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Abstract

Raw materials are anisotropic and heterogeneous in nature, and recovering their conduc-
tivity is of utmost importance to the oil, aerospace and medical industries concerned with
the identification of soils, reinforced fiber composites and organs. Due to the ill-posedness
of the anisotropic inverse conductivity problem certain simplifications are required to
make the model tracktable. Herein, we consider such a model reduction in which the
conductivity tensor is orthotropic with the main diagonal components independent of one
space variable. Then, the conductivity components can be taken outside the divergence
operator and the inverse problem requires reconstructing one or two components of the
orthotropic conductivity tensor of a two-dimensional rectangular conductor using initial
and Dirichlet boundary conditions, as well as non-local heat flux over-specifications on
two adjacent sides of the boundary. We prove the unique solvability of this inverse coeffi-
cient problem. Afterwards, numerical results indicate that accurate and stable solutions
are obtained.

Keywords: Inverse problem; Orthotropic thermal conductivity; Two-dimensional heat
equation; Nonlinear optimization.

1 Introduction

The reconstruction of coefficients in the parabolic heat equation, [3,10], has been the focus
of attention in several fields, e.g. finance, groundwater flow, oil recovery, and heat trans-
fer. In particular, the identification of coefficients in two-dimensional heat conduction
problems has received significant attention from many researchers [5,6,11,15,20]. Most of
these studies relate to isotropic materials. However, it has been found that factors such as
manufacturing and curing processes have impact on the material properties of a structure,
often introducing extra variations, including anisotropy, [7], which are difficult to mea-
sure directly. The estimation of thermal properties for multi-dimensional inhomogeneous
and anisotropic media is quite limited in the literature, see e.g. [2, 12]. Such a coefficient
problem presents several difficulties because it is inverse, nonlinear and ill-posed.
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At steady-state, the study on the determination of the diffusivity/conductivity of a
layered and orthotropic medium has been addressed in [1,2]. At the same time, the general
case concerning the identification of an anisotropic spacewise dependent conductivity in
the elliptic Laplace-Beltrami equation was thoroughly investigated, [19]. However, in the
time-dependent case the scenario has received limited attention from researchers. Here,
we only highlight the nonlinear identification of a temperature-dependent orthotropic
material, [18], the recovery of the leading coefficients of a heterogeneous orthotropic
medium, [8, 9, 14], and the space-dependent anisotropic case addressed in [12].

In a recent paper, [8], the authors have investigated the recovery of the thermal con-
ductivity coefficients a(y, t) > 0 and b(x, t) > 0 of an orthotropic rectangular conductor
along with the temperature u(x, y, t) in a two-dimensional problem given by the parabolic
heat equation

∂u

∂t
(x, y, t) = a(y, t)

∂2u

∂x2
(x, y, t) + b(x, t)

∂2u

∂y2
(x, y, t) + f(x, y, t),

(x, y, t) ∈ QT := (0, h)× (0, ℓ)× (0, T ), (1)

where h, ℓ, T are given positive quantities and f(x, y, t) is a given heat source, subject to
the initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ D := [0, h]× [0, ℓ], (2)

the Dirichlet boundary conditions

u(0, y, t) = µ11(y, t), u(h, y, t) = µ12(y, t), (y, t) ∈ [0, ℓ]× [0, T ], (3)

u(x, 0, t) = µ21(x, t), u(x, l, t) = µ22(x, t), (x, t) ∈ [0, h]× [0, T ], (4)

and the heat flux over-specifications

a(y, t)
∂u

∂x
(0, y, t) = κ1(y, t), (y, t) ∈ [0, ℓ]× [0, T ], (5)

b(x, t)
∂u

∂y
(x, 0, t) = κ2(x, t), (x, t) ∈ [0, h]× [0, T ], (6)

where ϕ, µ1i, µ2i for i = 1, 2 are given functions satisfying compatibility conditions, and
κ1 and κ2 are given heat flux measured data. In this paper, we generalise the local heat
flux measurements (5) and (6) to the more general non-local over-specifications

a(y, t)
[

ν11(y, t)
∂u

∂x
(0, y, t) + ν12(y, t)

∂u

∂x
(h, y, t)

]

= κ1(y, t), (y, t) ∈ [0, ℓ]× [0, T ], (7)

b(x, t)
[

ν21(x, t)
∂u

∂y
(x, 0, t) + ν22(x, t)

∂u

∂y
(x, ℓ, t)

]

= κ2(x, t), (x, t) ∈ [0, h]× [0, T ], (8)

where κ1 and κ2 are given functions and (νi,j)i,j=1,2 are given coefficients. Of course, when
ν11 = ν21 = 1 and ν12 = ν22 = 0, expressions (7) and (8) become (5) and (6), respectively.
Expressions (7) and (8) are linear combinations of heat fluxes across the opposite sides of
the rectangular heat conductor D = (0, h)× (0, ℓ).

The organization of the paper is as follows. In Section 2, the existence and uniqueness
of the solution (a(y, t), b(x, t), u(x, y, t)) of the inverse problem (1)–(4), (7) and (8) are
proved. In Section 3, we briefly describe the explicit FDM used to discretise the direct
problem. In Section 4, the numerical approach based on the minimization of the nonlin-
ear least-squares objective function is introduced. Numerical results are presented and
discussed in Section 5. Finally, conclusions are presented in Section 6.
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2 Unique solvability of the inverse problem

Consider the following assumptions:

(A1) ϕ ∈ C2+γ(D), µ1i ∈ C2+γ,1+γ/2([0, ℓ]× [0, T ]), µ2i ∈ C2+γ,1+γ/2([0, h]× [0, T ]), ν1i ∈

Cγ,γ/2([0, ℓ]× [0, T ]), ν2i ∈ Cγ,γ/2([0, h]× [0, T ]), i ∈ {1, 2}, κ1 ∈ Cγ,γ/2([0, ℓ]× [0, T ]),

κ2 ∈ Cγ,γ/2([0, h]× [0, T ]), f ∈ Cγ,γ/2(QT ), for some γ ∈ (0, 1);

(A2) ϕx(x, y) > 0, ϕy(x, y) > 0, (x, y) ∈ D; κ1(y, t) > 0, ν11(y, t) + ν12(y, t) > 0, (y, t) ∈

[0, ℓ]× [0, T ], κ2(x, t) > 0, ν21(x, t) + ν22(x, t) > 0, (x, t) ∈ [0, h]× [0, T ];

(A3) consistency conditions of the zero and the first orders hold.

In (A1), Ck+γ,(k+γ)/2, for k ∈ {0, 2} and γ ∈ (0, 1), denotes the space of functions which are
k-times continuously differentiable in space and k/2-times continuously differentiable in
time, with the space partial derivatives of order k being Hölder continuous with exponent
γ and the time partial derivative of order k/2 being Hölder continuous with exponent
γ/2.

2.1 Local existence of solution

Theorem 1. Suppose that the assumptions (A1)–(A3) hold. Then, for some T0 ∈ (0, T ]
there exists a solution (a(y, t), b(x, t), u(x, y, t)) of the problem (1)–(4), (7) and (8) such
that 0 < a ∈ Cγ,γ/2([0, ℓ]× [0, T0]), 0 < b ∈ Cγ,γ/2([0, h]× [0, T0]) and u ∈ C2+γ,1+γ/2(QT0

).

Proof. To prove the local existence of a solution to (1)–(4), (7) and (8) we are first going
to reduce it to an equivalent, in a certain sense, operator equation with respect to (a, b)
and afterwards apply the Schauder fixed point theorem.

To reduce the problem (1)–(4) to another problem with homogeneous initial and
boundary conditions we denote

ψ(x, y, t) := µ11(y, t)− µ11(y, 0) +
x

h

(

µ12(y, t)− µ12(y, 0)− µ11(y, t) + µ11(y, 0)
)

+µ21(x, t)− µ21(x, 0)−
[

µ11(0, t)− µ11(0, 0) +
x

h

(

µ12(0, t)− µ12(0, 0)− µ11(0, t)

+µ11(0, 0)
)]

+
y

ℓ

[

µ22(x, t)− µ22(x, 0)− µ11(ℓ, t) + µ11(ℓ, 0)−
x

h

(

µ12(ℓ, t)− µ12(ℓ, 0)

−µ11(ℓ, t) + µ11(ℓ, 0)
)

− µ21(x, t) + µ21(x, 0) + µ11(0, t)− µ11(0, 0)

+
x

h

(

µ12(0, t)− µ12(0, 0)− µ11(0, t)− µ11(0, 0)
)]

and make the superposition

u(x, y, t) = v(x, y, t) + ϕ(x, y) + ψ(x, y, t). (9)

For the function v we get the problem

vt = a(y, t)vxx + b(x, t)vyy + F (x, y, t) + a(y, t)(ϕxx(x, y) + ψxx(x, y, t))

+b(x, t)(ϕyy(x, y) + ψyy(x, y, t)), (x, y, t) ∈ QT , (10)
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v(x, y, 0) = 0, (x, y) ∈ D, (11)

v(0, y, t) = v(h, y, t) = 0, (y, t) ∈ [0, ℓ]× [0, T ], (12)

v(x, 0, t) = v(x, ℓ, t) = 0, (x, t) ∈ [0, h]× [0, T ], (13)

where F (x, y, t) := f(x, y, t)− ψt(x, y, t).
With the aid of the Green functionG(x, y, t; ξ, η, τ) for the Dirichlet problem associated

to the leading parabolic operator in (9), we have, [13],

v(x, y, t) =

t
∫

0

∫∫

D

G(x, y, t; ξ, η, τ)
[

F (ξ, η, τ) + a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ))

+b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ, (x, y, t) ∈ QT , (14)

and, using (9),

u(x, y, t) = ϕ(x, y) + ψ(x, y, t) +

t
∫

0

∫∫

D

G(x, y, t; ξ, η, τ)
[

F (ξ, η, τ) + a(η, τ)(ϕξξ(ξ, η)

+ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ, (x, y, t) ∈ QT .(15)

Finding from here the partial derivatives ux, uy and substituting them into (7) and (8)
we get the following nonlinear system of equations for the determination of a(y, t) and
b(x, t) :

a(y, t)

(

ν11(y, t)

(

ϕx(0, y) + ψx(0, y, t) +

t
∫

0

∫∫

D

Gx(0, y, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ

)

+ν12(y, t)

(

ϕx(h, y) + ψx(h, y, t) +

t
∫

0

∫∫

D

Gx(h, y, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ)

))

= κ1(y, t), (y, t) ∈ [0, ℓ]× [0, T ], (16)

b(x, t)

(

ν21(x, t)

(

ϕy(x, 0) + ψy(x, 0, t) +

t
∫

0

∫∫

D

Gy(x, 0, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ

)

+ν22(x, t)

(

ϕy(x, ℓ) + ψy(x, ℓ, t) +

t
∫

0

∫∫

D

Gy(x, ℓ, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ)

))

= κ2(x, t), (x, t) ∈ [0, h]× [0, T ]. (17)
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Using assumption (A2) we can estimate from below the following expressions appearing
in (16) and (17):

ν11(y, t)ϕx(0, y) + ν12(y, t)ϕx(h, y) ≥
(

min
D

ϕx(x, y)
)

(

min
[0,ℓ]×[0,T ]

(ν11(y, t) + ν12(y, t))

)

=:M1 > 0,

ν21(x, t)ϕy(x, 0) + ν22(x, t)ϕy(x, l) ≥
(

min
D

ϕy(x, y)
)

(

min
[0,h]×[0,T ]

(ν21(x, t) + ν22(x, t))

)

=:M2 > 0.

On the other hand, the rest of terms in (16) and (17) are equal to zero when t = 0. Hence,
there exists a number T0 ∈ (0, T ] such that

∣

∣

∣

∣

ν11(y, t)

(

ψx(0, y, t) +

t
∫

0

∫∫

D

Gx(0, y, t; ξ, η, τ)
[

F (ξ, η, τ) + a(η, τ)(ϕξξ(ξ, η)

+ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ

)

+ ν12(y, t)

(

ϕx(h, y)

+ψx(h, y, t) +

t
∫

0

∫∫

D

Gx(h, y, t; ξ, η, τ)
[

F (ξ, η, τ) + a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ))

+b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ)

)∣

∣

∣

∣

≤
M1

2
, (y, t) ∈ [0, ℓ]× [0, T0], (18)

∣

∣

∣

∣

ν21(x, t)

(

ψy(x, 0, t) +

t
∫

0

∫∫

D

Gy(x, 0, t; ξ, η, τ)
[

F (ξ, η, τ) + a(η, τ)(ϕξξ(ξ, η)

+ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ

)

+ ν22(x, t)

(

ϕy(x, ℓ)

+ψy(x, ℓ, t) +

t
∫

0

∫∫

D

Gy(x, ℓ, t; ξ, η, τ)
[

F (ξ, η, τ) + a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ))

+b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ)

)∣

∣

∣

∣

≤
M2

2
, (x, t) ∈ [0, h]× [0, T0]. (19)

Now we can replace (16), (17) by the system

a(y, t) = κ1(y, t)

(

ν11(y, t)

(

ϕx(0, y) + ψx(0, y, t) +

t
∫

0

∫∫

D

Gx(0, y, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ

)

+ν12(y, t)

(

ϕx(h, y) + ψx(h, y, t) +

t
∫

0

∫∫

D

Gx(h, y, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ)

))

−1

,

(y, t) ∈ [0, ℓ]× [0, T0],(20)
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b(x, t) = κ2(x, t)

(

ν21(x, t)

(

ϕy(x, 0) + ψy(x, 0, t) +

t
∫

0

∫∫

D

Gy(x, 0, t; ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ

)

+ν22(x, t)

(

ϕy(x, ℓ) + ψy(x, ℓ, t) +

t
∫

0

∫∫

D

Gy(x, ℓ; t, ξ, η, τ)
[

F (ξ, η, τ)

+a(η, τ)(ϕξξ(ξ, η) + ψξξ(ξ, η, τ)) + b(ξ, τ)(ϕηη(ξ, η) + ψηη(ξ, η, τ))
]

dξdηdτ)

))

−1

,

(x, t) ∈ [0, h]× [0, T0].(21)

With the aid of (18), (19) we find from (20), (21) the estimates

a(y, t) ≤

max
[0,ℓ]×[0,T0]

κ1(y, t)

M1/2
=: A1, a(y, t) ≥

max
[0,ℓ]×[0,T0]

κ1(y, t)

max
D

ϕx(x, y) +M1/2
=: A0 > 0,

(y, t) ∈ [0, ℓ]× [0, T0], (22)

b(x, t) ≤

max
[0,h]×[0,T0]

κ2(x, t)

M2/2
=: B1, b(x, t) ≥

max
[0,h]×[0,T0]

κ2(x, t)

max
D

ϕy(x, y) +M2/2
=: B0 > 0,

(x, t) ∈ [0, h]× [0, T0]. (23)

Now, applying the Schauder fixed-point theorem we establish the existence of solution
to the system of nonlinear equations (20) and (21). Denote N := {(a, b) ∈ C([0, ℓ] ×
[0, T0]) × C([0, h] × [0, T0]) : A0 ≤ a(y, t) ≤ A1, B0 ≤ b(x, t) ≤ B1}, and represent the
system (20) and (21) as an operator equation

ω = Pω, ω ∈ N , (24)

where ω := (a(y, t), b(x, t)) and the operator P is defined by the right-hand sides of
equations (20) and (21). Due to the construction of N , the operator P maps N onto
itself. The compactness of the operator P may be established analogously to [11]. Hence,
there exists at least one solution (a(y, t), b(x, t)) of the system (20) and (21) in the space
N . Taking into account the assumption (A1), it is easy to see that (a, b) ∈ Cγ,γ/2([0, ℓ]×
[0, T0]) × Cγ,γ/2([0, h] × [0, T0]). Substituting a and b into equation (1) we find u(x, y, t)
as a solution of the direct problem (1)–(4) from the space C2+γ,1+γ/2(QT0

). The proof is
complete.

2.2 Uniqueness of solution

Theorem 2. Suppose that the assumption
(A4) κ1(y, t) 6= 0, (y, t) ∈ [0, ℓ]× [0, T ], κ2(x, t) 6= 0, (x, t) ∈ [0, h]× [0, T ],
is satisfied. Then, the solution (a(y, t), b(x, t), u(x, y, t)) of the problem (1)–(4), (7) and
(8) is unique in the space Cγ,γ/2([0, ℓ]× [0, T0])×Cγ,γ/2([0, h]× [0, T0])×C2+γ,1+γ/2(QT0

),
with a(y, t) > 0, (y, t) ∈ [0, ℓ]× [0, T0], b(x, t) > 0, (x, t) ∈ [0, h]× [0, T0].
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Proof. Suppose that there exist two solutions (ak(y, t), bk(x, t), uk(x, y, t)), k ∈ {1, 2}, of
the problem (1)–(4), (7) and (8) from the indicated class. Denote a := a1−a2, b := b1−b2
and u := u1 − u2. The triplet of functions (a(y, t), b(x, t), u(x, y, t)) is a solution to the
problem

ut = a1(y, t)uxx + b1(x, t)uyy + a(y, t)u2xx(x, y, t) + b(x, t)u2yy(x, y, t),

(x, y, t) ∈ QT , (25)

u(x, y, 0) = 0, (x, y) ∈ D, (26)

u(0, y, t) = u(h, y, t) = 0, (y, t) ∈ [0, ℓ]× [0, T ], (27)

u(x, 0, t) = u(x, l, t) = 0, (x, t) ∈ [0, h]× [0, T ], (28)

a(y, t)(ν11(y, t)u1x(0, y, t) + ν12(y, t)u1x(h, y, t)) = −a2(y, t)(ν11(y, t)ux(0, y, t)

+ν12(y, t)ux(h, y, t)) (y, t) ∈ [0, ℓ]× [0, T ], (29)

b(x, t)(ν21(x, t)u1y(x, 0, t) + ν22(x, t)u1y(x, ℓ, t)) = −b2(x, t)(ν21(x, t)uy(x, 0, t)

+ν22(x, t)uy(x, ℓ, t)), (x, t) ∈ [0, h]× [0, T ]. (30)

With the aid of the Green function G̃(x, y, t; ξ, η, τ) for the problem (25)-(28) we obtain

u(x, y, t) =

t
∫

0

∫∫

D

G̃(x, y, t; ξ, η, τ)(a(η, τ)u2ξξ(ξ, η, τ) + b(ξ, τ)u2ηη(ξ, η, τ))dξdηdτ,

(x, y, t) ∈ QT . (31)

Substituting (31) into (29) and (30) we obtain the system of Volterra-type integral equa-
tions

a(y, t) = −
a2(y, t)

ν11(y, t)u1x(0, y, t) + ν12(y, t)u1x(h, y, t)

t
∫

0

∫∫

D

(ν11(y, t)G̃x(0, y, t; ξ, η, τ)

+ν12(y, t)G̃x(h, y, t; ξ, η, τ))(a(η, τ)u2ξξ(ξ, η, τ) + b(ξ, τ)u2ηη(ξ, η, τ))dξdηdτ,

(y, t) ∈ [0, ℓ]× [0, T ], (32)

b(x, t) = −
b2(x, t)

ν21(x, t)u1y(x, 0, t) + ν22(x, t)u1y(x, ℓ, t)

t
∫

0

∫∫

D

(ν21(x, t)G̃y(x, 0, t; ξ, η, τ)

+ν22(x, t)G̃y(x, ℓ, t; ξ, η, τ))(a(η, τ)u2ξξ(ξ, η, τ) + b(ξ, τ)u2ηη(ξ, η, τ))dξdηdτ,

(x, t) ∈ [0, h]× [0, T ]. (33)

Taking into account the equalities

ν11(y, t)u1x(0, y, t) + ν12(y, t)u1x(h, y, t) =
κ1(y, t)

a1(y, t)
> 0,

ν21(x, t)u1y(x, 0, t) + ν22(x, t)u1y(x, ℓ, t) =
κ2(x, t)

b1(x, t)
> 0,

and the homogeneity of the system (32) and (33), from the theory of Volterra integral
equations of the second kind with integrable kernel, we conclude that a(y, t) ≡ 0, (y, t) ∈
[0, ℓ] × [0, T ] and b(x, t) ≡ 0, (x, t) ∈ [0, h] × [0, T ]. Then, u(x, y, t) ≡ 0, (x, y, t) ∈ QT ,
and the proof is complete.
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2.3 Statement of a simplified inverse problem

In this section, we give a statement of a simplified inverse problem obtained when the
coefficient b is known and taken, for simplicity, to be unity. Then, equation (1) simplifies
to

∂u

∂t
(x, y, t) = a(y, t)

∂2u

∂x2
(x, y, t) +

∂2u

∂y2
(x, y, t) + f(x, y, t), (x, y, t) ∈ QT . (34)

The local existence and uniqueness of solution of the inverse problem (2)–(5), (34) were
established in [11] and read as stated in the following two theorems.

Theorem 3. Suppose that the following assumptions are satisfied:

(B1) ϕ ∈ C2(D), µ1i ∈ C2,1([0, ℓ]× [0, T ]), µ2i ∈ C2,1([0, h]× [0, T ]), i = 1, 2,

κ1 ∈ Cγ,0([0, ℓ]× [0, T ]), f ∈ C1+γ,γ,0(QT ) for some γ ∈ (0, 1);

(B2) ϕx(x, y) > 0, (x, y) ∈ D, µ11t(y, t)− µ11yy(y, t)− f(0, y, t) ≤ 0,

µ12t(y, t)− µ12yy(y, t)− f(h, y, t) ≥ 0, κ1(y, t) > 0, (y, t) ∈ [0, ℓ]× [0, T ],

µ2ix(x, t) > 0, i = 1, 2, (x, t) ∈ [0, h]× [0, T ], fx(x, y, t) ≥ 0, (x, y, t) ∈ QT ;

(B3) conditions of consistency of order zero [13] between the initial condition (2) and the
Dirichlet boundary conditions (3) and (4) hold.

Then, there exists T0 ∈ (0, T ], which is determined by the input data, such that the
problem (2)–(5), (34) has a solution (a(y, t), u(x, y, t)) ∈ Cγ,0([0, ℓ]× [0, T0])×C2,1(QT0

),
with a(y, t) > 0, (y, t) ∈ [0, ℓ]× [0, T0].

Theorem 4. Suppose that the condition Cγ,0([0, ℓ]× [0, T ]) ∋ κ1(y, t) 6= 0, (y, t) ∈ [0, ℓ]×
[0, T ], is satisfied. Then, the inverse problem (2)–(5), (34) cannot have more than one
solution in the class (a(y, t), u(x, y, t)) ∈ Cγ,0([0, ℓ]× [0, T ])× C2,1(QT ), with a(y, t) > 0,
(y, t) ∈ [0, ℓ]× [0, T ].

3 Numerical solution of the direct problem

In this section, we consider the direct initial boundary value problem (1)–(4), where
a(y, t), b(x, t), f(x, y, t), ϕ(x, y) and µij, i, j = 1, 2, are known and the solution u(x, y, t)
is to be determined. To achieve this, we use the forward time central space (FTCS)
finite-difference scheme which is conditionally stable.

We subdivide the solution domain QT into M1, M2 and N subintervals of equal step
lengths ∆x and ∆y, and uniform time step ∆t, where ∆x = h/M1, ∆y = ℓ/M2 and
∆t = T/N , for space and time, respectively. At the node (i, j, n), we denote uni,j :=
u(xi, yj, tn), where xi = i∆x, yj = j∆y, tn = n∆t, aj,n := a(yj, tn), bi,n := b(xi, tn) and
fn
i,j := f(xi, yj, tn) for i = 0,M1, j = 0,M2 and n = 0, N .
The simplest explicit difference scheme for equation (1) is given by

un+1
i,j − uni,j

∆t
= aj,n

(

uni+1,j − 2uni,j + uni−1,j

(∆x)2

)

+ bi,n

(

uni,j+1 − 2uni,j + uni,j−1

(∆y)2

)

+ fn
i,j (35)
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for i = 1,M1 − 1, j = 1,M2 − 1 and n = 0, N . The initial and boundary conditions
(2)–(4) give

u0i,j = ϕ(xi, yj), i = 0,M1, j = 0,M2, (36)

un0,j = µ11(yj, tn), unM1,j
= µ12(yj, tn), j = 0,M2, n = 1, N, (37)

uni,0 = µ21(xi, tn), uni,M2
= µ22(xi, tn), i = 0,M1, n = 1, N. (38)

Let ã and b̃ be the maximum values of a(y, t) and b(x, t), respectively, then, the stability
condition for the explicit FDM scheme (35) is [17],

ã∆t

(∆x)2
+

b̃∆t

(∆y)2
≤

1

2
. (39)

The combination of the heat fluxes (7) and (8) can be calculated using the second-order
FDM approximations:

κ1(yj, tn) = aj,n

(

ν11(yj, tn)ux(0, yj, tn) + ν12(yj, tn)ux(h, yj, tn)

)

,

j = 1,M2 − 1, n = 1, N, (40)

κ2(xi, tn) = bi,n

(

ν21(xi, tn)uy(xi, 0, tn) + ν22(xi, tn)uy(xi, ℓ, tn)

)

,

i = 1,M1 − 1, n = 1, N, (41)

where

ux(0, yj, tn) =
4u(x1, yj, tn)− u(x2, yj, tn)− 3µ11(yj, tn)

2∆x
,

j = 1,M2 − 1, n = 1, N, (42)

ux(h, yj, tn) =
4u(xM1−1, yj, tn)− u(xM1−2, yj, tn)− 3µ12(yj, tn)

−2∆x
,

j = 1,M2 − 1, n = 1, N, (43)

uy(xi, 0, tn) =
4u(xi, y1, tn)− u(xi, y2, tn)− 3µ21(xi, tn)

2∆y
,

i = 1,M1 − 1, n = 1, N, (44)

uy(xi, l, tn) =
4u(xi, yM2−1, tn)− u(xi, yM2−2, tn)− 3µ22(xi, tn)

−2∆y
,

i = 1,M1 − 1, n = 1, N. (45)
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4 Numerical solution of the inverse problem

In this section, we aim to obtain stable reconstructions for the principal direction compo-
nents a(y, t) > 0 and b(x, t) > 0 of the two-dimensional orthotropic rectangular medium
together with the temperature u(x, y, t) satisfying the equations (1)–(4), (7) and (8). One
can remark that at initial time t = 0 the values a(y, 0) and b(x, 0) can be obtained from
the non-local over-specifications (7) and (8) as

a(y, 0) =
κ1(y, 0)

ν11(y, 0)ϕx(0, y) + ν12(y, 0)ϕx(h, y)
, (46)

b(x, 0) =
κ2(x, 0)

ν21(x, 0)ϕy(x, 0) + ν22(x, 0)ϕy(x, ℓ)
. (47)

The inverse problem is solved based on the nonlinear minimization of the least-squares
objective function

F (a, b) :=

∥

∥

∥

∥

a(y, t)

(

ν11(y, t)ux(0, y, t) + ν12(y, t)ux(h, y, t)

)

− κ1(y, t)

∥

∥

∥

∥

2

+

∥

∥

∥

∥

b(x, t)

(

ν21(x, t)uy(x, 0, t) + ν22(x, t)uy(x, ℓ, t)

)

− κ2(x, t)

∥

∥

∥

∥

2

, (48)

or, in discretised form

F (a,b) =
N
∑

n=1

M2
∑

j=0

[

aj,n

(

ν11(yj, tn)ux(0, yj, tn) + ν12(yj, tn)ux(h, yj, tn)

)

− κ1(yj, tn)
]2

+
N
∑

n=1

M1
∑

i=0

[

bi,n

(

ν21(xi, tn)uy(xi, 0, tn) + ν22(xi, tn)uy(xi, ℓ, tn)

)

− κ2(xi, tn)
]2

, (49)

where u(x, y, t) solves (1)–(4) for given a and b. The minimization of the objective
functional (49), subject to the physical simple bound constraints a > 0 and b > 0 is
accomplished using the MATLAB optimization toolbox routine lsqnonlin, which does
not require supplying the gradient of the objective function, [16]. This routine attempts
to find the minimum of a sum of squares by starting from an initial guesses. Furthermore,
within lsqnonlin, we use the Trust Region Reflective (TRR) algorithm [4], which is based
on the interior-reflective Newton method. Each iteration involves a large linear system of
equations whose solution, based on a preconditioned conjugate gradient method, allows
a regular and sufficiently smooth decrease of the objective functional (49). Since the
MATLAB routine lsqnonlin accepts only a vector of unknowns we make the matrix
a long vector by renumbering its components. Upper and lower bounds on the thermal
conductivities a and b can be specified according to a priori information on these physical
parameters.

In the numerical computation, we take the parameters of the routine lsqnonlin, as
follows:

• Maximum number of iterations = 105× (number of variables).

• Maximum number of objective function evaluations = 107× (number of variables).
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• Solution and objective function tolerances = 10−15.

The inverse problem (1)–(4), (7) and (8) is solved subject to both exact and noisy mea-
surements (7) and (8). The noisy data is numerically simulated as

κ
ǫ1
1 (yj, tn) = κ1(yj, tn) + ǫ1j,n, j = 0,M2, n = 1, N (50)

κ
ǫ2
2 (xi, tn) = κ2(xi, tn) + ǫ2i,n, i = 0,M1, n = 1, N, (51)

where ǫ1j,n and ǫ2i,n are random variables generated from a Gaussian normal distribution
with mean zero and standard deviations σ1 and σ2 given by

σ1 = p× max
(y,t)∈[0,ℓ]×[0,T ]

|κ1(yj, tn)|, σ2 = p× max
(y,t)∈[0,h]×[0,T ]

|κ2(xi, tn)|, (52)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ǫ1 = (ǫ1j,n)j=0,M2,n=1,N and ǫ2 = (ǫ2i,n)i=0,M1,n=1,N , as
follows:

ǫ1 = normrnd(0, σ1,M2, N), ǫ2 = normrnd(0, σ2,M1, N). (53)

In the case of noisy data (51), we replace κ1(yj, tn) and κ2(xi, tn) by κ
ǫ1
1 (yj, tn) and

κ
ǫ2
2 (xi, tn), respectively, in (49).

5 Numerical results and discussion

In this section, we present numerical results for the reconstruction of the orthotropic
thermal conductivity components a(y, t), b(x, t) and the temperature u(x, y, t), in the
case of exact and noisy data (50)-(53). To assess the accuracy of the numerical solution
we employ the root mean square errors (rmse) defined by:

rmse(a) =

[

1

N(M2 + 1)

N
∑

n=1

M2
∑

j=0

(

anumerical(yj, tn)− aexact(yj, tn)
)2

]1/2

, (54)

rmse(b) =

[

1

N(M1 + 1)

N
∑

n=1

M1
∑

i=0

(

bnumerical(xi, tn)− bexact(xi, tn)
)2

]1/2

. (55)

For simplicity, we take h = ℓ = T = 1.

5.1 Example 1

Consider the inverse problem (1)–(4), (7) and (8) with unknown coefficients a(y, t) and
b(x, t), and the input data ϕ, µij, νij and κi, i, j = 1, 2:

ϕ(x, y) = u(x, y, 0) = −(−2 + x)2 − (−2 + y)2, f(x, y, t) = 2 +
3 + 2t+ x+ y

100
,

µ11(y, t) = u(0, y, t) = −4 + 2t− (−2 + y)2, µ12(y, t) = u(1, y, t) = −1 + 2t− (−2 + y)2,

µ21(x, t) = u(x, 0, t) = −4 + 2t− (−2 + x)2, µ22(x, t) = u(x, 1, t) = −1 + 2t− (−2 + x)2,

ν11(y, t) = ν12(y, t) = ν21(x, t) = ν22(x, t) = 1, κ1(t) =
3(y + t+ 1)

100
, κ2(t) =

3(2 + x+ t)

100
.

11



One can notice that the conditions of Theorem 2 are satisfied and therefore, the uniqueness
of the solution is guaranteed. In fact, it can easily be checked by direct substitution that
the analytical solution is given by

a(y, t) =
y + t+ 1

200
, (y, t) ∈ [0, 1]× [0, 1], (56)

b(x, t) =
2 + x+ t

200
, (x, t) ∈ [0, 1]× [0, 1], (57)

u(x, y, t) = −(x− 2)2 − (y − 2)2 + 2t, (x, y, t) ∈ QT . (58)

We take M1 = M2 = N = 10 which together with the upper bound 1/40 for the
unknown coefficients a and b ensure that the stability condition (39) is always satisfied at
each iteration of the minimization process. We also take the lower bound 10−9 to impose
the physical constraint that the thermal conductivity coefficients must be positive.

We start the investigation for simultaneously determining the unknown components
a and b for exact p = 0 and noisy input p = 10% data. Figure 1 presents the objective
function (49), as a function of the number of iterations. From this figure one can notice
that a rapid monotonically decreasing convergence is achieved in 8-9 iterations, with the
objective function reaching a very small value of O(10−20).
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b
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Figure 1: The objective function (49), for p = 0 and p = 10%, for Example 1.

Figures 2 and 3 show the reconstructions of the orthotropic thermal conductivity com-
ponents for p = 0 and p = 10%, respectively. Table 1 shows more details of the numerical
computation including the results for p = 1% noise. As expected, the numerically ob-
tained results become more stable and accurate as the percentage of noise p decrease.
From Figure 3 it can be seen that for the significant amount of noise p = 10%, the numer-
ical solution obtained by minimizing the nonlinear least-squares functional (49) becomes
visibly oscillatory and unstable.
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Figure 2: The exact ((56) and (57)) and numerical solutions for noise level p = 0 for (a) a(y, t)

and (b) b(x, t), for Example 1. The absolute error between them is also included.

Table 1: The rmse values (54) and (55) for various noise levels p ∈ {0, 1, 10}%.

Example 1 p = 0 p = 1% p = 10%
No. of iterations 8 8 9
Value of (49) at final iteration 2.7E-19 3.9E-19 5.6E-19
rmse(a) 4.7E-12 1.6E-4 1.6E-3
rmse(b) 6.6E-12 1.8E-4 1.9E-3
Computational time 21 min 23 min 25 min
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Figure 3: The exact ((56) and (57)) and numerical solutions for noise level p = 10% for (a)

a(y, t) and (b) b(x, t), for Example 1. The absolute error between them is also included.

5.2 Example 2

In this example, we consider a simplification of the model described in subsection 2.3,
obtained by taking one of the coefficients, say b(x, t), known and, for simplicity, equal to
unity. Consider the inverse problem (2)–(4) and (34) with unknown orthotropic thermal
conductivity component a(y, t) and solve this inverse problem with the input data ϕ, µ1i

and µ2i, i = 1, 2, and κ1 given by

ϕ(y, x) = u(x, y, 0) = x− y, f(x, y, t) =
1

5
et/5(x− y),

µ11(y, t) = u(0, y, t) = −et/5y, µ12(y, t) = u(1, y, t) = et/5(1− y),

µ21(x, t) = u(x, 0, t) = et/5x, µ22(x, t) = u(x, 1, t) = et/5(x− 1),

κ1(y, t) =
1

100
et/5(1 + t+ y). (59)

Remark that the conditions of Theorem 3 and 4 are satisfied and therefore, the local
existence and uniqueness of the solution are guaranteed. In fact, it can easily be checked
by direct substitution that the analytical solutions u(x, y, t) and a(y, t) are given by

u(x, y, t) = et/5(x− y), (x, y, t) ∈ QT , (60)

a(y, t) =
y + t+ 1

100
, (y, t) ∈ [0, 1]× [0, 1]. (61)
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We investigate the inverse problem as we did in Example 1. We take M1 = M2 = 5
and N = 60, i.e. ∆x = ∆y = 1/5 and ∆t = 1/60. We choose upper bound UB = 0.2 for
a such that the stability condition (39) is always satisfied in the iterative process. Also,
since a represents a positive physical quantity we take the lower bound for a to be a small
positive number such as LB = 10−4.

We start our investigation for reconstructing the unknown orthotropic thermal con-
ductivity component a(y, t) and the temperature u(x, y, t) for exact and noisy measured
input data (5), i.e., for the cases p ∈ {0, 1, 3, 5}% of noise. The initial guess for a(y, t) has
been taken as

a0(y, t) = a(y, 0) =
y + 1

100
, y ∈ [0, 1]. (62)

Note that the value of a(y, 0) is available from (46). The objective function (49), as a
function of the number of iterations, is plotted in Figure 4. From this figure, it can be
seen that a monotonic decreasing convergence is achieved in about 10 to 11 iterations to
reach a very low prescribed tolerance of O(10−25). The numerically obtained results for
a(y, t) are illustrated in Figure 5 and summarised in Table 2. From this figure and table,
it can be seen that as the percentage of noise p decreases the numerically obtained results
becomes more stable and accurate.
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Figure 4: The objective function (49), as a function of the number of iterations, for various

noise levels p ∈ {0, 1, 3, 5}%, for Example 2.

Table 2: The number of iterations, the value of the objective function (49) at final it-
eration, the rmse(a) values (54) and the computational time, for various noise levels
p ∈ {0, 1, 3, 5}%, for Example 2.

Numerical outputs p = 0 p = 1% p = 3% p = 5%
Number of iterations
Minimum value of (49)
rmse(a)
Computational time

10
3.0E-24
1.2E-6
37 mins

10
2.8E-23
3.4E-4
37 mins

10
3.0E-23
1.0E-3
37 mins

11
8.8E-25
1.7E-3
40 mins
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Figure 5: The exact (61) and numerical solutions for the orthotropic thermal conductivity

component a(y, t), for various noise levels: (a) p = 0, (b) p = 1% , (c) p = 3% and (d) p = 5%

noise, for Example 2. The absolute error between them is also included.
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6 Conclusions

In this paper, the inverse problem involving the reconstruction of the orthotropic ther-
mal conductivity components and the temperature in the two-dimensional parabolic heat
equation (1) from the non-local heat flux over-specifications (7) and (8) has been inves-
tigated. Sufficient conditions which ensure the unique solvability of a local solution are
provided and proved. The direct solver based on the FDM has been employed. The in-
verse problem solution based on a nonlinear least-squares minimization problem has been
solved using the MATLAB optimisation toolbox routine lsqnonlin. As shown in Tables
1 and 2, the computational time is of the order of tens of minutes, which is reasonable
bearing in mind that a nonlinear and ill-posed problem has been solved. Numerical re-
sults presented and discussed for both exact and noisy data show that accurate and stable
solutions have been obtained. In principle, the analysis of this paper can be extended to
three-dimensional problems; however, this non-trivial investigation is deferred to future
work.
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