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Abstract Chad is the largest country of the Sahel region with different climatic zones, varying from arid
in the north to tropical in the south. These climatic zones respond differently to climate change signals.
Therefore, their detection over major cities, which are scattered within different climatic zones, is of utmost
importance. The changes in hydroclimatic fields such as rainfall and temperature were examined over the
major cities in various regions for the period 1950 to 2014. Rainfall shows a significant decreasing trend
especially over cities close to Lake Chad (Lere, Mondou, Mongo, and Sarh), whereas no significant trend is
observed for cities farther from the Lake. However, a consistently increasing trend in temperature is
found across all cities. The cities in the north (Faya, Abeche, and Ati) receive far less rainfall than those
located in southern Chad. All cities (except Faya and Lere) received higher rainfall during 1950–1965 (wet
period), entering a dry regime between 1966 and 1990 (dry period) and subsequently recovering rainfall
totals, toward previous levels, between 1991 and 2014 (recovery phase). A substantial rise in air temperature
is observed after 1980–1985, reflecting the gradual rise of temperature in recent times. In summary,
rainfall is recovering from a dry regime and temperature is rising over all the major cities of Chad. More
researches in this region is needed to develop local scale mitigation strategies and adaptation technology.

1. Introduction

Africa is the second populous continent with a diverse climate system, which is split into several climatic
zones. The Koppen climate classification shows that the vastness of Africa gives rise to eight different climatic
zones (Koppen, 2011). These major climatic zones include the arid Sahara desert in the north, savanna
grassland in the center, and a tropical climate in the south. These climatic zones are mainly determined by
rainfall distribution across the continent and each is differentially sensitive and vulnerable to the increasing
global temperature and climatic change (Odada & Olago, 2005). Therefore, the climate change signal
detection over major cities, which are scattered within different climatic zones, is of utmost importance.

With the increase of global CO2 concentration due to anthropogenic activity, global temperature is rising;
this is no exception for the cities in the African continent. The year 2013 was reported to be the warmest year
across Africa with respect to the long‐term average of 1960 to 1990 (Stocker et al., 2013). According to the
World Meteorological Organization report, the rate of warming over Africa is lowest as compared to other
continents during 2011 to 2015, while 2016 is the warmest year recorded with temperatures exceeding the
preindustrial level by 1.1 °C. Global temperatures have been increasing since 1850, with an increase of
0.75 °C experienced between 1850–1899 and 2001–2005 (Trenberth et al., 2007). Similarly, the rainfall over
the African continent has been reported to be increasing, while the precipitation variability seems to be very
high (Intergovernmental Panel on Climate Change, 2007). In general, the Sahel and West African region
have experienced a decreasing trend in rainfall, which has recently begun to increase (Maharana et al.,
2018; Trenberth et al., 2007). Many researchers have tried to understand the temperature variability over
Africa. Few studies involve the continuous rise of temperature (Collins, 2011; Hulme et al., 2001), while
few others analyze the wintertime increase of minimum and maximum temperature (Caesar et al., 2006)
over Africa. In addition, the magnitude of extreme hot day and night temperature and the decrease of cold
climate extremes are also analyzed (Frich et al., 2002; New et al., 2006). Collins (2011) reported significant
warming over the northern and southern parts of Africa in recent decades; however, the wintertime
warming is more significant over northern Africa.

©2019. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

RESEARCH ARTICLE
10.1029/2019EA000619

Key Points:
• Detection of climate change signal

over the major cities of Chad that
scattered within different climatic
zones is of utmost importance

• The rainfall was decreasing during
wet period, which recovers gradually
at a slower rate over most cities

• A consistent increasing trend in
temperature is found over all the
cities, but substantially, warming is
found after 1980–1985

Supporting Information:
• Supporting Information S1

Correspondence to:
P. Maharana,
maharanapyarimohan@gmail.com

Citation:
Pattnayak, K. C., Abdel‐Lathif, A. Y.,
Rathakrishnan, K. V., Singh, M., Dash,
R., & Maharana, P. (2019). Changing
climate over Chad: Is the rainfall over
the major cities recovering? Earth and
Space Science, 6, 1149–1160. https://doi.
org/10.1029/2019EA000619

Received 10 MAR 2019
Accepted 31 MAY 2019
Accepted article online 7 JUN 2019
Published online 10 JUL 2019

PATTNAYAK ET AL. 1149

https://orcid.org/0000-0001-9589-8789
https://orcid.org/0000-0001-8997-6007
https://orcid.org/0000-0003-3175-8714
http://dx.doi.org/10.1029/2019EA000619
http://dx.doi.org/10.1029/2019EA000619
http://dx.doi.org/10.1029/2019EA000619
http://dx.doi.org/10.1029/2019EA000619
http://dx.doi.org/10.1029/2019EA000619
mailto:maharanapyarimohan@gmail.com
https://doi.org/10.1029/2019EA000619
https://doi.org/10.1029/2019EA000619
http://publications.agu.org/journals/


Few studies also focused on rainfall variability, its distribution and trend over Africa. Rainfall extremes have
increased over Africa but without any trend (New et al., 2006) in an oscillatory nature (Ogallo, 1979). The
Sahel region of the African continent experienced higher rainfall during 1950s–1960s (wet period), which
gradually entered a dry regime with frequent drought between 1970s and 1990s (dry period). Afterward,
rainfall began to recover at a very slow rate from the 1990s onward (recovery period; Caminade & Terray,
2009; Maharana et al., 2018). These characteristics have been reported from the analysis of long‐term
rain‐gauge, observational and reanalysis data sets (Le Barbé et al., 2002; Maharana et al., 2018). Charney
et al. (1977) found that the feedback between land surface conditions (soil humidity, vegetation, and albedo)
and atmospheric radiation equilibrium affects the regional precipitation. Many studies show that the rainfall
over Africa and along its subregions does not follow any particular trend (Bunting, 1975; Kruger, 2006;
Rodhe & Virji, 1976). Intergovernmental Panel on Climate Change 2007 (Pachauri & Reisinger, 2007)
reported a contrasting view point of change in the rainfall trend over Africa. In addition, the interdecadal
variability of rainfall is analyzed for the period between 1960 and 1990 (Hulme et al., 2001). The decadal
rainfall variability was attributed to the interaction of Hadley and Walker cells over Africa at decadal fre-
quency through anomalous north‐south displacement of the near‐equatorial trough (Jury, 2009). This varia-
bility was attributed to global warming (Paeth & Hense, 2004) and vegetation feedback processes (Charney
et al., 1977; Zeng, 1999). Recently, rainfall extremes are found to increase over western part of South Africa
(Kruger, 2006). Few teleconnections also seem to influence the rainfall distribution over Africa, the rainfall
over Namibia and South Africa is modulated by the warming and cooling over the western Indian Ocean
(Landman & Mason, 1999) while the global SST pattern play a major role in defining the rainfall variability
over northern and western Africa (Nicholson, 2000; Rowell et al., 1995).

Chad is mostly an agricultural country with 70% of the population depending on this sector for their liveli-
hoods; thus rainfall is intrinsically important to the country (Le Barbé et al., 2002; Maharana et al., 2018;
Washington et al., 2006). Several studies have been dedicated to understand the decreasing size of Lake
Chad (Armitage et al., 2015; Coe & Foley, 2001; Ndehedehe et al., 2016; Niel et al., 2005; E. Nkiaka et al.,
2017; Elias Nkiaka et al., 2018). The current rainfall in Chad Basin is 350 mm/year (Kutzbach, 1980).
Okonkwo et al. (2014) found an increasing trend in annual rainfall over the lake basin using gridded gauge
monthly time series for the period 1970–2010. On the contrary, Niel et al. (2005) reported a significant
decrease in annual rainfall in the central part of the basin by analyzing a longer rainfall record from rain
gauges covering the period 1950–2002. Coe and Foley (2001) suggested that climate variability controls
the interannual fluctuations of the water inflow in the Lake Chad basin. Many studies have been carried
out to understand the intra‐seasonal variability of the West African monsoon (WAM; N'Datchoh et al.,
2018; Poan et al., 2016; Roehrig et al., 2013) because of its huge socio‐economic impact, particularly over
Sahel region. The above discussed literatures mainly stressed on the climate analysis of Africa as a whole
or different regions of the African continent. There are almost no studies which focuses on the climate
change in the city level due to the nonavailability of long‐term station data. The present study is an attempt
to study the change in the climate pattern of the different cities of Chad, which represents different climatic
zones within Chad.

Further investigation of climate across different cities in Chad will provide important detail on the regional
changes in precipitation and temperature in response to a warming climate. This information will be very
useful for the local water resource management, agriculture, hydroelectricity, disaster management, flood,
and drought control and the overall sustainable development of the major cities of the country. Alongside
this, information on the local scale will also help to develop local scale mitigation strategies and adaptation
technologies in this region of the world. The following section deals with the study area, data sets used, and
methodology. Section 3 describes the results and discussion while the summary and concluding remarks are
provided in section 4.

2. Study Area, Data, and Methodology

Eight different major cities of Chad have been chosen for this study namely, Ndjamena, Sarh, Moundou,
Lere, Mongo, Abeche, Ati and Faya (Figure 1a). Only one city, “Faya,” from northern Chad has been
selected for the study. Other cities are scattered over the southern part of Africa below 15°N, where most
of the WAM activity occurs (Maharana et al., 2018). The capital city, Ndjamena, is located close to Lake

10.1029/2019EA000619Earth and Space Science

PATTNAYAK ET AL. 1150



Chad in the western border of the country, while Abeche, Ati, and Mongo are at the center of Chad while
Lere, Sarh, and Moundou are located in the south.

The monthly temperature and precipitation data sets at 0.5° × 0.5° horizontal resolution from University of
Delaware (hereafter, UDEL; Willmott et al., 2001) and Climate Research Unit (hereafter, CRU; Harris et al.,
2014) have been used for the analysis. The data series have been extracted from the nearest grid point close to
the locations considered in the study. The coordinates of themajor cities of Chad are provided (Table 1). This
monthly data series is used to prepare the mean annual cycle or the temporal variation of rainfall over dif-
ferent cities. The monthly rainfall time series for each month are averaged for the entire period to prepare
the mean annual cycle. The standardized anomaly time series of temperature and precipitation are prepared
by subtracting the long‐term mean from the monthly time series (anomaly) and then dividing this anomaly
with the standard deviation of the same monthly time series. The standardized anomaly helps to identify the
normal, excess, and deficit (rain and temperature) years. The standardized value greater (or smaller) than
one corresponds to the excess (or deficit) rainfall years while the value in between +1 and −1 represents
the normal rainfall year. The box plots are prepared to analyze the median and variability of rainfall and
temperature at different stations. The probability distribution of average rainfall during monsoon (June,
July, and August, JJA hereafter) is analyzed for the wet period (1950–1965), dry period (1966–1990), and
recovery period (1991–2014) to study the behavior of rainfall along the different cities of Chad.

A nonparametric Mann‐Kendall (MK) test (Kendall, 1975; Mann, 1945) is applied to analyze the monthly,
seasonal, and annual trend statistics of rainfall and temperature over these locations (Alexander et al.,
2006; Maharana et al., 2018; Tan & Gan, 2015; Westra et al., 2013). The slope of the trend is computed using
a nonparametric Theil‐Sen's method (Sen, 1968). This method is robust to the effect of the outliers in the data
and avoids a distribution for the residual. In addition, it is very useful for data sets without a seasonal cycle

Figure 1. (a) Map of Chad with the major cities. The shade represents the surface topography (m) and (b) mean annual
cycle of precipitation for the period 1950–2014 over the major cities of Chad (marked in a).

Table 1
Coordinates of the Major Cities of Chad Considered for This Study Along With Their Mean and Standard Deviation of
Rainfall and Temperature

Locations Latitude Longitude

Rainfall (cm per month) Temperature (°C)

Mean Standard deviation Mean Standard deviation

Abeche 13.84 20.83 3.59 1.0 29.07 1.03
Moundou 8.57 15.08 9.09 1.32 27.10 0.64
Ndjamena 12.12 15.07 4.47 1.87 28.38 0.5
Sarh 9.15 18.38 8.37 1.4 27.93 0.49
Faya 17.93 19.10 0.30 0.33 28.61 0.73
Mongo 12.18 18.68 6.16 1.26 30.0 0.62
Ati 13.22 18.33 3.26 0.92 29.3 0.65
Lere 9.77 14.15 6.96 1.02 28.23 0.62
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and having a monotonic trend. This method also helps to identify the relative contribution of months and
seasons toward the annual trend of temperature and rainfall. The Z value from the MK test determines
the nature of the trend; that is, the positive (negative) value corresponds to increasing (decreasing) trend
and the rate of the trend is determined by Sen's slope method.

3. Results and Discussions

This section includes the description of the mean annual cycle of rainfall, interannual variability of rainfall
and temperature, their trend, and the rainfall distribution during different periods considered in the study.

3.1. Rainfall Seasonal Cycle

The rainfall seasonal cycle, represented over the eight major cities of Chad (Figure 1b and supporting infor-
mation Figure S1), shows that peak rainfall occurs during the summer (June to August) through the WAM
system (Diallo et al., 2014; Le Barbé et al., 2002; Maharana et al., 2018; Sylla et al., 2015). Rainfall increases
with the advancement of WAM and peaks in August and decreases thereafter. TheWAM process brings rain
over Chad during summer (JJA), which is the major source of water over Chad, while the rest of the months
are dry. Rainfall is highest over Moundou (9.09 cm per month), Sarh (8.37 cm per month), and Lere (6.96 cm
per month), while least over Faya (0.30 cm per month; Table 1). These findings agree with earlier studies
(Maharana et al., 2018). Therefore, cities in southern Chad receive more rainfall than those in
north/northeast of the country. With the onset of WAM, the rainfall belt propagates up to 10–12°N during
the height of summer (Thorncroft et al., 2011). Hence, northern Chad receives very less rainfall. It is inter-
esting to observed that the monsoonal winds from Atlantic Ocean bends toward right in the northeast direc-
tion once it crosses the equator (Maharana et al., 2018). This northeastward moving wind carrying moisture
enters Chad from south and hence the mean rainfall is more in the stations in the southern part. It is inter-
esting to observe that although the moisture is coming from the western side of Chad (from Atlantic Ocean)
but most of the moisture get transported to the eastern boarder through this northwesterly and hence the
rainfall over the cities in the eastern border is higher than that of the cities in the western border at the same
latitude (Table 1).

3.2. Rainfall and Temperature Interannual Variability

The interannual variability in the form of standardized anomaly of rainfall and temperature are analyzed
over the major cities of Chad (Figure 2). The interannual rainfall variability shows a decrease in rainfall with
time over Moundou. Most of the excess rainfall years (rainfall greater than 1 standard deviation) are
observed during 1950–1980. Since then rainfall has decreased as is evident from the negative standardized
rainfall anomalies. The peak rainfall is at Moundou (9.09 cm per month) with a standard deviation
(1.32 mm/day, Table 1). Similarly, Lere and Sarh (both in southern Chad) experience higher precipitation
rates of 6.96 and 8.37 cm per month, respectively, with corresponding standard deviations of 1.02 and
1.4 cm per month. Lere rainfall is continuously fluctuating between positive and negative anomalies
between 1950 and 2003. After 2003, permanent negative anomalies imply the steady decline of rainfall in
recent years. Sarh has five excess rainfall years (no deficient years) during 1950–1975. Afterward, the rainfall
decreases subsequently with seven deficient years (two excess years) between 1976 and 2006. The major
cities in central eastern Chad (Ati, Mongo, and Abeche) receive mean rainfall of 3.26, 3.59, and 6.16 cm
per month, respectively. Though lower mean rainfall rates (Diallo et al., 2014; Maharana et al., 2018), the
variability is comparable to the cities in southern Chad (Table 1). Abeche had frequent excess rainfall years
during the wet period (1950–1965). The precipitation decreases strongly after 1965 with many deficit years
until 2014. The rainfall variability of Ati and Moundou closely follows the behavior of Abeche. The capital
city of Chad, Ndjamena, is situated close to the western border near the Lake Chad. Ndjamena receives
the highest mean rainfall (4.47 cm per month) with the strongest rainfall variability among all locations
(1.87 cm per month). The rainfall behavior is similar to Ati, Abeche, andMoundou, except that standardized
rainfall anomalies are much higher in recent years. Faya, the most northern city in this study, is located next
to the Sahara desert. The WAM generally cannot penetrate this far north resulting in low average rainfall
(Diallo et al., 2014; Maharana et al., 2018). However, the standardized anomaly is higher than the rainfall,
which may be attributed to the occasional showers in these regions. The overall analysis is that most cities
experience excess rainfall during the initial phase of the study period (wet period). Thereafter, it decreases
tending toward a lower rainfall rate. This stabilized during the recovery period with standardized
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anomalies between +1 and−1. This behavior of rainfall over these locations is in agreement with the overall
monsoon behavior over Chad (Maharana et al., 2018).

The mean temperature over these cities ranges between 27.10 °C (Moundou) and 30 °C (Mongo). Similarly,
the variability ranges between 0.5 °C (Ndjamena) and 1.03 °C (Abeche). Temperature anomalies between
1980 and 1985 were cooler (negative standardized values), but temperatures steadily increased afterward
(i.e., standardized anomalies toward positive value; Figure 2). The temperature anomalies are greater than
1 standard deviation after the year 2000, which is an indicator of the recent temperature rise.

Further, the interannual variability of rainfall (Figure 3a) and temperature (Figure 3b) have been analyzed
using box‐whiskers over the eight locations. The middle line of the plots represents the median of the respec-
tive fields, while the top and bottom of the rectangle box represent the 25th (1st quartile) and 75th (2nd quar-
tile) percentiles, respectively. The dashed lines extending above and below the boxes (the whiskers) show the
range of time series (i.e., the minimum and maximum values between 1950 and 2014). Figure 3a highlights
significant rainfall over all the locations. Faya receives the least rainfall (~3 cm/year) with least variation (~5
cm/year), while Moundou receives maximum rainfall (110 cm/year) with maximum interannual variation
(~60 cm/year). The distinct rainfall pattern is found over the stations close to the Sahara desert such as
Faya, Abeche, and Ati. These stations receive far less rainfall than the stations which lie in southern
Chad, while Ndjamena is the transition region between the two zones. Temperature (Figure 3b), however,
does not showmuch variability among the stations or within the stations. For all locations, the annual mean
temperature lies between 27 and 30 °C while the variability ranges between 4 and 5 °C.

3.3. Climatic Trend

The long‐term trend of annual, seasonal as well as the monthly trends rainfall and temperature are over the
major cities have been analyzed to compute the annual, seasonal as well as the monthly trends using a well‐

Figure 2. Standardized anomalies of annual precipitation (primary Y axis, blue) and temperature (secondary Y axis, red line) over major cities of Chad for the per-
iod 1950–2014.
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adopted nonparametric MK test (Alexander et al., 2006; Maharana et al.,
2018; Tan & Gan, 2015; Westra et al., 2013).
3.3.1. Rainfall Trend
Annual rainfall trends are significantly decreasing at all locations except
for Faya, which is evident from the analysis of Z value (Tables 1 and 2).
Faya is located close to the Sahara desert and receives less rainfall in the
form of occasional showers. This is the major reason why the rainfall over
Faya does not show any statistically significant and the rainfall variability
is very high. The rainfall trend over Lere, Mongo,Moundou and Sarh have
significantly decreased by 0.15, 0.16, 0.21, and 0.16 cm per decade respec-
tively. These locations are situated in the southern and eastern part of
Chad, which experiences the maximum rainfall due to WAM
(Maharana et al., 2018). Similar trend analysis of the seasonal rainfall
trend (Table S1) shows that the JJA rainfall over all the locations is also
decreasing. The decreasing trend is significant over Sarh (1.43 cm per dec-
ade) and Moundou (1.42 cm per decade). The declining trend during June
to August (JJA) is confirmed by the lower negative Z value (Table S1). As
JJA is the dominant rainfall contributing season over Chad (Maharana
et al., 2018), the decreasing JJA rainfall trend leads to decline in the
annual rainfall trend. The significant increase in rainfall during the
September to November (SON) contributes toward the increase in the
annual rainfall trend over Faya. Although the rainfall contribution during
March to May (MAM) and SON toward the total annual rainfall is less, a
declining rainfall trend during these seasons are observed over southern
cities such as Sarh, Ndjamena, Moundou, Mongo, and Lere. The seasonal
rainfall trend during the wet, dry and recovery periods helps to determine
the behavior of the rainfall at the major cities of Chad. During the wet per-
iod, few locations such as Abeche, Moundou, and Ndjamena show a
declining rainfall trend of 1.63, 1.73, and 10.6 mm per decade respectively
but these are not statistically significant (Table S2). While the increasing
rainfall trends are observed over Ati, Faya, Lere, Mongo, and Sarh ranging
from 0.26 to 6 mm per decade (Table S2). In addition, most of the stations

during the wet period show negative rainfall trend during MAM and SON. This support the statement above
that positive JJA rainfall trends dominates it. During the dry period, the locations such as Sarh, Ndjamena,
Moundou, Mongo, and Ati show decreasing rainfall rate of 4.55, 4.65, 2.84, 5.91, and 1.42 mm per decade
respectively. The deceasing trend is in the southern cities of Chad, which gets maximum rainfall due to
WAM. The central Chad cities (e.g., Abeche, Faya, and Lere) also experience increases in rainfall rates
although to a lesser degree. Most locations during the recovery period show an increase in the rainfall rate
although with less magnitude as compared to the wet period except Lere and Moundou, which reported

Figure 3. Box and whisker plots of annual (a) precipitation and (b) tempera-
ture over the major cities of Chad for the period 1951 to 2014. Red line
indicates the median value. The lower caps indicate the first quantile (Q1,
25%), the upper caps indicate the third quantile (Q3, 75%), the upper whis-
kers are placed at Q3 + 1.5 * IQR, and the lower whiskers are placed at
Q1 − 1.5 * IQR, where IQR is the interquartile range. The fliers which are
outsides these limits are indicate by cross.

Table 2
Annual Rainfall and Temperature Trend Statistics (1950–2014) Over the Major Cities of Chad

Locations

Rainfall Temperature

Level of
significance

Rate
(cm per decade) Z value

Level of
significance

Rate
(°C per decade) Z value

Abeche −0.8 −1.50 0.001 0.42 6.26
Ati −0.09 −1.48 0.001 0.23 5.41
Faya 0.03 1.40 0.001 0.19 5.13
Lere 0.1 −0.15 −1.95 0.001 0.19 5.13
Mongo 0.05 −0.16 −2.18 0.001 0.17 4.53
Moundou 0.05 −0.21 −2.27 0.001 0.19 4.42
Ndjamena −0.04 −0.38 0.001 0.13 3.85
Sarh 0.1 −0.16 −1.94 0.001 0.16 4.73
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further decline in the rate of rainfall. The increasing rate among the stations varies from 0.82 mm per decade
in Mongo to 2.32 mm per decade in Abeche. The increasing rainfall rate is statistically significant over
Abeche, Ati, and Ndjamena. However, the decrease of significant rainfall trend over Lere is of higher mag-
nitude (5.39 mm per decade). The stronger decreasing rainfall trends over Lere and Moundou during the
recovery period is the reason of suppressing the higher rainfall trend over Chad. The monthly trend analysis
for the entire study period shows the major rainfall‐contributing month toward the total annual rainfall
trend (Table S3). It is important to note that the overall trend for all monsoon months (JJA) is mostly declin-
ing for the entire period of analysis. During June, Abeche, Lere, Mongo, and Moundou show statistically
decreasing trends of magnitude 0.46, 0.47, 0.47, and 0.69 mm per decade. Decreasing trends of 0.66 mm

per decade during July is observed over Moundou, while 0.05 and 0.96
mm per decade during August over Faya and Sarh, respectively.
3.3.2. Temperature Trend
The annual temperature trend shows statistically significant (99.9% confi-
dence level) increasing trend over all locations for the entire study period
(Table 2 and Figure 4). The strongest trend (0.42 °C per decade) is at
Abeche and coldest trend (0.13 °C per decade) at Ndjamena. The warming
trend is large south of the Sahara desert, which is evident at Abeche and
Ati. The increasing temperature trend is potentially attributable to the
decline in the rainfall and the increase in the bare land over Chad
(Maharana et al., 2018). Similar to the annual averaged temperature
trends, the seasonal temperatures are also increasing over all the locations
(Table S1). The highest (lowest) rising temperature trend is found during
MAM (DJF) for all the locations, which are statistically significant at 0.001
level. The highest rising seasonal trend is found for Ati and Abeche, which
agree with the annual temperature trend. A similar analysis of monthly
temperature trend shows a statistically significant increase during recov-
ery increase for all months (Table S4), which agree with the global
temperature rise.

3.4. Rainfall Change/Variability Over the Three Periods

The behavior of the rainfall magnitude and its trend during has been ana-
lyzed using probability density function (PDF, Figure 4), box‐whisker
plot (Figure 5), and annual cycle (Figures S2 and S3) during the wet

Figure 4. The probability distribution of summer (June, July, and August) rainfall over the cities chosen for this study. The lines in red, blue, and brown correspond
to the period wet period (1951–1965), dry period (1966–1990), and recovery period (1991–2014), respectively.

Figure 5. Box and whisker plots of annual precipitation over the cities for
the wet period, dry period and recovery period. The lines in red, blue, and
brown correspond to the period wet period (1951–1965), dry period (1966–
1990), and recovery period (1991–2014), respectively. The lower caps indi-
cate the first quantile (Q1, 25%), the upper caps indicate the third quantile
(Q3, 75%), the upper whiskers are placed at Q3 + 1.5 * IQR, and the lower
whiskers are placed at Q1 − 1.5 * IQR, where IQR is the interquartile range.
The fliers which are outsides these limits are indicate by cross.
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period, dry period, and recovery period. The mean JJA rainfall is used for the plotting of PDF. The bin size
of the histogram used to prepare the PDF 10 units. Since the rainfall for Faya station is very less, hence the
bin size selected for this location is 2. The red, blue, and brown colors are used for wet, dry, and recovery
period, respectively. The PDF and the box plots illustrate the change in mean as well as the variability of
rainfall during the three phases. Over Abeche, the mean rainfall (the peak of the distribution) during the
wet (dry) period is highest (lowest) with at 42 cm/year (30 cm/year). Higher rainfall temporal variability
occurs during the wet and dry periods, whereas the recovery period has less variability. The PDF of Ati
shows that mean annual rainfall is lower than Abeche for all the three periods (Figure 4). The rainfall dis-
tribution at Ati is similar to Abeche and shows highest peak during the wet period, which further decreases
during the recovery period and dry period. The largest variability is during the wet period followed by the
dry and recovery periods (Figure 5). Mongo, in eastern Chad, also shows similar rainfall distributions to
that of Abeche and Ati. Although all these locations are close, the position of Mongo is further south
and receives higher rainfall relatively (i.e., 56 cm/year in wet period, 48 cm/year in dry period, and 53
cm/year during recovery period). The temporal variability is lowest for the recovery period and highest
for the wet period. In addition, these locations also have lower temporal variability when compared to
other locations.

Ndjamena experiences mean rainfall of 38 cm/year during the wet period with very high temporal variabil-
ity. The mean rainfall decreases to 27 cm/year during the dry period, but then reaches 41 cm/year; which
exceeds the mean rainfall of the wet period. This implies the recovery of rainfall over Ndjamena is highest
in recent years as compared to other locations. This is important, as the Lake Chad is close to Ndjamena
represents the major fresh water source. Sarh rainfall during the wet period is 67cm/year, which decreases
to 62 cm/year during the dry period and then 54 cm/year during the recovery period. Lere has similar rainfall
distribution to Sarh, where mean rainfall declines from the wet period (56 cm/year) to the recovery period
(45 cm/year) followed by the dry period (48 cm/year). The declining rainfall is also associated with higher
temporal variability during the dry and recovery period. Moundou rainfall during the wet period is around
61 cm/year with high temporal variability. Unexpectedly, the rainfall increases to 66 cm/year during the dry
period, where the entire country experiencing decline in rainfall. Further, the rainfall during the recovery
period has reduced to 56 cm/year. The temporal variability of rainfall during the dry and recovery periods
is reasonably similar. It is very important to remember that the whole period of study is divided into wet,
dry, and recovery periods based on the analysis of area‐averaged rainfall over Chad, as discussed in earlier
study (Maharana et al., 2018). However, the rainfall distribution within the cities are not following the same
trend as the area averaged rainfall over Chad. This reflects the behavior of rainfall is different for different
cities in these periods of study in terms of both mean rainfall and median value (Figure 5). It is discussed
earlier that the rainfall band during monsoon abruptly jumps northward with the onset of WAM and causes
rainfall over Chad (Maharana et al., 2018). This is the reason the maximum rainfall received in the cities of
southern Chad. They also carefully analyzed the vertically integrated moisture flux, transport, associated
rainfall pattern during the wet, dry, and recovery phases. The moisture transport toward southern chad
showed a sharp decline from wet to recovery period through dry phase, however the convergence over east-
ern boarder recovers at a faster rate which is represented by the higher mean rainfall value over Ndjamena.
The declining moisture in the southern Chad leads to decrease in the mean precipitation over cities like
Sarh, Lere, and Moundou, which are significantly influenced by WAM circulation. On the contrary, Faya
(closer to the Sahara desert) shows a decline in rainfall during the dry and recovery phase when compared
to the wet period. Therefore, it is apparent that the differential behavior of the rainfall pattern over different
cities within Chad (represented by different climatic regime) is behaving differentially to the changing cli-
mate. Although the largescale dynamics like the moisture transport, wind pattern can partially interpret
these variabilities; however, various modeling approached will be very useful to understand these rainfall
pattern at city level.

Furthermore, the change in the rainfall pattern is examined using the mean annual cycle during the three
periods for all locations (Figures S2 and S3). Significant changes in rainfall is found during the monsoon
months (JJA), while no change occurs in other months. During the wet period, the monsoon rainfall is 5–
10 mm/day greater than the other periods over Abeche, Ati, Mongo, Ndjamena, and Sarh. In the recovery
period, the monsoon rainfall strengthens by 2–3 mm/day as compared to the dry period over the same five
cities. There is no noticeable monthly trend observed in the remaining cities.
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4. Summary and Conclusions

The observed changes of hydroclimatic variables such as rainfall and temperature have been examined on a
city scale over Chad for 1950–2014 period. The mean annual rainfall cycle shows that there is a strong
increase in rainfall with the advancement of WAM, which peaks in August for all the major cities. Hence,
WAM represents the source of rainfall/water over Chad. Cities in northern Chad (Faya, Abeche, and Ati)
receive far less rainfall than the cities of southern Chad, while Ndjamena is the transition region between
the two zones.

Few cities received higher rainfall during the wet period, then gradually enters a dry regime with frequent
deficient rainfall years; afterward the rainfall starts to increase but at a very slow rate (recovery phase),
which is consistent with the earlier studies (Caminade & Terray, 2009; Maharana et al., 2018). However,
many cities show deviation from this behavior, which is attributed to the variability of rainfall distribution
within Chad, which further, vary during different periods considered in the study. The large‐scale variability
in the moisture flux and transport and the associated rainfall in different periods is attributed to the city scale
rainfall variability. The declining rainfall in most of the cities in the southern Chad is explained by them. The
rainfall distribution in the three distinct subperiods shows a higher rainfall during the wet phase followed by
a dry phase for all the location except Faya and Lere. In the recovery phase, five cities have slightly recovered
from the dry phase but have not received as much as rainfall that occurred in the wet phase, hence making
the overall rainfall trend as a decreasing trend for the entire period of study. The JJA is the major rainfall‐
contributing season toward the annual rainfall. Significant changes in rainfall have been noticed during
the monsoon months (JJA) in the three periods, while no significant change has been observed in the other
months. The rainfall is showing a statistically significant decreasing trend over the four cities in the south of
Chad or near to the Lake Chad (Lere, Mondou, Mongo, and Sarh), whereas the cities to north Chad do not
show any statistical trend (Figure 6a). These findings of the present study agree with the findings of the ear-
lier works (Niel et al., 2005; E. Nkiaka et al., 2017). The recent increase in the rainfall over Ndjamena (which
is close to Chad Lake) is interesting and encouraging for the people Chad, as this lake is the major supply of
fresh water around the capital.

Similar analysis for temperature shows that the temporal variability of temperature is less (4–5 °C) among
the stations or within the stations for different periods as compared to rainfall. It is interesting to note

Figure 6. Trend of (a) annual rainfall (cm/year) and (b) temperature (°C/year) over of the Chad for period of study. The
red color signifies the increasing trend, while blue represents decreasing trend and cross mark reflects no trend. The closed
triangle represents the 99.9 significance level while the closed square and circle represent significance at 95% and 90%
level, respectively.
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that the temperature overall the cities prior to 1985 were much colder. Afterward, the temperature started to
rise and very warm temperature regime (positive value of standardized anomaly more than +1) is observed
after 2000, reflecting the effect of global temperature rise over the cities of Chad. Hence, the temperature is
showing a significantly increasing trend over all the cities (Figure 6b). The overall finding of the study is that
the temperature is consistently increasing, and rainfall was initially decreasing but gradually recovering over
most of the cities except for the cities in the southern Chad. The further declining of rainfall over Sarh and
Lere during recovery period slows down the overall rainfall recovery over Chad.

The present study is still a preliminary climate analysis over different locations/cities of Chad. More such
studies need to be carried out with different observed, reanalysis data sets and models for better understand-
ing of the processes regulating this variability. The better understanding of large‐scale as well as local atmo-
spheric conditions will further enhance the knowledge of the rainfall variability within the cities. These
better process‐based understanding of this variability will help to develop the local scale mitigation strategies
and adaptation technologies in this region. The authors have planned to work on the climate variability over
Chad under 1.5–2 °C global temperature rise with respect to preindustrial period in the near future.
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