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Characterization of multiplication commutative rings with

finitely many minimal prime ideals

T. Alsuraiheed and V. V. Bavula

Abstract

The aim of the paper is to give a characterization of a multiplication commutative ring
with finitely many minimal prime ideals: Each such ring is a finite direct product of rings
n∏

i=1

Di where Di is either a Dedekind domain or an Artinian, local, principal ideal ring and

vice versa. In particular, each such ring is a Noetherian ring. As a corollary subclasses of
such rings are described (semiprime, Artinian, semiprime and Artinian, local, domain, etc).

Key Words: a multiplication module, a multiplication ideal, a multiplication ring, a Dedekind

domain, an Artinian local principal ideal ring.

Mathematics subject classification 2010: 13C05, 13E05, 13F05,13F10.
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1 Introduction

In this paper, all rings are commutative with 1 and all modules are unital. A ring R is called a
multiplication ring if I and J are ideals of R such that J ⊆ I then J = I ′I for some ideal I ′ of
R. The concept of multiplication ring was introduced by Krull in [8]. In [9], Mott proved that a
multiplication ring has finitely many minimal prime ideals iff it is a Noetherian ring.

The next theorem is a description of multiplication rings with finitely many minimal prime
ideals.

Theorem 1.1 Let R be a ring with finitely many minimal prime ideals. Then the ring R is a

multiplication ring iff R ∼=
n∏

i=1

Di is a finite direct product of rings where Di is either a Dedekind

domain or an Artinian, local principal ideal ring.

The next corollary is a description of semiprime multiplication rings with finitely many minimal
prime ideals.

Corollary 1.2 Let R be a semiprime ring with finitely many minimal prime ideals. Then R is a

multiplication ring iff R ∼=
n∏

i=1

Di is a finite direct product of rings where Di is either a Dedekind

domain or a field.

Proof. The corollary follows from Theorem 1.1. �

The next corollary is a description of Artinian multiplication rings.
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Corollary 1.3 Let R be an Artinian ring. Then R is a multiplication ring iff it is a finite direct
product of Artinian, local, principal ideal rings.

Proof. The corollary follows from Theorem 1.1. �

The next corollary is a description of semiprime Artinian multiplication rings.

Corollary 1.4 Let R be a semiprime Artinian ring. Then R is a multiplication ring iff it is a
finite direct product of fields.

Proof. The corollary follows from Corollary 1.2 and Corollary 1.3. �

The next theorem is a description of multiplication domains.

Theorem 1.5 Let R be a domain. Then R is a multiplication ring iff R is either a field or a
Dedekind domain.

Proof. The theorem follows from Theorem 1.1. �

Corollary 1.6 Let R be a ring with finitely many minimal prime ideals. Then

1. R is a local multiplication ring iff R is either a local Dedekind ring or an Artinian, local,
principal ideal ring.

2. R is a local multiplication domain iff R is a local Dedekind ring.

3. R is a local, Artinian, multiplication ring iff R is an Artinian, local, principal ideal ring.

In Theorem 3.10, we give a characterization of multiplication rings containing a unique minimal
prime ideal and which is not maximal. In this situation, R is a multiplication ring iff it is a
Dedekind domain.

The paper is organized as follows: In Section 2, definitions and some known results are given.
In Section 3, we prove some properties of finitely generated prime ideals with zero annihilator of a
multiplication ring (Proposition 3.1 and Proposition 3.2). Also, some results about prime ideals of
a multiplication domain are proven (Proposition 3.3 and Proposition 3.4). Finally, we study the
class of multiplication rings containing only finitely many minimal prime ideals, prove Theorem
1.1 and obtain some corollaries.

2 Preliminaries

In this section, we collect some results on multiplication modules that are used in the proofs of
the paper.

An R-module is called a cyclic module if it is 1-generated. For an R-module M , let CycR(M)
be the set of its cyclic submodules. For an R-module M , we denote by annR(M) its annihilator.
A module is called a faithful module if its annihilator is equal to zero. For a submodule N of M ,
the set [N : M ] := annR(M/N) = {r ∈ R | rM ⊆ N} is an ideal of the ring R that contains the
annihilator annR(M) = [0 : M ] of the module M . The set θ(M) :=

∑
C∈Cyc

R
(M)[C : M ] is an

ideal of R. Clearly, annR(M) ⊆ θ(M), and if M is an ideal of R then M ⊆ θ(M).
An R-module M is called a multiplication module if every submodule of M is equal to IM for

some ideal I of the ring R. In addition, if M is an ideal of R then M is called a multiplication
ideal. It is easy to show that M is a multiplication R-module iff for every submodule N of M ,
N = [N : M ]M . The set of all multiplication R-modules is denoted by Modm(R). The set
Modm(R) contains R, all cyclic R-modules and all invertible ideals of R. Let I(R) be the set
of ideals of the ring R. The set (I(R),⊆) is a partially ordered set (a poset, for short). For an
R-module M , let SubR(M) be the set of its submodules. The set (SubR(M),⊆) is a poset. The
map µM : I(R) → SubR(M), I 7→ IM respects inclusion, i.e., I ⊆ J implies IM ⊆ JM , i.e., the
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map µM is a homomorphism of posets. An R-module M is a multiplication module iff the map
µM is a surjection. A ring R is called a multiplication ring if every ideal of R is a multiplication
module, i.e., I(R) ⊆ Modm(R). Examples of multiplication rings are Dedekind domains, principal
ideal domains and rings all ideals of which are idempotent ideals.

A non-empty subset S of a ring R is called a multiplicatively closed subset iff SS ⊆ S, 1 ∈ S
and 0 /∈ S.

Lemma 2.1 ([6, Lemma 2]) Let S be a multiplicatively closed subset of a ring R. If M is multi-
plication R-module then S−1M is multiplication S−1R-module.

Lemma 2.2 ([7, Corollary 1.4]) Let I be a multiplication ideal of a ring R and M be a multipli-
cation R-module. Then IM is multiplication module.

The ideal θ(M) is very useful in studying of multiplication modules. The next results are about
some characteristics of a multiplication R-module M in terms of the ideal θ(M).

Lemma 2.3 1. ([4, Lemma 1.1]) Let M be a multiplication R-module and N be a submodule
of M . Then M = θ(M)M and N = θ(M)N .

2. ([1, Lemma 1.3]) Let M be an R-module. Then M is a multiplication module iff θ(M) +
annR(m) = R for all m ∈ M iff Rm = θ(M)m for all m ∈ M .

The next lemma is a criterion for a multiplication module to be finitely generated in terms of
the ideal θ(M).

Lemma 2.4 ([4, Corollary 2.2]) Let M be a multiplication R-module. Then the following state-
ments are equivalent.

1. The R-module M is finitely generated.

2. θ(M) = R.

3. The R-module θ(M) is finitely generated.

In particular, every multiplication module over Noetherian ring is finitely generated.

Lemma 2.5 ([4, Lemma 2.1]) Let I be a finitely generated ideal of R and M be a multiplication
R-module. If I ⊆ θ(M) then IM is finitely generated.

Y. Alshaniafi and S. Singh provide a cancelation law of a faithful multiplication module as
follows:

Lemma 2.6 ([2, Theorem 1.4]) Let M be a faithful multiplication R-module. If I and J are two
ideals of R that are contained in θ(M) then IM = JM iff I = J .

By Lemma 2.4 and Lemma 2.6, if M is a finitely generated faithful multiplication R-module
and I and J are two ideals of R then IM = JM iff I = J .

The next lemma provides a criterion for a faithful multiplication module to be finitely gener-
ated.

Lemma 2.7 ([7, Proposition 3.4]) Let M be a faithful multiplication R-module. Then M is
finitely generated iff PM 6= M for every minimal prime ideal P of R.

Corollary 2.8 Let R be a domain and M be a faithful multiplication R-module. Then M is
finitely generated. In particular, a multiplication domain is a Noetherian ring.

Proof. As R is a domain, R has only one minimal prime which is 0. By Lemma 2.7, M is finitely
generated. �

Lemma 2.9 ([7, Theorem 2.8]) Let R be a ring with only finitely many maximal ideals. If M
is a multiplication R-module then M is cyclic. In particular, if R is an Artinian ring then every
multiplication R-module is cyclic.
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3 Characterization of multiplication commutative rings

Proposition 3.1 Let R be a multiplication ring. Then every finitely generated prime ideal with
zero annihilator is a maximal ideal. In particular, if R is a multiplication domain then every
nonzero prime ideal of R is a maximal ideal.

Proof. Let P ∈ Spec(R) and suppose that P ( J ⊆ R where J is an ideal of R. Since R is a
multiplication ring, P = IJ for some ideal I of R. It follows that I ⊆ P = IJ ⊆ I (since P is a
prime ideal and J ( P ). Hence, I = P . As P is a finitely generated multiplication ideal with zero
annihilator and P = PJ , by Lemma 2.4 and Lemma 2.6, J = R, i.e., P is a maximal ideal of R.
The result holds for a multiplication domain because every nonzero ideal is a finitely generated
ideal with zero annihilator, by Corollary 2.8. �

Proposition 3.2 Let R be a multiplication ring. If P is a finitely generated prime ideal of R with
zero annihilator then R ) P ) P 2 ) · · · ) Pn ) · · · is a strictly descending chain of ideals such
that all R-modules Pn/Pn+1 are isomorphic to the simple R-module R/P .

Proof. Since the ideal P is a finitely generated R-module, so are all its powers Pn, n ≥ 1.
(i) All R-modules {Pn}n≥0 have zero annihilator: Suppose that rPn = 0 for some nonzero

element r ∈ R and n ≥ 0, we seek a contradiction. Clearly, n ≥ 2 since P 0 = R ∋ 1 and
annR(P ) = 0. We assume that n is the least possible. Then (rPn−1)P = 0, and so rPn−1 = 0
(since annR(P ) = 0), a contradiction.

By Proposition 3.1, the ideal P of R is a maximal ideal. In particular, R = P 0 6= P .
(ii) The ideals {Pn}n≥0 are distinct: Suppose this is not the case, we seek a contradiction. We

can choose the least natural number n ≥ 0 such that Pn = Pn+1. Clearly, n ≥ 1. The R-modules
Pn are finitely generated faithful multiplication modules. By Lemma 2.6, the equality Pn = Pn+1

implies the equality P = R, a contradiction.
(iii) For all n ≥ 0, the R-modules Pn/Pn+1 are isomorphic to the simple R-module R/P :

Recall that P is a maximal ideal of the ring R. Hence, the R-module R/P is simple. Clearly,
the R-modules Pn/Pn+1 are R/P -modules and R/P is a field. By the statement (ii), the R-
modules Pn/Pn+1 are nonzero. To prove that the statement (iii) holds it suffices to show that
the R-module Pn/Pn+1 is simple. Given an ideal J of R such that Pn+1 ( J ⊆ Pn, we have
to show that J = Pn. The ring R is a multiplication ring. So, the inclusions Pn+1 ⊆ J and
J ⊆ Pn yield the equalities Pn+1 = IJ and J = J ′Pn for some ideals I and J ′ of R. Therefore,
Pn+1 = IJ ′Pn, and, by Lemma 2.6, P = IJ ′. Hence, either P = I or P = J ′ (since P is a prime
ideal). Hence, either Pn+1 = PJ or J = Pn+1. The second case is not possible, by the choice of
J . So, Pn+1 = PJ . Then, by Lemma 2.6, J = Pn, as required. �

Proposition 3.3 Let R be a multiplication domain and P be a nonzero prime ideal. Then IP =
I ∩ P for every ideal I of R such that I * P .

Proof. Since R is a multiplication domain, every ideal of R is finitely generated, by Corollary 2.8.
Since I ∩ P ⊆ I and I is a multiplication ideal of R, I ∩ P = I ′I for some ideal I ′ of R. Also,
there is an ideal I⋆ of R such that IP = I⋆(I ∩P ) (since IP ⊆ I ∩P and I ∩P is a multiplication
ideal). So, PI = I⋆I ′I. By Lemma 2.4 and Lemma 2.6, P = I⋆I ′. Since P is a prime ideal then
either I⋆ = P or I ′ = P . If I⋆ = P then IP = (I ∩ P )P , and, by Lemma 2.4 and Lemma 2.6,
I = I ∩ P , and so I ⊆ P (a contradiction). Therefore I ′ = P , and hence I ∩ P = IP . �

A proper ideal Q of a ring R is called primary if whenever ab ∈ Q for a, b ∈ R then either
a ∈ Q or b ∈ √

Q := {r ∈ R | rn ∈ Q for some n ∈ N}. If Q is a primary ideal then P :=
√
Q is

necessarily a prime ideal. It is called the associated prime ideal of Q. In this case, Q is called a
P -primary ideal.

Proposition 3.4 Let R be a multiplication domain. Then for each P ∈ Spec(R), Pn is a P -
primary ideal for any n ∈ N.
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Proof. As R is a multiplication domain, every ideal is finitely generated, by Corollary 2.8. Suppose
that IJ ⊆ Pn and I * Pn. We have to show that J ⊆ P . Since R is a multiplication ring,
IJ = KPn for some ideal K of R. Now, since I * Pn, there exists a natural number n′ such that

n′ < n and I ⊆ Pn′

and I * Pn′+1 (notice that P 0 = R). So there exists an ideal I⋆ of R such

that I = I⋆Pn′

. As IJ = KPn = I⋆Pn′

J and Pn′

is a finitely generated multiplication ideal with
zero annihilator, KPn−n′

= I⋆J ⊆ P , by Lemma 2.6. As I⋆ ( P and P is a prime ideal, J ⊆ P .
Hence, Pn is P -primary. �

The following three lemmas are obvious.

Lemma 3.5 Let R =
∏

i∈I Ri be a direct product of rings. Then R is a multiplication ring iff all
rings Ri are multiplication rings.

Lemma 3.6 Let R be a multiplication ring and I be an ideal of R. Then R/I is a multiplication
ring.

Lemma 3.7 Let R be a multiplication ring. Then S−1R is a multiplication ring where S is a
multiplicatively closed subset of R.

The next theorem is a description of local multiplication rings with nilpotent maximal ideal
which are not fields.

Theorem 3.8 Let (R,m) be a local ring where m is a nilpotent ideal. Then the ring R is a
multiplication ring iff it is an Artinian, principal ideal ring. If so, then m = (x) for some element
x of R and {(xi) | i = 0, 1, . . . ., ν+1} are the only distinct ideals of R where mν+1 = 0 and mν 6= 0,
and Ass(R) = {m}.

Proof. (⇒) Let K = R/m (the residue field of m). Then V = m/m2 is a vector space over K.
(i) dimK(V ) = 1: Given a nonzero subspace U of V . We have to show that U = V . Clearly,

U = I/m2 for some ideal I such that m2 ( I ⊆ m. Since the ring R is a multiplication ring,
I = Jm for some ideal J of R which is necessarily equal to R (since m2 ( I and (R,m) is a local
ring), i.e., I = m, and so U = V , as required.

(ii) m = (x) for some x ∈ R: Fix an element x ∈ m \ m2. By statement (i), m = Rx + m2.
Then m = Rx+ (Rx+m)2 = Rx+m3 = · · · = Rx+Rxν +mν+1 = Rx since mν+1 = 0.

(iii) The ring R is Artinian: By the statement (ii), the length ℓ(R) of the R-module R is equal

to

ν+1∑

i=0

ℓ(mi/mi+1) = ν + 1 < ∞, and the statement (iii) follows.

(iv) {(xi) | i = 0, 1, . . . , ν + 1} are the only distinct ideals of R; in particular, R is a principal
ideal ring: Let I be a nonzero ideal of R. We may assume that I 6= R, i.e., I ⊆ m. Then there
exists a unique natural number i such that I ⊆ mi but I * mi+1. We claim that I = mi. Fix an
element y ∈ I such that y ∈ mi \ mi+1. Since mi = (xi), y = xiu for some element u ∈ R such
that u /∈ m (since y /∈ mi+1), i.e., u is a unit of R. Then mi = (xi) = (xiu) = (y) ⊆ I ⊆ mi, and
so I = mi = (xi). If (xs) = (xt) for some natural numbers s and t such that 0 6 s 6 t 6 ν + 1
then s = t, by the Nakayama Lemma, and the statements (iv) follows.

(⇐) Since the ring R is a principal ideal ring, it is a multiplication ring. �
The following result is used in the proof of Theorem 3.10.

Lemma 3.9 ([3, Theorem 1.1]) Let R be a local ring. Then all multiplication R-modules are
cyclic. In particular, if R is a multiplication ring then all ideals of R are cyclic.

For a ring R, we denote by Min(R) and Max(R) the sets of minimal prime and maximal ideals
of R, respectively.

The next theorem is a description of multiplication rings that have a unique minimal prime
ideal which is not maximal. The theorem is used in the proof of Theorem 1.1.

Theorem 3.10 Let R be a ring such that Min(R) = {p} and p is not a maximal ideal. Then R
is a multiplication ring iff R is a Dedekind domain. If so, then p = 0.
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Proof. (⇒) (i) p = 0: Since p is a unique minimal prime ideal of the ring R and it is not maximal,
it is properly contained in every maximal ideal of R. Let m ∈ Max(R). Then p ( m and p = am

for some ideal a of R such that p ⊆ a (since R is a multiplication ring). Hence a = p (since p is a
prime ideal and p ( m), i.e., p = pm. Then localizing at m, we have the equality of Rm-modules,
pm = pmmm. The ring R is a multiplication ring hence so is the local ring (Rm,mm). By Lemma
3.9, the Rm-module pm is cyclic. By applying the Nakayama Lemma to the equality pm = pmmm,
we must have pm = 0 for all m ∈ Max(R). Therefore, p = 0.

(ii) R is a domain (by the statement (i)).
(iii) All maximal ideals of R has height 1: This statement follows from the statement (ii) and

Proposition 3.1.
(iv) For every maximal ideal m, Rm is a discrete valuation ring: The ring (Rm,m

′ = mm) is
a local multiplication domain. By Lemma 3.9, every ideal is 1-generated. In particular, m′ = (x)
for some element x ∈ R. We have to show that every proper ideal I of Rm′ (I 6= 0, Rm) is equal

to xiRm for some i > 1. There is a unique natural number i > 1 such that I ⊆ m′i but I  m′i+1

.
Notice that I = yR for some y ∈ m′i \ m′i+1

. Then y = xiu for some u ∈ Rm \ m′, a unit of Rm.
Hence, I = yRm = xiuRm = xiRm.

(v) R is a Dedekind domain: This follows from the statement (iv) and [5, Theorem 9.3].
(⇐) Recall that every nonzero ideal of a Dedekind domain R is a unique finite product of

maximal ideals. Hence, every ideal of R is a multiplication module, i.e., R is a multiplication ring.
�

Example. Let K be a field. Then the local ring R = K[x]x[y, z]/(y
2, yz, z2) = D

⊕
Dy

⊕
Dz

is not a multiplication ring where D = K[x]x is a local Dedekind domain, and p = Dy
⊕

Dz is a
unique minimal prime which is not a maximal ideal and p2 = 0.

Proof. If R were a multiplication ring then, by Theorem 3.10, p = 0, a contradiction. �

Proof of Theorem 1.1. (⇒) Recall that the set Min(R) is a finite set then R is a Noetherian
ring, by [9, Theorem 11], and so, the prime radical n = ∩p∈Spec(R)p is a nilpotent ideal. Let
M = Min(R) ∩Max(R) = {m1, . . . ,mt} and M′ = Min(R) \Max(R) = {p1, . . . , ps}.

(i) If M′ = ∅, i.e., Min(R) = Max(R) = M = {m1, . . . ,mt} then R ∼=
∏

mi∈Min(R) Ri is

a product of Artinian, local principal ideal rings: Since Min(R) = Max(R), the ring R is an

Artinian ring. Hence it is a finite direct product of Artinian local rings, say R =

n∏

i=1

Ri. Since

R is a multiplication ring, so are the rings Ri. By Theorem 3.8, the rings Ri are Artinian, local,
principal ideal ring.

Till the end of the proof we assume that M′ 6= ∅, i.e., M := Max(R)\M = Max(R)\Min(R) 6=
∅.

(ii) Every maximal ideal m ∈ M contains a unique minimal prime ideal p(m) that necessarily
belongs to M′: The maximal ideal of R contains at least one minimal prime ideal, say, p = p(m).
Suppose that p′ is another minimal prime ideal that is contained in m, we seek a contradiction.
The ring Rm is a local multiplication ring with the maximal ideal m′ = mRm.

Claim: pm = 0 and p′m = 0.
By Lemma 3.9, every ideal of the ring Rm is 1-generated. In particular, m′ = (x) and pm = (x′)

for some elements x, x′ ∈ R. Since pm ⊆ m′ and Rm is a multiplication ring, we must have pm = am′

for some ideal a of Rm that contains pm. Since m′ * pm and pm is a prime ideal, we must have
a ⊆ pm, i.e., a = pm, and so pm = pmm

′. Since pm is a finitely generated Rm-module and (Rm,m
′)

is a local ring, pm = 0, by the Nakayama Lemma. The proof of the claim is complete.
Since p 6= p′ and p, p′ ⊆ m, we must have pm 6= p′m which contradicts to the fact pm = 0 = p′m,

by the Claim.
For each pi ∈ M′, let V(pi) = {m ∈ Max(R) | pi ⊆ m} = {m ∈ M| pi ⊆ m}.
(iii) Max(R) = M∐V(p1)

∐
. . .

∐V(ps), a disjoint union: The statement (iii) follows from
the statement (ii).
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(iv) All minimal prime ideals of R are co-prime ideals: Recall that Min(R) = {p1, . . . , ps,m1, . . . ,mt}
and m1, . . . ,ms are maximal ideals. So, it suffices to show that pi + pj = R for all i 6= j, but this
follows from the statement (iii). In more detail, if pi + pj 6= R then there is a maximal ideal that
contains both pi and pj , a contradiction (see the statement (iii)).

(v) R/n ∼=
∏

p∈Min(R) R/p: This fact follows from the statement (iv).

Let 1 =
∑

p∈Min(R) ep be the corresponding sum of orthogonal primitive idempotents. Since

the set of minimal prime is a finite set, the ring R is a Noetherian ring, by [9, Theorem 11]. Hence,
n is a nilpotent ideal. So, we can lift the decomposition above to 1 =

∑
p∈Min(R) e

′
p, a sum of

primitive orthogonal idempotents in R. So,

R ∼=
∏

p∈Min(R)

R(p)

where R(p) := e′pR are local rings with unique minimal prime ideals by the statement (ii). Since
R is a multiplication ring, the rings R(p) are also multiplication rings, by Lemma 3.5. Now, the
implication (⇒) follows from Theorem 3.8 and Theorem 3.10.

(⇐) This implication follows from Lemma 3.5, Theorem 3.8 and Theorem 3.10. �
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