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Computer simulations of many-body quantum dynamics of indistinguishable particles is a chal-
lenging task for computational physics. In this paper we demonstrate that the method of coupled
coherent states (CCS) developed previously for multidimensional quantum dynamics of distinguish-
able particles can be used to study indistinguishable bosons in the second quantisation formalism.
To prove its validity, the technique termed here coupled coherent states for indistinguishable bosons
(CCSB) is tested on two model problems. The first is a system-bath problem consisting of a
tunnelling mode coupled to a harmonic bath, previously studied by CCS and other methods in
distinguishable representation in 20 dimensions. The harmonic bath is comprised of identical oscil-
lators, and may be second quantised for use with CCSB, so that this problem may be thought of
as a bosonic bath with an impurity. The cross-correlation function for the dynamics of the system
and Fourier transform spectrum compare extremely well with a benchmark calculation, which none
of the prior methods of studying the problem achieved. The second model problem involves 100
bosons in a shifted harmonic trap. Breathing oscillations in the 1-body density are calculated and
shown to compare favourably to a multiconfigurational time-dependent Hartree for bosons calcu-
lation, demonstrating the applicability of the method as a new formally exact way to study the
quantum dynamics of Bose-Einstein condensates.

I. INTRODUCTION

In the past two decades there has been significant inter-
est in systems of indistinguishable bosons, due to exper-
imentally produced Bose-Einstein condensates of ultra-
cold alkali metal atoms [1-3]. These condensates, first
posited by the eponymous Bose and Einstein in 1924-
25, have permitted macroscopic observations of quan-
tum phenomena and lead to a wealth of experimental re-
search in areas such as atomic interferometry [4], bosonic
Josephson junctions [5, 6], quantum vortices [7, 8] and
the generation of solitons [9, 10].

From the theoretician’s point of view, the Gross-
Pitaevskii equation (GPE) [11, 12] has been the pre-
dominant method used to study Bose-Einstein conden-
sates, see for example Refs. [13-18] and the review ar-
ticles [19, 20]. However the GPE is a mean-field the-
ory and as such cannot describe many-body effects in
condensates. It also assumes that all bosons occupy
a single state at all times, which is not the case dur-
ing fragmentation. In recent years, the multiconfigura-
tional time-dependent Hartree method for bosons (MCT-
DHB) [21, 22] has been used to treat indistinguishable
bosons from the standpoint of exact quantum mechan-
ics [23-33]. A multi-layer version of MCTDHB has also
been developed (ML-MCTDHB) [34, 35] that exploits the
multi-layer structure to study mixed bosonic systems (for
example impurities in Bose-Einstein condensates [36-40],
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binary mixtures of Bose-Einstein condensates [41], and
solitons [40, 42-44]) and bosonic systems where different
degrees of freedom may be separated (for example differ-
ent spatial locations when bosons are residing in optical
lattices [45-52]).

Before being used to treat indistinguishable bosons,
standard MCTDH [53] and ML-MCTDH [54, 55] have
been well established theories for treating distinguish-
able particles. They are able to solve the time-dependent
Schrodinger equation (TDSE) exactly for multiple de-
grees of freedom, albeit with basis sets that grow expo-
nentially with increased dimensionality. Our own coupled
coherent states (CCS) method has also demonstrated its
propensity at solving the TDSE for distinguishable par-
ticles, with basis sets that scale more favourably with di-
mensionality [56, 57]. This is achieved by using randomly
sampled trajectory guided coherent states as basis func-
tions, although the trade-off for this favourable scaling is
that random noise and slow convergence may be present.
Noise can cause a decay in auto/cross-correlation func-
tions and may be reduced by increasing the number of
configurations, or applying a filter diagonalisation tech-
nique to extract frequencies [58]. Importance sampling
of coherent state basis set initial conditions is also key to
the accuracy and efficiency of the CCS approach [59].

In this present work we extend the CCS method to
looking at indistinguishable bosons in the second quan-
tisation representation, and dub the method coupled co-
herent states for indistinguishable bosons (CCSB). Due
to the use of coherent states in CCSB and their relation to
the creation and annihilation operators of second quan-
tisation, together with the fact that systems with a large
number of particles tend towards classical behaviour and
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the basis in CCSB is guided by classical-like trajectories,
suggest that the method will be particularly suited to
such systems. Indeed, recent semiclassical coherent state
work with the Herman-Kluk method on indistinguishable
bosons demonstrates this hypothesis [60, 61]. CCSB is
fully quantum however, as with standard CCS, and it has
previously been shown that a local quadratic approxima-
tion of the Hamiltonian into the CCS equations yields
the coherent state matrix of the Herman-Kluk propa-
gator [62]. We anticipate that the CCSB method will
provide a description of many-body dynamics over and
above the mean-field Gross-Pitaevskii approach. Fur-
thermore, as CCS has previously shown to be able to pro-
vide a similar numerical picture to MCTDH with lower
computational scaling with dimensionality [63], we antic-
ipate that CCSB may be able to do the same with respect
to MCTDHB.

To illustrate the suitability of CCSB to problems in-
volving indistinguishable bosons, we apply the method
to two model problems. The first model problem con-
sists of a bosonic bath with an impurity, demonstrating
that the method is capable of studying multi-component
bosonic systems and opening up the possibility of study-
ing multi-atomic Bose-Einstein condensates [64], spinor
Bose-Einstein condensates [65], dark-bright solitons [66],
and Bose-polarons [67]. The second model problem con-
sists of a collection of indistinguishable bosons in a har-
monic trap, demonstrating the propensity of the method
to study systems of bosons in optical lattices [68], for
example with the Bose-Hubbard model [60, 61, 69], and
the possibility to study bosons in a single well that is
deformed into a double well, such as that in Ref. [22],
and observed in experimental bosonic Josephson junc-
tions [70, 71].

II. NUMERICAL DETAILS

The CCSB method relies on the machinery of the CCS
method, which has been derived and presented previously
when treating distinguishable particles [56, 57]. A de-
scription of the CCS method will be presented below,
before a discussion on how the method is modified to
treat indistinguishable bosons in the second quantisation
representation in CCSB.

A. Coupled Coherent States Working Equations

In the CCS method, the wavefunction is represented as
a basis set of trajectory guided coherent states, |z). The
coordinate representation of a coherent state is given by

(x]2) = (%)1/4 exp (—;(w —q)* + %p(x —q)+ ?g) ,
(1)

where ¢ and p are the position and momentum centres
of the coherent state, v is the width parameter of the

coherent state, given by v = mw/h, with m mass and w
frequency. In atomic units (which are used throughout
the paper) m = w = h = 1, thus v = 1. Coherent states
are eigenstates of the creation and annihilation operators
respectively

(zaf = (2] 2" (2a)

alz)y =z|z), (2b)
where the creation and annihilation operators are given
by

af = (G- ip) (3a)

-5

a=—=(¢+1p). 3b

7 (G +ip) (3b)

The eigenvalues of Egs. 2a and 2b, z* and z, can be used

to label a coherent state, and from Eqs. 3a and 3b it can
be seen they are given by

*

2* = —(q—ip) (4a)

[\}

z:\—ﬁ(q+ip). (4b)

An important consequence of the above is that one may
write a Hamiltonian in terms of creation and annihila-
tion operators rather than position and momentum op-
erators. A normal ordered Hamiltonian may then be ob-
tained when the creation operators precede the annihila-
tion ones

‘E[(qAaﬁ) = ‘E[(a’7dT) = Hord(dT7d)’ (5)

From this, matrix elements of the Hamiltonian are simple
to calculate in a coherent state basis

('[Hora (@', a)|2) = (#/|2) Hora (2", 2), (6)
where the overlap (2/|z) is given by
1% ! *
(2'|z) = exp (z'*z - 22 - 222) : (7)

The wavefunction ansatz in CCS is given by

K
(U (1)) =D Dult)e™ 1 |z,(1)) , (8)
k=1

where the sum is over K configurations, Dj is a time
dependent amplitude and Sy is the classical action. The
classical action in coherent state notation is given by

Sk; = / |:2 (ZZZk - Zkzlg) - HOI‘d(zk7 Zk:) dt. (9)

The wavefunction is propagated via the time-dependence
of the coherent state basis vectors, amplitudes and ac-
tion. The coherent states are guided by classical trajec-
tories, and evolve according to Hamilton’s equation

_iaHord(ZZa Zk)

0z} (10)

Zy =



The time-dependence of the amplitudes may be found via
substitution of Eq. 8 into the time-dependent Schrodinger
equation and closing with a coherent state basis bra:

K K

. dD, ‘ ,
Z (zk|z1) e o = ! Z (zk|2z1) €' Dy16% Hopa (25, 1),
=1 1=1
(11)

where the 62H! (2}, 2) term is

62Hérd(z;7 Zl) = Hord(227 Zl) - ]yord(zl*7 Zl) — ZZl(ZZ — Zl*)
(12)

Finally, the time-dependence of the classical action is

straightforwardly calculated from Eq. 9.

B. Second Quantisation and CCSB

CCS works for Hamiltonians that can be expressed via
creation and annihilation operators in the normal ordered
form as illustrated in Eq. 6. As in second quantisation
the Hamiltonian of a system of bosons has exactly such
form no modifications of the working equations are re-
quired for treating indistinguishable bosons with CCSB.
The only difference is that the coherent state basis func-
tions are used to represent particle number occupations
of quantum states in the second quantisation formalism,
as opposed to individual particles in the distinguishable
first quantisation representation.

In the second quantisation representation, multiparti-
cle states are described in terms of an occupation number
n(® that describes the number of particles belonging to
a particular quantum state |«). A Fock state describes
the set of occupation number states

0
n) = ] ) = [n©@,nM, . a®), (13)
a=0

and may be generated by successive application of cre-
ation operators on the vacuum state |0)

n@ nM )y =
0) 1) ()
QI " GEOT"
@1 @) @D e g g@y.
n(0)1 n(H1 n(@1

(14)

In CCSB, the multidimensional version of the CCS wave-
function representation is used as a basis set expansion
for Fock states

) = Du(t)e™™* |z (1)), (15)
k=1

which is exactly analogous to Eq. 8. The only difference
is the multidimensional coherent state |zy) is a product of
coherent states that describe occupations of each quan-
tum state |«)

Q
i) = T 12). (16)

Therefore any wavefunction in the basis of Fock states
can be equivalently represented in the basis of coherent
states. The Hamiltonian of a system of indistinguishable
bosons can be second quantised and presented in terms
of 1-body iL(Q)7 2-body W(Q, Q’), and creation and an-
nihilation operators as

H = Z (a]h|B) alTa®
a,B

1 A
+ 3 Z (a, BIW |y, ¢) al@TaBTa Qg
@,B,7,¢

(17)

where |a), |3), |7), and |() are quantum states. This con-
veniently gives a second quantised Hamiltonian in normal
ordered form, which is required by CCSB. In the follow-
ing sections CCSB is applied to two model problems to
illustrate its ability to study fully quantum bosonic prob-
lems and compare to numerically exact results.

III. APPLICATION 1: DOUBLE WELL
TUNNELLING PROBLEM

The first application of CCSB is to an M-dimensional
model Hamiltonian that consists of an (M — 1)-
dimensional harmonic bath, coupled to a 1-dimensional
tunnelling mode governed by an asymmetric double well
potential. This a system-bath problem, which may also
be thought of as a bosonic bath with an impurity, previ-
ously studied in distinguishable representation with lin-
ear coupling of the bath to the system by matching pur-
suit split-operator Fourier transform (MP/SOFT) [72],
standard CCS [73], a trajectory guided configuration in-
teraction (CI) expansion of the wavefunction [74], an
adaptive trajectory guided (aTG) scheme [75], Gaus-
sian process regression (GPR) [76], and a basis expan-
sion leaping multi-configuration Gaussian (BEL MCG)
method [77]. It has also been studied with quadratic
coupling of the bath to the system by MP/SOFT [72],
standard CCS [73], trajectory guided CI [74], aTG [75]
and a 2-layer version of CCS (2L-CCS) [78]. A bench-
mark calculation for the quadratic coupling case has also
been proposed in recent work [79], using a relatively sim-
ple wavefunction expansion in terms of particle in a box
wavefunctions for the tunnelling mode, and harmonic os-
cillator wavefunctions for the harmonic bath. The size
of the calculation in Ref. [79] was greatly reduced by
exploiting the indistinguishability of the bath configu-
rations, the first time this had been considered, and a
well converged result was achieved, prompting the idea
of CCSB. The quadratic coupling case is the one we con-
sider in this application.

The Hamiltonian is given in distinguishable represen-
tation by

o p)’ - Gv* N G’ N E N (1+ )\q(l)) Q2
2 2 16m 2 2

, (18)



where (cj(l),ﬁ(l)) are the position and momentum op-
erators of the l-dimensional system tunnelling mode,
and (Q,P) are the position and momentum operators
of the ( 1)-dimensional harmonic bath modes, with
Q= Z Qq(m) and P = Z 2 (™). The coupling be-
tween system and bath is given by the constant A, whilst
1 determines the well depth.

In previous work [72-75, 78, 79], the parameters A =
0.1 and n = 1.3544 have been used in a 20-dimensional
(M = 20) problem, which we also consider. The ini-
tial wavefunction |¥(0)) is a multidimensional Gaussian
wavepacket, with initial position and momentum centres
for the tunnelling mode ¢ (0) = —2.5 and pM (0) = 0.0,
and for the bath modes ¢™ (0) = 0.0 and 5™ (0) = 0.0
v m.

As the bath oscillators have the same initial condi-

J

]- =1)% m= ]- *
Hoa(z2) = — = (Z]gm—l) 2 +Zl( ) 1)2) L (Z]im OES

2 64n

>

Q
+Z )% (204 (2a)+§ Z Zl(foz

a,=0

The quantum states o) and |5) in Eq. 19 are those of
the harmonic oscillator with o and 8 numbers of quanta,
(@) is the eigenvalue for |a), and the position and mo-
mentum operators of the tunnelling mode have explic-
itly been labelled with (m = 1) to distinguish them
from the « labelling scheme of the second quantised bath
modes. A full derivation of this, alongside evaluation of
the Q(2a725)2 matrix element is shown in Appendix A.
Note that only even harmonic oscillator levels are re-
quired due to all bath modes initially residing in the
ground level, as previously assumed [79], and the bath
having quadratic coupling to the system meaning only
even harmonic oscillator levels will be occupied.

The multidimensional coherent state basis vector |z) is
represented as

Q
jz) = |2"=) o [T 122, (20)
a=0

where |2(m=1)) is a basis function for the tunnelling mode
and |2(2®)) is a basis function for the second quantised
bath modes. The determination of initial conditions for
these coherent state basis functions, as well as the values
of the initial amplitudes is shown in the following section.

A. Initial Conditions for Application 1

The initial coherent state basis functions for the tun-
nelling mode are sampled from a Gaussian distribution

)*Zl(25)Q(2a,25)2 (ZI(Cm:I)*

tions and the same frequency, they can be thought of
as indistinguishable, and the bath part of the Hamilto-
nian may be second quantised for use with CCSB. As
the tunnelling mode is not part of this indistinguishable
system, the portion of the Hamiltonian that describes
it will not be second quantised. However, this will not
pose a problem as the dynamical equations are identical
for CCS and CCSB, the only subtlety is the interpreta-
tion of the coherent state basis vectors |z) as will be dis-
cussed below. Using the definition of a second quantised
Hamiltonian in Eq. 17, and the definition of coherent
states as eigenstates of the creation and annihilation op-
erators, Eq. 18 may be written in normal-ordered form as
Hord(aT a), for which the coherent state matrix element
(zk|Hora (a1, 0)|21) = (zk|21) Hora (2}, 21), where

+ Zl(m:l)“ +4Z](Jn:l)ﬁZl(m:l) +4Z](€m=1)>kZl(m:l)?’

(19)

+ zl(mzl)) )

(

centered around the initial tunnelling mode coordinates
and momenta, as in previous works [73, 78]

2
F(2m=1Y o exp (_U(m—l) ‘z(m:n _ Z(m:l)(o)‘

(21)
where (™= is a parameter governing the width of the
distribution.

Sampling the initial coherent states for the bath can be
performed by obtaining a probability distribution from
the square of the coherent state representation of the
initial bath Fock state. The initial bath Fock state is
equal to

Q
=TT 1)
a=0

(2a=0) (22)

n(2a:2)’ o 77,L(2ac:29)>

:|n
:|(M_1)a0a-~-a0>7

where there are M — 1 bath oscillators all in the ground
harmonic oscillator state. Using the representation of a
coherent state in a basis of Fock states

=Y ) @)

the following may be obtained

(2a)
o= 1222 (122 2)"

mn(29)]

‘ <Z(2a) |n(2a)> |2



where the value of m has appeared to enforce normalisa- instead
tion. This resembles a Poissonian distribution, however o (20) 2
|2(2¢)|2 is continuous so a gamma distribution is used (202 (|z(20‘)\2)" e_‘;@a)l
FUZEY7) o ST (25)
F(n(Qa) T 1) (U(ZQ))R(2 )41
where ¢(2®) is a compression parameter controlling the
width of the distribution, and T" is the gamma function
that is calculated using n(®*® 41 because I'(n) = (n—1)!.
The gamma distribution will be centred around
o929 however | (2(2®)|n) |2 should be centred
around \2(20‘ |2 = n(?%) as its maximum is found by
(2a) (2a) _
d| <Z(2a)|n(2a)> ‘2 _ 1 _e_|z(2a>\2 <|Z(2a)|2)n + n(2a)e_\z<2a)|2 (|Z(2a)|2)n ! —0. (26)
d|z(2a)|2 n(2a)]
[
Fortunately, this is not an issue, as when n?® = 0 B. Results and Comparison to Other Methods

for states 2a¢ > 0, the distribution will be centred
around 0 irrespective of the compression parameter,
and for n(22=9 = )M —1 a compression parameter of
0(2@=0) = 1.0 is used. As we are not constrained by a
choice of compression parameter o(?*>% for the states
2a > 0, we are free to alter it to influence the accuracy
of the calculation, and the final result presented in the
following section uses 029 = 100. The affect of alter-
ing this parameter is discussed in Sec. IIIC.

The initial amplitudes are calculated by projection of
the initial basis onto the initial wavefunction with the
action set to zero

(2 (0 Z Di(0) (z(0)]z:(0)) .  (27)

The overlap of the initial coherent state basis with the
initial wavefunction can be decomposed to

(2 (0)[W(0)) = (2"~ (0)[ =1 (0 H (20)
(28)

The coherent state overlap with initial tunnelling mode
wavefunction (zémzl)(0)|\l'(m:l)(0)> can be calculated
via a Gaussian overlap, Eq. 7, using the initial positions
and momenta for the tunnelling mode "= (0) = —2.5
and p(m=1(0) = 0.0. The coherent state overlap with
initial bath Fock state can be calculated by once more
using the coherent state representation in a basis of Fock
states, Eq. 23

(2 ()M

(M — 1)
(29)

LI L 202
<Hz,ia><o>|n>>=[ﬂe— z ]

The quantity of interest used to assess the performance
of CCSB and compare it to previous methods of study-
ing the problem [72-75, 78, 79] is the cross-correlation
function (CCF). This is the overlap between the wave-
function at time ¢ and the mirror image of the initial
wavepacket, |¥(0)), i.e. (¥(0)|¥(¢)). The mirror im-
age of the initial state has coordinates for the tunnelling
mode of gV (0) = +2.5 and p(V)(0) = 0.0, with bath
modes in the ground harmonic level. It is located in
the upper well of the asymmetric double well tunnelling
potential, therefore non-zero values of the CCF are in-
dicative of tunnelling. The spectrum of the CCF is also
presented via a Fourier transform (FT) of the real part
of the CCF.

The results of the CCSB calculation compared with
previous methods of studying the 20D, A = 0.1 case [72—
75, 78, 79] is shown in Fig. 1 with the absolute values of
the CCFs in Fig. 1(i), and FT spectra in Fig. 1(ii). As can
be seen from these two figures, the CCSB results com-
pare extremely favourably to the benchmark calculation,
with much closer agreement than prior methods. Previ-
ously the trajectory guided CI expansion was the closest
result to the benchmark, due to its basis set expansion
of time-independent basis functions used to represent ex-
cited state configurations being similar to the benchmark
approach. However the CCF still differed from the bench-
mark, with noticeable differences occurring after 25 a.u.,
possibly due to approximations used in sampling the po-
tential energy surface, despite the F'T obtaining splitting
of the higher energy peaks that no prior method man-
aged. For this present CCSB calculation, there is no
significant degradation of the calculation at ¢t > 25 a.u.
as with the other methods, and the splitting of the high
energy peaks is very well reproduced. As was alluded to
in Ref. [78], for this Hamiltonian a detailed description
of the bath is required for accurate propagation, which
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FIG. 1: Comparison of (i) absolute values of the cross-correlation functions and (ii) Fourier transforms of the real
part of the cross-correlation functions for different methods (red, solid) of studying Eq. 18 with M =20. A =0.1
parameters relative to the benchmark [79] (black, dotted): (a) MP/SOFT [72], (b) Trajectory Guided CI
Expansion [74], (c) aTG [75], (d) CCS [73], (e) 2L-CCS [78], (f) CCSB (present work).



is achieved in CCSB by taking account of the symmetry
of the Hamiltonian.

The CCSB calculation uses K = 4000 configurations
and = 5 even harmonic oscillator levels in the bath
basis. The dimensionality of this problem has therefore
been reduced from 20 to 6. The influence on the CCSB
calculation of altering these parameters, as well as the
compression parameter chosen of ¢(2¢>0) = 100 is shown
in the following section.

C. Numerical Accuracy and Convergence

Using an approach first presented in Ref. [78] to illus-
trate the accuracy and convergence of a method studying
Application 1 with respect to the benchmark calculation,
we define an error parameter x as

x= / |Abs((T(0)] W (£)))bench
— Abs({¥(0)|¥(t)))cess| dt,

(30)

which indicates the cumulative error of the absolute value
of the cross-correlation function of the CCSB method
compared to the benchmark. This is shown in Fig. 2(i)
for different values of 0(>*>9 K and €, in panels (a),
(b) and (c).

As with CCS, the CCSB method does not conserve
the norm (U(¢)|¥(¢)) by default due to the use of a basis
consisting of a superposition of coherent states [57]. How-
ever, this can be a useful property as the extent of norm
conservation can be used to determine the accuracy and
reliability of a propagation. Another important quantity
for CCSB to conserve is the total particle number

Q
a)T&(a)N,(t))

N = (u(t)]
a=0

(31)

K Q ‘
ZZ D*D z(SﬁSk)<Zk‘zl> a)x (ﬁ)

which for Application 1 amounts to the number of os-
cillators in the bath, N = (M — 1) = 19. Plots of the
norm and particle number conservation for different val-
ues of 0?*>0) K and Q, (as in Fig. 2(i)), are shown
in Fig. 2(ii), with the value of the norm given by the
dashed/dotted lines without circles and the particle num-
ber by the dashed/dotted lines with circles. It can be seen
that the values of the norm and particle number follow
each other closely for all calculations, and we will discuss
the specific cases in the following.

Firstly, considering panel (a) in Figs. 2(i) and 2(ii),
both K and Q are held fixed whilst ¢(2¢>9) is varied.
It can be seen that the quality of the calculation with
respect to the error term yx, and the conservation of
the norm and particle number improves with increasing
o(22>0) " Further increase of 0(2¢>9 results in a numeri-
cally unstable propagation, as the value of the norm and

particle number explodes as the basis is overcompressed.
This suggests that appropriate choice of ¢(2*>%) is nec-
essary for the initial sampling of the coherent states, as
a value that is too small leads to errors due to the co-
herent states spreading too quickly, whilst a value that
is too large leads to numerical instability.

Secondly, considering panel (b) in Figs. 2(i) and 2(ii),
the value of K is varied whilst €2 is held constant. The
value of ¢(2¢>9) was chosen based on the criteria pre-
sented in the previous paragraph, with larger values of
o(2¢>9) for smaller values of K. This phenomenon has
been noted in previous studies with CCS, where larger
compression parameters are necessary for basis sets with
fewer configurations, see Ref. [59] for further details. The
error x decreases with increasing K, as Monte-Carlo
noise causing decay of the cross-correlation function de-
creases with increasing number of configurations. How-
ever, x does not remain at 0 for the duration of the calcu-
lation, and the K = 4000 propagation is only equivalent
to the K = 3000 calculation for the first 30 a.u. This in-
dicates the slow convergence of the method as mentioned
in the introduction. However, we can regard the accuracy
of the K = 4000 calculation as sufficient for this applica-
tion as we are able to obtain an accurate F'T spectrum
with correct frequencies, alongside the good conservation
of norm and particle number compared to the other cal-
culations with fewer configurations.

Finally, considering panel (c¢) in Figs. 2(i) and 2(ii), the
value of (2 is varied whilst K is held constant. The value
of 0(22>9) was again chosen based on the criteria pre-
sented in the first paragraph, with larger values possible
with increased €. It can be seen that altering the value
of © has a small effect on the accuracy of the calculation
(note the difference in y axis values for x compared to
panels (a) and (b)), and the value Q = 5 was deemed to
result in a stable enough propagation.

IV. APPLICATION 2: INDISTINGUISHABLE
BOSONS IN A DISPLACED HARMONIC TRAP

The second application of CCSB is to a system com-
posed purely of indistinguishable bosons, with N inter-
acting bosons placed in a harmonic trap displaced from
the origin, with NV = 100 used in the present applica-
tion. The oscillations in the density are calculated and
compared to MCTDHB [21, 22] calculations (performed
by the authors, using the MCTDHB package [80]). The
Hamiltonian (in dimensionless units and distinguishable
representation) for this problem consists of a shifted har-
monic potential and a 2-body interaction term

+W(Q,Q), (32)

where Q and P are the position and momentum opera-
tors of the IV bosons, { = 2.1 is a parameter that shifts
the harmonic potential from the origin, and W is the
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FIG. 2: (i) Cumulative error x (defined in Eq. 30) of the CCSB method with respect to the benchmark [79] for
different values of: (a) compression parameter for coherent state sampling of the bath basis levels with zero initial

occupation ¢?*>0) (b) configurations K, and (c) even harmonic oscillator levels in bath basis 2 .

(ii) Norm

(dashed/dotted lines without circles) and particle number (dashed/dotted lines with circles) of CCSB calculations
with different values of: (a) ¢(2*>9, (b) K, and (c) Q. Note that in panels (b) and (c) for both (i) and (ii) the value
of 0(22>9) changes as well as K and Q. This is addressed in the text.

2-body interaction, given by the contact interaction

W(Q.Q) =i(Q - Q). (33)
J
Q
Heova(z,21) = Z el ,(Ca ) (@) Z £QP) (a)*
a=0 a,B=0

The derivation of the above, and evaluation of the matrix
elements Q(®#) and §(®#7:¢) is shown in Appendix B.
The initial sampling of the coherent states and ampli-
tudes is performed in a similar manner to the second
quantised bath of Application 1, and is shown in the fol-
lowing section.

The constant Ag controls the strength of the interac-
tion, with values of Ay = 0.001 and Ay = 0.01 used in
the present application, whilst §(Q — Q’) is the Dirac
delta function. As with Application 1, the Hamiltonian
in Eq. 32 must be second quantised and normal-ordered
before it can be used with CCSB, with

Q
+Z*2k ) <a>+2 I e G A G Ll)

a,B,7,(=0
(34)

A. Initial Conditions for Application 2

The initial Fock state for the system includes all bosons
in the ground harmonic state

Q

m) = T In®) = @, 00, n®) =

a=0

1100,0,....,0).

(35)

As with the second quantised bath of Application 1,
the coherent states are sampled via a gamma distribution
like in Eq. 25. The ground state with initial occupation
n(@=0) = 100 is sampled with compression parameter



o(@=0) = 1.0 to ensure the distribution is centred in the
correct place, whilst once more we are free to choose the
compression parameter for the excited states with initial
occupation n(®>9 = 0. Values of 0(®>% = 109 for Ay =
0.001 and ¢(®>9 = 107 for Ao = 0.01 are used, with
full details for the determination of these compression
parameters shown in the following section.

Initial amplitudes are calculated by projecting the ba-
sis onto the initial Fock state in Eq. 35

ZDI 0)z(0)).  (36)

where

(z£(0)[m) H z (0)m))

H (a><0),21 (Zéazo)*(o))loo
e —_-

100!

For the MCTDHB calculations, the initial orbitals
were constructed from eigenfunctions of the unshifted
trap (£ = 0), with the coefficient of one of the orbitals set
to 1, whilst the rest were set to 0. This was chosen for
the initial conditions of the MCTDHB calculations rather
than propagation in imaginary time to obtain the initial
orbitals and coefficients of the ground state [21, 22], as we
currently do not have an analogous procedure for CCSB
due to the instability of trajectories when propagating
in imaginary time [81]. This way we ensure the initial
conditions for both methods are the same, and we are
testing the propagation accuracy of both methods. In
future work we will look at the effect of initial conditions
on CCSB, and its comparison to MCTDHB.

B. Results and Comparison to MCTDHB

The dynamics are followed by observing the evolution
of the density matrix over the course of the calculation,
which in CCSB can be evaluated as

p(aﬁ) — <\p|&(a)’fd(5)|\1/>
K
) 38
_ Z DZDlez(Slfsk) <Zk|zl> Z](ga)*zl(ﬁ)' ( )
k=1

As the creation and annihilation operators have different
interpretations in CCSB and MCTDHB (acting on quan-
tum states vs orbitals), the density matrix in this form
also has a different interpretation. Therefore, to compare
the two methods on the same footing, the 1-body density
is evaluated as a function of position, which for CCSB in

this application can be calculated by the following
p(Q) = (alp'™|B)

Q 1 1\ /4 )
_ - -Q° /2 (a,B)
E — e €q

1 1\
X 75' (77) "2 Hes(Q).

This 1-body density is shown as a function of position
and time in Fig. 3 for interaction strengths A¢g = 0.001
in (i) and Ag = 0.01 in (ii), with the MCTDHB cal-
culations in panel (a) and CCSB calculations in panel
(b). The MCTDHB calculations use 1 orbital for the
Ao = 0.001 case, and 3 orbitals for the A\g = 0.01 case,
labelled as MCTDHB(1) and MCTDHB(3), respectively.
The CCSB calculations use K = 150 configurations for
both the A\g = 0.001 and Ay = 0.01 cases, with Q = 26
harmonic oscillator levels for the Ay = 0.001 case and
Q) = 25 harmonic oscillator levels for the Ay = 0.01 case,
with the compression parameters o(®>9 as mentioned in
the previous section. It can be seen that the MCTDHB
and CCSB calculations of the 1-body density compare
well to one another, illustrating the oscillations in the
bosonic cloud due to the trap displacement.

As well as the density being subject to oscillations as a
function of the trap displacement, it also exhibits breath-
ing oscillations, which may not be immediately apparent
from Fig. 3. To illustrate these, we plot the variance in
the 1-body density as a function of time

- / Q?*p(Q)dQ — ( / Qr(Q) dQ>2, (40)

which is shown in Fig. 4, with the interaction strengths
Ao = 0.001 in (i) and Ag = 0.01 in (ii). It can immedi-
ately be seen that the stronger interaction strength pro-
duces larger breathing oscillations, which is not as easy
to see in Fig. 3. Furthermore, the breathing oscillations
in Fig. 4 serve to determine the convergence of the meth-
ods: MCTDHB with respect to the number of orbitals;
and CCSB with respect to 0(®>9 | K and Q. A portion
of the peak of the density variance at ~ 8 a.u. is high-
lighted to clearly illustrate any discrepancies that may
be difficult to distinguish. As with Application 1, the
accuracy and convergence of the CCSB calculation may
also be determined from the conservation of norm and
particle number, which is shown in Fig. 5.

For A\g = 0.001, the MCTDHB calculations using 1, 3,
and 4 orbitals demonstrate equivalent breathing oscilla-
tions in panel (a) of Fig. 4(i), whilst there appears to be
an anomalous result for MCTDHB with 2 orbitals. The
authors are unsure of the reason for this, which may be
best left for a future MCTDHB study, however we regard
the MCTDHB(1) as being fully converged, and use this
to compare to the CCSB calculations in panels (b), (c),
and (d), as well as in Fig. 3(1). An MCTDHB calcula-
tion with 1 orbital is equivalent to the GPE [82], so these
dynamics are at the mean-field level.
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FIG. 3: Space-time representation of the evolution of the 1-body density for (a) MCTDHB and (b) CCSB
calculations of Application 2 with interaction strengths (i) Ag = 0.001 and (ii) Ao = 0.01.

In panel (b) of Fig. 4(i) we alter the value of the com-
pression parameter ¢(®>%  whilst keeping the number
of configurations fixed at K = 150, and the number of
harmonic oscillator levels fixed at 2 = 26. There ap-
pears to be little difference in the breathing oscillations
for different values of ¢(®>9  although the highlighted
peak at ~ 8 .a.u. demonstrates small discrepancies be-
tween the MCTDHB calculation and o(®>9 = 105 and
o(@>0) = 107, whilst ¢(@>9 = 108 and ¢(®*>9 = 109 su-
perimpose on the MCTDHB result. The conservation of
norm and particle number for different values of o(®>0)
is shown in panel (a) of Fig. 5(i), where ¢(®>% = 108 and
o(@>0) = 10° superimpose upon a value of the norm of
1, and particle number 100, as should be expected. We

keep o(®>0) = 10? for the remaining calculations. This is
much larger than the compression parameter used in Ap-
plication 1, however much fewer configurations are used
in this application, and the compression parameter nec-
essary also depends upon the problem studied, and how
the dynamics affect the motion of the basis.

In panel (c) of Fig. 4(i) we alter the value of K whilst
keeping ¢(®>9 and Q fixed. Altering the value of the
compression parameter for different values of K was not
necessary like in Application 1, as a stable basis was able
to be formed. We observe very little discrepancy between
the different CCSB calculations and MCTDHB, and the
norm and particle number conservation for K = 150 and
K = 200 are very similar in panel (b) of Fig. 5(1). We
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FIG. 4: Variance of the 1-body density (Q) for Application 2 with two-body interaction strength (i) Ag = 0.001 and
(ii) Ao = 0.01. In the (a) panels MCTDHB calculations with different numbers of orbitals are shown, and the
converged result is used to compare to CCSB calculations with different values of (b) compression parameter for
coherent state sampling of the harmonic oscillator levels with zero initial occupation o(*>9) (¢) configurations K
and (d) harmonic oscillator levels in the basis €.

therefore regard K = 150 as being fully converged.

In panel (d) of Fig. 4(i) we alter the value of Q and
keep K and 0(®>9 fixed. As with the above, altering the
value of 0(®>% was not necessary as a stable basis was
able to be formed each time. Larger discrepancies be-
tween the CCSB calculations and the MCTDHB result
are seen with in this panel, indicating that the choice
of 2 has the largest influence on this calculation. The
results for 2 = 25 and 2 = 26 superimpose, indicating
that the calculation is converged by this point. The con-
servation of norm and particle number for both of these
calculations is also similar in panel (c) of Fig. 5(i).

Turning to the larger interaction strength of Ay = 0.01,
we follow the same approach as above in determining the
accuracy and convergence of the calculations. Initially,
in panel (a) of Fig. 4(i) the MCTDHB calculations with
1 and 2 orbitals exhibit minor differences to those with
3 and 4 orbitals, shown in the highlighted portion of the
figure, so we regard the MCTDHB(3) calculation as our

fully converged reference point. At this level of interac-
tion strength, an above mean-field description is therefore
necessary. We admit that the discrepancy between these
MCTDHB calculations is not very large, however a sim-
ilar study in Ref. [31] also illustrated minor differences
in breathing dynamics for MCTDHB calculations with
different numbers of orbitals.

In panel (b) of Fig. 4(ii) we alter the value of the com-
pression parameter ¢(®>% whilst keeping the number
of configurations fixed at K = 150, and the number of
harmonic oscillator levels fixed at 2 = 25. All the calcu-
lations superimpose, and there is even less discrepancy
than in the A\g = 0.001 case. For the remaining calcula-
tions we choose a compression parameter of ¢(*>9) = 107
as this demonstrates the best norm and particle number
conservation in panel (a) of Fig. 5(ii).

In panel (c) of Fig. 4(ii) we alter the value of K whilst
keeping 0(®>9 and Q fixed. There are minor differences
between the K = 100 calculation and the K = 150 and
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FIG. 5: Norm (dashed/dotted lines without circles) and particle number (dashed/dotted lines with circles) for
CCSB calculations of Application 2 with two-body interaction strength (i) Ag = 0.001 and (ii) A9 = 0.01 with
different values of (a) compression parameter for coherent state sampling of the harmonic oscillator levels with zero
initial occupation (@9 (b) configurations K and (c) harmonic oscillator levels in the basis €.

K = 200 calculations, the latter of which superimpose
on the MCTDHB result. The norm and particle number
conservation of the K = 150 and K = 200 calculations
are very similar in panel (b) of Fig. 5(ii), therefore we
regard the K = 150 result as being fully converged.

In panel (d) of Fig. 4(ii) we alter the value of Q and
keep K and o(®>9 fixed. As with the \g = 0.001 cal-
culations, this has the largest effect on the breathing os-
cillations, with Q = 20 and 2 = 22 being insufficient to
describe them accurately, whilst the 2 = 24 and Q2 = 25
cases superimpose upon the MCTDHB result. The norm
and particle number conservation of the 0 = 24 result,
shown in panel (c¢) of Fig. 5(ii) is not as good as the
Q = 25 result, which is why we choose the latter as our
most accurate calculation.

The above demonstrates that CCSB is able to repro-
duce MCTDHB calculations in both the mean field and
multi orbital fully quantum regimes, with similar levels
of theory for the CCSB calculations in each regime. We
have also shown that the method converges appropriately
with respect to the K and ) parameters, this it is stable
with respect to norm and particle number conservation,
and that appropriate choice of the compression parame-
ter 0(®>9 for initial sampling of the coherent state basis
is necessary, like in Application 1.

V. CONCLUSIONS

In this work the CCS method has been straight-
forwardly applied to investigation of indistinguishable
bosons, as MCTDH and ML-MCTDH have been, and
the method dubbed CCSB. Instead of the coherent state
basis functions being used to represent individual par-
ticles like in the standard distinguishable representation
of CCS, in CCSB they are used as a basis for number
occupation of quantum states in the second quantisation
Fock state formalism.

Two example model Hamiltonians have been studied,
demonstrating the accuracy of the method by compar-
ing to fully quantum benchmarks. In the first example,
CCSB was applied to the system-bath asymmetric double
well tunnelling problem previously studied in Refs. [72—
75, 78, 79] in distinguishable representation. As the bath
is comprised of oscillators of the same frequency, they
were treated as indistinguishable and the bath portion
of the Hamiltonian second quantised. The system tun-
nelling portion of the Hamiltonian was kept in distin-
guishable representation, therefore this first application
was a hybrid of standard CCS and CCSB. This does not
pose a problem however, as the working equations for tra-
jectories and time-dependence of amplitudes are the same
in each. This may also be thought of as a system with a
bosonic bath and an impurity, opening up the possibil-



ity of the method studying multi-atomic Bose-Einstein
condensates [64], spinor Bose-Einstein condensates [65],
dark-bright solitons [66], and Bose-polarons [67]. The
previously studied 20D, quadratic system-bath coupling
with constant A = 0.1 case [72-75, 78, 79] was investi-
gated, and the second quantised bath required 2 =
harmonic oscillator levels in the basis, thus the dimen-
sionality of the problem was reduced from 20 to 6. The
CCSB calculation was in much better agreement with a
benchmark result [79] on the system than all other meth-
ods that have studied the problem.

In the second example, a model Hamiltonian for a sys-
tem of 100 bosons in a shifted harmonic trap was stud-
ied, the 1-body density has been calculated, as well as
its variance, to demonstrate the breathing oscillations of
the density. Matrix elements of 2-body operators had
to be calculated, as is common for interacting conden-
sates, and these may be computed analytically by CCSB.
The density oscillations were calculated at two different
two-body interaction strengths and compared to MCT-
DHB benchmark calculations. The weaker interaction
strength was able to be described by MCTDHB with 1
orbital, such that it was equivalent to the GPE mean-field
theory, whilst the stronger interaction strength required
MCTDHB with 3 orbitals, and was thus fully quantum,
taking correlations into account and going beyond the
mean-field approach. CCSB was able to reproduce both
results with similar levels of theory, providing motivation
for further study on more challenging Bose-Einstein con-
densate systems. In particular, future avenues of research
for CCSB in this vein include more complicated Bose-
Einstein condensate problems, such as that in Ref. [22]
of a condensate in a single well trap that is deformed into
a double well, like that observed in experimental bosonic
Josephson junctions [70, 71]. We also wish to consider
condensates in multi-well traps, such as a multi-site ver-
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sion of the Bose-Hubbard model studied in Ref. [61], and
other interesting systems that have previously been stud-
ied by ML-MCTDHB [45-52].

Both applications have demonstrated that the CCSB
method converges with the number of configurations K
and number of quantum states included in the basis ).
We have also demonstrated that appropriate sampling of
the initial coherent states via a compression parameter
o is necessary to ensure a reliable and accurate calcula-
tion. Further developments of the method that we envis-
age in future include development of methods to generate
initial conditions, as imaginary time propagation is un-
stable with trajectories; incorporation of SU(n) coherent
states, as demonstrated in Ref. [83]; and the combination
of the method with one to treat identical fermions [84] to
study Bose-Fermi mixtures, as has been carried out by
MCTDH [85] and ML-MCTDH [86] previously.
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Appendix A: Second Quantisation and Normal Ordering of Hamiltonian for Application 1

Using the definition of a second quantised Hamiltonian in Eq. 17 in the main text, Eq. 18 may be written as

s(m=1)2  A(m=1)2  (m=1)* Q P2 Q AGm=1) 2
2 p q q N q A ()t A
= _ + + Z a|7+7|5> (tgB) | L 242~ Z (a]Q?|8) al@Ta®)
2 2 161 2
a,f= a,B=0
A(m=1)2  (m=1)2 ~(m=1)* Q Az Az AGm=1)
=P — - 4 —+ q — Z ‘ ya@ig@ M Z Q@A) (@)1 (A1)
n a=0 a,B=0
A(m=1)2  (m=1)2 ~(m=1)* [ @ )\ ~(m=1)
p g q PENPACY) q a,B8)? 4 (@)t
5 Tt e ; ;OQ i

The quantum states |a) and |3) are those of the harmonic oscillator with o and 5 numbers of quanta, and the equality

on the second line for <a\P— + Q |3) follows because this is non-zero with eigenvalue €(®) only when a = 3. The
sums are from the ground level a = 0, to some upper level €. In principle, one should choose 2 = oo for a complete
description of the bath, however in practice additional oscillator levels may simply be added on until a converged
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result is achieved. The position and momentum operators of the tunnelling mode have explicitly been labelled with
(m = 1) to distinguish them from the « labelling scheme of the second quantised bath modes.

The matrix Q(a’ﬁ)Q is evaluated as

% (a+2)(a+1) fa=p-2
1
@@ = {pVala—T  ita=g+2 (A2
el ifa=4
0 otherwise.

As this matrix is non-zero only for quanta o = § and @ = § £ 2, and we may say that all bath modes are initially
in the ground harmonic oscillator level (aw = 0) as they are at the origin in distinguishable representation (previously
assumed in the benchmark calculation [79]), only harmonic oscillator levels with even numbers of quanta will be
included and the bottom line of Eq. Al is written as

A(m:l)z A(m:1)2 A(m:1)4 Q2 )\ 4(m=1) B
gD q 4q (2a) 5 (2a)t A (20) q (20,28)% 5 (20)1 5 (26)
H = — E E . A
5 > + 167 + a:Oe a a 2 OQ (A3)

The relationship between the creation and annihilation operators and ¢ and p given in Eq. 3 may then be used in
Eq. A3 alongside the relationships in Egs. 2 and 6 to give Eq. 19.

Appendix B: Second Quantisation of Hamiltonian for Application 2

Using the definition of a second quantised Hamiltonian in Eq. 17 in the main text, Eq. 32 may be written as

Q2 0
jo Z |7+ |3>a(a)Td(ﬂ)_ S (aleQlB)attal® + Z 8y a@ta®

a,=0 a,=0 a,=0

RS (@)1 4(B)15(0) ()
ty > (08M0(Q - Q)¢ aTa e
a,B,7,(=0
Q 152 Q2 Q Q 52 A A
:Z<a|7+7| A — 3" (al¢QlB) alTal? + Z(alg\am(a”a(“) (B1)
a=0 a,B=0 a=0

Q
+§ 3 (i@ Q)N a 0

Q
— @@tz (0,8) ()1 5,(8) 5 G@tg(@) (2,8,7,¢) ()1 5 (BT 5(€) 5 ()
£Q + + Aod a\“1a\PalSa\
2
a,=0 a,3,7,(=0

The relationships in Egs. 2 and 6 may then be used with Eq. Bl to give Eq. 34. In Eq. B1, €(® is the eigenvalue of
the harmonic oscillator for state |o), and Q(*) is a matrix given by

) 5 a=p+1
QP = (a|QB) = \/é B=a+1. (B2)
0 otherwise.

Evaluation of the 6(®#7:¢) matrix is slightly more involved, as it is required to solve the integral

5(04,[3,"/70 — <a7 ﬁ|5(Q - Ql>|7a <>

e (N g L (O aragm
— - — H (e} - — H /!
/700 o V2%l (w) ‘ O <7r> ¢ Q) (B3)

i(Q-Q))

N\ e 1 (1 e
= () e 2HeM(Q) () e 2H9(Q)AQdQ’
V2Iyh A\ U

20!
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where He(®) (Q) is a Hermite polynomial of order a. However, an analytic solution is possible, and the above may be

simplified using the relationship

+oo
[ s s = fo), (B4)
and like terms collated to obtain
« 1 e —2Q? «
§leB€) = 71\/2(0¢+5+’Y+<)a'5"y'§'/ ¥ He Q) H W (QH (QHV(Q)dQ. (B5)

This will only be non-zero if the integrand is an even function, so the product of Hermite polynomials can only have

even powers of Q

§5lB7:.¢) — 1

/2081 +Cal Bl

+o00 (a+B4+y+¢) /2

2, Q°dQ (B6)

e*QQ2 Z

- 7=0

where co; is a constant obtained from the product of Hermite polynomial coefficients. Using the following identity

+oo
IZneféaIZ — ./ 2l
—c0 a

i(Zn— nHn

an

forn >0 (B7)

combined with a Gaussian integral for 7 = 0, Eq. B6 can be evaluated as

5870 —

1 po (at+B+v+()/2 1
W= =02 =1D!|. B8
77\/2a+ﬁ+’7+<a!5!7!<! 260 * Z = \[247( g ) (B8)

T=1

We note that an alternative method of calculating the 6(*#7:¢) matrix elements exists using Gauss-Hermite quadra-

ture [87], however our approach was sufficiently efficient.
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