u + u3/2 + u2)

with suitable constants c′′
1,ε > 0 and c′′

2,ε > 0. Then taking u sufficiently small, we
obtain û(0, y) > 0 as claimed. �

By (4.46), we notice that for ̂X away from 0, the process ̂Y could either have a pos-
itive drift or a negative one. Interestingly, this dichotomy also produces substantially
different technical difficulties. Recalling (4.44), we start by observing that

ϕ > ψ(x) ⇐⇒ e(θ/σ )(x+y) > ψ(x) ⇐⇒ y > χ(x),

where

χ(x) := σ

θ

(

lnψ(x) − x
)

, x ∈ [0,∞). (4.57)

Hence we have that (4.44) is equivalent to

C = {(x, y) ∈ [0,∞) ×R : y > χ(x)}. (4.58)
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Before going further, it is convenient to introduce

Cy := {x ∈ [0,∞) : (x, y) ∈ C}, Sy := {x ∈ [0,∞) : (x, y) ∈ S}

for any y ∈ R. The geometry of C in the coordinates (x, y) is explained in Proposi-
tions 4.10 and 4.12 below.

Proposition 4.10 Assume μ1 + μ0 ≥ 0. Then there exists a unique increasing func-
tion b : R → [0,∞] such that Sy = [b(y),∞) for all y ∈ R (with Sy = ∅ if
b(y) = ∞).

Proof First we show that (x, y) ∈ S implies that (x′, y) ∈ S for all x′ ≥ x. Fix
(x, y) ∈ S and x′ > x; then we know from (4.58) that (−∞, y] × {x} ∈ S . Due to
(4.46), we have that ̂Y is decreasing during excursions of ̂X away from zero. This
implies that the process (̂Xx′

,̂Yx′,y) cannot reach x = 0 before hitting the half-line
(−∞, y] × {x}. Thus, letting τ0 := inf{t ≥ 0 : ̂Xt = 0} gives P x′,y[τ∗ < τ0] = 1.
Hence (4.50) gives û(x′, y) ≤ 0 for all x′ ≥ x, as claimed.

Now, for each y ∈R, we can define b(y) := inf{x ∈ [0,∞) : (x, y) ∈ S} and there-
fore Sy = [b(y),∞). Combining the latter with (4.58) gives that y �→ b(y) is increas-
ing. �

Next we want to show that a result similar to Proposition 4.10 also holds for
μ1 + μ2 < 0, under a mild additional condition. However, in this case, we first need
to compute an expression for the derivative ̂Uy .

Lemma 4.11 For all (x, y) ∈ ((0,∞) ×R) \ ∂C, we have

̂Uy(x, y) = Ex,y

[

θ

σ
exp

(

2μ0

σ 2
Aτ∗ − ρτ∗ + θ

σ
(̂Xτ∗ + ̂Yτ∗)

)

1{τ∗<∞}
]

. (4.59)

Proof The claim is trivial if (x, y) ∈ S \ ∂C since P x,y[τ∗ = 0] = 1 there. Take
(x, y) ∈ C and let τ := τ∗(x, y) be optimal for ̂U(x,y). Then for ε > 0, using (4.25)
and (4.26), we have

̂U(x,y + ε) − ̂U(x,y)

≥ E

[

exp

(

2μ0

σ 2
Ax

τ∧t − ρ(τ ∧ t)

)

(

̂U
(

̂Xx
τ∧t ,

̂Y
x,y+ε
τ∧t

) − ̂U
(

̂Xx
τ∧t ,

̂Y
x,y
τ∧t

)

)

]

≥ E

[

1{τ≤t} exp

(

2μ0

σ 2
Ax

τ − ρτ

)

(

g
(

̂Xx
τ ,̂Yx,y+ε

τ

) − g
(

̂Xx
τ ,̂Yx,y

τ

)

)

]

+ E

[

1{τ>t} exp

(

2μ0

σ 2
Ax

t − ρt

)

(

̂U
(

̂Xx
t ,̂Y

x,y+ε
t

) − ̂U
(

̂Xx
t ,̂Y

x,y
t

)

)

]

.
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Recall (4.47), (4.37) and (4.22). Letting t → ∞ and using dominated convergence
gives

̂U(x,y + ε) − ̂U(x,y)

≥ E

[

exp

(

2μ0

σ 2
Ax

τ − ρτ

)

(

g
(

̂Xx
τ ,̂Yx,y+ε

τ

) − g
(

̂Xx
τ ,̂Yx,y

τ

)

)

1{τ<∞}
]

.

The same argument may be applied to obtain

̂U(x,y) − ̂U(x,y − ε)

≤ E

[

exp

(

2μ0

σ 2
Ax

τ − ρτ

)

(

g
(

̂Xx
τ ,̂Yx,y

τ

) − g
(

̂Xx
τ ,̂Yx,y−ε

τ

)

)

1{τ<∞}
]

.

We divide both expressions by ε and let ε → 0. Then, recalling that ̂U ∈ C1,2 in C
(Lemma 4.8), noticing that ∂yY

y
t = 1 for all t ≥ 0 and because τ was chosen inde-

pendently of ε, we obtain (4.59). �

Proposition 4.12 Assume μ1 + μ0 < 0 and ρ ≥ θ
2σ

|μ1 + μ0|. Then there exists a
unique increasing function b : R → [0,∞] such that Sy = [b(y),∞) for all y ∈ R

(with Sy = ∅ if b(y) = ∞).

Proof First notice that if Sy = [b(y),∞) for all y ∈ R, then b is increasing due
to (4.58). Then it remains to prove existence of b. Fix y ∈ R. Then we have two
possibilities:

(i) ûx(x, y) ≤ 0 for all x ∈ (0,∞) such that (x, y) ∈ C.
(ii) There exists x0 ∈ (0,∞) with (x0, y) ∈ C and ûx(x0, y) > 0.

In case (i), for each y ∈ R, there exists a unique point b(y) ∈ [0,∞] such that
Sy = [b(y),∞). In case (ii), we argue in two steps. First we show that (ii) implies
[x0,∞) × {y} ∈ C, and then we show that [x0,∞) × {y} ∈ C leads to a contradiction.
Hence only (i) is possible, for all y ∈ R.

Step 1. (ii) ⇒ [x0,∞) × {y} ∈ C: From Lemma 4.8 and the definition of û in
(4.50), we know that

LX,Y û − ρû = ρg in C ∩ (

(0,∞) ×R

)

, (4.60)

where we recall g from (4.49). In particular, at (x0, y), we have μ0ûx(x0, y) < 0 and

1

2
σ 2ûxx(x0, y) = ρg(x0, y) + ρû(x0, y)

− μ0ûx(x0, y) + 1

2
(μ0 + μ1)̂uy(x0, y)

> ρg(x0, y) + ρû(x0, y) + 1

2
(μ0 + μ1)̂uy(x0, y). (4.61)
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Next we use the probabilistic representation (4.59) of ̂Uy to find a lower bound for
the right-hand side of (4.61). In particular, by direct comparison of (4.48) and (4.59)
(recall also (4.43)), we obtain

̂Uy(x, y) = θ

σ

(

̂U(x,y) − Ex,y

[

exp

(

2μ0

σ 2
Aτ∗ − ρτ∗

)

1{τ∗<∞}
])

and consequently

ûy(x, y) = θ

σ
û(x, y) + θ

σ

(

1 − Ex,y

[

exp

(

2μ0

σ 2
Aτ∗ − ρτ∗

)

1{τ∗<∞}
])

. (4.62)

Plugging (4.62) into the right-hand side of (4.61), we immediately find

1

2
σ 2ûxx(x0, y) >

(

ρ − θ

2σ
|μ0 + μ1|

)

(

û(x0, y) + 1
) + ρe

θ
σ

(x0+y)

+ θ

2σ
|μ0 + μ1|Ex0,y

[

exp

(

2μ0

σ 2
Aτ∗ − ρτ∗

)

1{τ∗<∞}
]

> 0.

The latter implies that ûx(·, y) is increasing in a right neighbourhood of x0. Hence we
can repeat the argument for any point in this neighbourhood and eventually conclude
that ûx(·, y) > 0 on [x0,∞). Then we must have [x0,∞) × {y} ∈ C.

Step 2. [x0,∞) × {y} ∈ C is impossible: Fix a point (x0, y0) such that we have
[x0,∞) × {y0} ∈ C. Recalling (4.58), we then obtain [x0,∞) × [y0,∞) ∈ C and
therefore P x,y[τ∗ = ∞] = 1 for any (x, y) ∈ (x0,∞) × (y0,∞), because ̂Y is in-
creasing (cf. (4.46)). Then for any such (x, y), (4.26) gives

̂U(x,y) = Ex,y

[

e
2μ0
σ2 At−ρt

̂U(̂Xt,̂Yt )
]

for all t ≥ 0.

Letting t → ∞, condition (4.37) gives the contradiction ̂U(x,y) = 0. �

Combining Propositions 4.10 and 4.12 with (4.58) gives the next corollary.

Corollary 4.13 Assume either μ1 + μ0 ≥ 0, or μ1 + μ0 < 0 with ρ ≥ θ
2σ

|μ1 + μ0|.
Then the map x �→ χ(x) is increasing.

We can say that χ is the (generalised) inverse of b in a sense that is clarified later
in Sect. 5.2.

5 Fine properties of the value function and of the boundary

In this section, we continue our study of the optimal stopping problem by proving
that its value function is C1 and by exhibiting properties of the optimal boundary in
the different coordinate systems (i.e., (x,π), (x,ϕ) and (x, y)).
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5.1 Regularity of value function and optimal boundary

Combining Propositions 4.10 and 4.12, we conclude that under each of the two con-
ditions

(i) μ1 + μ0 ≥ 0,
(ii) μ1 + μ0 < 0 and ρ ≥ θ

2σ
|μ1 + μ0|,

there is an increasing optimal boundary b such that

S = {(x, y) ∈ [0,∞) ×R : x ≥ b(y)}. (5.1)

Since we only consider the cases (i) and (ii) in the rest of this paper, it is worth
summarising them in a single assumption. Recall θ = (μ1 − μ0)/σ .

Assumption 5.1 We assume that (μ0,μ1, ρ, σ ) fulfil one of (i), (ii) above.

Proposition 5.2 Under Assumption 5.1, we have 0 ≤ b(y) < ∞ for all y ∈ R, and
moreover b ∈ C(R).

Proof 1) Finiteness: Let us start by proving finiteness of the boundary by way of con-
tradiction. Assume there is y0 ∈ R such that [0,∞) × {y0} ∈ C. Then we must have
[0,∞) × [y0,∞) ⊆ C by monotonicity of b(·). Notice that we have already shown
in Step 2 of the proof of Proposition 4.12 that this is impossible if μ0 + μ1 < 0 and
ρ ≥ θ

2σ
|μ0 + μ1|. Thus it remains to prove the contradiction for μ0 + μ1 ≥ 0.

For future use, let us introduce

X◦
t = x + μ0t + σWt , Y ◦

t = y − 1

2
(μ1 + μ0)t. (5.2)

Fix t0 > 0 and define y1 := y0 + 1
2 (μ1 + μ0)t0. Then by assumption, we must have

P x,y1 [τ∗ ≥ t0] = 1 for all x ≥ 0. For τ0 := inf{t ≥ 0 : ̂Xt = 0}, using the strong
Markov property and (4.50), we obtain

û(x, y1) = Ex,y1

[

e−ρτ0 û(0, Y ◦
τ0

)1{τ0<τ∗} − ρ

∫ τ0∧τ∗

0
e−ρtg(X◦

t , Y
◦
t )dt

]

, (5.3)

where we use that on {t ≤ τ0}, we have (̂Xt,̂Yt ) = (X◦
t , Y

◦
t ) P x,y1 -a.s. From (4.31),

we deduce that for some cy1 > 0 only depending on y1, we have

e−ρτ0 û(0, Y ◦
τ0

) ≤ e−ρτ0
(

1 + c1e
θ
σ

Y ◦
τ0

) ≤ cy1e
−ρτ0 ,

where in the last inequality, we have also used μ0 +μ1 ≥ 0. Plugging the latter bound
into (5.3) and using that τ∗ ≥ t0, we get

û(x, y1) ≤ cy1Ex,y1 [e−ρτ0 ] − ρEx,y1

[∫ τ0∧t0

0
e−ρtg(X◦

t , Y
◦
t )dt

]

. (5.4)
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Taking x → ∞, the first term on the right-hand side of (5.4) goes to zero, whereas
the second one diverges to ∞ because limx→∞ P x,y1 [τ0 ≥ t0] = 1 and x �→ g(x, y)

is increasing. Hence we have a contradiction.
2) Left-continuity: Using that b(·) is increasing and S is closed, we obtain that

limn→∞(b(yn), yn) = (b(y0−), y0) ∈ S for any y0 ∈ R and any increasing sequence
yn ↑ y0 as n → ∞, where b(y0−) is the left limit of b at y0. Then b(y0−) ≥ b(y0) by
(5.1), and since b(yn) ≤ b(y0) for all n ≥ 1, b must be left-continuous, hence lower
semi-continuous.

3) Right-continuity: The argument by contradiction that we use draws from [15].
Assume there is y0 ∈ R with b(y0) < b(y0+) and take b(y0) < x1 < x2 < b(y0+)

and a nonnegative function φ ∈ C∞
c (x1, x2) such that

∫ x2
x1

φ(x)dx = 1. Thanks to
Lemma 4.8 (cf. also (4.60)), we have

(LX,Y − ρ)̂u(x, y) = g(x, y) for (x, y) ∈ (x1, x2) × (y0,∞). (5.5)

Let us first consider the case (i) of μ0 + μ1 ≥ 0. Recall that ûy ≥ 0 in C by (4.51).
Then multiplying (5.5) by φ(·) and integrating by parts, we obtain

0 ≥ −1

2
(μ0 + μ1)

∫ x2

x1

ûy(x, y)φ(x)dx

=
∫ x2

x1

(

ρg + ρû − μ0ûx − 1

2
σ 2ûxx

)

(x, y)φ(x)dx

=
∫ x2

x1

(

(ρg + ρû)(x, y)φ(x) + μ0û(x, y)φ′(x) − 1

2
σ 2û(x, y)φ′′(x)

)

dx.

Taking limits as y ↓ y0 and using dominated convergence and û(x, y0) = 0, we obtain

0 ≥ ρ

∫ x2

x1

g(x, y0)φ(x)dx > 0

which is a contradiction. Hence b(y0) = b(y0+).
Next consider the case (ii) where μ0 + μ1 < 0 and ρ ≥ θ

2σ
|μ0 + μ1|. Thanks to

classical results on internal regularity of PDEs (e.g. Friedman [28, Chap. 3, Theo-
rem 10]), we can differentiate (5.5) with respect to x and obtain that ûx is in C1,2 in
C and solves

(LX,Y − ρ)̂ux = gx in (x1, x2) × (y0,∞). (5.6)

It is crucial to recall that ûx ≤ 0, as shown in the proof of Proposition 4.12. For
y > y0, we get from (5.6) that

∫ x2

x1

(LX,Y ûx − ρûx − ρgx)(x, y)φ(x)dx = 0. (5.7)

Defining Fφ(y) := ∫ x2
x1

ûxy(x, y)φ(x)dx and using integration by parts, (5.7) may be
rewritten as
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1

2
|μ0 + μ1|Fφ(y) =

∫ x2

x1

(

1

2
σ 2û(x, y)φ′′′(x) − μ0û(x, y)φ′′(x)

− ρû(x, y)φ′(x) + ρgx(x, y)φ(x)

)

dx.

Taking limits as y ↓ y0 and using û(x, y0) = 0 gives

Fφ(y0+) = 2ρ

|μ0 + μ1|
∫ x2

x1

gx(x, y0)φ(x)dx ≥ ρ0 > 0

for some ρ0. Hence there is ε > 0 such that Fφ(y) ≥ ρ0/2 for y ∈ (y0, y0 + ε). Then
from the definition of Fφ , integration by parts and Fubini’s theorem, we find that

1

2
ρ0ε ≤

∫ y0+ε

y0

Fφ(y)dy = −
∫ x2

x1

(∫ y0+ε

y0

ûy(x, y)dy

)

φ′(x)dx

= −
∫ x2

x1

û(x, y0 + ε)φ′(x)dx =
∫ x2

x1

ûx(x, y0 + ε)φ(x)dx ≤ 0,

where we also used û(x, y0) = 0. This contradiction implies b(y0) = b(y0+). �

Monotonicity of b is the key to the regularity of the value function in this con-
text. In fact, we use it to show that the first hitting time to S coincides with the first
hitting time to the interior of S . The latter, along with regularity (in the sense of dif-
fusions) of ∂S , will be sufficient to prove that ̂U ∈ C1((0,∞) ×R), or equivalently
U ∈ C1((0,∞)2).

Let us introduce the first hitting times to S and to S◦ := int S as

σ∗ := inf{t > 0 : (̂Xt,̂Yt ) ∈ S}, σ ◦∗ := inf{t > 0 : (̂Xt,̂Yt ) ∈ S◦}.

Notice that continuity of paths for (̂X,̂Y ) implies that τ∗ = σ∗ P x,y -a.s. for all
(x, y) ∈ ([0,∞) × R) \ ∂C. It will be crucial to prove that the equality also holds
at points of the boundary (x, y) ∈ ∂C. For future reference, we define

y∗
0 := inf{y ∈R : (0, y) ∈ C} (with inf∅ = ∞). (5.8)

Lemma 5.3 Under Assumption 5.1, for all (x, y) ∈ [0,∞) ×R \ (0, y∗
0 ), we have

P x,y[σ∗ = σ ◦∗ ] = 1. (5.9)

Proof The statement is trivial for (x, y) ∈ S◦ and for (x, y) ∈ {0}× (−∞, y∗
0 ) thanks

to continuity of paths. It remains to consider (x, y) ∈ C \ (0, y∗
0 ), where C is the

closure of C. First we notice that thanks to monotonicity of b, we have

P x,y[̂Xσ∗ > 0] = 1 for all (x, y) ∈ C \ (0, y∗
0 ). (5.10)
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Indeed, if μ1 + μ2 ≤ 0, (5.10) is obvious because ̂Y is increasing. If μ1 + μ2 > 0,
(5.10) holds because

P x,y[̂Xσ∗ = 0] = P x,y[(̂Xσ∗ ,̂Yσ∗) = (0, y∗
0 )] = 0 for all (x, y) ∈ C \ (0, y∗

0 ).

Let us now prove (5.9) in C \ (0, y∗
0 ).

In the case μ1 + μ0 > 0, the process ̂Y has a negative drift and moves to the left
at a constant rate during excursions of ̂X away from x = 0. Since b is increasing,
t �→ b(̂Yt ) is decreasing during excursions of ̂X away from x = 0. It then becomes
straightforward to verify (5.9), due to the law of the iterated logarithm for Brownian
motion and (5.10).

If μ1 + μ0 = 0, the process ̂Y only increases at times t with ̂Xt = 0; otherwise
it stays constant. Then (5.9) holds due to (5.10) and because ̂X immediately enters
intervals of the form (x′,∞) after reaching x′ (i.e., x′ is regular for (x′,∞)).

If μ1 + μ0 < 0, the process ̂Y increases. Moreover, during excursions of ̂X away
from x = 0, the rate of increase is constant. Recalling (5.10), we can therefore use
Cox and Peskir [13, Corollary 8] to conclude that (5.9) indeed holds (see also a self-
contained proof in a setting similar to ours in [18, Appendix B]). �

We say that a boundary point (x, y) ∈ ∂C is regular for the stopping set in the
sense of diffusions if

P x,y[σ∗ > 0] = 0 (5.11)

(see Blumenthal and Getoor [9, Chap. 1, Sect. 11]; see also De Angelis and Peskir
[19] for a recent account on this topic). Notice that from the 0–1 law, if (5.11) fails,
then P x,y[σ∗ > 0] = 1.

In case μ0 + μ1 ≥ 0, during excursions of ̂X away from zero, the process ̂Y is de-
creasing. So the couple (̂X,̂Y ) moves towards the left of the (x, y)-plane during such
excursions (or ̂Y is just constant if μ0 + μ1 = 0). Recalling that b(·) is increasing,
the law of the iterated logarithm implies that P x0,y0 [σ∗ > 0] = 0 if (x0, y0) ∈ ∂C with
x0 > 0. So we can claim:

Proposition 5.4 Assume μ0 + μ1 ≥ 0. Then all points (x, y) ∈ ∂C with x > 0 are
regular for the stopping set, i.e., (5.11) holds.

To treat the regularity of ∂C in the remaining case μ0 + μ1 < 0, we need to take a
longer route because (̂X,̂Y ) is now moving towards the right of the (x, y)-plane and
in principle, when started from ∂C, it may ‘escape’ from the stopping set. We shall
prove below that this is not the case. For that, we first need to show that smooth fit
holds at the boundary. Notice that this is the classical concept of smooth fit, i.e., conti-
nuity of z �→ ̂Ux(z, y). Smooth fit in this sense does not imply that (x, y) �→ ̂Ux(x, y)

is continuous across the boundary, which we prove instead in Proposition 5.10.

Lemma 5.5 Assume μ0 + μ1 < 0 and ρ ≥ θ
2σ

|μ0 + μ1|. For each y ∈ R, we have
̂Ux(·, y) ∈ C(0,∞) (or equivalently ûx(·, y) ∈ C(0,∞)).
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Proof From

1

2
σ 2ûxx(x, y) = ρg(x, y) + ρû(x, y) − μ0ûx(x, y) + 1

2
(μ0 + μ1)̂uy(x, y)

for (x, y) ∈ C, x > 0 and using (4.36) (which clearly implies Lipschitz-continuity of
̂U as well), we see that for any bounded set B , we must have that

ûxx is bounded on the closure of B ∩ C. (5.12)

This fact is used later to justify the use of the Itô–Tanaka formula in (5.13).
We establish the smooth fit with an argument by contradiction. The first step

is to recall that ûx ≤ 0 in C as verified in the proof of Proposition 4.12. Second,
notice that any (x0, y0) ∈ ∂C must be of the form (b(y0), y0) due to continuity of
y �→ b(y) (Proposition 5.2). Next, assume that for some y0 and x0 = b(y0) > 0, we
have ûx(x0−, y0) < −δ0 for some δ0 > 0, where ûx(x0−, y0) exists due to (5.12).
Take a bounded rectangular neighbourhood B of (x0, y0) such that B ∩ ({0}×R) = ∅

and let τB := inf{t ≥ 0 : (̂Xt,̂Yt ) /∈ B}. Then from the supermartingale property of ̂U

(4.25), using that AτB∧t = 0 for all t ≥ 0 and recalling (5.2), we have

û(x0, y0) ≥ Ex0,y0

[

e−ρ(τB∧t)û
(

X◦
τB∧t , Y

◦
τB∧t

) − ρ

∫ τB∧t

0
e−ρsg(X◦

s , Y
◦
s )ds

]

.

Now we notice that t �→ Y ◦
τB∧t is increasing. Moreover, recalling (4.51), we have

ûy ≥ 0 in C. This implies û(X◦
τB∧t , Y

◦
τB∧t ) ≥ û(X◦

τB∧t , y0) P x0,y0 -a.s. Finally, ob-
serving that g is bounded on B , we obtain

û(x0, y0) ≥ Ex0,y0

[

e−ρ(τB∧t)û(X◦
τB∧t , y0) − c(τB ∧ t)

]

(5.13)

for some c = c(B) > 0 that depends on the set B and will vary from line to line below.
As anticipated, we can now use the Itô–Tanaka formula in (5.13) thanks to (5.12).

We let LX = 1
2σ 2∂xx + μ0∂x , denote the local time of X◦ at x0 by Lx0 and notice

also that ûxx(·, y0) = 0 for x > x0. Then we get

0 ≥ Ex0,y0

[∫ τB∧t

0
e−ρs(LX − ρ)̂u(X◦

s , y0)1{X◦
s �=x0}ds − c(τB ∧ t)

]

− Ex0,y0

[∫ τB∧t

0
e−ρs ûx(x0−, y0)dLx0

s

]

≥ δ0e
−ρtEx0,y0 [Lx0

τB∧t ] − cEx0,y0 [τB ∧ t], (5.14)

where in the final inequality, we used that (LX − ρ)̂u is bounded on B . Letting
t → 0, the inequality in (5.14) leads to a contradiction because in the limit, we have
Ex0,y0 [Lx0

τB∧t ] ≈ √
t and Ex0,y0 [τB ∧ t] ≈ t (the argument is similar to the one used

to prove Proposition 4.9; see also e.g. [41, Lemma 13]). Hence the claim is proved. �

Next we prove regularity of ∂C in the sense of diffusions when μ0 + μ1 < 0.
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Proposition 5.6 Assume μ0 + μ1 < 0 and ρ ≥ θ
2σ

|μ0 + μ1|. Then all points
(x, y) ∈ ∂C with x > 0 are regular for the stopping set, i.e., (5.11) holds.

Proof The idea is to show that if P x0,y0[σ∗ > 0] = 1 for some (x0, y0) ∈ ∂C, then
ûx(x0−, y0) < 0 which contradicts Lemma 5.5.

1) Upper bound on ûx : Let us start by fixing (x, y) ∈ C. It is convenient to rewrite
û in the following form. Let τε := inf{t ≥ 0 : ̂Xt = ε} for ε ≥ 0; then by the strong
Markov property, we have

û(x, y) = sup
τ

Ex,y

[

1{τ>τε}e−ρτε û(ε, Y ◦
τε

) − ρ

∫ τε∧τ

0
e−ρtg(X◦

t , Y
◦
t )dt

]

, (5.15)

where we used that (̂Xt,̂Yt ) = (X◦
t , Y

◦
t ) on {t ≤ τε} P x,y -a.s., with the notation of

(5.2). Notice that τε is independent of y and therefore τε = τε(x). Moreover, due to
(4.45), it is clear that

τ0(x − ε) = τε(x) P -a.s. (5.16)

Now fix ε > 0, denote X
◦,ε
t = x − ε +μ0t +σWt and τ ε

0 = τ0(x − ε) P -a.s. and take
τ ′ = τ∗(x, y), which is suboptimal for û(x − ε, y). Then we obtain

û(x − ε, y) ≥ E

[

1{τ ′>τε
0 }e−ρτε

0 û(0, Y ◦
τ ε

0
) − ρ

∫ τ ε
0 ∧τ ′

0
e−ρtg(X

◦,ε
t , Y ◦

t )dt

]

. (5.17)

Thanks to (5.16), we can replace τ ε
0 in (5.17) with τε as in (5.15). Then subtracting

(5.17) from (5.15), we obtain

û(x, y) − û(x − ε, y) ≤ E
[

1{τ ′>τε}e−ρτε
(

û(ε, Y ◦
τε

) − û(0, Y ◦
τε

)
)]

+ E

[

ρ

∫ τε∧τ ′

0
e−ρt

(

g(X
◦,ε
t , Y ◦

t ) − g(X◦
t , Y

◦
t )

)

dt

]

≤ E

[

ρ

∫ τε∧τ ′

0
e−ρt

(

g(X
◦,ε
t , Y ◦

t ) − g(X◦
t , Y

◦
t )

)

dt

]

,

where the last inequality uses ûx ≤ 0 in C (cf. proof of Proposition 4.12) and
(ε,Y ◦

τε
) ∈ C on {τ ′ > τε}. Now we can divide by ε and let ε → 0. Using that τε ↓ τ0

and recalling τ ′ = τ∗(x, y), we obtain

ûx(x, y) ≤ −ρEx,y

[∫ τ∗∧τ0

0
e−ρtgx(X

◦
t , Y

◦
t )dt

]

. (5.18)

2) Non-smooth fit: Assume that (x0, y0) ∈ ∂C and P x0,y0 [σ∗ > 0] = 1. Take
an increasing sequence xn ↑ x0 and denote τn∗ = τ∗(xn, y0). Notice that we have
τn∗ = σn∗ = σ∗(xn, y0) for all n ≥ 1 due to continuity of paths. Moreover, σn∗ is de-
creasing in n with σn∗ ≥ σ∗ = σ∗(x0, y0), because x �→ Xx

t is increasing and S is of
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the form (5.1). Setting τn
0 = inf{t ≥ 0 : X◦,n

t = 0}, it is also easy to check that τn
0 ↑ τ0

as n → ∞. Then denoting σ∞ := limn→∞ σn∗ , we have

σ∞ ∧ τ0 = lim
n→∞(σ n∗ ∧ τn

0 ) ≥ σ∗ ∧ τ0 P -a.s.

Given that gx ≥ 0, we can use monotone convergence and (5.18) to get

ux(x0−, y0) = lim
n→∞ ûx(xn, y0)

≤ −ρEx,y

[∫ σ∞∧τ0

0
e−ρtgx(X

◦
t , Y

◦
t )dt

]

< 0, (5.19)

where the final inequality holds because P x0,y0 [σ∞ ≥ σ∗ > 0] = 1 by assumption.
Since (5.19) contradicts Lemma 5.5, we have P x0,y0 [σ∗ > 0] = 0. �

As a corollary to Lemma 5.3 and Propositions 5.4 and 5.6, we have

Corollary 5.7 Under Assumption 5.1, for all (x, y) ∈ [0,∞) ×R \ (0, y∗
0 ), we have

P x,y[τ∗ = σ∗ = σ ◦∗ ] = 1.

This corollary is important to determine continuity of the stopping times with
respect to the initial position of the process, at all points of the state space.

Proposition 5.8 Under Assumption 5.1, we have

lim
n→∞ τ∗(xn, yn) = τ∗(x, y) P -a.s. (5.20)

for any (x, y) ∈ [0,∞) ×R \ (0, y∗
0 ) and any sequence (xn, yn) → (x, y). In partic-

ular, for (x, y) ∈ ∂C \ (0, y∗
0 ), the limit is zero.

Proof Let us fix (x, y) ∈ [0,∞) × R. For simplicity, in the rest of this proof, all
stopping times depending on (xn, yn) are denoted by τn, σn or σ ◦

n , whereas those
depending on (x, y) are denoted by τ , σ or σ ◦, as appropriate.

1) Lower semi-continuity: Here we show that

lim inf
n→∞ τn ≥ τ P -a.s. (5.21)

Fix ω ∈ � outside of a nullset. If τ(ω) = 0, the result is trivial; so we assume that
τ(ω) > δ > 0. Then, recalling that the boundary is continuous (Proposition 5.2), there
exists cδ,ω > 0 such that

b
(

̂Y
x,y
t (ω)

) − ̂Xx
t (ω) > cδ,ω for all t ∈ [0, δ].

Notice that the map (t, x′, y′) �→ b(̂Y
x′,y′
t (ω)) − ̂Xx′

t (ω) is uniformly continuous on
any compact [0, δ] × K . So we can find nω ≥ 1 sufficiently large that for all n ≥ nω,
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b
(

̂Y
xn,yn
t (ω)

) − ̂X
xn
t (ω) > cδ,ω for all t ∈ [0, δ].

This implies lim infn→∞ τn(ω) ≥ δ. Since ω, δ were arbitrary, we obtain (5.21).
2) Upper semi-continuity: Here we show that

lim sup
n→∞

σ ◦
n ≤ σ ◦ P -a.s. (5.22)

Fix ω ∈ � outside of a nullset. If σ ◦(ω) = ∞, the result is trivial; so assume
σ ◦(ω) < δ for some δ > 0. Then, recalling that the boundary is continuous (Propo-
sition 5.2), there exists t ≤ δ such that b(̂Y

x,y
t (ω)) < ̂Xx

t (ω). By continuity of

(x′, y′) �→ b(̂Y
x′,y′
t (ω)) − ̂Xx′

t (ω), we can find nω ≥ 1 sufficiently large that for all
n ≥ nω, we have b(̂Y

xn,yn
t (ω)) < ̂X

xn
t (ω). Hence lim supn→∞ σ ◦

n ≤ δ. Since ω, δ were
arbitrary, (5.22) follows.

Combining Steps 1) and 2) with Corollary 5.7, we obtain (5.20). �

In order to finally prove that ̂U ∈ C1((0,∞) ×R), we should like to have a fully
probabilistic representation of ∇x,y

̂U . While obtaining ̂Uy in (4.59) was relatively
easy, we now need more care for ̂Ux . First of all, recalling the explicit dynamics of
(̂X,̂Y ,A) from (4.14), (4.45) and (4.46) and denoting by ∂+

x and ∂−
x the right and left

partial derivatives with respect to x, we observe that for all (x, y) ∈ (0,∞) ×R and
t ≥ 0, we have

∂+
x

̂Xx
t = 1{x≥S

μ0,σ
t }, ∂−

x
̂Xx

t = 1{x>S
μ0,σ
t }, (5.23)

∂+
x

̂Y
x,y
t = ∂+

x Ax
t = −1{x<S

μ0,σ
t }, ∂−

x
̂Y

x,y
t = ∂−

x Ax
t = −1{x≤S

μ0,σ
t }, (5.24)

where we also recall the notation S
μ0,σ
t = sup0≤s≤t (−μ0s − σWs). Recalling y∗

0
from (5.8) and τ0 = inf{t ≥ 0 : ̂Xt = 0}, the same arguments as in (5.10) and Corol-
lary 5.7 give

P x,y[Sμ0,σ
τ∗ = x] = P x,y[τ∗ = τ0] = P x,y[(̂Xτ∗ ,̂Yτ∗) = (0, y∗

0 )] = 0 (5.25)

for any (x, y) ∈ ([0,∞) ×R) \ (0, y∗
0 ). Then for all (x, y) ∈ (0,∞) ×R and P -a.s.,

we have

∂+
x

̂Xx
τ∗ = ∂−

x
̂Xx

τ∗ = 1{x≥S
μ0,σ
τ∗ }, (5.26)

∂+
x

̂Yx,y
τ∗ = ∂−

x
̂Yx,y

τ∗ = ∂+
x Ax

τ∗ = ∂−
x Ax

τ∗ = −1{x≤S
μ0,σ
τ∗ }. (5.27)

Let us now obtain the probabilistic representation of ̂Ux .

Lemma 5.9 For all (x, y) ∈ ((0,∞) ×R) \ ∂C, we have

̂Ux(x, y)

= −2μ0

σ 2
Ex,y

[

1{τ∗<∞}1{x≤S
μ0,σ
τ∗ }e

2μ0
σ2 Aτ∗−ρτ∗(1 + e

θ
σ

(̂Xτ∗+̂Yτ∗ )
)

]

+ θ

σ
Ex,y

[

1{τ∗<∞}
(

1{x≥S
μ0,σ
τ∗ } − 1{x≤S

μ0,σ
τ∗ }

)

e
2μ0
σ2 Aτ∗−ρτ∗e

θ
σ

(̂Xτ∗+̂Yτ∗ )
]

. (5.28)
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Proof The result is trivial for (x, y) ∈ S◦ because τ∗ = 0. For (x, y) ∈ C, we recall
that ̂Ux is well defined (Lemma 4.8), take ε > 0 and denote by τ = τ∗(x, y) the op-
timal stopping time for ̂U(x,y). For any t > 0, using the (super)martingale property
(4.25), (4.26) gives

̂U(x + ε, y) − ̂U(x,y)

≥ E
[

e
2μ0
σ2 Ax+ε

τ∧t −ρ(τ∧t)
̂U

(

̂Xx+ε
τ∧t ,̂Y

x+ε,y
τ∧t

) − e
2μ0
σ2 Ax

τ∧t−ρ(τ∧t)
̂U

(

̂Xx
τ∧t ,

̂Y
x,y
τ∧t

)

]

≥ E
[

1{τ≤t}
(

e
2μ0
σ2 Ax+ε

τ −ρτ
g
(

̂Xx+ε
τ ,̂Yx+ε,y

τ

) − e
2μ0
σ2 Ax

τ −ρτ
g
(

̂Xx
τ ,̂Yx,y

τ

)

)]

+ E
[

1{τ>t}
(

e
2μ0
σ2 Ax+ε

t −ρt
̂U

(

̂Xx+ε
t ,̂Y

x+ε,y
t

) − e
2μ0
σ2 Ax

t −ρt
̂U

(

̂Xx
t ,̂Y

x,y
t

)

)]

.

Dividing the above expressions by ε, letting ε → 0 and using (4.36) and the right
derivatives in (5.23), (5.24), (5.26) and (5.27), we find a lower bound for ̂Ux , namely

̂Ux(x, y) ≥ −2μ0

σ 2
E

[

1{τ≤t}1{x≤S
μ0,σ
τ }e

2μ0
σ2 Ax

τ −ρτ (1 + e
θ
σ

(̂Xx
τ +̂Y

x,y
τ )

)

]

+ θ

σ
E

[

1{τ≤t}
(

1{x≥S
μ0,σ
τ } − 1{x≤S

μ0,σ
τ }

)

e
2μ0
σ2 Ax

τ −ρτ
e

θ
σ

(̂Xx
τ +̂Y

x,y
τ )

]

+ r(t, x, y), (5.29)

where (notice that c > 0 below is the same as in (4.36))

r(t, x, y) = −
∣

∣

∣

∣

2μ0

σ 2

∣

∣

∣

∣

E
[

1{τ>t}1{Sμ0,σ
t >x}e

2μ0
σ2 Ax

t −ρt
̂U

(

̂Xx
t ,̂Y

x,y
t

)

]

+ cE
[

1{τ>t}e
2μ0
σ2 Ax

t −ρt
g
(

̂Xx
t ,̂Y

x,y
t

)

]

+ θ

σ
E

[

1{τ>t}
(

1{x≥S
μ0,σ
t } − 1{x≤S

μ0,σ
t }

)

e
2μ0
σ2 Ax

t −ρt
e

θ
σ

(̂Xx
t +̂Y

x,y
t )

]

.

Using (4.37), it is not hard to verify that we have limt→∞ r(t, x, y) = 0 (notice that
̂U(x,y) ≥ g(x, y) ≥ e

θ
σ

(x+y) ≥ 0). Hence, taking limits as t → ∞ in (5.29) and re-
calling also (4.22), dominated convergence gives

̂Ux(x, y) ≥ −2μ0

σ 2
E

[

1{τ<∞}1{x≤S
μ0,σ
τ }e

2μ0
σ2 Ax

τ −ρτ (
1 + e

θ
σ

(̂Xx
τ +̂Y

x,y
τ )

)

]

+ θ

σ
E

[

1{τ<∞}
(

1{x≥S
μ0,σ
τ } − 1{x≤S

μ0,σ
τ }

)

e
2μ0
σ2 Ax

τ −ρτ
e

θ
σ

(̂Xx
τ +̂Y

x,y
τ )

]

.

In order to obtain an upper bound for ̂Ux , we can employ symmetric arguments, using
again τ = τ∗(x, y), to estimate ε−1(̂U(x,y) − ̂U(x − ε, y)). It is not hard to check
that the upper bound is the same as the lower bound; hence (5.28) holds. �

Thanks to the continuity of the optimal stopping times and the probabilistic repre-
sentations of ̂Ux and ̂Uy , we can state our next result (see also [19] for general results
in this direction).



108 T. De Angelis

Proposition 5.10 Under Assumption 5.1, we have ̂U ∈ C1((0,∞) ×R).

Proof Trivially ̂U ∈ C1 in S◦ and moreover ̂U ∈ C1 in C \ ({0} × R), due to
Lemma 4.8. It only remains to prove that ∇x,y

̂U is continuous across the boundary
∂C. Let us consider the case of ̂Ux , as the proof for ̂Uy follows the same arguments.

Take (x0, y0) ∈ ∂C with x0 > 0 and a sequence (xn, yn)n≥1 in C converging to
(x0, y0) as n → ∞. Thanks to Proposition 5.8, we have τ∗(xn, yn) → τ∗(x0, y0) = 0
P -a.s. as n → ∞. To simplify notation, we let τn := τ∗(xn, yn).

Fix t > 0 and notice that on {τn > t}, one has (̂Xt,̂Yt ) ∈ C P xn,yn -a.s. so that
̂Ux(̂X

xn
t ,̂Y

xn,yn
t ) may be represented by using (5.28). Hence the tower property of

conditional expectations and the Markov property allow us to write (5.28) as

̂Ux(xn, yn) = −2μ0

σ 2
Ex,y

[

1{τn≤t}1{xn≤S
μ0,σ
τn }e

2μ0
σ2 Aτn−ρτn

(

1 + e
θ
σ

(̂Xτn+̂Yτn )
)

]

+ θ

σ
Ex,y

[

1{τn≤t}
(

1{xn≥S
μ0,σ
τn } − 1{xn≤S

μ0,σ
τn }

)

e
2μ0
σ2 Aτn−ρτne

θ
σ

(̂Xτn+̂Yτn )
]

+ Exn,yn

[

1{τn>t}e
2μ0
σ2 At−ρt

̂Ux(̂Xt,̂Yt )
]

. (5.30)

Now we want to take limits as n → ∞ and use that τn → 0 in (5.30) to show that
̂Ux(xn, yn) → gx(x0, y0). For that, first notice that x �→ 1{x≤0} and x �→ 1{x≥0} are
continuous on (−∞,0) and in particular at −x0. Since we also have

lim
n→∞(Sμ0,σ

τn
− xn) = −x0 < 0,

we obtain that P -a.s.,

lim
n→∞1{Sμ0,σ

τn −xn≥0} = 0 and lim
n→∞1{Sμ0,σ

τn −xn≤0} = 1.

Moreover, thanks to (4.36) and (4.22), we can invoke dominated convergence to take
limits inside the expectations in (5.30). This gives

lim
n→∞

̂Ux(xn, yn) = θ

σ
exp

(

θ

σ
(x0 + y0)

)

= gx(x0, y0),

where we also used that limn→∞ 1{τn>t} = 0.
Because (x0, y0) and the sequence (xn, yn) were arbitrary, we conclude that ̂Ux

is continuous across ∂C \ (0, y∗
0 ). Similar arguments applied to (4.59) allow to show

that ̂Uy is continuous across ∂C \ (0, y∗
0 ) as well. �

We have a simple corollary. Recall that C is the closure of C.

Corollary 5.11 Let Assumption 5.1 hold. Then we have U ∈ C1((0,∞)2) and
U ∈ C1((0,∞) × (0,1)). Moreover, ̂Uxx is continuous on C \ ({0} ×R) with

̂Uxx(x, y) = 2ρ

σ 2
g(x, y) + gxx(x, y) for all (x, y) ∈ ∂C, x > 0. (5.31)
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Proof The first claim follows from Proposition 5.10, (4.47) and (4.19). For the second
claim, we need

1

2
σ 2ûxx + μ0ûx − 1

2
(μ0 + μ1)̂uy − ρû = ρg in C,

where û = ̂U − g. Then (5.31) follows by letting C � (x, y) → (x0, y0) ∈ ∂C with
x0 > 0, and using ûx = ûy = û = 0 on ∂C \ ({0} ×R). �

Remark 5.12 Notice that due to internal regularity results for parabolic PDEs (cf. [28,
Chap. 3, Theorem 10]) and thanks to Lemma 4.8, we know that ̂U ∈ C∞ in
C \ ({0} ×R). This implies that also U and U belong to C∞ in C \ ({0} ×R).

5.2 Reflection, creation and inverse of the boundary

Recall that we conjectured that the boundary condition (4.4) holds for U in (4.8).
We now verify that this is indeed true, provided that we understand it in the limit
as x ↓ 0 for each given π ∈ (0,1). Let us start by recalling that (4.19) holds with
ϕ = π/(1 − π). Then thanks to Remark 5.12, U satisfies

1

2
σ 2U(0+,π) + σθπ(1 − π)Uπ(0+,π) + (μ0 + μ̂π)U(0+,π) = 0 (5.32)

for π ∈ (0,1) such that (0,π) ∈ C if and only if

1

2
σ 2Ux(0+, ϕ) + μ̂ϕU(0+, ϕ) + μ0U(0+, ϕ) = 0 (5.33)

for all ϕ > 0 such that (0, ϕ) ∈ C. Recalling that ̂U(x,y) = U(x, exp θ
σ
(x + y)), we

see that (5.33) holds if and only if

1

2
σ 2(̂Ux + ̂Uy)(0+, y) + μ0 ̂U(0+, y) = 0 (5.34)

for all y ∈ R such that (0, y) ∈ C. We refer to the boundary condition (5.32) as re-
flection and creation condition. Notice that {y ∈ R : (0, y) ∈ C} �= ∅ was proved in
Proposition 4.9.

Proposition 5.13 The boundary condition (5.32) holds.

Proof We prove (5.34). Fix y ∈ R with (0, y) ∈ C and take a sequence xn ↓ 0 as
n → ∞. Notice that ̂Xxn is decreasing in n, whereas ̂Yxn,y is increasing in n thanks
to (5.26) and (5.27). Then by Proposition 5.8 and the geometry of S , we have
τ∗(xn, y) ↑ τ∗(0, y) P -a.s. For simplicity, we write τn = τ∗(xn, y) and τ∞ = τ∗(0, y).

The idea is simply to take limits in the expressions of ̂Ux and ̂Uy (see (5.28)
and (4.59)). For (5.28), we notice that S

μ0,σ
τn − xn ↑ S

μ0,σ
τ∞ as n → ∞ and recall that

P [Sμ0,σ
τ∞ = 0] = 0 by (5.25), since y > y∗

0 . Then P -a.s., we have
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lim
n→∞1{Sμ0,σ

τn −xn≥0} = 1{Sμ0,σ
τ∞ ≥0} = 1, (5.35)

lim
n→∞1{Sμ0,σ

τn −xn≤0} = 1{Sμ0,σ
τ∞ ≤0} = 0. (5.36)

Once again we use (4.22) to invoke dominated convergence, upon noticing that
S

β,σ
τn ≤ S

β,σ
τ∞ for any β . From (5.35) and (5.36), we then obtain (restoring the notation

τ∞ = τ∗ under P 0,y ) that

̂Ux(0+, y) = lim
n→∞

̂Ux(xn, y)

= −2μ0

σ 2
E0,y

[

1{τ∗<∞}e
2μ0
σ2 Aτ∗−ρτ∗(1 + e

θ
σ

(̂Xτ∗+̂Yτ∗ )
)

]

− θ

σ
E0,y

[

1{τ∗<∞}e
2μ0
σ2 Aτ∗−ρτ∗e

θ
σ

(̂Xτ∗+̂Yτ∗ )
]

= −E0,y

[

1{τ∗<∞}e
2μ0
σ2 Aτ∗−ρτ∗

(

2μ0

σ 2
+ μ1 + μ0

σ 2
e

θ
σ

(̂Xτ∗+̂Yτ∗ )

)]

.

Similarly, we get for ̂Uy that

̂Uy(0+, y) = lim
n→∞

̂Uy(xn, y) = μ̂

σ 2
E0,y

[

1{τ∗<∞}e
2μ0
σ2 Aτ∗−ρτ∗e

θ
σ

(̂Xτ∗+̂Yτ∗ )
]

.

Combining the two expressions, we find that

1

2
σ 2(̂Ux + ̂Uy)(0+, y) = −μ0E0,y

[

1{τ∗<∞}e
2μ0
σ2 Aτ∗−ρτ∗(1 + e

θ
σ

(̂Xτ∗+̂Yτ∗ )
)

]

= −μ0 ̂U(0, y),

where the last equality uses (4.43). �

With the goal of eventually going back to our original problem (4.8) in the
(x,π)-coordinates, we now need to consider the inverse of b(·). In particular, re-
calling the increasing map x �→ χ(x) from (4.57) and noticing that

x < b(y) ⇐⇒ y > χ(x),

we conclude that χ is the right-continuous inverse of b, i.e.,

χ(x) = inf{y ∈ R : b(y) > x}.

From (4.57), we also obtain that x �→ ψ(x) is increasing and right-continuous with

ψ(x) = exp

(

θ

σ

(

χ(x) + x
)

)

.
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We can therefore take the increasing, left-continuous inverse of ψ ,

c(ϕ) = inf{x > 0 : ψ(x) ≥ ϕ},

and notice that

ϕ > ψ(x) ⇐⇒ x < c(ϕ).

Next we recall that ϕ = π/(1 − π), and since π �→ π/(1 − π) is increasing, we can
define the optimal boundary in the (x,π)-coordinates by setting

d(π) := c

(

π

1 − π

)

( = c(ϕ)
)

.

Clearly π �→ d(π) is left-continuous and increasing, and finally, we can define its
right-continuous, increasing inverse

λ(x) := inf{π ∈ (0,1) : d(π) > x}.

Summarising the above, the sets C and S can be equivalently described in terms of
d(·), λ(·), c(·), ψ(·), b(·) or χ(·), depending on the chosen coordinates, i.e.,

C = {(x, y) : y > χ(x)} = {(x, y) : x < b(y)}
= {(x,ϕ) : ϕ > ψ(x)} = {(x,ϕ) : x < c(ϕ)}
= {(x,π) : π > λ(x)} = {(x,π) : x < d(π)}, (5.37)

S = {(x, y) : y ≤ χ(x)} = {(x, y) : x ≥ b(y)}
= {(x,ϕ) : ϕ ≤ ψ(x)} = {(x,ϕ) : x ≥ c(ϕ)}
= {(x,π) : π ≤ λ(x)} = {(x,π) : x ≥ d(π)}. (5.38)

Before closing this section, we determine the limiting behaviour of the bound-
ary d(π) as π → {0,1}. Let us recall the measure P θ introduced in (4.33) and the
associated Brownian motion Wθ . Moreover, let us also consider

Uμ1(x) = sup
τ≥0

Eθ
x

[

e
2μ1
σ2 Aτ −ρτ

]

(5.39)

which corresponds to problem (4.8) with π = 1 (notice that indeed ̂X has drift μ1

under P θ ). It was shown in [16, Sect. 8.3] that (5.39) is the optimal stopping problem
associated to the dividend problem with full information and drift of XD equal to μ1.
It then follows from [16] that there is an optimal stopping boundary a∗ > 0 that fully
characterises the solution of (5.39) and the stopping set is [a∗,∞) (an expression
for a∗ can be found in Schmidli [43, Theorem 2.53] with the notation m = μ1 and
δ = ρ).

We now notice that using Girsanov’s theorem and (4.30), we obtain from (4.19)
that
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U
(

x,ϕ/(1 + ϕ)
) = U(x,ϕ)

1 + ϕ
= lim

n→∞
U

n
(x,ϕ)

1 + ϕ

= lim
n→∞

ϕ

1 + ϕ
sup
τ≤ζn

(

1

ϕ
E

[

e
2μ0
σ2 Ax

τ −ρτ
]

+ Eθ
[

e
2μ1
σ2 Ax

τ −ρτ
]

)

= ϕ

1 + ϕ
sup
τ≥0

(

1

ϕ
E

[

e
2μ0
σ2 Ax

τ −ρτ
]

+ Eθ
[

e
2μ1
σ2 Ax

τ −ρτ
]

)

.

Letting π → 1 (or equivalently ϕ → ∞), this yields

lim
π→1

U(x,π) = Uμ1(x) for all x ∈ [0,∞). (5.40)

We also need to state two simple facts which can be obtained by (4.19) and
straightforward calculations. For all (x,π) ∈O, we have

Ux(x,π) = 1

1 + ϕ
Ux(x,ϕ), Uπ(x,π) = −U(x,ϕ) + (1 + ϕ)Uϕ(x,ϕ).

Thanks to (4.31) and (4.36), the above and (4.19) imply that there is a constant c > 0
such that

|U(x,π)| + |Ux(x,π)| + (1 − π)|Uπ(x,π)| ≤ c for (x,π) ∈O. (5.41)

We can now state our next result.

Proposition 5.14 Under Assumption 5.1, we have

lim
π→0

d(π) = 0 and lim
π→1

d(π) = a∗,

where a∗ is the optimal boundary for (5.39).

Proof 1) Limit as π → 1: Recall that d(·) is increasing and left-continuous. So

d(1) = lim
π→1

d(π). (5.42)

Thanks to (5.41), we have
∣

∣U
(

d(π),π
) − Uμ1

(

d(1)
)∣

∣ ≤ ∣

∣U
(

d(π),π
) − U

(

d(1),π
)∣

∣

+ ∣

∣U
(

d(1),π
) − Uμ1

(

d(1)
)∣

∣

≤ c
(

d(1) − d(π)
) + ∣

∣U
(

d(1),π
) − Uμ1

(

d(1)
)∣

∣ .

Recall that U(d(π),π) = 1 for all π ∈ (0,1). Hence taking limits as π ↑ 1 in the
expression above and using (5.40) and (5.42), we obtain

1 = lim
π→1

U
(

d(π),π
) = Uμ1

(

d(1)
)

.

This implies d(1) ≥ a∗ by the definition of a∗.
Let us now assume that d(1) > a∗ and take an interval [x1, x2] ⊆ (a∗, d(1)). Pick

an arbitrary positive function φ ∈ C∞
c (x1, x2) with

∫

R+ φ(ζ ) = 1. Rewriting (4.52)
in (x,π)-coordinates gives (LX,π − ρ)U = 0 in C. By left-continuity of d(·), we can
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choose ε > 0 sufficiently small such that Rε := [x1, x2] × [1 − ε,1) ⊆ C and

φ(x)(LX,πU − ρU)(x,π) = 0 for (x,π) ∈Rε.

Integration by parts gives

0 =
∫ x2

x1

φ(ζ )(LX,π − ρ)U(ζ,π)dζ

=
∫ x2

x1

U(ζ,π)(G − ρ)φ(ζ )dζ

+ π(1 − π)

∫ x2

x1

(

1

2
θ2π(1 − π)Uππ(ζ,π) + μ̂Uxπ (ζ,π)

)

φ(ζ )dζ, (5.43)

where G = 1
2σ 2 ∂2

∂x2 − (μ0 + μ̂π) ∂
∂x

. Set

Fφ(π) :=
∫ x2

x1

(

1

2
θ2π(1 − π)Uππ(ζ,π) + μ̂Uxπ (ζ,π)

)

φ(ζ )dζ

and let π → 1 in (5.43). Then (5.40) and dominated convergence give

lim
π→1

π(1 − π)Fφ(π) = −
∫ x2

x1

Uμ1(ζ )(G − ρ)φ(ζ )dζ.

Since Uμ1(x) = 1 for x ∈ (x1, x2), undoing the integration by parts yields

lim
π→1

π(1 − π)Fφ(π) = ρ,

which says that Fφ(π) behaves as ρ/(1 − π) for π → 1. This implies that
∫ 1

1−ε

Fφ(π)dπ = ∞, (5.44)

and we now show that (5.44) is impossible. For ε > 0 as above and 0 < δ < ε, Fu-

bini’s theorem and integration by parts give
∫ 1−δ

1−ε

Fφ(π)dπ

=
∫ x2

x1

(∫ 1−δ

1−ε

(1

2
θ2π(1 − π)Uππ(ζ,π) + μ̂Uxπ (ζ,π)

)

dπ

)

φ(ζ )dζ

= 1

2
θ2

∫ x2

x1

(

(

π(1 − π)Uπ(ζ,π) − (1 − 2π)U(ζ,π)
)∣

∣

∣

π=1−δ

π=1−ε

− 2
∫ 1−δ

1−ε

U(ζ,π)dπ

)

φ(ζ )dζ

+ μ̂

∫ x2

x1

Ux(ζ,π)
∣

∣

π=1−δ

π=1−ε
φ(ζ )dζ ≤ c′,
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where the last inequality uses (5.41) and c′ > 0 is independent of δ. Letting δ → 0,
we reach a contradiction with (5.44).

2) Limit as π → 0: The proof follows the same steps as above. Assume that
d(0+) := limπ→0 d(π) > 0. Then take a closed interval [x1, x2] ⊆ (0, d(0+)) and an
arbitrary positive function φ ∈ C∞

c (x1, x2) with
∫

R+ φ(ζ ) = 1. Repeating the same
steps as above, we write (5.43) and notice that (iii) in Proposition 4.4 implies that
limπ→0 U(x,π) = 1 for all x ≥ 0. Hence taking π → 0 in (5.43) gives

lim
π→0

π(1 − π)Fφ(π) = ρ,

which also implies
∫ ε

0 Fφ(π)dπ = ∞. The latter leads to a contradiction, exactly as
in 1) above. �

Using (5.37) and (5.38), we can conclude that also the boundaries c and b are
bounded above by a∗ and have the same limits.

Corollary 5.15 We have 0 ≤ c(ϕ) ≤ a∗ for ϕ ∈ (0,∞) and 0 ≤ b(y) ≤ a∗ for y ∈R.
Moreover,

lim
ϕ→0

c(ϕ) = lim
y→−∞b(y) = 0 and lim

ϕ→∞ c(ϕ) = lim
y→∞b(y) = a∗.

6 Solution of the dividend problem

At this point, we can construct a candidate for the value function V in (2.6) by setting

v(x,π) :=
∫ x

0
U(ζ,π)dζ, (x,π) ∈ O. (6.1)

Thanks to Corollary 5.11 and dominated convergence, we immediately obtain

Corollary 6.1 Under Assumption 5.1, the function v belongs to C(O) ∩ C1(O).
Moreover, vxx and vxπ are continuous in O.

In order to apply Theorem 3.1, it remains to show that vππ ∈ L∞
loc(O) and

vππ ∈ C(C ∩O). This is a nontrivial task and relies on a semi-explicit characteri-
sation of the weak derivative vππ .

Proposition 6.2 Let Assumption 5.1 hold. The function v in (6.1) admits a weak
derivative vππ ∈ L∞

loc(O). Moreover, we can select an element of the equivalence
class of vππ ∈ L∞

loc(O) (denoted again by vππ ) given by
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vππ (x,π) = 2

(

ρ

∫ x∧d+(π)

0
U(ζ,π)dζ − 1

2
σ 2Ux

(

x ∧ d+(π),π
)

− μ̂π(1 − π)Uπ

(

x ∧ d+(π),π
)

− (μ0 + μ̂π)U
(

x ∧ d+(π),π
)

)

(

θπ(1 − π)
)−2

, (6.2)

with d+(π) := limε→0 d(π + ε).

Proof Since vπ(x, · ) is a continuous function for all x > 0, we say as usual that
its weak derivative with respect to π is a function f ∈ L1

loc(O) such that for any
φ ∈ C∞

c (0,1), we have

∫ 1

0
vπ(x, z)φ′(z)dz = −

∫ 1

0
f (x, z)φ(z)dz.

Our aim is to compute f , show that it equals the right-hand side of (6.2) and therefore
conclude that f ∈ L∞

loc(O), due to U ∈ C1(O).
Recalling that Uπ = 0 in S and that x < d(π) is equivalent to π > λ(x)

(cf. (5.37)), using Fubini’s theorem allows us to write

∫ 1

0
vπ(x, z)φ′(z)dz (6.3)

=
∫ 1

0

(∫ x∧d(z)

0
Uπ(ζ, z)dζ

)

φ′(z)dz

=
∫ x

0

(∫ 1

λ(ζ )

Uπ(ζ, z)φ′(z)dz

)

dζ

=
∫ x

0

(

Uπ(ζ,1)φ(1) − Uπ

(

ζ,λ(ζ )
)

φ
(

λ(ζ )
) −

∫ 1

λ(ζ )

Uππ (ζ, z)φ(z)dz

)

dζ

= −
∫ x

0

(∫ 1

λ(ζ )

Uππ (ζ, z)φ(z)dz

)

dζ,

where the final equality holds because Uπ(ζ,λ(ζ )) = 0 for all ζ ∈ (0, x) and
φ(1) = 0. Now we rewrite the last expression by using that

1

2
θ2π2(1 − π)2Uππ = −1

2
σ 2Uxx − μ̂π(1 − π)Uxπ

− (μ0 + μ̂π)Ux + ρU in C \ ({0} × (0,1)
)

,

thanks to (4.52) written in (x,π)-coordinates. Hence, using Fubini’s theorem again,
we get
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−
∫ x

0

(

∫ 1

λ(ζ )

Uππ(ζ, z)φ(z)dz

)

dζ

= 2
∫ 1

0

(∫ x∧d(z)

0

(1

2
σ 2Uxx(ζ, z) + μ̂z(1 − z)Uxπ (ζ, z) + (μ0 + μ̂z)Ux(ζ, z)

− ρU(ζ, z)
)

dζ

)

(

θz(1 − z)
)−2

φ(z)dz. (6.4)

Now consider the integral with respect to ζ and notice that we need only look at
z ∈ [0,1] with d(z) > 0, as otherwise the integral is zero. Using (5.32) for U gives

∫ x∧d(z)

0

(

1

2
σ 2Uxx(ζ, z) + μ̂z(1 − z)Uxπ (ζ, z) + (μ0 + μ̂z)Ux(ζ, z)

)

dζ

= 1

2
σ 2

(

Ux

(

x ∧ d(z), z
) − Ux(0+, z)

)

+ μ̂z(1 − z)
(

Uπ

(

x ∧ d(z), z
) − Uπ(0+, z)

)

+ (μ0 + μ̂z)
(

U
(

x ∧ d(z), z
) − U(0+, z)

)

= 1

2
σ 2Ux

(

x ∧ d(z), z
) + μ̂z(1 − z)Uπ

(

x ∧ d(z), z
)

+ (μ0 + μ̂z)U
(

x ∧ d(z), z
)

. (6.5)

Combining (6.3)–(6.5), we get

∫ 1

0
vπ(x, z)φ′(z)dz = 2

∫ 1

0

(

1

2
σ 2Ux

(

x ∧ d(z), z
) + μ̂z(1 − z)Uπ

(

x ∧ d(z), z
)

+ (μ0 + μ̂z)U
(

x ∧ d(z), z
) − ρ

∫ x∧d(z)

0
U(ζ, z)dζ

)

× (

θz(1 − z)
)−2

φ(z)dz,

from which we deduce

f (x,π) = 2

(

ρ

∫ x∧d(π)

0
U(ζ,π)dζ − 1

2
σ 2Ux

(

x ∧ d(π),π
)

− μ̂π(1 − π)Uπ

(

x ∧ d(π),π
) − (μ0 + μ̂π)U

(

x ∧ d(π),π
)

)

× (

θπ(1 − π)
)−2

.

Finally, notice that π �→ d(π) has at most countably many jumps for π ∈ [0,1], so
that f (x,π) = limε→0 f (x,π + ε) for a.e. π ∈ [0,1]. Moreover, let (πJ

k )k≥1 be the
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collection of jump points of d and denote

N :=
⋃

k≥1

(

[

d(πJ
k ),∞) × {πJ

k }
)

.

Then

f (x,π) = lim
ε→0

f (x,π + ε) for (x,π) ∈O \N .

Since N has zero Lebesgue measure in O, we conclude that (6.2) holds. �

In the remainder of the paper, we always consider the representative of vππ

given by the expression in (6.2). From (6.2) and U ∈ C1(O), we derive the next
result.

Corollary 6.3 Under Assumption 5.1, the function vππ in (6.2) is continuous in
C ∩O.

Proof It is sufficient to notice that for any (x,π) ∈ C∩O, we have x ≤ d+(π). Hence

vππ (x,π) = 2

(

ρ

∫ x

0
U(ζ,π)dζ − 1

2
σ 2Ux(x,π)

− μ̂π(1 − π)Uπ(x,π) − (μ0 + μ̂π)U(x,π)

)

(

θπ(1 − π)
)−2

for all (x,π) ∈ C ∩O. Continuity of vππ now follows from U ∈ C1(O). �

Now that we have a candidate solution for the variational problem in Theorem 3.1,
we should like to construct also a candidate optimal control. Recalling Iv from (3.4)
and noticing that vx = U , we immediately see that Iv = C. Then, given (x,π) ∈ O,
we define Px,π -a.s. the process

̂Dt := sup
0≤s≤t

(

Xs − d(πs)
)+

, (6.6)

where we recall that X has the uncontrolled dynamics

Xt = x +
∫ t

0
(μ0 + μ̂πs)ds + σWt Px,π -a.s.

We also recall the notation γ
̂D := inf{t ≥ 0 : X̂D

t ≤ 0}.
Some of the arguments in the proof of the next lemma are borrowed from De

Angelis et al. [17, Sect. 5].

Lemma 6.4 Let Assumption 5.1 hold. The process ̂D in (6.6) belongs to A (i.e., it is
admissible). The triple (X

̂D
t , ̂Dt,πt )t≥0 solves the Skorokhod reflection problem in C,

that is, for Px,π -a.e. ω ∈ � and all 0 ≤ t ≤ γ
̂D(ω), we have
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(X
̂D
t ,πt ) ∈ C, (6.7)

∫ t

0
1{(X̂D

s−,πs)∈C}d ̂Ds = 0, (6.8)

∫ 	̂Dt

0
1{(X̂D

t−−z,πt )∈C}dz = 0. (6.9)

Proof It is immediate to see that ̂D is increasing and adapted to (Ft )t≥0. Then it
also admits left limits at all points. In order to prove right-continuity of paths, we
observe that d(·) is increasing and left-continuous, hence lower semi-continuous. It
then follows that t �→ Xt − d(πt ) is Px,π -a.s. upper semi-continuous. Now obviously
limε→0 ̂Dt+ε ≥ ̂Dt , and the converse inequality follows from

lim
ε→0

̂Dt+ε = lim
ε→0

(

̂Dt ∨ sup
t<s≤t+ε

(

Xs − d(πs)
)+)

= ̂Dt ∨ lim sup
ε→0

(

Xt+ε − d(πt+ε)
)+ ≤ ̂Dt ∨ (

Xt − d(πt )
)+ = ̂Dt .

Hence ̂D ∈A.
Let us turn to the study of the Skorokhod reflection problem. Since π is unaffected

by ̂D, we have

d(πt ) − X
̂D
t = d(πt ) − Xt + ̂Dt ≥ 0 for all t ≥ 0, Px,π -a.s.,

where the final inequality follows from (6.6). Recalling that x < d(π) if and only
if (x,π) ∈ C, we deduce that (6.7) holds. It remains to prove (6.8). Fix ω ∈ � (out-
side of a nullset) and t1 > 0. If X

̂D
t1−(ω) < d(πt1(ω)), then X

̂D = X − ̂D implies
̂Dt1−(ω) = ̂Dt1(ω) > Xt1(ω) − d(πt1(ω)). Combining this with the upper semi-
continuity of the map t �→ Xt − d(πt ), there is εω := ε(ω, t1) such that

sup
t1<s≤t1+εω

(

Xs(ω) − d
(

πs(ω)
)

)+ ≤ ̂Dt1(ω).

Hence for all s ∈ [t1, t1 + εω], we have

̂Ds(ω) = ̂Dt1(ω) ∨ sup
t1<s≤t1+εω

(

Xs(ω) − d
(

πs(ω)
)

)+ = ̂Dt1(ω),

which proves (6.8) for all 0 < t ≤ γ
̂D(ω). By right-continuity, the result extends to

0 ≤ t ≤ γ
̂D(ω). Finally, it follows from (6.6) that jumps of ̂D may only occur along

vertical jumps of the boundary d ; hence (6.9) holds. �

We can finally conclude the section by providing the solution of the dividend prob-
lem with partial information.
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Theorem 6.5 Recall V from (2.6) and ̂D from (6.6) and let Assumption 5.1 hold.
Then we have

V (x,π) =
∫ x

0
U(ζ,π)dζ, (x,π) ∈O,

and D∗ = ̂D is an optimal control.

Proof We need to check that v in (6.1) fulfils the assumptions of Theorem 3.1. It
is immediate that 0 ≤ v(x,π) ≤ cx thanks to (5.41), hence v(0,π) = 0. Moreover,
Corollary 6.1, Proposition 6.2 and Corollary 6.3 guarantee that v is smooth enough.

Next we verify that (3.2) holds. Once again, notice that Iv = C and let us pick
(x,π) ∈ C. By direct calculation,

(LX,πv − ρv)(x,π) = 1

2
σ 2Ux(x,π) + μ̂π(1 − π)Uπ(x,π) + (μ0 + μ̂π)U(x,π)

− ρ

∫ x

0
U(ζ,π)dζ + 1

2
θ2π2(1 − π)2vππ (x,π). (6.10)

Substituting the expression (6.2) for vππ in the above and recalling that (x,π) ∈ C
was arbitrary, we obtain

(LX,πv − ρv)(x,π) = 0, (x,π) ∈ C.

Now pick (x,π) ∈ S , recall that Ux = Uπ = 0 and U = 1 in S and repeat the calcu-
lations in (6.10). This gives

(LX,πv − ρv)(x,π) = (μ0 + μ̂π) − ρ

∫ x

0
U(ζ,π)dζ + 1

2
θ2π2(1 − π)2vππ (x,π)

= −ρ

∫ x

d(π)

U(ζ,π)dζ = −ρ
(

x − d(π)
) ≤ 0,

where we have used (6.2), upon noticing that Ux(d(π),π) = Uπ(d(π),π) = 0 and
U(d(π),π) = 1. Finally, it was shown in Lemma 6.4 that (3.5)–(3.7) hold with our
choice of D∗ = ̂D. �
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Appendix A: Verification theorem

Proof of Theorem 3.1 Here we largely follow the proof in [27, Theorem VIII.4.1].
Let φ ∈ C∞

c (B1(0)), where B1(0) is a ball in R
2 centred in zero and with radius 1.

Moreover, assume φ ≥ 0 and
∫

R2 φ(z)dz = 1. For each k ≥ 1, we construct the stan-
dard mollifier φk(z) := k−2φ(kz) and notice that φk ∈ C∞

c (B1/k(0)). We then define
a sequence (vk)k≥1 ⊆ C∞(O), with

vk(x,π) := (v ∗ φk)(x,π) =
∫ ∞

0

∫ 1

0
v(ζ, η)φk(x − ζ,π − η)dηdζ.

Thanks to the assumed regularity of v, for any compact K ⊆ O, we have

lim
k→∞‖vk − v‖L∞(K) = 0, (A.1)

lim
k→∞

(‖vk
x − vx‖L∞(K) + ‖vk

π − vπ‖L∞(K)

) = 0, (A.2)

lim
k→∞

(‖vk
xx − vxx‖L∞(K) + ‖vk

xπ − vxπ‖L∞(K)

) = 0. (A.3)

Moreover, we notice that since vππ ∈ L∞
loc(O), it is not hard to verify by the definition

of weak derivative that (vk)ππ = vππ ∗ φk . Letting Kn := [n−1, n] × [n−1,1 − n−1],
thanks to the above and continuity of the coefficients in LX,π , it is easy to show that
for any n ≥ 1, we have

lim
k→∞

∥

∥(LX,πvk) − (

(LX,πv) ∗ φk

)∥

∥

L∞(Kn)
= 0. (A.4)

Finally, since (LX,π − ρ)v ≤ 0 a.e. in O, we also have (LX,πv − ρv) ∗ φk ≤ 0 every-
where in O, and from (A.4), we conclude that

lim sup
k→∞

sup
(x,π)∈Kn

(LX,πvk − ρvk)(x,π) ≤ 0. (A.5)

Now fix ε > 0 and for any admissible control D, let us set Px,π -a.s.

γ D
ε := inf{t ≥ 0 : XD

t ≤ ε}, τn := inf{t ≥ 0 : (XD
t ,πt ) /∈ Kn}.

By an application of Itô’s formula, setting ζε,n := γ D
ε ∧ τn, we derive

Ex,π

[

e−ρ(ζε,n∧t)vk
(

XD
ζε,n∧t , πζε,n∧t

)] − vk(x,π)

= Ex,π

[∫ ζε,n∧t

0
e−ρs(LX,π − ρ)vk(XD

s ,πs)ds −
∫ ζε,n∧t

0
e−ρsvk

x(X
D
s ,πs)dDc

s

]

+ Ex,π

[

∑

s≤ζε,n∧t

e−ρs
(

vk(XD
s ,πs) − vk(XD

s−,πs)
)

]

, (A.6)

where Dc denotes the continuous component of the process D. Noticing that we
have (XD

s ,πs)0≤s≤ζε,n ∈ Kn, we can use (A.1)–(A.3) and (A.5) to pass to the limit as
k → ∞ and obtain
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Ex,π

[

e−ρ(ζε,n∧t)v
(

XD
ζε,n∧t , πζε,n∧t

)] − v(x,π)

≤ Ex,π

[

−
∫ ζε,n∧t

0
e−ρsvx(X

D
s ,πs)dDc

s

−
∑

s≤ζε,n∧t

e−ρs

∫ 	Ds

0
vx(X

D
s− − z,πs)dz

]

, (A.7)

where we have also used

v(XD
s ,πs) − v(XD

s−,πs) = −
∫ 	Ds

0
vx(X

D
s− − z,πs)dz.

Using that vx ≥ 1 thanks to (3.2) and rearranging terms in (A.7), we get

v(x,π) ≥ Ex,π

[

e−ρ(ζε,n∧t)v
(

XD
ζε,n∧t , πζε,n∧t

)] + Ex,π

[∫ ζε,n∧t

0
e−ρsdDs

]

.

Letting n → ∞, ε → 0, t → ∞ and recalling that 0 ≤ v(x,π) ≤ cx, we obtain

v(x,π) ≥ Ex,π

[∫ γ D

0
e−ρsdDs

]

.

Since D is arbitrary, this inequality also implies v ≥ V .
In order to show that v ≤ V , it is enough to observe that for D = D∗, all inequal-

ities above become equalities. In particular, when taking limits in (A.6), we now use
that v ∈ C2(Iv ∩O) implies

lim
k→∞ sup

(x,π)∈Iv∩Kn

|(LX,π − ρ)(vk − v)(x,π)| = 0.

Also, we use that
(

XD∗
t∧ζε,n

, πt∧ζε,n

) ∈ Iv ∩ Kn

for all t ≥ 0 and that vx(X
D∗
t , πt ) = 1 for all t ∈ supp(dD∗). �
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