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Abstract. In this paper, we introduce a new graph dataset based on
the representation of RNA. The RNA dataset includes 3178 RNA chains
which are labelled in 8 classes according to their reported biological func-
tions. The goal of this database is to provide a platform for investigating
the classification of RNA using graph-based methods. The molecules are
represented by graphs representing the sequence and base-pairs of the
RNA, with a number of labelling schemes using base labels and local
shape. We report the results of a number of state-of-the-art graph based
methods on this dataset as a baseline comparison and investigate how
these methods can be used to categorise RNA molecules on their type and
functions. The methods applied are Weisfeiler Lehman and optimal as-
signment kernels, shortest paths kernel and the all paths and cycle meth-
ods. We also compare to the standard Needleman-Wunsch algorithm used
in bioinformatics for DNA and RNA comparison, and demonstrate the
superiority of graph kernels even on a string representation. The highest
classification rate is obtained by the WL-OA algorithm using base labels
and base-pair connections.

1 Introduction

Ribonucleic acid (RNA) is chemically very similar to DNA in their polymer
of nucleotides [1]. These nucleotides have sequences that can encode genetic
information [2]. DNA stores genetic information while RNA, copied from DNA,
carries and provides this genetic information to other biological process. RNAs
are also well known to play important regulatory and catalytic roles [3]. These
roles including transcriptional regulation, RNA splicing, and RNA modification
and maturation [3]. RNA also very important for treatment of diseases including
viral and bacterial infections, and cancer [4]. RNA is therefore crucial to all life
and it is important to understand its function.

The primary structure of the RNA consists of nucleotide sequences, this
nucleotide sequences can fold onto itself to create secondary and tertiary struc-
ture of the RNA. Unlike DNA, RNA is single strand and is encouraged to fold
into complex shapes, like proteins, by the matching of base-pairs from the same
strand. The secondary structure is formed by both Watson-Crick base pairs [5],
(A-U, C-G) and non-standard pairs. The base pairs between A-U, C-G, and the
wobble pair between G-U are referred to as canonical base pairs while base pairs



between other base pairs are called non-canonical base pairs [6] . The canoni-
cal base pairs are more stable and important than non-canonical bases in the
structure of the RNA [6]. The secondary structures is the topology of the RNA
folding, and it consist of five main structural components: called internal loops,
hairpins, bulges, junctions, and stems. The geometric shape of the RNA is its
tertiary (3D) structure.

The objective of this paper is to present a new, large, graph RNA dataset
which can be used to investigate graph-based methods for RNA classification
and discovery. We also investigate the performance of some standard methods
on the dataset and the role of different elements of the RNA representation,
particularly the labelling, topology and geometry of the RNA.

Outline of the paper: In section 2 we will explain related works. In section
3 we will demonstrate our dataset. In section 4 we will represent RNA molecules.
In section 5 we will explain sequence alignment, Weisfeiler-Lehman optimal as-
signment kernel, all paths and cycle embedding, and shortest path embedding
methods. In section 6 we will show our experimental results. In section 7 we will
discuss on our experiments and conclude the paper.

2 Related Work

DNA and RNA have chemical and structural similarities. Both molecules are
nucleic acid composed of nucleobases, although the sugar backbone of the poly-
mer is different. The structure of the molecule is determined by the nucleotide
sequence. Because of this, sequence alignment is commonly used to determine
the biological function of the DNA, such as the Needleman Wunch algorithm
[7]. This is essentially a string edit distance between the strings of base-labels.
The nucleotide sequence is the primary structure of the RNA. Because RNA is
single strand, it can fold on itself, and the folds can be held in place by base-pair
bonding between bases at different points on the RNA strand. This creates the
potential for a more complex topology than RNA. This structure is called the
secondary structure and can naturally be represented by a (labelled) graph.
Graph Theory is a branch of mathematics which has been used in various ar-
eas, such as road systems, neurosciences, irrigation networks, chemical processes
and structures, computer science, and bioinformatics [1]. Graph-based data is
becoming more abundant in chemical pathways and protein structures, protein
or gene regulation networks, and social networks [8]. Graph Kernels allow the
application of kernel methods to graph data [10] and allow using a range of
algorithms for pattern recognition [9]. Graph kernels bridge the gap between
graph-structured data and a large spectrum of the machine learning algorithms
such as SVM kernel regression, kernel PCA [8], KNN and ensemble classifiers
(Subspace KNN, Subspace Discriminant, Bagged Trees, and Boosted Trees). In
this work, the goal of applying graph kernels is to measure similarities between
two patterns, while the goal of the Machine learning is to classify these similari-
ties. Kernel methods are widely used in the field of the bioinformatics, such as in



Lodhi and Huma [10] where the spectrum kernel, marginalise kernel and fisher
kernel were applied for sequence analysis.

3 Database

There exist large databases of DNA, RNA and protein structures. In the reviewed
literature, most of the dataset are in fasta and protein data bank (pdb) file
formats. The fasta files include the basic sequence of macro-molecules(protein,
DNA, RNA) [11][12]. The pdb files include the information of each atom of the
macro-molecules, their sequence information, and their atomic coordinates. The
data which was used in recent studies are in the pdb format which is standard-
ised according to the atomic coordinates [13]. The pdb files provided by the
many organisations. The three largest of them are the Protein Data Bank Japan
(PDB;j)[14], Nucleic Acid Database (NDB) [15], and The Research Collaboratory
for Structural Bioinformatics Protein Data Bank (RCSB PDB) [16].

The pdb files consist of more than one chain of information of the RNA
molecules. For instance, in the same pdb files there might be different kinds of
chains belong to a different type of RNA or DNA or RNA-Protein interaction. For
instance, in 1XNR.pdb file, chain A is 16S ribosomal RNA, chain X is anticodon
TRNA, chain M is MRNA, and other chains such as chain B, C, D, ..., T,V are
16S ribosomal protein. It is not straightforward to extract single RNA chains
from this type of data. The largest classified database of RNA structure (i.e.
RNA strands with functional labels) known to us is that of Klosterman et al [17]
which contains 419 RNA strands.

RNA Bricks [18] downloaded pdb files from the World Wide Protein Data
Bank web site and split each pdb files by their chains. Their dataset is publicly
available. We have extracted 3178 RNA chains from this dataset. For each of
this molecules, we have investigated the literature to classify them into one of 8
possible RNA classes. The first step is to look at the MOL-ID field in the pdb
files which include information of the type of RNA molecules. In some pdb files,
the type of the RNA is not very clear from this field. For these, we undertook a
more elaborate investigation using information derived from the HEADER, the
TITTLE, the KEYWDS, and HD-RNA [19] in order to determine the type of
the RNA chains. We then removed any chains where we were still unsure of the
type. The result is a curated database of 3178 RNA molecules with 8 possible
class labels which is available for download [20].

The RNA classes from the Table 1, ribozyme is a type of the RNA which
catalyses chemical reactions, riboswitches behave like ribozymes and participate
gene regulation, ribonucleases are very important enzymes in RNA degradation
and maturation pathways, signal recognition particle (SRP) RNA, a part of
ribonucleo-protein (protein-RNA complex), involves in targeting translocation
of membrane proteins and secretory proteins. We labelled all other RNA classes,
which the number of classes too small, in the OTHER section. We did not
labelled our dataset according to the source of the organism.



CLASSES KEYWORDS/ DESCRIPTION

RIBONUCLEASE (14) RIBONUCLEASE P, RNASE P
RIBOSWITCH (227) APTAMER
MRNA (179) UTR, EXON

RIBOZYME (259) |[S-TURN, CATALYTIC RNA, HAMMERHEAD, GLMS
4.85, 58S, 5.85,165, 1885, 23S, 25S, 26S, 28S, 30S, 408,
505, 60S, 70S, 80S, A-SITE OF HUMAN RIBOSOME,
RRNA (1135) A-SITE OF HUMAN MITOCHONDRIAL RIBOSOME,
A-SITE OF BACTERIAL RIBOSOME,
SARCIN/RICIN 285 RRNA

SRP (57) 458,78, 7SL
A-site, P-site, tRNA X-MER,
TRNA (581) FMET, FME, INITIATOR, INI, PRIMER

CODON, ANTICODON,ACCEPTOR, tRNA-fragment,
viral RNA, miRNA, snoRNA, IRES RNA,

OTHER (726) and some undefined RNAs such as 5 RNA,

16-MER, 192-MER, 28-MER, 119-MER, 97-MER etc.

Table 1. The labelled classification of the RNAs and their descriptions. The number
of each type of RNAs represents in the brackets.

In our data set, 332 RNA chains’ nucleotide lengths are from 6 to 9, 1798
RNA chain’s nucleotide sizes are from 10 to 100, 469 RNA chains nucleotide
sizes are from 101 to 500, 277 RNA chain’s nucleotide sizes are from 1326
to 1861, 286 RNA chain’s nucleotide sizes are from 2227 to 2912, 15 RNA
chain’s nucleotide sizes are from 3119 to 3662, and nucleotide size of one chain
is 4298. The percentage of the each type of the RNA molecules are 35.71%
(RRNA), 22.84% (OTHER), 18.28% (TRNA), 8.15% (RIBOZYME), 7.14% (RI-
BOSWITCH), 5.63% (MRNA), 1.79% (SRP), and 0.44% (RIBONUCLEASE).

4 RNA Representation

The main component of Nucleic Acid is 5 carbon sugar (2-deoxyribose or ri-
bose), a phosphate group and a base (one of four molecules = adenine, guanine,
cytosine, and uracil /thymine). There is two macro nucleic acids called as deoxyri-
bonucleic acid (DNA) and ribonucleic acid (RNA). Ribonucleic Acid (RNA) con-
sist of nucleotides. The nucleotides are composed of purine nucleobases, namely
Adenine (A), Guanine (G), and pyrimidine nucleobases calling Cytosine (C) and
Uracil (U).

The base sequences represents the primary sturcture of the RNA such as
the following sequence is single stranded (strand B) of an Escherichica coli Ri-
boswitch *4Y1M’:

"GAUUUGGGGAGUAGCCGAUUUCCGAAAGGAAAUGUACGUGUCAA
CAUUUUCGUUGAAAAACGUGGCACGUACGGACUGAAGAAAUUCAGU
CAGGCGAGACCAUAUCC"



Fig. 1. 3D and secondary structure of the Escherichica coli Riboswitch derived from
4Y1M.pdb. The secondary structure’s image produced using RNApdbee 2.0 [21] and
3D structure’s image produced using Matlab molviewer.

The primary structure of the RNA folds on to itself to build secondary struc-
ture and 3D structure of the RNA as represented in Fig 2. 2D structure of the
RNA is widely used to classify and define RNA molecules with their functions.
The main components of the 2D RNAs are hairpin loop, bulge, internal loop,
multi-loop, and stem. As represented on Fig 2; the uninterrupted base-paired
portion of the RNA molecules is called a stem, the hairpin loops are sets of un-
paired bases which connect to only one stem and occur at the end of the some
sections. The multi-loop occurs among more than two stems while internal loops
exist between only two stems. The internal loop is defined as two strands of
unpaired bases occuring between two stems. The bulges are similar to internal
loop it occurs between two stems, the only difference is that one strand’s bases
are unpaired.

The RNA is encoded as a graph using a straightforward representation. Each
vertex represents an RNA residue and is labelled with the base code (A,G,C,U or
a rare non-standard base). An adjacency matrix encodes the graph edges, which
join all residues in sequence and any base pairs. Base-pairs are detected using the
X3DNA program ‘find-pairs’ [22]. The vertices are also labelled with a geometric
‘type’ label; 1 if it is part of a base pair, 2 if it is unpaired but within 6.5A of
another base, and 3 otherwise. Two sets of 3D coordinates are also provided,
firstly for the backbone position of the residue (the position of atom C3’) and
secondly the centroid position of the base. From this data, information about
the secondary and tertiary structure can be inferred. A set of classification labels
from the 8 classes in Table 1 is also provided.



5 Classification Methods

In this section, we present the results of applying some standard classification
algorithms on our database. These are sequence alignment (SA), the shortest
path kernel (SP) , all-paths and cycles kernel (APC), and the Weisfeiler Lehman
optimal assignment method (WL-OA). These methods are described briefly in
the following sections. SP and APC have an explicit embedding in vector space,
which is used. WL-OA produces a kernel matrix which is embedded using kernel
embedding. Sequence alignment produces a distance measure which is embedded
using multi-dimensional scaling (negative dimensions use the absolute value [23]).

5.1 Sequence-Based Methods

Sequence-based methods mostly use in the study of the DNA. We have applied
this method on the primary structure of the RNA for comparison. The sequence
of the RNA is the primary structure of the RNA. The nucleotides are represented
as strings such as adenine (A), guanine (G), cytosine (C), and uracil (U). The
Needleman - Wunsch algorithm [7] to align the strings (A,G,C,U), and Jukes
- Cantor score used to calculate the distances between RNA sequences, which
are significantly larger than amino-acid sequences. The running time of this
algorithm is therefore quite high. The equation of the Jukes - Cantor score:

4

d=—"2log(1 - 3p). (1)

Here, p denotes the distance between them in terms of the fraction of letters
which differ.

5.2 Weisfeiler-Lehman Optimal Assignment (WL-OA)

The Weisfeiler-Lehman optimal assignment (WL-OA) graph kernel [24] is a
state-of-the-art method for labelled graph comparison which utilises an opti-
mal assignment kernel with the labelling generated by the WL method [8]. The
method generated vertex labels using the WL label refinement process, with
initial labelling corresponding to the RNA vertex labels. An implicit optimal as-
signment is sought which minimises the labelling difference, and the kernel value
is the count of label differences for this optimal assignment. WL-OA performs
favourably compared to state-of-art graph kernel in a wide range of datasets.

5.3 Shortest Path Embedding

The walk kernel counts the similar walk in graph pairs. The shortest path kernel
(SPK) [25] is a type of walk kernel which counts only the shortest walks between
each pair of nodes in a graph:

KSP(G,H) = Z Z KB(pivpj) (2)

pi€SP(G) p; ESP(H)



where SP(.) is the set of shortest paths in a graph and Kp is a base kernel
which compares paths. In the case that the base kernel is the delta kernel, this
has an explicit embedding as the histogram of the shortest paths, where each
path is denoted by its sequence of labels. This method also called shortest path
embedding. Each labelled shortest path in the molecule is generated, and the
embedding is a histogram of these paths.

5.4 All Paths and Cycles Embedding(APC)

The all-paths graph kernel is a recently proposed extension to the shortest path
kernel, which counts all paths (up to a maximum length).

KApc(G,H) = Z Z KB(piapj) (3)

pi€PC(G) p;€ PC(H)

Here, PC(G) denotes a set of all paths and simple cycles (a cycle is v vg...v,v1, V1 <
1 < vy, is distinct ) on G and Kp(.,.) is a base kernel for paths [26]. In order
to evaluate this kernel in a computationally efficient way, the maximum path
length and the number of distinct labels must be limited. We therefore label
bases with three labels G/C, A/U and other. This is embedded in the same way
as the shortest path kernel, as a histogram of distinct labelled paths.

6 Results

In this work, we presented our graph-based RNA dataset. We classified this
dataset in 8 type of RN A categories as listed in Table 1. We also demonstrate here
that graph based methods can be used to classify RNA molecules. To evaluate
the effect of different types of structure (broadly corresponding to the primary,
secondary and tertiary structure), we include information from the topology,
sequence, and the geometry of shape of the RNA. Seq includes the graph edges
corresponding to the sequence only, and the base labels. Top includes the graph
edges (including the sequence and base-pair edges) but no base labels. Geo adds
additional labels to the bases corresponding to the geometry type labels de-
scribed earlier. The combinations are the union of these sources of information.

Then, we have applied graph-based embedding methods and a classifier to
find the most effective methods on our RNA dataset to determine the accuracy.
We tried a variety of classifiers; Subspace KNN, Subspace Discriminant, Linear
discriminant, Boosted Trees, Cosine KNN and Bagged Trees. In our experiments,
Subspace KNN outperform the results with APC methods, and SP methods on
three source of information of the RNA. Bagged Trees outperform best results
with SA method. On the other hand, WL-OA performed its best results from
variety methods on a variety of representations. Subspace KNN performs best
result on Geometry Label, Geometry Shape of the RNA + Topology, Geometry -+
Residue Label, and All Label; Subspace Discriminant and Linear Discriminant
demonstrate best results on Residue Label, and Residue + Topology Label;
Boosted Trees performs best result on Topology Label.



Seq only, Top only, Geo only, Seq +Top, Geo + Top, Geo +Seq, All
WL-OA 92.0 73.1 86.8 924 87.1 89.5 90.2
SP 91.3 79.5 86.7 91.1 86.7 91.1 90.8
APC 90.3 85.4 84.3 89.9 85.5
SA 89.2

Table 2. Classification accuracies for the RNA dataset using Weisfeiler Lehman Opti-
mal Assignment (WL-OA), Shortest Path (SP), All-Paths and Cycle methods (APC),
Sequence Alignment (SA), and a variety representations

The experimental results on the RNA dataset represents that, Weisfeiler-
Lehman Optimal Assignment (WL-OA) methods outperform the Shortest Path
(SP) method, All Path Cycle (APC) method, and Sequence Alignment (SA)
method. The accuracy with WL-OA increased up to 92.4 percent, which is the
best performance in all methods. The results here largely support the results of
[2] in that all graph based methods outperform sequence alignment even when
only the sequence data is available. It is clear that the base labels are impor-
tant to the classification, with a drop-off of between 4-10% when they are not
included. The all-paths kernel can only be evaluated with three labels, which
means that it cannot be used on the experiments with rich label sets and ex-
plains the lower performance overall.
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Fig. 2. Confusion Matrix and ROC Curve on WL-OA method on Sequence + Topology
Label
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Conclusion

In this work, we have described graph based methods and kernel based methods
for encoding RNA molecules. Then, we applied these methods on our RNA
dataset using MATLAB classifiers. We have demonstrated that, graph kernels
can be used to classify RNA in high accuracy. We received the best results on
the Residue Label (sequence information) and Topology Label using WL-OA
with an accuracy of 92.4 percent. We received the worst results on nucleotide
sequences using general Sequence Alignment method with an accuracy of 89.2
percent.
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