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Abstract

Most researchers use a single method of mining to analyze event data. This paper uses case studies from two very different

domains (electronic health records and cybersecurity) to investigate how researchers can gain breakthrough insights by com-

bining multiple event mining methods in a visual analytics workflow. The aim of the health case study was to identify patterns

of missing values, which was daunting because the 615 million missing values occurred in 43,219 combinations of fields. How-

ever, a workflow that involved exclusive set intersections (ESI), frequent itemset mining (FIM) and then two more ESI steps

allowed us to identify that 82% of the missing values were from just 244 combinations. The cybersecurity case study’s aim was

to understand users’ behavior from logs that contained 300 types of action, gathered from 15,000 sessions and 1,400 users.

Sequential frequent pattern mining (SFPM) and ESI highlighted some patterns in common, and others that were not. For the

latter, SFPM stood out for its ability to action sequences that were buried within otherwise different sessions, and ESI detected

subtle signals that were missed by SFPM. In summary, this paper demonstrates the importance of using multiple perspectives,

complementary set mining methods and a diverse workflow when using visual analytics to analyze complex event data.

CCS Concepts

• Human-centered computing → Visual analytics;

1. Introduction

Applications from domains as diverse as security, health, retail and

education produce large quantities of event data [RV10, MCB∗11,

SS13, MA13, RWA∗13]. Methods such as frequent itemset min-

ing (FIM), exclusive set intersections (ESI) and sequential fre-

quent pattern mining (SFPM) are often used in visual analytics

systems to analyze such data, but each method has fundamen-

tal weaknesses. FIM and SFPM are only scalable if users make

a priori choices of parameters (e.g., minimum support thresh-

old), and do not distinguish between partial vs. full sets/sequences

[FVLV∗17, FVLK∗17]. ESI is computationally more scalable but

ignores frequent subsets of events and is susceptible to noise that

often requires excessive user interaction to filter [MLL∗13].

This paper investigates how multiple event mining methods may

be combined within visual analytics. The paper’s contributions are:

(1) identifying similarities and differences in the visual analytics re-

quirements for diverse analysis tasks (missing data vs. logfile anal-

ysis) from two completely different application domains (health-

care vs. cybersecurity), (2) characterizing the insights that each

event mining method provides, and (3) evaluating the benefits of

combining multiple methods into one visual analytics workflow.

Through two contrasting case studies, we demonstrate how visu-

alization enhances the analysis of event sequences and discuss ob-

servations and guiding principles that take initial steps towards a

comprehensive event analysis framework for visual analytics tools.

2. Related work

Event mining can be broadly classified into two types: (1) event

set mining (e.g., FIM and ESI), and (2) event sequence mining

(e.g., SFPM). FIM mines event sets (or itemsets) that meet a user

specified minimum support threshold [FVLV∗17]. It usually pro-

duces a large number of itemsets, which can be reduced by com-

puting closed or maximal itemsets.An itemset is closed if no su-

perset has the same support [PBTL99]. An itemset is maximal if it

does not have any superset [UKA04]. PowerSetViewer [MKN∗05],

FIsViz [LIC08] and FpVAT [LC10] are examples of visual analyt-

ics systems that use the above variations of FIM.

ESI mines sets of events (or set intersections) and allows users

to compute all non-empty intersections in a dataset by ignoring the

subsets of events [AMA∗16]. By contrast, FIM often requires a

high minimum support threshold to produce a reasonable number

of itemsets. There are several visual analytics systems [LGS∗14,

AR17] and workflows [AR18] that use ESI.

Lastly, SFPM mines the sequences of events that co-occur fre-

quently [FVLK∗17]. Depending on the support threshold, the num-

ber of resulting patterns can be large. Constraints can be added to

reduce the number of patterns such as time [PW14] (duration be-

tween two consecutive events) and cycle [NTA∗18] (patterns that

are cyclic of each other). Many visual analytics systems have ap-

plied SPFM, with extensions to make the patterns more manageable

and meaningful [WL14, LDDH16, LKD∗17, LWD∗17].
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Figure 1: Distribution of the number of ESIs and the associated

records across their length. The unusual wave pattern indicates the

presence of local patterns within specific ESI lengths, e.g., 51-55.

3. Two contrasting case studies

This paper uses two case studies that aim to: (1) comprehen-

sively identify the patterns of missingness in electronic health

records (admitted patient care (APC) data from NHS hospitals),

and (2) understand people’s behavior when using a software appli-

cation [NTA∗17]. The case studies demonstrate how, by integrat-

ing multiple event mining methods with visual analytics, we made

breakthroughs in understanding that would not have been possible

if we had only used a single method.

A key difference between the two case studies is the order of el-

ements in each data record. That order is irrelevant for the analysis

of missing data, but inherently relevant when analysing the actions

that people perform when using software. The analysis in both stud-

ies can be approached using frequent pattern mining, FIM for Study

1 and SFPM for Study 2. Even though the data in the second study

is ordered, we think it could be useful to relax this property and

apply an orderless method. Therefore, we use ESI in both studies.

In Study 1, values that are missing from a given field form a set, a

data record is an element, and a combination of fields that are miss-

ing together in one or more records is a set intersection. In Study

2, all occurrences of a given user interface action form a set, each

user session is an element, and actions that occur in one or more

sessions is a set intersection.

3.1. Missing data in health records

This case study used an extract of APC data that had 20,724,064

records, and 65 fields that were missing 1–20,721,474 values. In

total, there were 615,951,572 missing values.

3.1.1. Analysis and discussion

We analyzed the patterns of missingness in four steps. First, we

computed the ESIs for the 65 fields, which generated 43,219 in-

tersections of length 16 to 55. High-level statistics showed that the

missingness has an unusual wave pattern (see Figure 1), but it is not

feasible to visualize the composition of so many intersections.The

most frequent intersection has 24 fields and 537,857 records, but

accounts for only 12,908,568 (2.1%) of the missing values.

Step 2 used FIM to try to reveal the patterns. First, we set the

minimum support threshold to 50%, but this generated a staggering

75,965,885 frequent itemsets. To reduce this number to a manage-

able size and find more meaningful, non-redundant itemsets, we in-

Figure 2: Maximal itemsets with support ≥ 90%. Each row is

an itemset. The most infrequent itemset appears in 18.6 million

records.

Figure 3: All 162 ESIs from 20 fields extract. The most frequent

ESI occurs in 15.7 million records and involves all fields (a). Seven

fields are almost always missing together (b).

creased the minimum support threshold to 90% and computed max-

imal frequent itemsets. This generated only nine maximal itemsets.

A heatmap illustrates the composition of these maximal itemsets

and that they only involve 20 fields (see Figure 2). This important

insight enabled us to split the dataset into two extracts. The first

includes the 20 fields that are present in the nine maximal itemsets.

The second extract includes the remaining 45 fields.

In Step 3, we computed ESIs in the 20 fields extract, which pro-

duced only 162 intersections. By visualizing these, we gain two

main insights. First, the most frequent intersection (see Figure 3a)

occurs in 15,778,624 records and involves all 20 fields (51.2% of

the missing values in the whole dataset). Second, a subset of seven

fields are missing together in 143 out of the remaining 161 ESIs

(see Figure 3b). These 143 ESIs account for another 11.2% of the

missingness in the whole dataset.

In Step 4, we computed the ESIs in the second extract of 45

fields. This generated 21,457 intersections, which is half the num-

ber that occur when all 65 fields are analyzed together and shows

c© 2019 The Author(s)

Eurographics Proceedings c© 2019 The Eurographics Association.



M. Adnan, P.H. Nguyen, R.A. Ruddle & C. Turkay / Visual Analytics of Event Data using Multiple Mining Methods

Figure 4: The process of summarizing a session in a compact way

with different event types having distinct colours. From bottom to

top: consecutively identical actions are merged, sub-sequences of

actions are replaced with mined patterns, and consecutively iden-

tical patterns are merged.

the advantage of dividing the data into primary and secondary

groups (the 20 and 45 fields, respectively). The most frequent inter-

section involves 4 fields (2,572,920 missing values). The 100 most

frequent intersections have 121,548,393 missing values (19.7% of

the missingness in the whole dataset). Those 100 ESIs involve 2–

17 fields, but a more detailed analysis is outside the scope of this

paper.

To conclude, our approach of combining the FIM and ESI meth-

ods in a single visual analytics workflow allowed us to identify 244

ESIs (144 from Step 3 and 100 from Step 4) that account for a very

large proportion of the missing values (82.1%) in our dataset. In

further analysis iterations, one could repeat the four steps to ex-

plore the remaining 17.9% of the missingness, and keep iterating

until it is all accounted for.

3.2. Cybersecurity logfile analysis

This case study discusses the analysis of event sequence data from

application logs in a cybersecurity context. The primary goal of

the analysis is to gain understanding of user behaviors through the

actions they perform. A secondary goal is to explore potentially

unusual behaviors. We analyze a dataset spanning 31 days on ap-

proximately 15,000 sessions performed by 1,400 users with 300

different action types (such as SearchUser and DisplayOneUser).

Each session comprises a sequence of timestamped actions, with

the longest one containing 893 actions and each session containing

15 actions on average.

3.2.1. Sequential frequent pattern mining

We consider a session as a sequence of actions and apply a

constraint-based sequential pattern mining method [NTA∗18] to

extract frequent sub-sequences of actions that occur in the dataset.

For our dataset, setting the support as 3% (the minimum portion

of sessions containing a pattern) and the time gap as 60 seconds

(the maximum duration between two consecutive actions) yields a

meaningful and manageable set of frequent patterns.

Semantic patterns: Sub-sequences of actions that frequently oc-

cur can be considered as units with higher semantics than individ-

ual ones. For example, the actions SearchUser → DisplayOneUser

→ UpdateUserDetails could indicate some ‘user update’ activity.

Figure 5: The 25 most frequent session sets. Each row represents a

session set and is colour-coded by its frequency.

Therefore, the set of mined patterns describes, at a high level, what

is going on in the dataset.

Session summary: We apply a series of operations to summarize

a session in terms of raw actions and mined patterns. Briefly, we

replace sub-sequences of actions with mined patterns (if matching)

and merge consecutively repeated actions and patterns. Figure 4

shows this summarization and details can be found in the paper by

Nguyen et al. [NTA∗18]. This compact summary provides a way

that could help gain understanding of sessions more quickly. More-

over, by showing the usual patterns within a session, we can spot

the unusual actions that are left alone. This provides clues for fur-

ther investigation. They may be mistakes, uncommon ways to do

tasks, exploratory interaction, or more suspicious activities.

3.2.2. Exclusive set intersections

In this section, we analyze the data using the ESI method and dis-

cuss the insights that we gain. First, we consider a session as a set

of actions (session set) instead of an ordered sequence, sacrificing

the temporal information. For example, the session, a → b → c →

a → b, would be converted into the session set {a,b,c}. Then, we

apply ESI to compute all of the distinct session sets.

Visual design of session sets: Figure 5 shows the 25 most fre-

quent session sets, ordered by frequency from top to bottom. Each

row represents a session set and is colour-coded by its frequency.

Mouse hover over a session set highlights its supersets in green

and its subsets in blue. This helps users to explore relationships

between session sets. For example, we learn that {SearchUser, Un-

LockUser} (5.49%) appears twice as often as {SearchUser, Dis-

playOneUser, UpdateUserDetails} (2.23%), but it co-occurs less

with {SearchOffice, DisplayOffice}.

Comparison with SFPM: We retrieve the 25 most frequent pat-

terns using SFPM (2.5% support threshold) and compare them

with the aforementioned 25 common session sets. We observe that

these two sets of patterns do not only share many patterns in com-

mon but also complement each other. On the one hand, several ac-

tions (in bold) appear in common session sets but are absent in

the frequent patterns such as {DisplaySAP}, {SearchUsr, Display-
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OneUser, ChooseOrganization}, {SearchUsr, DisplayOneUser,

UnLockDisplayedUser}. This implies that ESI helps to identify

subtle signals that are not detected with SFPM. On the other hand,

some patterns that occur frequently (such as MoveOgu → AdminO-

guStep1) but are absent in the common session sets because they

often occur together with other actions as well, thus cannot be de-

tected with ESI as whole sessions.

Distribution of sessions: Because intersections are computed ex-

clusively, session sets are considered as a whole rather than ordered

combinations of actions as frequent patterns. This helps reveal the

distribution of session sets in the dataset. It is interesting to see

that the top 25 session sets account for quite a large portion of

the whole dataset (47.47%). Taking the most common session set

{SearchUser, DisplayUser} as an example, there are 121 distinct

ordered sequences that are converted into this set. In summary, FIM

is good for summarizing the sessions as a whole; whereas, SFPM

is more suitable for summarizing frequent patterns occurred within

the sessions.

Orderless methods for ordered data: The last observation is an

abstraction of the use of ESI for event sequence data. The actions

in this case study are timestamped, making it natural to choose an

order-aware mining method for revealing additional temporal in-

formation. This can help users to understand the order of how an

activity is commonly performed. However, there could be multiple

ways of performing an activity using the same set of actions (but in

different orders) and actions might be repeated unnecessarily due to

mistake. Ignoring order loses the information; however, could help

reduce noise, thus increasing the reliability of the found patterns. A

combination of the two techniques could complement each other.

4. Towards a multi-method event analysis framework

Through the use of a suite of event mining methods, we demon-

strate above how the overlapping and contrasting characteristics of

the two case studies could be better tackled through visual analyt-

ics methods. Here, we first list a number of observations emerging

from the two case studies:

• By setting a suitable high support threshold, FIM approaches of-

fer significant reductions in data volume while preserving key

subsets.

• ESI provides sets of events that co-occur “exclusively”, thus

highlighting important associations.

• Complementary results are provided when sequences are consid-

ered both as ordered and unordered sets.

• Visualization allows quick discovery of patterns that would be

non-trivial to compute, e.g., the missingness patterns of seven

fields (see Figure 3b).

• Where visual analysis enriched by sequential patterns provides a

high-level understanding of the usual and unusual activities (Fig-

ure 4), the interactive analysis of exclusive set intersections re-

veals novel links within common subsets and supersets concur-

rently (Figure 5).

• Both case studies involved different analysis strategies in how

the mining methods are used. While Case Study 1 follows a

pipeline approach; i.e., output of FIM is the input for ESI, Case

Study 2 involved a parallel approach; i.e., different techniques

are applied in parallel and results compared and contrasted.

Underpinned by the observations above, we discuss a number of

guiding principles towards a comprehensive event analysis frame-

work in visual analytics:

Use multiple perspectives: To be effective, visual analytics sys-

tems should consider combining methods that handle events in con-

ceptually diverse ways. For instance, ESI and FIM take an orderless

approach, whereas SFPM preserves the order of events.

Interchange subset and fullset mining: One fundamental chal-

lenge in event analysis is that few sets (or sequences) occur often

and many are infrequent (the “long tail”). Separating “core subsets”

from the long tail leads to more effective observations.

Adopt diverse workflows: When multiple computational meth-

ods are combined, an inevitable diversity emerges in the sequence

they are employed during the analysis. To be effective, workflows

should adopt strategies in-line with each analytical task, such as the

pipeline vs. parallel analysis strategies as discussed above.

5. Conclusion

This paper investigates how the use of multiple event mining meth-

ods within visual analytics enhances the reliability and scalabil-

ity of the analytical process as well as opening up possibilities for

novel insights. The two contrasting case studies, that require dif-

ferent ways of thinking due to their inherent differences, enable us

to demonstrate how a multi-method approach provides novel find-

ings and perspectives. In the first, we observe how streamlining

two methods lead to the identification of a subset of ESIs that are

significantly representative of the whole data. In the second, we

demonstrate how ESI and SFPM provide complementary sets of

patterns with different levels of representations in the data, leading

to a more comprehensive and reliable coverage of patterns. We re-

flect on the observations made and discuss them within the context

of a conceptual multi-method analysis framework and take the first

steps towards a comprehensive visual analytics approach to ana-

lyzing event data that highlights three guiding principles for future

visual analytics systems.

Even though the observations in this paper stem from two case

studies, they already demonstrate the potential in taking a multi-

method visual analytics approach for the analysis of large collec-

tions of event data. The results call for further work on extending

the scope of our analysis framework through a more systematic re-

view of existing methods and other application domains. More im-

portantly, we highlight the significance and the potential space for

novel visual analytics techniques that inherently support such holis-

tic approaches within the analysis of events and their sequences,

and call for further research in this area.
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