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bDepartment of Mechanical Engineering, The University of Sheffield, S1 3JD, UK

Abstract

Water-air flow in horizontal and vertical straight pipes and through 90◦ sharp-angled mitre elbows is investi-
gated by visualizing the flow patterns by means of a high-precision camera and by measuring the pressure drop.
The flow is studied in pipes with three diameters for about six hundred conditions of water-air flows, character-
ized by superficial velocities in the ranges of j∗L=0.3-1m/s for water and j∗G=0.15-34m/s for air. The portion of
the pipe upstream of the elbow is always positioned horizontally, while the portion of the pipe downstream of
the sharp bend is oriented horizontally or vertically with the flow moving upward. Plug, slug, slug-annular, and
annular flows are visualized in horizontal straight pipes, while slug, churn, and annular regimes are recorded in
vertical straight pipes downstream of the sharp bend. These patterns are well predicted by the Mandhane map
(J. Mandhane, G. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiph.
Flow 1 (4) (1974) 537-553) for horizontally oriented straight pipes and by the Hewitt-Roberts map (G. Hewitt,
D. Roberts, Studies of two-phase flow patterns by simultaneous 292 X-ray and flash photography, Tech. Rep.,
Atomic Energy Research Establishment, Harwell (England) (1969)) for vertically oriented straight pipes. The
changes of the flow patterns as the fluids pass through the mitre elbows are discussed. A multiple membrane
flow structure is observed in the vertical upward flow at much higher Reynolds numbers based on the water
superficial velocity than in the vertical downward case previously reported in the literature. A dimensional
analysis is employed to obtain the non-dimensional parameters that describe the flows through the straight
pipes and across the elbows. It is proved that a rigorous way to present the flow regimes and the pressure-drop
coefficients of the water-air flow for a given geometry is the space of the Reynolds numbers based on the super-
ficial velocities of air and water for fixed Froude number because the flow is incompressible and isothermal. By
expressing the maps in scaled form, the prediction of the flow patterns along the straight portions of the pipe
improves. The flow patterns through the elbows are expressed in terms of rescaled Mandhane maps, which, for
the first time, simultaneously represent the flow patterns both upstream and downstream of the elbows. New
pattern-based empirical correlations are obtained for the scaled pressure drops for the water-air flows through
the horizontal and vertical pipes and through the elbows. The correlations are based on the flow patterns and
do not rely on widely used prediction models, thereby predicting the pressure drop more accurately than the
models presently available in the literature.

Keywords: Two-phase flow, flow patterns, pressure drop, sharp-angled mitre elbow

1. Introduction

Two-phase flow through pipes and ducts is common in many industrial applications, such as chemical,
nuclear, gas, and oil systems. The prediction of pressure drops in these systems in the presence of fittings, such
as elbows and valves, represents an essential issue to designers because the pressure drop is affected by many
factors, such as the geometry, the properties of the fluids, and the flow patterns. The prediction of the flow
patterns through pipe fittings is particularly important for the design of industrial piping systems because the
flow regimes regulate relevant flow properties, like the pressure drop and the heat transfer [1].

Many researchers have proposed pressure-drop prediction models for two-phase flow in straight pipes [2, 3, 4,
5, 6], while a very limited number of models have been proposed for the pressure drop across 90◦ round elbows
[7, 8, 9, 10] and 180◦ bends [11, 12]. Most of these models expressed the two-phase pressure drop in terms of a
two-phase multiplier φ as:

∆p∗ = φ ∆p∗k, (1)
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where ∆p∗k is the single-phase pressure drop in straight pipes and the subscript k denotes the fluid phase, i.e.,
k=L for the liquid phase and k=G for the gas phase.

Many maps have been proposed for the prediction of the adiabatic water-air flow patterns in straight pipes
in the horizontal configuration, such as the Mandhane map [13], and in the vertical configuration, such as the
Hewitt-Roberts map [14]. Ghajar and Tang [15] proposed maps for both cases. Although these maps are based
on dimensional values, they have the ability to identify the flow patterns for a wide range of flow conditions
within acceptable error. Nevertheless, there are many two-phase phenomena occurring in flows through pipe
fittings, like valves and bends, that are difficult to represent in a single flow pattern map. Many research
efforts have focused on the effect of common pipe fittings, such as 90◦ round elbows and 180◦ bends, on the
two-phase flow patterns and have reported phenomena that are usually observed in both horizontal and vertical
orientations. Chen et al. [16] and Wang et al. [11, 17, 18] showed that the flow regime changes suddenly
from stratified to annular through horizontal and vertical 180◦ bends with low curvature ratios because the
centrifugal forces overcome the effect of gravity. The phenomena of reverse flow and slug division and merging
in the vertical configuration were reported by Wang et al. [18] for 180◦ bends and Hsu et al. [19] for 90◦ round
elbows. Milan et al. [20] recently discovered the membrane flow, a new two-phase flow structure in vertical
downward water-air flows through straight pipes that may develop downstream of phase-mixers as a result of
coalescence of bubbles and liquid-slug shrinkage.

It is also crucial to calculate two flow perturbation lengths. One length is the distance downstream of the
elbow that is required by the flow to recover the constant pressure gradient and the patterns observed well
upstream of the bend. The other length is the perturbation distance upstream of the elbow at which the flow
starts to be influenced by the presence of the elbow. The downstream recovery distance for different bends
and for different working fluids was found to vary between 10D∗ and 60D∗, while the upstream perturbation
length was estimated to be shorter, ranging between 5D∗ and 40D∗ [21, 22, 23, 24]. For 90◦ round elbows in
particular, the perturbation lengths were found to be smaller than 44D∗ downstream of the bend in horizontal
bubbly flow by Kim et al. [25], while Yadav et al. [26, 27] showed they are smaller than 16D∗ upstream and
33D∗ downstream of vertical elbows.

Although the two-phase pressure drop is highly influenced by the flow patterns [9, 1], pattern-based pressure
drop prediction models are very limited in the literature [28, 29]. Furthermore, the models for flows across pipe
fittings predict the frictional pressure drop without considering the effect of the flow separation, which is the
main cause of the losses in sharp-angled mitre elbows. Despite a few investigations on single-phase flow across
90◦ sharp-angled elbows for laminar [30, 31, 32] and turbulent flows [33, 34, 35], to the best of our knowledge,
no study in the literature has examined the pressure drop and flow patterns of the two-phase flow in this type of
fittings. Mitre bends are widely used in many industrial applications, especially those requiring large-diameter
piping in the chemical, nuclear, and oil industries [36]. Designers of these systems employ the mitre bends
mainly because of space and economic limitations [36].

In this work, we are therefore motivated to investigate the patterns and the pressure drops of water-air flows
upstream, through, and downstream of 90◦ sharp-angled mitre elbows in horizontal and vertical orientations.
The flows are studied in pipes and elbows positioned horizontally and vertically with the flow moving upward.
Important aims are to assess how the flow patterns change character as the fluids pass through the sharp elbows
and to represent these changes by use of the Mandhane map [13]. By exploiting a simple dimensional analysis, we
propose a novel visual representation that allows the simultaneous identification of the flow patterns upstream
and downstream of the sharp bends in a single non-dimensional Mandhane map for each elbow orientation.
Other aims are to obtain pattern-based pressure drop empirical correlations for the flows in the straight pipes
and across the mitre elbows and to find the flow recovery lengths downstream of the bend and the perturbation
length upstream of the bend.

This research work continues our research investigation on flows across mitre elbows, i.e., the study of the
pressure drop for single-phase flow [35] and the flow visualization and pressure-loss measurements in two-phase
flow conditions [37]. The present paper differs from the latter because in [37] we only used a pipe with one
diameter in the horizontal configuration and employed the Lockhart-Martinelli model to scale the pressure
drop, while in the present work pipes with three different diameters were used for both horizontal and vertical
orientations and novel correlations for the scaled pressure drops in all the configurations were obtained.

The experimental facility is described in §2.1, the experimental procedures are discussed in §2.2, while the
uncertainty analysis is given in §2.3. The flow visualization of the water-air patterns and their representations
in the flow-pattern maps are presented in §3.1 and the study of the pressure drop along the straight portions of
the pipes and across the sharp bends is reported in §3.2. Conclusions are found in §4.
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Figure 1: Schematic diagram of the experimental facility.

2. Experimental apparatus and procedures

2.1. Experimental apparatus

The facility was designed and built for this research work in the Department of Mechanical Engineering at
The University of Sheffield. The rig is shown schematically in Fig. 1 and described in further detail in two
papers of ours [35, 37]. It was composed of air and water lines, a mixer of the two fluids, and the test section
equipped with the 90◦ sharp-angled mitre elbow. The part of the pipe downstream of the bend was positioned
horizontally or vertically with the flow moving upward, whereas the part of the pipe upstream of the bend was
always oriented horizontally.

A variable speed pump was used to supply the test sections with water at different flow rates at the needed
operating pressure (up to 6bar). Two turbine type water flow meters were utilized to measure the flow rates.
The flow meter Omega-FTB-101 measured flow rates in the range 1.3-13.2 l/min and the flow meter Omega-
FTB-104 measured flow rates in the range 6.6-60 l/min. The flow meters were calibrated by the manufacturer
with a ±0.5% of the measured flow-rate uncertainty. The air was supplied to the facility from an outlet air
compressor at a pressure of 7 bar. A filter dryer and a pressure regulator were used to regulate the air flow rates
manually. The flow meter Omega FMA-1612A-v2 was used to measure the air flow rate in the range 2.5-500
standard l/min and it was calibrated by the manufacturer with a ±0.8% accuracy of the reading ±0.2% of the
full scale uncertainty.

A phase mixer was designed and assembled to generate the water-air mixture. Air entered the mixer parallel
to its axis through a section of porous media characterized by holes with 0.1mm diameter. Two jets of water
entered the mixer from opposite sides and perpendicularly to the axis of the mixer. The water-air mixture
left the mixer towards the test section from the opposite side of the air entrance. Three different test sections
were assembled by employing acrylic pipes with 11, 16, and 21mm diameters and 2mm wall thickness. Ten
measurement stations were located along each test section to measure the pressure drop. The sharp-angled
elbows were assembled by cutting two pieces of pipe at 45◦ and by joining them by using a special acrylic
welding solution.
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Two different pressure transducers, Omega PX409-2.5DWU10V and Omega PX409-10WDWUI, were used
to measure the pressure drop along the test sections and across the elbows. They operated in the ranges 0-17.2
kPa and 0-2.5 kPa, respectively. The transducers were calibrated by the manufacturer with a 0.8% accuracy of
the full scale best-straight-fit-line accuracy. The pressure signals were recorded by a National Instrument data
acquisition system with 16-bit resolution, which consisted of an NI-USB-6002 card for voltage signal and an
NI-9203-analogue-channel with an NI-CDAQ-9171-USB-Chasis for current signals.

A high-speed high-resolution camera Phantum V-210 was used for video capturing. The visual observation
method was chosen to distinguish the flow patterns along the straight pipes and through the sharp-angled elbows.
This method is routinely employed to characterize the flow patterns and other flow phenomena [38, 39, 40].
Two mirrors were fixed at 45◦ downstream and upstream of the horizontal sharp bend to capture the side and
top views of the flow patterns, as illustrated in Fig. 2.

LED
light

camera

mirror

45◦

LED light

flow

camera

Figure 2: Schematic diagram of the camera in the horizontal (left) and the vertical (right) orientations.

2.2. Experimental procedures

Table 1: Flow parameters in the horizontal configuration.

D∗(mm) j∗L (m/s) j∗G (m/s) ReL ReG

11 0.51 - 0.76 0.51 - 33.82 5173 - 10346 293 - 19559
16 0.55 - 0.79 0.26 - 30.59 7945 - 11367 208 - 24956
21 0.297 - 0.68 0.15 - 24.75 5598 - 12782 158 - 26456

Table 2: Flow parameters in the vertical configuration.

D∗(mm) j∗L (m/s) j∗G (m/s) ReL ReG

11 0.68 - 1.02 0.51 - 30.44 6897 - 10346 293 - 17603
16 0.34 - 0.68 0.26 - 33.99 4889 - 9778 208 - 27729
21 0.279 - 0.50 0.15 - 24.75 5598 - 9330 158 - 26456

Several superficial velocities for air and water, j∗k=V̇ ∗

k /A∗, were used, where V̇ ∗

k is the volumetric flow rate
of air and water, the subscript k=G denotes air and the subscript k=L indicates water, and A∗ is the cross-
sectional area of the pipe. In the horizontal configuration, five j∗L were used in the pipe with D∗=21mm, while
three j∗L were used when D∗=11 and 16mm. About 15, 20, and 30 j∗G in the ranges listed in Table 1 were
employed for each j∗L in the pipes with D∗=11, 16, and 21mm, respectively. In the vertical orientation, five j∗L
were used for each test section, while 12, 20, and 30 j∗G were used for each j∗L in the pipes with D∗=11, 16, and
21mm, respectively. The vertical flow conditions are listed in Table 2. Appendix A describes the methodology
to calculate the frictional pressure drop along the vertical and horizontal straight pipes and Appendix B presents
the procedure for the computation of the pressure drop due to the sharp elbow.
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2.3. Uncertainty analysis

The uncertainties in the measured values included the uncertainty of the pipe diameter D∗, the distance
between two adjacent measurement stations ∆l∗, the surface roughness of the pipes, the elbow angles, and the
physical properties of the fluids. Each pipe diameter was measured carefully by a micrometer at five different
locations with a ±0.1mm maximum error, while the surface roughness of the pipe was measured by a Dektal
150 surface profiler with a ±2% uncertainty. The distances ∆l∗ were measured with a ±1mm maximum error
and the angle of the elbows was measured by an accurate protractor with a ±0.5◦ uncertainty. The uncertainty
of the fluid properties was computed by using the NIST Refprop database [41]. The square root of the sum
of the sequence method was used to obtain the total uncertainty of a measured quantity f = f(x0, .., xN ), as
follows [42]:

δf =

√

√

√

√

N
∑

n=0

(

∂f

∂xn
δxn

)2

, (2)

where δxn is the experimental error associated with the variable xn and N is the number of data points. A
large number of experiments were independently repeated to guarantee the robustness and high quality of the
measurements. The average error of all the repeated experimental data was about 2.3%. The total uncertainties
for each flow condition are shown as error bars in the figures presenting the scaled pressure drops in §3.

The accuracy of the correlations obtained in §3.2 was determined by the mean absolute percentage error,

E(%) =
100%

N

N
∑

i=1

|fi,pred − fi,exp|
fi,exp

, (3)

where f in (3) indicates the pressure-drop coefficients CL or KL defined in §3.2, the subscripts “pred” and “exp”
denote the values predicted via the correlations and the values measured experimentally, respectively.

3. Results

3.1. Analysis of flow visualizations

3.1.1. Flow patterns in straight pipes

Four flow patterns were observed in the horizontal configuration for 275 flow conditions for air and water
superficial velocities in the ranges listed in Table 1: plug, slug, slug-annular, and annular flows. Fig. 3 presents
instantaneous snapshots of these patterns in the flow upstream of the bend along the horizontal 21-mm-diameter
pipe for j∗L=0.495m/s and different j∗G. Different flow visualizations of water-air patterns in the 21-mm-diameter
pipe at different Reynolds numbers in the horizontal configuration are shown in Fig. 4 of our paper [37].

Three flow patterns, slug, churn, and annular flows, were recorded in the vertical riser at a distance of
100D∗ downstream of the sharp bend for 338 flow conditions for air and water superficial velocities in the
ranges listed in Table 2. Fig. 4a shows instantaneous snapshot of the patterns in the vertical pipe with
D∗=21mm for j∗L=0.279m/s and different j∗G. The membrane flow structure, discovered by Milan et al. [20] in
vertical downward flows, has been observed for the first time in the present study in the vertical upward flow
downstream of the elbow as a result of the coalescence of the bubbles after their division through the elbow.
Fig. 4b shows pictures of single and multiple membrane flow in the pipe with D∗=21mm for j∗G=0.15m/s and
different j∗L . Up to four membranes were observed in a single air slug, often almost equally spaced along the
vertical direction. Milan et al. [20] detected the membrane flow at a maximum water velocity of 0.41m/s,
while we recorded the presence of these structures at higher water velocities, i.e., up to j∗L=1.02m/s, which
correspond to higher Reynolds numbers based on j∗L because our three diameters are larger than Milan et al.’s,
i.e., D∗=8.8mm.

Fig. 5 represents the observed flow patterns in the horizontal straight pipes on the Mandhane map [13],
while Fig. 6 shows the patterns in the vertical straight pipes on the Hewitt-Roberts map [14]. We have chosen
these maps to display our experimental data graphically because they were proposed to cover a wide range of
pipe diameters, including ours. The comparison is better for the data for the vertical orientation in Fig. 6 than
for the data for the horizontal orientation in Fig. 5.

In Appendix C a dimensional analysis based on the Π theorem shows that the patterns of an incom-
pressible isothermal water-air flow can be expressed in scaled form in terms of only three non-dimensional
parameters, i.e., the Reynolds number for water, ReL=ṁ∗

L/(µ
∗

LD
∗)=ρ∗Lj

∗

LD
∗π/(4µ∗

L), the Reynolds number for

air, ReG=ṁ∗

G/(µ
∗

GD
∗) = ρ∗Gj

∗

GD
∗π/(4µ∗

G), and the Froude number, FrL=ṁ∗

L/(
√
g∗D∗5/2ρ∗L), where ṁ∗

L, ṁ
∗

G and
µ∗

L, µ
∗

G are the mass flow rates and viscosities of the two fluids, and g∗ is the gravitational acceleration. The anal-
ysis demonstrates that only three parameters are necessary because for incompressible isothermal water-air flows
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the other scaled parameters, the ratio of densities and the ratio of viscosities, are constant. In Appendix C we
prove that the incompressibility condition holds as the density of air only changed by a maximum of about 3%.
For a constant Froude number, a rigorous non-dimensional representation of incompressible constant-property
water-air flow patterns is therefore a map in the (ReG,ReL) plane.

We can then express the dimensional maps in Figs. 5 and 6 in terms of ReL and ReG by assuming that the
effect of the Froude number is negligible. This hypothesis has been largely verified in the horizontal case at
sufficiently high mass flow rates of both fluids because the stratified flow regime where gravity plays a decisive
role does not occur [29]. This is the case of our experiments because all our data points are on the upper half
of the horizontal-flow Mandhane map, as shown in Fig. 5. In the vertical-flow case, Spedding and Nguyen
[43] (refer to the discussion of their figure 3 on page 785) showed that, in the Froude-number range of interest
for our work, i.e., 0.5 ≤ FrL ≤ 2.5, gravity has a very mild influence on the flow patterns, especially on the
slug-flow regime.

To rescale the maps in terms of ReL, ReG, the velocities j∗L and j∗G at the boundaries between the regions
distinguishing the flow patterns and the average value of our pipe diameters are used to compute ReL and ReG.
The rescaled Mandhane and Hewitt-Roberts maps are displayed in Figs. 7 and 8. The rescaled Mandhane map
in Fig. 7 shows a slight improvement for the prediction across the boundary between the plug and slug regions
as fewer plug-flow symbols fall in the slug-flow Mandhane region and no slug-flow symbols are confined in the
strip dividing the two regions. This is instead the case in the dimensional Mandhane map of Fig. 5. In the
rescaled Hewitt-Roberts map in Fig. 8, all the symbols fall more clearly within the predicted regions as they
are more clustered together than in the dimensional map.

Fig. 9 shows the map obtained by Milan et al. [20] to identify the regions in the parameter space where the
membrane flow was observed for vertical downward flow. Because our pipe diameters are different from Milan
et al.’s, we show the map in non-dimensional form. In line with the discussion of Fig. 4b, almost all the flow
conditions for which we detected the membrane flow lie in a range of ReL that is higher than Milan et al. [20]’s.
At such high ReL, Milan et al. [20] did not observe the membrane flow.
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Figure 3: Patterns upstream of the bend in the horizontal configuration for D∗=21mm, j∗L=0.396m/s, ReL=ρ∗Lj
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and different j∗G. The Reynolds number for air is defined as ReG=ρ∗Gj

∗
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(b) Membrane flow for j∗G=0.15m/s.

Figure 4: Flow patterns in vertical pipe section downstream of the sharp bend for D∗=21mm, (a) ReL=5598 and (b) ReG=159.
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3.1.2. Flow patterns across the mitre elbow

The two-phase flow patterns through the mitre elbows have been investigated visually to document the
behaviour of the flow regimes through the sharp bend caused by the interaction of different forces, like the
centrifugal force, the gravity force, and the buoyancy force. When the elbow was positioned vertically, we
investigated the horizontal to vertical upward flow, which is one of four possible flow orientations for this
geometry, the others being the horizontal to vertical downward flow, the vertical upward to horizontal flow, and
the vertical downward to horizontal flow.
Horizontal orientation

For ReG<200 in the horizontal orientation, the plug flow is not affected by the elbow due to the balance between
the secondary flow and the gravitational effects. The elongated air bubbles, observed for 200<ReG<3000 in
plug and slug flows, divide into two or more bubbles as the flow passes through the elbow, as shown in Fig. 10
in the pipe with D∗=21mm. The disruption of the bubbles is caused by the flow separation and the intense
secondary flow across the elbow. The divided bubbles often merge downstream of the sharp bend to recover the
unperturbed regimes upstream of the elbow as the centrifugal force vanishes downstream of the bend, similar
to the results of Chen et al. [16] in horizontal return bends. At higher air velocities, 3000<ReG<20000, slug
and slug-annular flows suddenly become annular downstream of the sharp bend due to the centrifugal effects
dominating over the gravitational effects. This annular flow downstream of the elbow is different from the
annular flow in straight pipes because it is swirling as the water layers move in rotational motion around the
core of air flow and along the pipe periphery, while the wall-attached layer in straight pipe annular flow moves
parallel to the pipe axis. The flow then recovers its original pattern approximately 60D∗ downstream of the
bend. Fig. 11 shows the flow change from slug to swirling annular through a D∗=21mm horizontal elbow. This
phenomena was reported by Chen at al. [16] and Wang et al. [11, 17] in horizontal 180◦ bends at superficial
velocities larger than ours because the secondary flow in our 90◦ mitre elbows is more intense than that in
round bends for similar flow conditions.

For ReG>20000 the flow upstream of the elbow is annular and has a thick bottom water layer. Downstream
of the elbow it is still annular but it is characterized by a constant-thickness axisymmetric water layer because
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the inertia of the secondary flow and the centrifugal force dominate over the gravitational effects. Like in the
case in Fig. 10, the water layers of the annular flow downstream of the elbow swirl around the pipe periphery
before the flow recovers to the standard, non-rotating annular regime about 60D∗ downstream of the sharp bend.
Fig. 12 illustrates this phenomenon through the D∗=21mm horizontal elbow for different flow conditions.

Two-phase flow patterns through horizontal mitre elbows are represented for the first time in terms of the
non-dimensional Mandhane map [13], shown in Fig. 13. This novel representation is useful because it visually
combines information on the flow regime upstream of the elbow, given by the location of the symbols in the
Mandhane regions, with the information on the change of the flow regimes as the fluids move across the elbow,
denoted by the colour of the symbol.

D∗=21mm
j∗L=0.297m/s

j∗G=0.99m/s

t∗=0s t∗=0.018s t∗=0.043s

t∗=0.058s t∗=0.074s t∗=0.097s

top view

side view flow

Figure 10: Bubble division and coalescence in the horizontal elbow with D∗=21mm, ReL=5598 and ReG=1058.

D∗=21mm
j∗L=0.28m/s

j∗G=10.9m/s

D∗=21mm
j∗L=0.39m/s

j∗G=9.9m/s

D∗=21mm
j∗L=0.49m/s

j∗G=9.9m/s

top view

side view flow
swirling
annular

slug flow

Figure 11: Change from slug flow to swirling annular flow across the horizontal elbow with D∗=21mm. Left photo: ReL=5598
and ReG=11641. Middle photo: ReL=7464 and ReG=11641. Right photo: ReL=9330 and ReG=10582.
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D∗=21mm
j∗L=0.28m/s

j∗G=21.8m/s

D∗=21mm
j∗L=0.39m/s

j∗G=20.8m/s

D∗=21mm
j∗L=0.49m/s

j∗G=19.8m/s

top view

side view flow

standard annular
thick bottom layer

axial-symm.
swirling annular

Figure 12: Change from annular flow to swirling annular flow across the horizontal elbow with D∗=21mm. Left photo: ReL=5598
and ReG=23281. Middle photo: ReL=7464 and ReG=22223. Right photo: ReL=9330 and ReG=21165.
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Figure 13: Representation of the two-phase flow patterns through the mitre elbows in the horizontal orientation on the non-
dimensional Mandhane map [13]. The flow regime upstream of the elbow are denoted by the location of the symbols in the
Mandhane regions, while the flow regimes downstream of the sharp bend are indicated by the colour of the symbol.
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Horizontal to vertical upward orientation

For ReG<2000, the intermittent flow patterns (plug and low-j∗G slug) entering the horizontal part of the elbow
change to slug flow in the riser downstream of the sharp bend due to the effect of gravity. In the upward flow,
a liquid-phase reverse downward flow may occur for these flow conditions. This reverse water flow splits the
air slugs into two or more bubbles downstream of the bend. The divided bubbles then coalesce, often resulting
in a membrane flow structure, as shown in Fig. 14 in the vertical elbow with D∗=21mm at different times.
The phenomenon of flow reversal and bubble separation were reported by Hsu et al. [19] in 90◦ round elbows
and Wang et al. [18] in 180◦ bends at velocities higher than ours because the secondary flow, which is the
main cause for this phenomenon, increases with the decrease of curvature radius of the elbow for the same flow
conditions, as also mentioned by Wang and Mayinger [44] and Wang at al. [17].

For 1000 < ReG<3000, the slug flow upstream of the elbow remains as such in the vertical pipe downstream
of the sharp bend, but it changes character. In the horizontal pipe upstream of the bend, the air slugs occur in
the top part of the pipe while thin water layers appear at the bottom. Downstream of the elbow in the vertical
pipe, the air slugs move in the centre of the pipe while thin liquid films occur between the slugs and the pipe
wall. At higher j∗G, i.e., for 3000<ReG<10000, the slug flow converts to churn flow through the elbow, as shown
in Fig. 15 for the elbow of D∗=21mm at j∗L=0.297m/s.

At higher j∗G, i.e., for ReG>10000, the slug and slug-annular flows upstream of the sharp bend in the
horizontal configuration change to swirling annular as the fluids pass through the elbow due to the centrifugal
force and the secondary-flow effects dominating over the gravitational effects, similar to the results of Wang et

al. [18] in vertical 180◦ round elbows. Like for the elbow in the horizontal configuration, the water layers of
the swirling annular flow downstream of the elbow rotate around the pipe periphery before the flow establishes
itself back to the standard annular regime at a distance of about 60D∗ downstream of the sharp bend.

The annular flow enters the horizontal leg of the vertical elbow with a thicker water layer in the lower part
of the pipe and changes to a swirling annular flow with an axisymmetric water-layer thickness downstream of
the bend, as shown in Fig. 17 for the D∗=21mm elbow.

Similar to the map of Fig. 13, the water-air flow patterns through the elbows in the horizontal to vertical
upward position are represented on the rescaled Mandhane map [13] of Fig. 18 for the first time.

D∗=21mm

ReL=5598

ReG=159

t∗=0s flow t∗=0.123s t∗=0.202s

t∗=0.356s t∗=0.475s

membrane

t∗=0.721s

Figure 14: Change from plug flow to slug flow due to separation of bubbles across the elbow for D∗=21mm, j∗L=0.297 m/s,
j∗G=0.15m/s, ReL=5598 and ReG=159.
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D∗=21mm

ReL=5598

ReG=3175

D∗=21mm

ReL=5598

ReG=5291

D∗=21mm

ReL=5598

ReG=8466

flow

slug flow churn flow

Figure 15: Change from slug flow to churn flow through the vertical elbow for D∗=21mm, j∗L=0.297 m/s, and different j∗G. Left
photo: ReL=5598 and ReG=3175. Middle photo: ReL=5598 and ReG=5291. Right photo: ReL=5598 and ReG=8466.

D∗=21mm

ReL=5598

ReG=9524

D∗=21mm

ReL=5598

ReG=11641

D∗=21mm

ReL=5598

ReG=13757

flow

slug flow swirling annular flow

Figure 16: Change from slug flow to swirling annular flow through the horizontal to vertical elbow for D∗=21mm, j∗L=0.297 m/s,
and different j∗G. Left photo: ReL=5598 and ReG=9524. Middle photo: ReL=5598 and ReG=11641. Right photo: ReL=5598
and ReG=13757.

D∗=21mm

ReL=5598

ReG=15874

D∗=21mm

ReL=5598

ReG=21165

D∗=21mm

ReL=5598

ReG=26456

flow

annular flow swirling annular flow

Figure 17: Standard annular flow change to swirling annular flow through the horizontal to vertical elbow with upward flow for
D∗=21mm, j∗L=0.297m/s and different j∗G. Left photo: ReL=5598 and ReG=15874. Middle photo: ReL=5598 and ReG=21165.
Right photo: ReL=5598 and ReG=26456.
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Figure 18: Representation of the two-phase flow patterns through the mitre elbows in the horizontal to vertical upward orientation
on the non-dimensional Mandhane map [13]. Like in Fig. 13, the flow regime upstream of the elbow are denoted by the location
of the symbols in the Mandhane regions, while the flow regimes downstream of the sharp bend are indicated by the colour of the
symbol.
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3.2. Analysis of pressure drop

3.2.1. Pressure drop along the straight pipes

For the two-phase flow study, it was imperative to ensure first that the our measured single-phase Darcy
friction factor agreed with correlations available in the literature to verify the experimental measurements.
Figure 19 shows the comparison between our experimental single-phase water pressure-drop measurements
along the straight portions of the pipe upstream of the mitre elbows in terms of the friction factor CL =
2∆p∗D∗/

(

∆l∗ρ∗Lj
∗2
L

)

as a function of the Reynolds number, which was defined as ReL = ρ∗Lj
∗

LD
∗/µ∗

L for this
single-phase analysis. An excellent agreement was found with well-known correlations.

For the two-phase flow, the distance upstream of the elbow where the flow starts to be affected by the
elbow and the distance downstream of the bend after which the presence of the elbow is not influential were
measured. The flow recovery length was 60D∗ downstream of the bend and the upstream perturbation distance
was 32.5D∗ upstream of the elbow. Like for the single-phase study documented in our paper [35], the pressure
produced by the water-air flow was axisymmetric around the pipe periphery at all the tested positions. These
measurements agree with the result by Lima and Thome for the two-phase refrigerant flow through horizontal
180◦ round elbows [12].

In Appendix A, Fig. A.26 shows a comparison between our pressure-drop data in straight pipes in the
horizontal and vertical configurations and the predictions by the models proposed by Lockhart & Martinelli
[2], Chisholm [3], and Muller & Heck [6], which do not include the effects of the flow patterns. The data
are not predicted well by the models. The deviation between the experimental data and the predicted values
increases as the pressure drop increases. The Lockhart-Martinelli model [2] leads to a better agreement with
the experimental data than the other two models. At very small pressure drops (∆p∗/∆l∗<2500Pa/m), the
Lockhart-Martinelli [2] and the Muller-Heck [6] models predict the experimental data with good agreement. At
higher pressure drops, the Muller-Heck model [6] gives a deviation from the experimental data that is much
larger than the other two models. The deviation between the models and the experimental data was lower in
the vertical case than in the horizontal case.

In Appendix C the dimensional analysis shows that the scaled frictional pressure drop of an incompressible
isothermal water-air flow can be scaled as

CL =
∆p∗

∆l∗

∣

∣

∣

∣

f

D∗5ρ∗L
ṁ2

L

(4)

and expressed as a function of the three non-dimensional parameters, i.e., CL = CL (ReL,ReG, F rL).
In Fig. 20 the two-phase CL data for the horizontal straight pipe upstream of the elbow in the present work

and the data of Spedding and Benard [45] and Kim et al. [46] show excellent collapse when CLReαG is plotted

as a function of (ReL/ReG)
β
. A least-square fit analysis gives α=0.3 and β=0.5. The effect of Froude number

is negligible in this range of parameters, as expected in the horizontal case. The excellent scaling of the data is
independent of the flow patterns, which are represented by different colours in Fig. 20.

Figure 21 represents the two-phase CL data for the vertical straight pipe downstream of the elbow and
the experimental data by Tang et al. [47]. The collapse of data scaled in the form CLReαG as a function

of (ReL/ReG)
β
(α=0.85 and β=0.5) is also very good, although the scatter of some data is larger than in

the horizontal configuration because of the effect of FrL. This is also expected because gravity plays a non-
negligible role in the vertical configuration. To clarify the effect of FrL the scaled pressure-drop data for the
vertical-pipe case of Fig. 21 is coloured by FrL in Fig. 22. The effect of FrL is most intense in the range
0.45<(ReL/ReG)

0.5<1.25, causing scatter in the experimental data in the region between the churn and annular
flows.

Figs. 21 and 22 show that the frictional pressure drop may have negative values in the churn and annular
regimes because the static pressure drop due to gravity overcomes the frictional effect, a phenomenon due to
reversed liquid flow at the pipe surface and reported, amongst others, by Spedding’s group [48, 49, 45] and by
Liu’s group [50, 47, 51] in vertical pipe flows. The negative-friction data are highlighted by the hatched area in
Fig. 22. Note that the range of parameters for which the negative friction occurs falls within the range where
the effect of Froude number is significant.

New pattern-based correlations are proposed by using multiple regression tool in Statgraphics 16.1 [52] to fit
the experimental data of the frictional pressure drop in horizontal and vertical pipes. The correlations in this
section and in §3.2.2 are also valid for any two fluids with the same viscosity and density ratios as the water-air
ratios and flowing in the ranges of Reynolds numbers stated next to each equation. For the horizontal case the
following correlation is proposed for intermittent (plug and slug) flows:

CLRe0.3G = 2.914

(ReL

ReG

)

−0.89

− 0.0075,

(ReL

ReG

)0.5

> 1. (5)
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For slug-annular and annular flows in the horizontal case, we propose the following correlation:

CLRe0.3G = 1.54

(ReL

ReG

)

−1.71

+ 1.554,

(ReL

ReG

)0.5

< 1. (6)

Correlations (5) and (6) fit the scaled experimental data with E = 2.4% and E = 7.8%, respectively. The
following correlation is proposed to fit the pressure-drop data for all flow patterns in the horizontal configuration:

CLRe0.3G = 2.607

(ReL

ReG

)

−1.35

+ 0.23, 0.4 <

(ReL

ReG

)0.5

< 8. (7)

Correlation (7) fits our experimental data with E = 15% and the data of Spedding and Benard [45] and Kim
et al. [46] with E = 32%. The frictional pressure-drop data for vertical upward churn and annular flows are
correlated as follows:

CLRe1.35G = 41290

(ReL

ReG

)

−1.45

− 7405, 0.35 <

(ReL

ReG

)0.5

< 1.5, (8)

Correlation (8) fits 70% of our scaled experimental data with E = 25%. Due to the scatter in the pressure
drop data in vertical pipes, we could not correlate these data with acceptable error for the whole range of flow
patterns. However, we propose a new correlation to fit the experimental data for FrL>1 as:

CLRe1.35G = 29330

(ReL

ReG

)

−2.26

− 60.3,

(ReL

ReG

)0.5

> 0.35. (9)

Correlation (9) fits 60% of the experimental data for FrL>1 with E = 19%.
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Figure 19: Comparison between the single-phase friction factor Cf along straight pipes and two correlations.
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Figure 20: Scaled two-phase pressure drop in horizontal pipes. Error bars are shown in red in this figure and in the following ones.
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Figure 21: Scaled two-phase pressure drop in vertical pipes.
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3.2.2. Pressure drop across the mitre elbows

Fig. B.28 shows the comparison between our experimental data for the flow across the horizontal and
horizontal to vertical mitre elbows for a wide range of flow conditions, listed in Tables 1 and 2, and the
prediction given by the models proposed by Chisholm [7] and Sookprasong et al. [10]. These models severely
overpredict the pressure drops, especially at high flow rates. For both orientations, the deviation increases as
the pressure drop grows. This error is expected because these correlations model the frictional pressure drop
across round elbows. These models do not include the influence of the flow patterns on the pressure drop
[9, 1, 28, 29].

Similar to the two-phase CL coefficient for straight pipes, the dimensional analysis in Appendix C proves
that the scaled pressure drop of an incompressible isothermal water-air flow across a mitre elbow,

KL =
∆p∗|eD∗4ρ∗L

ṁ2
L

, (10)

can be expressed as KL=KL (ReL,ReG, F rL). Figs. 23 and 24 show the scaled drop of pressure KL for the
horizontal and the horizontal to vertical upward configurations, respectively. Differently from the frictional
pressure drop in the straight portions of the pipe, the pressure drop across the sharp bend is significantly
affected by the flow patterns. The highest data scatter in Figs. 23 and 24 is observed for slug and slug-annular
flows, whereas the data for annular and plug flows instead collapse well, i.e., in the cases of large inertia due to
large air flow rates, i.e., large ReG, and to large inertia due to large water flow rates, i.e., large ReL. The effect
of FrL (0.5≤FrL≤2.5) on the pressure drop across the elbows is mild. The high scatter for intermittent flows
is not due to the effect of the Froude number as in the vertical case but to the separation and secondary flows
in elbows, which are more influential than gravity in this case.

New pattern-based correlations are proposed to fit the scaled pressure drop across the mitre elbows. For the
horizontal case the following correlation is proposed for intermittent (plug and slug) flows:

KLRe0.3G = 127.3

(ReL

ReG

)

−0.89

+ 1.472,

(ReL

ReG

)0.5

> 1. (11)

For slug-annular and annular flows in the horizontal case, we propose the following correlation:

KLRe0.3G = 40.25

(ReL

ReG

)

−1.75

+ 102.1,

(ReL

ReG

)0.5

< 1. (12)

Correlation (11) fits 83% of the data with E =23.6%, while correlation (12) fits 90% of the data with E =14.2%.
Correlation (12) also fits the annular flow data only with the same accuracy.

For the horizontal to vertical upward configuration the following correlation is proposed for intermittent
(plug and slug) flows:

KLReG = 41370

(ReL

ReG

)

−1.03

− 321.2,

(ReL

ReG

)0.5

> 1. (13)

For slug-annular and annular flows in the horizontal to vertical upward configuration, the following correlation
is proposed:

KLReG = 25570

(ReL

ReG

)

−2.31

+ 16790,

(ReL

ReG

)0.5

< 1. (14)

Correlations (13) and (14) predict the scaled experimental data with E =28.6% and E =23.9%, respectively.

Slug-flow data, occurring for 1<(ReL/ReG)
0.5

<3, are too scattered and could not be correlated.
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Figure 23: Scaled two-phase pressure drop across the horizontal mitre elbows.
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Figure 24: Scaled two-phase pressure drop across the horizontal to vertical mitre elbows.
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4. Conclusions

Water-air flow has been studied experimentally in horizontal and vertical straight pipes and across 90◦

sharp-angled mitre elbows. The portion of the pipe upstream of the elbow was always positioned horizontally,
while the portion of the pipe downstream of the bend was oriented horizontally or vertically with the flow
moving upward. The flow patterns have been investigated visually and the pressure drops along the straight
pipes and across the mitre elbows have been measured.

The observed flow patterns in the straight pipes have been predicted well by the Mandhane map [13] for
the horizontal orientation and by the Hewitt-Roberts map [14] for the vertical orientation. A dimensional
analysis has allowed us to express these maps in scaled form, i.e., as a function of the Reynolds numbers ReL

and ReG based on the superficial velocities of water and air respectively, thereby obtaining a slightly improved
agreement between our data and the prediction given by the maps. The analysis further reveals the mild
influence of the Froude number for the range of flow parameters investigated. Future work should be directed
to obtain non-dimensional water-air pattern maps in the (ReL,ReG) space at fixed Froude number.

As the fluids pass through the mitre elbows, the changes of flow patterns occur at Reynolds numbers that
are lower than in round elbows because the centrifugal and secondary-flow effects are more intense when the
elbow is sharp. For the first time, we have observed slug flow with multiple membranes in the vertical upward
condition as a result of bubbles merging downstream of the bend. The membrane flow has been detected in
ranges of j∗L that are larger than those reported by Milan et al. [20] for downward flow. We have proposed a
new representation for the changes of the flow patterns occurring as the fluids pass through the sharp elbows.
We have used a rescaled Mandhane map for each orientation where the position of the data point in the flow
region represents the flow regime upstream of the elbow and the colour of the symbol indicates the new pattern
that emerges as the fluids pass through the elbow.

We have also obtained new pattern-based correlations to fit the scaled experimental data for the flows
through the straight pipes and across the elbows. These correlations are more accurate than the models
presently available in the literature.
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Appendix A. Computation of the frictional pressure drop along the straight portions of the pipe

The frictional pressure drop per unit length along the straight portions of the pipe is computed as follows
[51, 53]:

∆p∗

∆l∗

∣

∣
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f

=
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∣

st

sin θ, (A.1)

where the angle θ is measured with respect the vertical line, the subscript “meas” denotes the total measured
pressure drop per unit length and the subscript “st” indicates the static pressure drop per unit length due to
the effect of gravity and defined as:

∆p∗

∆l∗

∣

∣

∣

∣

st

= g∗ [(1− ǫ) ρ∗L + ǫρ∗G] , (A.2)

where ǫ is the gas-phase void fraction, ρ∗L is the density of water, and ρ∗G is the density of air. The image
processing technique was used to evaluate the gas-phase void fraction [54, 55, 56]. Twenty different snapshots
were captured from each video at all the flow conditions listed in Table 2. The captured photos at each flow
condition were converted to binary images, as shown in Fig.A.25 for the slug and annular flows. The binary
images were then analyzed by using IMAGEJ software to compute the values of the void fraction. The void
fraction values were evaluated from the captured images at each flow rate and averaged to compute the void
fraction value at that flow rate. The uncertainty in the calculations of the void fraction by using this image
processing method has been found to be less than 7% [57] and less than 8% [58].

In Fig. A.26, the computed frictional pressure drops in straight pipes for horizontal and vertical orientations
are compared with the predictions of three widely-used models.

Appendix B. Computation of the pressure drop across the mitre elbow

Fig. B.27 represents the two-phase pressure drop along the pipe with D∗=21mm and across the mitre elbow
in the horizontal configuration as a function of the scaled distance l∗/D∗ from the elbow. The effect of the
elbow is negligible at a distance of 32.5D∗ upstream of the elbow (measurement location C) and at a distance
of 60D∗ downstream of the sharp bend (measurement location G), where the gradient of the pressure is only
caused by the distributed straight-pipe friction.

As shown in Fig. B.27, the drop of pressure across the sharp bend, ∆p∗|e, is computed as the difference
between the two best-fit straight lines defining the straight-pipe pressure gradients upstream and downstream
of locations C and G, represented by the dashed lines, at l∗/D∗=0, denoted by the vertical dashdotted line.
The pressure drop across the horizontal and horizontal to vertical sharp bends are compared with the Chisholm
[7] and Sookprasong [10] models, as shown in Fig. B.28.
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Figure A.25: Comparison between the captured photos from the flow videos and the converted images to a binary form, for
D∗=11mm.
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Figure A.26: Comparison between the experimental pressure drop along horizontal straight pipes (left) and vertical straight pipes
(right), with Lockhart and Martinelli [2], Chisholm [3] and Muller and Heck [6] models, for D∗=11mm (△), D∗=16mm (�), and
D∗=21mm (◦).

Appendix C. Dimensional analysis

A dimensional analysis based on the Π theorem is employed to obtain the non-dimensional parameters that
describe the water-air flow. The flow-pattern maps, the friction coefficient CL, and the scaled pressure drop
of the elbow KL are expressed as functions of these parameters. The flow depends on the diameter D∗, the
densities of the fluids ρ∗k, the dynamic viscosities of the fluids µ∗

k, the mass flow rates ṁ∗

k (where k = L for
water and k = G for air), and the gravitational acceleration g∗. The flow is also dependent on the angle of the
pipe inclination with respect to the vertical axis. For mitre elbows, the flow also depends on the flow direction,
as explained in §3.1.2. As we consider flows at high Reynolds numbers, at high Weber numbers in the range
We = ρ∗Lj

∗

L

2D∗/σ∗ =25.3-159.7 (where σ∗ is the surface tension of water), and through pipes with diameters
larger than 3mm, the effect of the surface tension between air and water is negligible [59, 60, 61].

The number of dimensionless parameters is Π = k′ − n, where k′ = 8 is the number of the dimensional
parameters and n = 3 is the number of basic dimensions, i.e., the mass, the length, and the time. It follows that
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Figure B.27: Water-air pressure drop relative to the measurement location A along the 21-mm-diameter test section for ReL=9330
and ReG=8466 in the horizontal configuration.
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Figure B.28: Comparison between the experimental pressure drop across the horizontal (left) and vertical (right) 90◦ sharp-angled
mitre elbows with Chisholm [7] and Sookprasong [10] models, for D∗=11mm (△), D∗=16mm (�), and D∗=21mm (◦).
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Π = 5. As repeating variables, we choose D∗, ρ∗L, and ṁ∗

L. We find the following dimensionless parameters:

Π1 = ReL =
ṁ∗

L

µ∗

LD
∗
=

ρ∗Lj
∗

LD
∗π

4µ∗

L

.

Π2 = ReG =
ṁ∗

G

µ∗

GD
∗
=

ρ∗Gj
∗

GD
∗π

4µ∗

G

.

Π3 = FrL =
ṁ∗

L√
g∗D∗5/2ρ∗L

.

Π4 = R =
ρ∗L
ρ∗G

.

Π5 = V =
µ∗

L

µ∗

G

.

The Π5 parameter found directly from the analysis is Π5=ṁ∗

G/ṁ
∗

L, which can be written as Π5=(µ∗

L/µ
∗

G)ReL/ReG.
The Reynolds numbers already belong to the dimensionless group of parameters and therefore the ratio of vis-
cosities V is a more convenient choice for Π5. For a specified geometry and flow direction, the flow patterns
can therefore be expressed in terms of ReL, ReG, F rL, R, and V. For an incompressible and isothermal water-
air flow, R and V are constants, and thus the flow pattern maps can be shown in the two-dimensional space
(ReL, ReG) for a given FrL. In order to minimize the possible changes of air density due to acceleration we
have utilized a mass flow meter to measure the air flow rates. The maximum change in the air density was
0.05kg/m3, i.e., about 3%, computed by using the NIST Refprop software [41]. Therefore, the density ratio R
could be considered constant.

The pressure-drop coefficients CL = (∆p∗/∆l∗|f)D∗5ρ∗L/ṁ
2
L
and KL = ∆p∗|eD∗4ρ∗L/ṁ

2
L can therefore be

expressed as
CL = CL (ReL, ReG, F rL) , (C.1)

and
KL = KL (ReL, ReG, F rL) (C.2)

because R and V are assumed constant. Note that the subscript L for CL and KL denotes the adopted scaling
through ρ∗L and ṁL of water, although these are two-phase quantities.

28


	Introduction
	Experimental apparatus and procedures
	Experimental apparatus
	Experimental procedures
	Uncertainty analysis

	Results
	Analysis of flow visualizations
	Flow patterns in straight pipes
	Flow patterns across the mitre elbow

	Analysis of pressure drop
	Pressure drop along the straight pipes
	Pressure drop across the mitre elbows


	Conclusions
	Computation of the frictional pressure drop along the straight portions of the pipe
	Computation of the pressure drop across the mitre elbow
	Dimensional analysis

