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Michael Levitin Alexander Strohmaier
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Abstract

In this paper we describe a simple method that allows for a fast direct computation of the
scattering matrix for a surface with hyperbolic cusps from the Neumann-to-Dirichlet map on
the compact manifold with boundary obtained by removing the cusps. We illustrate that even if
the Neumann-to-Dirichlet map is obtained by a Finite ElementMethod (FEM) one can achieve
good accuracy for the scattering matrix. We give various interesting examples of how this can be
used to investigate the behaviour of resonances under conformal perturbations or when mov-
ing in Teichmüller space. For example, based on numerical experiments we rediscover the four
arithmetic surfaces of genus one with one cusp. This demonstrates that it is possible to identify
arithmetic objects using FEM.
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1 Introduction and setup

Suppose thatH = {z = x + iy | y > 0} is the upper half-plane with the hyperbolic (of constant
curvature−1) metric

y−2(dx2 + dy2).

The Riemannian measure is then y−2dxdy and the L2-inner product is given by

〈f, g〉 =
∫
f(z)g(z)y−2dxdy.

The metric Laplace operator
∆ = ∆H = −y2

(
∂2x + ∂2y

)

is essentially self-adjoint with domainC∞
0 (H), and later on we do not distinguish notationally oper-

ators and their closures, if there is no danger of confusion.
The map (x, y) 7→ (x + 1, y) is an isometry of the upper half-space , and the quotient of the

setHa = {z = x + iy | y > a} by this isometry results in a so-called hyperbolic cusp with height
a > 0. Thus, such a cusp Za is topologically equivalent to S1 × [a,∞) and it is equipped with a
metric of constant negative curvature.

Figure 1 shows a fundamental domain that becomesZa when the parallel sides are identified. Of
course the space of smooth functions C∞(Za) on Za can be identified with smooth functions on
H periodic in x (with period one) and similarly, L2(Za) can be identified with the set of measurable
functions f(z) onH, periodic in x (with period one), such that the L2-norm

∫ ∞

a

∫ +1/2

−1/2

|f(z)|2y−2dxdy

is finite. We will in the following use these identifications without further mention. The Neumann
Laplace operator ∆Za on the cusp Za is obtained by imposing Neumann boundary condition on
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Figure 1: Fundamental domain of a cusp inH. The two parallel sides are identified.

Figure 2: Part of a cusp isometrically embedded intoR3
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the operator∆ = −y2
(
∂2x + ∂2y

)
on the boundary (R/Z)× {a}. This operator is self-adjoint and

has spectrum consisting of an absolutely continuous part [1
4
,∞) and of a discrete set of non-negative

eigenvalues with finite dimensional eigenspaces (see for example [Mül83] or [Iwa02] and references
there).

Suppose thatX is a complete two-dimensional Riemannian manifold (or orbifold with finitely
many isolated orbifold singularities) that is either a hyperbolic cusp or a disjoint union of hyperbolic
cusps outside of a compact region. Thus, we are assuming thatX has the form

X =M ∪∂Z Z, Z = Z1 ⊔ · · · ⊔ Zp, Zk = (R/Z)× [ak,∞)

such that the Riemannian metric g onX restricted to a neighbourhood of the cusp Zk is the hyper-
bolic metric defined above (see Figure 3).

M

Z1

Z2

X

Figure 3: A surface of genus one with two hyperbolic cusps

Now assume thatP is a formally self-adjoint differential operator of Laplace type onX acting on
functions (whichmeans thatP = −gij∂i∂j + lower order terms), and let∆ be the Laplace operator
acting on functions onX . Thus, P − ∆ is a first order operator and we will assume that P − ∆ is
compactly supported away from eachZk. The simplest example would be

P = ∆+ V (x),

where V ∈ C∞(X) is a potential that is supported in the interior ofM . However, we do not want
to exclude more general cases here. SinceX is complete the operator P is essentially self-adjoint on
C∞

0 (X).

Remark 1. All our formulae and conclusions hold true with the obviousmodifications ifM has addi-
tional boundary components and/or conical singularities away from cuspsZ , and appropriate elliptic
boundary conditions are imposed there to make P a self-adjoint operator.
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Manifolds with such cusps were considered and analysed in [Mül83] and [Mül92] and the glu-
ing constructions for the heat kernel carry over to our setting. The structure of the spectrum and
the generalised eigenfunctions can also be inferred from the meromorphic continuation of the resol-
vent. This approach can be found for example in [Gui95]. In the following we summarise the known
results.

As the Neumann Laplace operator on Za, the operator P has spectrum consisting of the abso-
lutely continuous part [1/4,∞) of multiplicity p and, maybe, eigenvalues of finite multiplicity. As
usual the resolvent (P − λ)−1 is often more conveniently described using other parameters s and t
which are related to the spectral parameter λ in the following way,

λ = s(1− s),

s =
1

2
+ i t,

λ =
1

4
+ t2.

The set onwhich the resolvent is naturally defined as ameromorphic functionwith values in the space
of bounded operators isC\[1

4
,∞) in terms of λ, the half-planeRe(s) > 1/2 in terms of s, and the

lower half-space in terms of the parameter t. The resolvent,

(P − λ)−1 = (P − s(1− s))−1,

viewed as an operator fromL2
comp(X) toH2

loc(X), admits a meromorphic continuation as a function
of s to the entire complex plane with poles of finite rank (that is, all the negative Laurent coefficients
are finite rank operators). These poles correspond to eigenvalues and so-called scattering resonances.

The generalised eigenfunction Ej(z, s) of the operator P , attached to the cusp Zj , can be con-
structed from the resolvent and therefore admits a meromorphic continuation toC as a function of
s. When restricted toZk it is of the form

Ej(z, s)|Zk
= δj,ky

s
k + Cj,k(s)y

1−s
k + Tj,k(zk, s), (1)

where Tj,k(z, s) is in L
2(Zk). Here zk = xk + i yk denotes the coordinates on the cusp Zk. Both

C(s) and T (z, s) are meromorphic matrix-valued functions of s in the entire complex plane. The
matrix-valuedmeromorphic functionC(s) is defined by (1) and is normally referred to as the scatter-
ing matrix. It satisfies the relations

C(s) = C∗(s) = C(s), (2)

C(s)C(1− s) = ✶, (3)

implying that it is unitary on the absolutely continuous spectrum.
SinceZa has a natural S1-action we can decompose, in the case P = ∆, the solutions of

(∆− s(1− s))f(z) = 0

into the Fourier modes f(z) =
∑
m∈Z

fm(y)e
2πimx that satisfy

(
−y2 d

2

dy2
+ 4π2m2y2 − s(1− s)

)
fm(y) = 0.

Form = 0 and s 6= 1
2
this implies that f0(y) is a linear combination of ys and y1−s. Form 6= 0 the

general solution of this ODE can be expressed in terms of Bessel functions. Then we obtain

Tj,k(z, s) =
√
y
∑

m∈Z\{0}
am,j,k(s)Kit(2π|m|y)e2πimx,
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where convergence is inC∞(Za). HereKν is the modified BesselK-function of order ν.
Poles of the scattering matrixC(s) are called resonances. Resonances correspond to poles of the

generalised eigenfunctions Ej(z, s) and the coefficient of the lowest term in the Laurent expansion
at a resonance sr is proportional to a function fr ∈ C∞(X) such that

(P − sr(1− sr)) fr = 0,

and
fr|Zk

= ar,ky
1−sr
k +Rr,k(zk),

where Rr,k is exponentially decaying as yk → ∞. The function fr is sometimes referred to as the
resonant state at the resonance sr.

2 Plan of the paper and discussion of the results

Themain aimof this paper is to demonstrate that the domain decomposition using theNeumann-to-
Dirichlet map leads to a simple and fast numerical scheme allowing to compute the scattering matrix
on spaces with hyperbolic cusps.

The paper is structured as follows.
In Sections 3 and 4 we construct the Neumann-to-Dirichlet maps on the compact part of a hy-

perbolic surface and on the cusps, respectively. In Section 5 we show that the scattering matrix can
be extracted from theNeumann-to-Dirichlet operator of a compact part of a hyperbolic surface with
cusps by means of simple linear algebra methods. In particular, if a numerical approximation of the
Neumann-to-Dirichlet map at a spectral point is provided by any method, fast and standard linear
algebra routines can be used to extract the scattering matrix. In Section 6 we show that in fact stan-
dard finite element methods are already sufficient to calculate the scattering matrix, and hence the
scattering resonances, with good accuracy if the spectral parameter is not too large. Various examples
of constant but also non-constant curvature are treated and discussed in detail in Section 7. We com-
pare them to known values for arithmetic surfaces as computed for example by Winkler ([Win88])
andHejhal ([Hej92]). Since ourmethod is extremely fast and flexible wewere able to producemoving
pictures that show how scattering resonances move with conformal perturbations or in Teichmüller
space. Figures illustrating this are included in Section 7. In particular, in genus one case we identified
several surfaces for which the scattering matrix is expressible in terms of the Riemann zeta function.
These surfaces correspond to the four arithmetic surfaces known to exist in genus one with one cusp.
It seems that these arithmetic surfaces are the only ones (up to isomorphism) forwhich the resonances
are lined up along critical lines.

For surfaces of constant negative curvature there are direct fast convergingmethods that allow the
computation of embedded eigenvalues and scattering resonances. For example Hejhal’s algorithm
can be used to compute embedded eigenvalues with extreme accuracy (see for example [BSV06b],
see also [BSV06a]), and is used to compute large numbers of high lying eigenvalues (for example
[JST14] for arithmetic examples). Variations have also been used to track resonances (for example
[FL05, Ave07, Ave10]). Our approach is different in that it treats the compact part as a black-box and
also allows for perturbations away from constant curvature. The correspondence between the scat-
tering matrix and the Neumann-to-Dirichlet map can be used to relate number theoretic questions
to transmission problems. This approach was taken independently in [CC18] in the context of quo-
tients of hyperbolic space by Fuchsian groups and leads to a reformulation of theRiemannhypothesis
in terms of transmission eigenvalues.

We would like to point out that numerical instabilities leading to spurious eigenvalues or eigen-
values being missed seem to be absent in our approach. We give several tables comparing our results
to known computations in arithmetic constant curvature situations.
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3 The Neumann-to-Dirichlet operator on ∂M

The operator P is a formally self-adjoint elliptic differential operator on X that coincides with the
Laplace operator near the boundary ofM . Therefore, we have Green’s formula

〈Pψ, φ〉 − 〈ψ, Pφ〉 =
∫

∂M

(
ψ(z)

∂φ

∂n
(z)− ∂ψ

∂n
(z)φ(z)

)
dz

for allφ, ψ ∈ C∞(M). In our case the boundary∂M is a disjoint union of components∂Mk = ∂Zk
each of which is isometric to the circle. We therefore have

∫

∂M

(
ψ(z)

∂φ

∂n
(z)− ∂ψ

∂n
(z)φ(z)

)
dz =

p∑

k=1

∫

∂Mk

(
ψ(z)

∂φ

∂n
(z)− ∂ψ

∂n
(z)φ(z)

)
dz.

Given a particular boundary component ∂Mk we can choose coordinates (x, y) such that the cusp
Zk corresponds to S

1 × [ak,∞). In this case 1
ak
dx is the natural Riemannian measure induced by

the metric on the boundary and ak
∂
∂y

is the unit normal vector field. We therefore have

∫

∂Mk

(
ψ(z)

∂φ

∂n
(z)− ∂ψ

∂n
(z)φ(z)

)
dz =

∫ 1

2

− 1

2

(
ψ(z)ak

∂φ

∂y
(z)− ak

∂ψ

∂y
(z)φ(z)

)∣∣∣∣
y=ak

1

ak
dx.

We can hence construct another self-adjoint operator PNeu on L
2(M) by restricting P to M and

imposingNeumann boundary conditions at the boundary ∂M . SincePNeu is self-adjoint and elliptic
there exists an orthonormal basis in L2(M) consisting of smooth eigenfunctions (Φj)j∈N such that

PNeuΦj = λjΦj,

∂Φj

∂n

∣∣∣∣
∂M

= 0,

where λ1 ≤ λ2 ≤ . . .→ ∞ are the corresponding eigenvalues.
Ifλ ∈ C is not aNeumann eigenvalue then for each f ∈ C∞(∂M) there exists a unique function

ψ ∈ C∞(M) such that

(P − λ)ψ = 0, inM,

∂ψ

∂n

∣∣∣∣
∂M

= f.
(4)

The so-called Neumann-to-Dirichlet operatorNM(s) : C∞(∂M) → C∞(∂M) is defined as

NM(s)f := ψ|∂M ,

where ψ ∈ C∞(M) is the solution of (4).
Separating between the different boundary components theNeumann-to-Dirichlet map can also

be thought of as a matrix of operators NM
kj (s) : C∞(∂Mj) → C∞(∂Mk). It is well known that
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NM(s) is a pseudodifferential operator of order−1whose full symbol depends only on the germ of
the metric near the boundary (see [LU89] in case s = 0, but the proof given there works in general).
In particular the off-diagonal terms of the matrixNM

kj (s) are smoothing operators and the diagonal
ones are pseudodifferential operators of order−1 acting on C∞(∂Mj). Using Green’s formula one
easily obtains

NM(s)f =
∑

j

1

λj − s(1− s)
〈f, φj〉L2(∂M) φj, (5)

where φj = Φj|∂M are the restrictions of the Neumann eigenfunctions Φj to the boundary ∂M of
M and the sum converges inH1/2(∂M) (see [LM08]). Taking differences one obtains

(
NM(s)−NM(s0)

)
f =

∑

j

s0(1− s0)− s(1− s)

(λj − s(1− s))(λj − s0(1− s0))
〈f, φj〉L2(∂M) φj. (6)

This converges in H3/2(∂M) uniformly with respect to the H2(∂M)-norm of f . In particular,
NM(s) is a meromorphic family of pseudodifferential operators of order −1 with first order poles
at sj that are related to the Neumann eigenvalues λj of PNeu by λj = sj(1 − sj). The family of
operatorsNM(s) is hence completely determined by the data (φj, λj)j∈N.

4 The Neumann-to-Dirichlet operator on cusps

Since theZa admits an S1-action the spaceL2(Za) every function f ∈ L2(Za)may be decomposed
into Fourier modes

f(z) =
∑

m∈Z
fm(y)em(x),

where em(x) = e2πimx. The functions with vanishing zero Fourier coefficients form a sub-space in
L2(Za), the so called cuspidal functions

L2
cusp(Z

a) = {f ∈ L2(Za) | f0(y) = 0 a.e.}.

The orthogonal complementL2
0(Z

a) ofL2
cusp(Z

a) is then the space of functions that do not depend
on x. This space is canonically isomorphic to L2((a,∞), y−2dz). The Neumann Laplace operator
leaves both spaces invariant. Its restriction to L2

0(Z
a) has absolutely continuous spectrum [1

4
,∞)

and the restriction toL2
cusp(Z

a) has purely discrete spectrum consisting of eigenvalues of finite mul-
tiplicity accumulating at∞. If λ = s(1 − s) is not a eigenvalue of the Neumann Laplace operator

on L2
cusp(Z

a) then for each f ∈ L2(S1) with
1/2∫

−1/2

f(x)dx = 0 there exists a unique function

ψ ∈ L2(Za) such that

(∆− λ)ψ = 0,

−a∂ψ
∂y

∣∣∣∣
y=a

= f.

Wewill define the cuspidal Neumann-to-Dirichlet operatorN Za

(s) : C∞(S1) → C∞(S1) as

N Za

(s)(f − av(f)) := ψ|y=a,

where

av(f) :=

∫ 1/2

−1/2

f(x)dx.
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This operator has an explicit description in terms of Bessel functions. Namely, it follows directly from
the expansion into Fourier modes that for anym 6= 0we have

N Zk(s)em = −
(
1

2
+ 2π|m|aK

′
it

Kit

(2π|m|ak)
)−1

em,

and N Zk(s)e0 = 0. Since the boundary ofM consists of a disjoint union of components ∂Mk

we can assemble the Neumann-to-Dirichlet operator to an operator N c(s) acting on L2(∂M) =⊕p
k=1 L

2(∂Mk) by defining

N c(s) =

p⊕

k=1

N Zk(s).

In the same way the averaging operator can be assembled to a map av : L2(∂M) → L2(∂M).

5 The relation between theNeumann-to-Dirichlet operator and

the scattering matrix

The generalised eigenfunctions Ej(z, s) form a meromorphic family of functions satisfying (P −
λ)Ej(z, s) = 0 on all ofM . Hence,

NM
kl (s)

(
al
∂

∂yl
Ej(zl, s)

)∣∣∣∣
∂Ml

= Ej(zk, s)|∂Mk
.

On the other hand the restriction of Ej(z, s) to each cusp has an expansion of the form (1) with a
decaying tail term. We therefore have

N Zk(s)

(
−ak

∂

∂yk
(Ej(zk, s)− δj,ky

s
k − Cj,k(s)y

1−s
k )

∣∣∣∣
∂Mk

)

=
(
Ej(zk, s)− δj,ky

s
k − Cj,k(s)y

1−s
k

)∣∣
∂Mk

.

This means in particular that ∂
∂n
Ej(z, s)|∂M is in the kernel of the map

(✶− av)NM +N c.

Note that the averaging map av : L2(∂M) → L2(∂M) is the orthogonal projection onto the
space of locally constant functions L2

0(∂M) on ∂M . This space is naturally identified with Cp, the
k-th component being identified with the function value on the boundary component ∂Mk.

Theorem 2. Suppose that s 6= 1
2
is a complex number that is not a pole ofNM(s) orN c(s), and not a

pole of the scatteringmatrixC(s). Suppose furthermore that s(1−s) is not anL2-eigenvalue ofP . Then
the kernel of the map (✶− av)NM(s) +N c(s) is p-dimensional and spanned by { ∂

∂n
Ek(z, s)|∂M |

1 ≤ k ≤ p}.

Proof. The assumptions imply that the generalised eigenfunctionsEj(z, s) exist at s. Wehave already
shown that ∂

∂n
Ej(z, s)|∂M is in the kernel of (✶ − av)NM(s) + N c(s). Moreover, any non-zero

linear combination ofE =
∑

j cjEj such that
∂
∂n
Ej(z, s)|∂M = 0will give rise to anL2-Neumann

eigenfunctiononZ by taking the non-zero part of its Fourier expansion. Sincewe excludedNeumann
eigenvalues on the cusp by the requirement that s is not a pole ofN c, the functions ∂

∂n
Ej(z, s)|∂M

are linearly independent. Now suppose that g ∈ L2(∂M) is in the kernel of (✶ − av)NM + N c.

Page 10



Computation of resonances

Both (✶− av)NM andN c are elliptic pseudodifferential operators of order−1 and their principal
symbols coincide. Hence, their sum is elliptic too and, by elliptic regularity, g ∈ C∞(∂M). This
means that there is a function FM ∈ C∞(M) and a function FZ ∈ L2(Z) ∩ C∞(M) such that

(P − s(1− s))FM = 0, (P − s(1− s))FZ = 0,

(✶− av)FM |∂M = FZ |∂M , (✶− av)
∂

∂n
FM

∣∣∣∣
∂M

= − ∂

∂n
FZ

∣∣∣∣
∂M

,

∂

∂n
FM

∣∣∣∣
∂M

= g.

These equations imply that the functions FM and FZ , when expanded into Fourier modes, have the
same non-zero Fourier coefficients on each cusp. Hence, for each cusp Zk there exist coefficients ak
and bk such that the function

aky
s
k + bky

1−s
k + FZk

has the same Fourier expansion asFM onZk. Therefore, we can construct a globally defined function
F ∈ C∞(X)which agrees with FM onM , such that

F |Zk
(zk) = aky

s
k + bky

1−s
k + FZk

(zk).

Now use Green’s identity on a cut-off domainMR obtained by cutting off the cusps Zk at y = R
and use the fact that the tail term is exponentially decaying:

0 = lim
R→∞

∫

MR

(Ej(z, s)(P − s(1− s))F (z)− F (z)(P − s(1− s))Ej(z, s)) dz

= (1− s)bj + s

p∑

k=1

akCj,k(s)− (1− s)

p∑

k=1

akCj,k(s)− sbj

= (1− 2s)

(
bj −

p∑

k=1

akCj,k(s)

)
.

Define E(z) :=
p∑

k=1

akEk(z, s). Then the above implies that F − E ∈ L2. Since s(1 − s) was

assumed not to be an L2-eigenvalue we conclude that F = E.

Theorem 3. Suppose that s 6= 1
2
is a complex number that is not a pole ofNM(s) orN c(s), and not

a pole of the scattering matrix C(s). Suppose furthermore that s(1 − s) is not an L2-eigenvalue of P .
Let V be the kernel of the map (✶− av)NM(s) +N c(s) and define the maps

Q1 : V → C
p, g 7→ av(g),

Q2 : V → C
p, g 7→ av(NM(g)).

Then the map (s− 1)Q2 +Q1 is invertible and

C(s) = As−1(sQ2 −Q1) ((s− 1)Q2 +Q1)
−1As, (7)

whereA is the diagonal matrixA = diag(a1, a2, . . . , ap).

Proof. By the previous theorem we can use the basis
{
φk :=

∂
∂n
Ek(z, s)|∂M | 1 ≤ k ≤ p

}
in V to

check the invertibility of the map (s− 1)Q2 +Q1 and the formula for the scattering matrix. By the
expansion (1) we have

(Q1φj)k = sδj,ka
s
k + (1− s)Cj,k(s)a

1−s
k ,

(Q2φj)k = δj,ka
s
k + Cj,k(s)a

1−s
k .
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Therefore, (((s− 1)Q2 +Q1)φj)k = (2s− 1)δj,ka
s
k and the right hand side is a non-singular ma-

trix. Moreover, ((sQ2 −Q1)φj)k = (2s− 1)Cj,k(s)a
1−s
k . The formula (7) is immediately implied

by this.

In the case of one cusp the above reduces to a generalised eigenvalue problem.

Corollary 4. AssumeX has one cusp, i.e. p = 1, and suppose that s 6= 1
2
is a complex number that

is not a pole of NM(s) or N c(s), and not a pole of the scattering matrix C(s). Then either the pair
(NM(s) + N c(s), av) has precisely one generalised eigenvalue G(s), or C(s) = s

s−1
a2s−1. In the

former case the scattering matrix can be computed from this eigenvalue as

C(s) = (sG(s)− 1) ((s− 1)G(s) + 1)−1 a1−2s.

6 Numerical computation of the scatteringmatrix, resonances

and embedded eigenvalues

6.1 Scattering matrix and resonances

Theorems 2 and 3 yield an extremely simple and fast algorithm to compute the scattering matrix,
resonances or eigenvalues for the situation described above. In this section we will assume that s 6= 1

2

is a complex number that is not a pole ofNM(s) orN c(s), and not a pole of the scattering matrix
C(s). In the following we take (em)m∈Z to be the orthonormal basis of L2(R/Z, dx) consisting of
Fourier modes em(x) = e2πimx. Since each boundary component ∂Mk can be identified with a
circle, this gives an orthonormal basis (em,k)m∈Z, k=1,...,p in L

2(∂M). We will write (eα)α∈I where
the index set for α = (α1, α2) is I := Z× {1, . . . , p}.

The boundary data (φj, λj)j∈N of Neumann eigenvalues can be used to compute the matrix ele-
ments of theNeumann-to-Dirichlet operatorNM(s) using (5) and the Fourier expansion in the basis
(eα) giving

NM
α,β(s) = 〈NM(s)eα, eβ〉L2(∂M) =

∑

j

1

λj − s(1− s)
〈eα, φj〉〈φj, eβ〉L2(∂M). (8)

Using (6), convergence in (8) is accelerated if we compute the matrix elementsNM
αβ(s0) directly at a

single particular value s0, cf. [LM08]. Then

NM
α,β(s)−NM

α,β(s0) =
∑

j

s0(1− s0)− s(1− s)

(λj − s(1− s))(λj − s0(1− s0))
〈eα, φj〉〈φj, eβ〉L2(∂M), (9)

and the series in (9) convergesmore rapidly than the one in (8). The acceleration trickmay be repeated
if one computes directlyNM

α,β(sj) for several particular values of sj .
The matrix elements ofN Za

(s) are simply

N Za

α,β(s) =




0 if α 6= β,

(1− δm,0)
(

1
2
+ 2π|m|ak K

′
it

Kit
(2π|m|ak)

)−1

if α = β = (m, k).
(10)

Moreover, avα,β = δα1,0δβ1,0.
We would then like to find the p× pmatrixG(s) such that

dimker
(
NM(s) +N c(s)−G(s)av

)
= p.
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The idea of the numerical approximation is of course to truncate this Fourier basis and approximate
the abovematrices by finitematrices by considering only 0 ≤ |α1|, |β1| ≤ J for some large integer J .

We denote by ÑM , Ñ c, and ãv the finite matrices obtained from truncating the Fourier expansion
at J . Then these matrices are (2J + 1)p× (2J + 1)pmatrices with complex entries.

We use the finite element method to compute the Neumann boundary data (φj, λj)j∈N in terms
of the numbers λj and the Fourier modes 〈φj, eα〉. Once these data are obtained a finite element

approximation to ÑM(s) canbe computed very quickly for arbitrary s ∈ C in a given compact subset

of the complex plane. The matrices Ñ c can be computed very fast using a well known continued
fraction expansion for the BesselK-function [CBV+08, Section 17],

(
1

2
+ 2π|m|aK

′
it

Kit

(2π|m|a)
)

= −2π|m|a−
∞
K
n=1

(
−t2 − (2n−1)2

4

4π|m|a+ 2n

)
, (11)

where we use Gauss’ notation
∞
K
n=1

pn
qn

=
p1

q1 +
p2

q2 +
p3

q3 + · · ·

.

In order to compute the scattering matrix numerically in the above approximation we proceed as
follows. By Theorem 2 the operator T (s) := (✶− av)NM(s) +N c(s) has a p-dimensional kernel
spanned by ∂

∂n
Ek(z, s)|∂M . We compute the cut off approximation

T̃ (s) := (✶− ãv)ÑM(s) + Ñ c(s).

If J is large enough this matrix will have precisely p small singular values. We can therefore perform
a singular value decomposition to construct an orthonormal system of singular vectors (v1, . . . , vp)
with small singular values. The system of vectors (ãv(v1), . . . , ãv(vp)) determines a p × p matrix

Q̃1. Similarly the vectors (ãvÑM(v1), . . . , ãvÑ
M(vp)) determine a p×pmatrix Q̃2. Since the set of

invertible maps is open thematrix (s− 1)Q̃2+ Q̃1 is invertible if the approximation is good enough.
By Theorem 3 we then get a numerical approximation of the scattering matrix by

C̃(s) = As−1(sQ̃2 − Q̃1)
(
(s− 1)Q̃2 + Q̃1

)−1

As.

As beforeA is the diagonal matrixA = diag(a1, a2, . . . , ap).
Since resonances are poles ofC(s) and we have the functional equationC(s)C(1− s) = ✶, the

resonances are precisely the zeros of the determinant ofC(1− s).

6.2 Error estimates for the scattering matrix

In this section we will show that in principle the error in the computation can be made rigorous if
the exterior and interior Neumann-to-Dirichlet maps are obtained by amethod with rigorous errors.
Let us start assuming that we have a mechanism at our disposal to estimate the first Sobolev norm of
NM(s)Φ−Ψ for given smooth functionsΦ andΨ. This depends on a chosenmethod of computa-
tion of the Neumann-to-Dirichlet map.

OnL2(∂M)we have the orthonormal basis (em,k)m∈Z, k=1,...,p. We define the Fourier multiplier
q : Hs(∂M) → Hs−1(∂M) by qem,k = (|m|+ 1) em,k. The operator q is a first order pseudod-
ifferential operator and can also be expressed in terms of the Laplace operator on the boundary. For
concreteness we fix theHs-norm on ∂M as ‖Φ‖Hs(∂M) = ‖qsΦ‖L2(∂M).
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In the following we will assume that s ∈ C is fixed such that the assumptions of Theorem 3 hold:
s 6= 1

2
is not a pole ofNM(s) orN c(s), not a pole of the scattering matrixC(s) and s(1− s) is not

an eigenvalue of P . Then

T ′(s) := qT (s) = q
(
(✶− av)NM(s) +N c(s)

)

is a zero order elliptic pseudodifferential operator. In particular 0 is not in the essential spectrum
of T ′∗T ′. This implies that the self-adjoint operator |T ′| has 0 as a multiplicity p eigenvalue and a
spectral gap in the sense that the spectrum is contained in {0} ∪ [K1,∞) for someK1 > 0.

Our numerical approximation takes place in the finite dimensional subspaceWJ of functions f
that have a finite Fourier expansion of the form

f(z) =
∑

|m|≤J
fm(y)em(x).

As before J is a sufficiently large integer. The method will then usually find an orthonormal set
vectors (v1, . . . , vp) inWJ such that

‖T ′vk‖ < δ1 ≪ 1.

If P0 is the orthogonal projection onto the p-dimensional kernel of |T ′| it follows that

‖(✶− P0)vk‖ ≤ K−1
1 δ1.

Applying the numerical approximation ofNM(s) we obtain another set of vectors (w1, . . . , wp) in
the subspace. Given an error estimate on the Dirichlet-to-Neumann map as assumed we will get a
bound of the form

‖NM(s)vk − wk‖L2 < δ2.

The approximations Q̃1 and Q̃2 of the maps Q1 and Q2 can be though of as finite rank operators

with range in the subspaceWJ that vanish on the orthogonal complement ofWJ . Recall that Q̃1 =

(ãv(v1), . . . , ãv(vp)) and Q̃2 = (ãv(w1), . . . , ãv(wp)). If we choose (P0v1, . . . , P0vp) as a basis
in the kernel of T to describeQ1 andQ2 we obtain

‖Q1 − Q̃1‖ ≤ √
p K−1

1 δ1, ‖Q2 − Q̃2‖ ≤ √
p
(
δ2 + ‖NM(s)‖K−1

1 δ1
)
,

where the norms are the operator norms of the respective matrices. Let

ǫ1 =
√
pK−1

1 δ1 + |s− 1|√p
(
δ2 + ‖NM(s)‖K−1

1 δ1
)
,

ǫ2 =
√
pK−1

1 δ1 + |s|√p
(
δ2 + ‖NM(s)‖K−1

1 δ1
)

and

K2 =

∥∥∥∥
(
(s− 1)Q̃2 + Q̃1

)−1
∥∥∥∥ , K3 =

∥∥∥sQ̃2 − Q̃1

∥∥∥ .

Then, assuming ǫ1K2 < 1, we obtain

∥∥∥∥((s− 1)Q2 +Q1)
−1 −

(
(s− 1)Q̃2 + Q̃1

)−1
∥∥∥∥ ≤ ǫ1K

2
2

1− ǫ1K2

.

Collecting everything we can now estimate the error of the approximated scattering matrix

C̃(s) = As−1(sQ̃2 − Q̃1)
(
(s− 1)Q̃2 + Q̃1

)−1

As.
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as

‖C̃(s)− C(s)‖ ≤ ‖As−1‖‖As‖
(
ǫ1K

2
2(K3 + ǫ2)

1− ǫ1K2

+ ǫ2K2

)
.

If the error for the Neumann-to-Dirichlet map is known, and the norm ‖NM(s)‖ and the spec-
tral gapK1 canbe estimatedor computed, the error for the scatteringmatrix canbe explicitly bounded.
Im principle this make it possible to use interval arithmetics to rigorously prove interval bounds for
the scattering matrix. The scattering matrix is holomorphic in the resolvent set and by a classical the-
orem of Hurwitz the zeros of uniform approximations of C(s) converge to zeros of C(s). A quan-
titative version of this is given in [R69]. This allows to estimate the error of the approximation of
the computed resonances. Note that using a finite truncation of (6) approximates the Neumann-to-
Dirichlet operator in the correct norm.

6.3 Embedded eigenvalues

Since we assumed P was self-adjoint any eigenvalues will have to be on the real line. There are two
classes of eigenvalues: those below the continuous spectrumand those embedded into the continuous
spectrum. We will refer to the eigenvalues λ < 1/4 as small eigenvalues and the eigenvalues λ ≥ 1/4
as the embedded eigenvalues. Embedded eigenvalues correspond to real values of t and therefore
the real part of s for these eigenvalues will always be 1/2. As a consequence the zero modes of the
Fourier expansion of these eigenfunctions in the cusp has to vanish. We therefore make the following
observation.

Theorem 5. The embedded eigenvalues away from the poles ofNM andN c are exactly those values of
λ = s(1− s) ∈

[
1
4
,+∞

)
for which there exists a non-zero vector f ∈ C∞(S1) such that av(f) = 0

and (
NM(s) +N c(s)

)
f = 0.

Computations of embedded eigenvalues face the problem that it is not possible to numerically
distinguish between an embedded eigenvalue and a resonance that is close to the spectrum. Rigorous
error estimates that guarantee the existence of an embedded eigenvalue therefore always need some
additional information about the geometry or, in the constant curvature case, arithmetic nature of
the surface (see for example [BSV06b]). The mathematically rigorous numerical part of this work is
mostly about the computation of the scattering matrix and of resonances. We therefore only briefly
sketch how one detects embedded eigenvalues or resonances close to the spectrum. We are looking

for vectors v that satisfy ãvv = 0 and for which
(
ÑM + Ñ c

)
v is small. For numerical stability the

QR-decomposition B̃(s) = Q̃(s)R̃(s) of the matrix

B̃ :=
(
ÑM + Ñ c

)
⊕ ãv ⊕ ÑM ⊕ Ñ c

is performed. This matrix maps C(2J+1)p to C
(2J+1)p ⊕ C

(2J+1)p ⊕ C
(2J+1)p ⊕ C

(2J+1)p. Let P
be the projection onto the first two summands. We are looking to find values of s for which there

exists a vector v for whichPB̃(s)v is very small whereas (1− p)B̃v is not. Since R̃ is invertible these

are exactly the small singular values of the matrix PQ̃(s). Thus, our method of finding embedded

eigenvalues is to plot the smallest singular value ofPQ̃(s) as a function of s = 1
2
+ i
√
λ− 1

4
. If the

smallest singular value is close to zero for some s = 1
2
+i
√
λ− 1

4
this amounts to a small spectral gap

K1, i.e. a small (p+1)-st singular value of T ′. Hence the error estimate for the scattering matrix near
such a point becomes much worse, reflecting the fact that we may also have a resonance close to the
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spectrum. The existence of resonances near the spectrum or embedded eigenvalues and completeness
of a list of computed values can heuristically be verified using Turing’s method and variants of the
Weyl law that have been proved in this context [Mül83]. Versions of theWeyl lawwith error estimates
are available in the constant curvature case, see e.g. [Str19].

7 Examples and numerical studies

7.1 General set-up

In this section we will consider several examples of manifolds with cusps. We will be focusing on the
Laplace operator acting on functions, i.e. in all the examples we will have P = ∆. These examples
are divided into groups as follows.

Aφ themodular domainwith its constant curvaturemetric changed by a conformal factor eφ. This
family is parametrised by smooth functions φ on the modular surface.

Br a triangular domain that is sometimes referred to as Artin’s billiard and that interpolates be-
tween the Hecke triangular surfaces. This family is parametrised by a real number r > 1

2
.

Cℓ,τ the surfaces of genus (1, 1) and constant curvature, i.e. the punctured torus. The Teichmüller
space of genus (1, 1) has dimension 2 and therefore this family is parametrised by a length
parameter ℓ > 0 and a twist parameter τ ∈ [0, 1).

D the unique hyperbolic surface of genus zero with three cusps.

In all these examples we decomposed the surface into compact part M and a cusp-part. The
method allows the freedom of choosing a cut-off parameter a. In the examples below a was usually
chosen in the interval [0.3, 2], depending on the geometry. Note that choosing significantly higher
values of a decreases the accuracy of a Neumann-to-Dirichlet map approximation, and choosing a
small a creates meshing problems due to a “narrow” compact partM . Experiments indicate that the
dependence of computed eigenvalues and resonances upon a choice of a in a suitable subset of the
above interval is negligible.

To compute a numerical approximation of theNeumann-to-Dirichletmapweuse the accelerated
expansion (9). We used the finite element framework FreeFEM++ ([Hec18] and [Hec12]) to compute
theNeumann-to-Dirichlet map at some point s0 and to compute the boundary data of the first 1000
Neumann eigenvalues. On the boundary Fourier modes up to |m| = 40 were used. In the FEM
implementation we used discretisation with up to 200 points on the boundary of the compact part.
The Neumann-to-Dirichlet map on the cusps is computed using (10) and (11).

The corresponding datawere expressed in terms of Fouriermodes on the boundary and imported
into a Mathematica script that directly computed the scattering matrix by the method described be-
fore. Since then the scattering matrix was available as a numerical function, we used Newton’s root
finding algorithm to locate zeros of its determinant. The functional equation (3) was then used to
determine the scattering resonances. The poles and the zeros of the scattering matrix are located in
the half-planes Re s > 1

2
and Re s < 1

2
, respectively. Unless resonances are very close to the spec-

trum there are therefore no issues due to poles and zeros being close together. One can thus use the
argument principle and contour integration to count the number of resonances in a region bounded
away from the spectrum. We have found that in practice Newton’s root finding algorithm finds all
resonances away from the spectrum in a fast reliable manner. This is due to the well-behaved analytic
properties of the scattering matrix. To locate and track resonances that are very close to the spectrum
we start from a perturbation of the surface and then use predictive algorithms based on polynomial
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extrapolation to follow the path of the resonance. This way even the resonances that seem to have
high order touching points with the spectrum could be tracked.

The following conventions are assumed in all videos and graphs:

• Resonances and eigenvalues are traced in a part of (Re s, Im s) ∈
(
−∞, 1

2

]
× [0,+∞) quad-

rant of the s-plane.

• The resonances very close to the continuous spectrum 1
2
+ i [0,+∞), as well as embedded

eigenvalues, are shown in blue. Not all embedded eigenvalues are shown.

• The resonances on the critical line 1
4
+ i[0,+∞) or very close to it are shown in red.

• The resonances on the lineRe s = 0 or very close to it are shown in green.

• The eigenvalue at s = 0 is never shown.

• In graphs showing the trajectories of resonances, the startingpoints of the trajectories aremarked
by a disk, and the end points by a square.

7.2 Benchmarking

In the case of the modular surfaceA0 the scattering matrix can be expressed in terms of the Riemann
zeta function, see (12), and we could compare and compute the relative error of our approximation.
The scattering matrix C(s) computed for s = 1

2
+ it, t ∈ [0., 30.] (this amounts to the interval

[0.25, 900.] in the spectrum) had a maximal relative error of about 0.25%. On the interval [0, 10]
for t we even obtained a maximal relative error not exceeding 0.004%. Similar errors hold on the
critical line. We note that these approximations are surprisingly good considering that a finite element
approximation was used. The finite element method and subsequent computations were carried out
with double precision.

As shown in Subsection 6.2 the (p + 1)-th singular value of qT̃ is a measure of the spectral gap.
Away from resonances close to the real line or embedded eigenvalues the size of the first p smallest

singular values of qT̃ compared to the (p + 1)-th small singular value was extremely small (typically
of an order of a double precision rounding error) in our computations. Hence, using the terminol-
ogy of Subsection 6.2 the numerical estimate forK−1

1 δ1 was very small and the theoretical error was
dominated by δ2 which stems from the approximation of the Neumann-to-Dirichlet map. In our
case most of the errors are due to the FEM approximation and decrease with mesh refinement.

The computational cost of building the scattering matrices using FEM realisation of Neumann-
to-Dirichlet maps is relatively low if Im s ≤ 30 (this of course depends on the FEM implementation
and the number of eigenvalues used). The real runtime costs actually occurwhenwe look for complex
roots and poles of the scatteringmatrix and trace individual resonance dependence on the parameters.

7.3 Aφ. The modular domain and conformal perturbations

7.3.1 Description of the surface

This surface can be obtained from the domain
{
(x, y) ∈ H | x2 + y2 ≥ 1, −1

2
≤ x ≤ 1

2

}

by gluing along the boundary as follows. The sides x = −1
2
and x = 1

2
are identified by means of

the parallel translation x 7→ x + 1. The circular arc {(x, y) ∈ H | x2 + y2 = 1, 0 ≤ x ≤ 1
2
} is
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identified with {(x, y) ∈ H | x2 + y2 = 1,−1
2
≤ x ≤ 0} using the map x 7→ −x. This results in a

hyperbolic surface with one cusp and two orbifold singularities at the points (0, 1) and (1/2,
√
3/2),

the latter identified with (−1/2,
√
3/2). This surface can be decomposed into a compact part and

Figure 4: Fundamental domain for the modular surface decomposed into cusp with a = 2 (lighter
shading) and a compact part (darker shading). The arcs of the same colour are identified.

a cusp as indicated in Figure 4. It can also be obtained directly as a quotient X = PSL(2,Z)\H
as the above described domain is a fundamental domain of the PSL(2,Z) action, and the boundary
components are identified using the maps z 7→ z + 1 and z 7→ −1

z
(see, for example, [Iwa02] for an

introduction).
While themetric y−2(dx2+dy2) has constant curvature−1we can consider a functionφwhich

is compactly supported in the interior of the shaded region and change the metric by a conformal
factor eφ to eφ(x,y)y−2(dx2 + dy2). If

∫

M

(1− eφ)y−2dxdy = 0,

this conformal transformation leaves the volume of X unchanged. The surface equipped with this
modified metric will in general have non-constant curvature.

7.3.2 Known properties of the spectrum

Case φ = 0: In the case of constant curvature−1 (φ = 0) this surface is arithmetic. It has infinitely
many embedded eigenvalues (the so-called Maass-eigenvalues) satisfying a Weyl law as shown by Sel-
berg [Sel89] using his trace formula. The scattering matrix C(s) can be computed explicitly and
equals

C(s) =
Λ(2s− 1)

Λ(2s)
, (12)
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where Λ(s) = π− s
2Γ( s

2
)ζ(s) and ζ(s) is the Riemann zeta function [Hej75], [Hux84] . Moreover,

the Maass eigenvalues have been computed with great accuracy and verified by a rigorous algorithm
[BSV06b], see also [BSV06a]. This surface therefore provides an excellent test for our method.

General case: In case φ is non-constant (i.e. if curvature is non-constant) one expects at least some
of the embedded eigenvalues to dissolve and become resonances ([PS92]). This has become known as
the Sarnak-Phillips conjecture. Similarly the resonances will move away from the critical line.

7.3.3 Numerical results

Case φ = 0: Since the surface is symmetric with respect to the transformation x 7→ −x one can use
symmetry reduction and consider the space of even and odd functions. These are functions on

{
(x, y) ∈ H | x2 + y2 ≥ 1, 0 ≤ x ≤ 1

2

}

satisfying either Dirichlet (odd functions) or Neumann (even functions) boundary conditions at the
boundary. The spectrum on the space of odd functions is purely discrete, and there are no reso-
nances. Several first eigenvalues on the space of odd functions, and their comparison with the results
of [BSV06a] are presented in Table 1.

The results for the space of odd functions are below in Section 7.4.3.

The curve in moduli space:We chose the the family of the conformal factors

eφq(x,y) = 1 + q c(x, y),

c(x, y) = sin(5x− 0.5) e−40((x−0.1)2+(y−1.5)2),

with parameter q in the interval q ∈ [−2., 2.]. One can sum over the group PSL(2,Z) to make this
conformal factor a function on the surface. For numerical purposes the additional terms introduced
in that way are however irrelevant as they are belowworking (double) precision. Note that the result-
ing family of metrics has constant curvature precisely at q = 0. Moreover, the volume is constant
along this curve in themoduli space of metrics. We computed theNeumann-to-Dirichlet data at 200
points in the parameter interval on the cutoff surface with boundary at a = 2.2, with 100 discrete
points on the boundary, as well as 600 eigenvalues and their boundary data, and Fourier modes with
m between−15 and 15. One can then trace the resonances as theymove along the curve, see Video 1.

✞

✝

☎

✆
michaellevitin.net/hyperbolic.html#video1

✞

✝

☎

✆
youtu.be/pn3GvzL9ZCI

Link to Video 1: The dynamics of the resonances forAφq as q changes

The same computation was performed using the family of conformal factors

eφ̃q(x,y) = 1 + q c̃(x, y),

c̃(x, y) = sin(5(y − 1.5)) e−40((x−0.1)2+(y−1.5)2).

We omit the results which are very similar.
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Figure 5: c(x, y) as a function on the modular domain

● ■
●■ ●■ ●■●■ ●■ ● ■●■

Figure 6: Trajectories of eight selected resonances ofAφq as q changes
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7.4 Br. Artin’s billiard

7.4.1 Description of the surface

Given a positive parameter r > 1
2
this surface can be obtained from the domain

{(x, y) ∈ H | x2 + y2 ≥ r2, −1

2
≤ x ≤ 1

2
}

by gluing along the boundary as follows. The sides x = −1
2
and x = 1

2
are identified by means of

the parallel translation x 7→ x + 1. The circular arc {(x, y) ∈ H | x2 + y2 = r2, 0 ≤ x ≤ 1
2
} is

identified with {(x, y) ∈ H | x2 + y2 = r2,−1
2
≤ x ≤ 0} using the map x 7→ −x. This results

in hyperbolic surface with one cusp and two conical singularities. Since the surface is symmetric with
respect to the transformation x 7→ −x one can use symmetry reduction and consider the space of
even and odd functions. These are functions on

{
(x, y) ∈ H | x2 + y2 ≥ r2, 0 ≤ x ≤ 1

2

}
,

see Figure 7, satisfying Dirichlet or Neumann boundary conditions at the boundary. Since the spec-
trum on the space of odd functions is pure discrete we consider here only the spectrum on the sub-
space of even functions.

Figure 7: The reducedmodular domain forArtin’s billiardB1/
√
2. Neumann conditions are imposed

on the boundary.

7.4.2 Known properties of the spectrum

There are various cases when this surface can be obtained as a quotient ofH by aHecke triangle group
Gq, q ≥ 3, namely when r−1 = 2 cos π

q
. In particular, for r = 1√

3
, r = 1√

2
, and r = 1, the resulting
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surfaces are arithmetic and correspond to the surfaces obtained from the Hecke triangle groups Gq

in the cases q = 6, 4, 3, respectively (see [MMS12]). These are the only arithmetic cases.
They have infinitely many embedded eigenvalues satisfyingWeyl’s law. In each of the above three

cases the scattering matrix, and hence the resonances, can be expressed explicitly in terms of the zeros
of the Riemann ζ-function. This has been done explicitly in [How07] but the formulae can also be
deduced using the known expressions for the congruence subgroups ([Hej76] and [Hux84]). The
results are

r =
1√
3
: C(s) =

1 + 31−s

1 + 3s
Λ(2s− 1)

Λ(2s)
(13)

r =
1√
2
: C(s) =

1 + 21−s

1 + 2s
Λ(2s− 1)

Λ(2s)
(14)

r = 1 ( the same asA0) : C(s) =
Λ(2s− 1)

Λ(2s)
. (15)

Because of the different choice of cusp-width our formulae differ by a factor 31/2−s and 21/2−s respec-
tively from [How07] in the first two cases. These surfaces were recently investigated in the context
of the Sarnak-Phillips conjecture by Hillairet and Judge, who proved that for generic r there are no
eigenvalues ([HJ18]) in the subspace of even functions.

7.4.3 Numerical results

We have computed resonances for 1000 equidistant points in the parameter range r ∈ [0.54, 1.20]
and tracked them, see Video 2, and also Figure 8 for selected resonances.

✞

✝

☎

✆
michaellevitin.net/hyperbolic.html#video2

✞

✝

☎

✆
youtu.be/pn3GvzL9ZCI

Link to Video 2: The dynamics of the resonances forBr as r changes

The resonances and embedded eigenvalues for the special arithmetic cases are shown in Figure 9.
We have also investigated the case r = 0.5001, which is close to the limiting case r = 1/2. Since

in this case another layer of continuous spectrum appears one expects resonances to accumulate near
the spectrum as r → 1

2
. Apart from these resonances clustering around the spectrum we find stable

ones that seem to converge to half the Riemann zeros, see Figure 9.
The numerical values of resonances and embedded eigenvalues for four special cases, and com-

parison with theoretical predictions and known results are collected in Tables 2 and 3.

7.5 Cℓ,τ . Hyperbolic surfaces of genus one with one cusp

7.5.1 Description of the surface

The Teichmüller space for genus one surfaces of constant negative curvature−1 and one cusp is two
dimensional and can be parameterised by the two Fenchel-Nielsen coordinates ℓ > 0 and τ ∈ [0, 1).
Theparameter ℓ is the length of a primitive closed geodesic and the angle τ is the twist parameter along
this geodesic. Given the above two parameters we have an explicit description of the corresponding
surface of genus one with one cusp as follows.

For a fixed ℓ > 0, let α > 0 be the angle α = 2arctan(tanh ℓ
4
) = arcsin(tanh ℓ

2
). Then

the fundamental domain of the surface with Fenchel-Nielsen coordinates (ℓ, τ) is the non-compact
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Figure 8: Trajectories of four selected resonances forBr, r ∈ [0.54, 1.20]

domainD bounded by the following oriented geodesic arcs, γ1, γ2, γ3, γ4, γ5, γ6, γ7,

γ1 : [−α, α] → H, ψ 7→ sinα

4
i e−iψ,

γ2 :
[
−π
2
+ α,

π

2
− α

]
→ H, ψ 7→ 1

4
+

cosα

4
i e−iψ,

γ3 :
[
−π
2
+ α,

π

2
− α

]
→ H, ψ 7→ −1

4
+

cosα

4
i eiψ,

γ4 : [−α, 0] → H, ψ 7→ 1

2
+

sinα

4
i e−iψ,

γ5 : [0, α] → H, ψ 7→ −1

2
+

sinα

4
i eiψ,

γ6 :

[
sinα

4
,∞
)

→ H, ψ 7→ 1

2
+ iψ,

γ7 :

[
sinα

4
,∞
)

→ H, ψ 7→ +
1

2
+ iψ;

for brevity, we use the complex coordinate x+ iy onH.
Note that γ2, γ4 and γ6 are the images of γ3, γ5 and γ7 respectively under the reflection about the

y-axis x + iy 7→ −x + iy. Figure 10 depicts the fundamental domain decomposed into a compact
part (darker shading) and a cusp (lighter shading). The surfaceCℓ,τ is formed as follows. The infinite
geodesic γ6 is identified with γ7 using the hyperbolic translation z 7→ z − 1. The geodesic arc γ2
is identified with γ3 using the hyperbolic motion along γ1. Once these identifications are completed
both γ1 and γ4∪γ5 become closed boundary geodesics of length ℓ. These boundary components can
be glued together as follows. First shift all points on γ1 by τℓ. Then use hyperbolic translation along
γ2 and γ3 to map the geodesic onto γ4 ∪ γ5. The resulting surfaceCℓ,τ is a surface of genus one with
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Figure 9: Resonances forBr with special values of r

one cusp such as the one depicted in Figure 2. The light-shaded region in Figure 10 gives a hyperbolic
surfaceM of genus one with horocyclic boundary.

In addition to the closed geodesics of length ℓ,Cℓ,τ has another closed geodesics of length

ℓ′ = ℓ′(ℓ, τ) = arccosh

(
cosh(ℓτ)

(
cosh

(
ℓ
2

))2
+ 1

(
sinh

(
ℓ
2

))2

)
. (16)

The two lengths are equal whenever

τ = τ ∗(ℓ) =
arccosh(cosh ℓ− 2)

ℓ
,

or equivalently when ℓ = ℓ∗(τ) is the positive solution of

cosh ℓ = 2 + cosh(ℓτ).

7.5.2 Known properties of the spectrum

In general theLaplace operator on the surfacewill have simple continuous spectrumandmayhave em-
bedded eigenvalues. The expectation is however, that these embedded are generically absent. There
are several special cases for which the surface Cℓ,τ is symmetric, and therefore a symmetry reduction
can be performed. We will single out and discuss several particular families.
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Figure 10: Fundamental domain for a hyperbolic surface of genus one with one cusp, shown here is
C2 arccosh( 3

2
), 1

2

. Identified boundary arcs are shown in the same colour. The shading indicates the

decomposition into a cusp and a compact part

7.5.3 Numerical results, case 1: τ = 0, varying ℓ

With the twist parameter τ fixed the only remaining parameter is the length parameter ℓ. Since in this
case the twist is zero, the curve γ2 becomes a closed simple geodesic of length

ℓ′ = ℓ′(ℓ, 0) = arccosh

(
1 +

2

sinh2
(
ℓ
2

)
)
. (17)

on the resulting surface. As the function ℓ′(ℓ, 0) is monotone decreasing in ℓ, ℓ′(ℓ′(ℓ, 0), 0) ≡ ℓ, and
also ℓ = ℓ′(ℓ, 0) when ℓ = ℓ∗(0) = arccosh(3) ≈ 1.762747, our parametrisation of Cℓ,0 is not
unique: namely, the surfacesCℓ,0 andCℓ′(ℓ,0),0 are always isometric. Therefore it only makes sense to
track resonances for ℓ ≤ ℓ∗(0). We have nevertheless analysed some special values of ℓ > ℓ∗(0) to
verify that our numerical results do not depend on the choice of parametrisation.

We have tracked the resonances in the interval ℓ ∈ [1.2, arccosh(3)], see Video 3, and also Figure
11 for the trajectories traced by four selected resonances.

✞

✝

☎

✆
michaellevitin.net/hyperbolic.html#video3

✞

✝

☎

✆
youtu.be/Li6Azx01IG4

Link to Video 3: The dynamics of the resonances forCℓ,0 as ℓ changes

In this interval there are several special lengths. The numerically found resonances and the first
ten embedded eigenvalues for these special lengths are in Tables 4 and 6, resp.
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● ■●■
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Figure 11: Trajectories of four selected resonances forCℓ,0, ℓ ∈ [1.2, arccosh(3)]

ℓ = arccosh(2) ≈ 1.316957

In this special case the scattering matrix takes the form

C(s) = 21−2s1 + 21−s

1 + 2s
1 + 31−s

1 + 3s
Λ(2s− 1)

Λ(2s)
. (18)

Indeed, one can conjugate the generators of the corresponding Fuchsian group into the following
three matrices

1√
6

(
3 3
6 3

)
,

1√
6

(
6 1
−6 0

)
,

(
1 2
0 1

)
.

These clearly generate a subgroup Γ of the arithmetic group Γ̃0(6), that is the group generated by
Γ0(6) together with its Atkin-Lehner (Fricke) involutions. Since the Atkin-Lehner involutions act

transitively on the four cusps of Γ0(6)\H the domain Γ̃0(6)\H has only one cusp. The scattering
matrix for Γ0(N) has been computed in [Hej76] and [Hux84]. IfN is square-free then according to
Hejhal [Hej76, Vol 2, p 536] the full scattering matrix equals

C(s) =
Λ(2s− 1)

Λ(2s)

⊗

q|N
q prime

Mq(s), (19)

where

Mq(s) =
1

q2s − 1

(
q − 1 qs − q1−s

qs − q1−s q − 1

)
.

The vector

(
1
1

)
is an eigenvector ofMq(s) with eigenvalue

1+q1−s

1+qs
. The Atkin-Lehner involutions

act transitively on the cusps for square-freeN . Therefore, in this case, Γ̃0(N), the group generated by
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the Atkin-Lehner involutions and Γ0(N), gives rise to a quotient with one cusp. The scattering ma-

trix for Γ̃0(N)must then be the restriction of the scattering matrix to functions invariant under the

Atkin-Lehner involutions. The invariant functions correspond to the the span of the vector
⊗
q|N

(
1
1

)

in this representation of the scattering matrix. This vector is an eigenvector of
⊗
q|N

Mq(s)with eigen-

value
∏
q|N

1+q1−s

1+qs
. Summarising, in the case of square-freeN , the scattering matrix for Γ̃0(N) is given

by

C(s) =
Λ(2s− 1)

Λ(2s)

∏

q|N
q prime

1 + q1−s

1 + qs
. (20)

This has also been obtained in [JST14, Lemma 5]. Since Γ̃0(6) acts on the fundamental domain for
our group but leaves the cusp invariant, the scattering matrix for Γ must be the same, apart from
the extra factor 21−2s appearing because of the cusp width 2. We refer to [Ven90] for details of this
argument.

Figure 13 shows the computed resonances for ℓ = arccosh(2).

ℓ = arccosh(3) ≈ 1.762747

In this case α =
π

4
, so all the boundary arcs of Cℓ,0 have the same radius

√
2

8
. Also, the length

ℓ′(ℓ, 0)of the seconddistinguished closed geodesicγ2 coincideswith ℓ. We can carry out the following
sequence of symmetry reductions, see Figure 12.

Figure 12: Sequence of symmetry reductions of Cℓ,0, ℓ = arccosh(3). The arcs are identified with
the dashed counterpart of the same colour. Neumann condition is imposed on arcs coloured black

First of all the domain X = Cℓ,0 has a reflection symmetry x 7→ −x. It follows that we have
a natural decomposition of L2(X) into invariant subspaces for∆ consisting of even and odd func-
tions. On the subspace of odd functions the spectrum of∆ is discrete since it is part of the space of
cups forms, and the Eisenstein series are all even. The subspace of even functions corresponds to the
space of functions on half of the domain {z = x + iy ∈ X | x ≥ 0} satisfying Neumann bound-
ary conditions along γ6, γ2 and along the y-axis part of the boundary of the resulting domain and
periodic boundary conditions that identify γ4 with the right half of γ1. Now we have another sym-

metry x 7→ 1

4
− x. Again the space of odd functions is contained in the space of cusp forms and the
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even part corresponds to considering the domain

{
z = x+ iy ∈ X | 0 ≤ x ≤ 1

4

}
withNeumann

boundary conditions everywhere along its boundary. The resulting domain has yet another symme-

try x 7→ 1

4
−x. The Laplace operator on the space of even functions on this domain corresponds the

Laplace operator on the domain

{
z = x+ iy ∈ D | 0 ≤ x ≤ 1

8

}
with Neumann boundary con-

ditions everywhere along its boundary. Since the symmetry reduction of Artin’s billiard for r =
1√
2

leads, after scaling by a factor
1

4
, to an isometric domain this shows that the continuous spectral sub-

space ofCarccosh(3),0 and that ofB 1√
2

are unitarily equivalent and the scatteringmatrices as well as the

resonances coincide up to a scaling factor. One therefore has

C(s) = 41−2s1 + 21−s

1 + 2s
Λ(2s− 1)

Λ(2s)
. (21)

The above discussion also shows that the discrete spectrum consists of several parts, each belonging
to mixed Dirichlet-Neumann problems on certain domains.

Figure 13 shows the computed resonances for ℓ = arccosh(3).
In a similar way as before one can conjugate the generators of the corresponding Fuchsian group

into
1√
2

(
2 1
2 2

)
,

1√
2

(
4 1
−2 0

)
,

(
1 4
0 1

)
,

which is a subgroup of the arithmetic group Γ̃0(2). Equation (21) can therefore also be derived from
(20) in the same way as before.

ℓ = arccosh(5) ≈ 2.29243

This case is isometric to the case ℓ = arccosh(2) since these two lengths are related by (17), see also
the discussion following that formula.

ℓ = arccosh(9) ≈ 2.88727

This case is isometric to the case ℓ =
(
arccosh

(
3
2

))
≈ 0.962424 which lies outside our computed

range. In this case the scattering matrix is given by

C(s) = 21−2s1 + 51−s

1 + 5s
Λ(2s− 1)

Λ(2s)
. (22)

The generators of the corresponding Fuchsian group can be conjugated to

1√
5

(
15 8
−10 −5

)
,

1√
5

(
0 −1
5 5

)
,

(
1 2
0 1

)
.

These therefore generate a subgroup Γ of Γ̃0(5). The surface Γ̃0(5)\H has one cusp. The group

Γ̃0(5) acts on our surfaceG\H and the action fixes the cusp. This implies that the scatteringmatrices

of G and of Γ̃0(5) coincide modulo a possible factor coming from the normalisation of the cusp-
width. In the same way as before, equation (20) (see also [Ave08, equation (5)]) gives the formula
(22).

Figure 13 shows the computed resonances for ℓ = arccosh(9).
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Figure 13: Resonances and embedded eigenvalues forCℓ,0 with special lengths ℓ

7.5.4 Numerical results, case 2: τ = 1
2
, varying ℓ

We have tracked the resonances in the interval ℓ ∈ [1.12485, 2.72485], see Video 4, and also Figure
14 for the trajectories traced by four selected resonances.

✞

✝

☎

✆
michaellevitin.net/hyperbolic.html#video4

✞

✝

☎

✆
youtu.be/2kn2ZWYObAE

Link to Video 4: The dynamics of the resonances forCℓ,1/2 as ℓ changes

For twist τ = 1
2
we find the following special lengths. The numerically found resonances and the

first ten embedded eigenvalues for these special lengths are in Tables 5 and 6, resp.

ℓ = 2arccosh
(
3
2

)
≈ 1.924847

One can check by direct computation that for this particular ℓ the twist parameter τ = 1
2
is the

unique twist for which the length of the second simple closed geodesic generating the fundamental
group coincides with ℓ. Any hyperbolic surface of genus one with one cusp that possesses two simple
closed curves of that length that intersect in one point only will therefore be isometric to this surface.
In particular, it is isometric to the arithmetic one punctured torus described by Cohn in [Gre74] and
by Gutzwiller in [Gut83]. The scattering matrix is known to be equal to

C(s) = 61−2sΛ(2s− 1)

Λ(2s)
, (23)
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Figure 14: Trajectories of four selected resonances forCℓ,1/2, ℓ ∈ [1.12485, 2.72485]

where the extra factor 61−2s relative to [Gut83] is because the cusp width in [Gut83] was chosen to
be 6 rather than one. Its scattering resonances coincide with the one for the modular domain and
are there directly related to the non-trivial zeros of the Riemann zeta function. Figure 15 shows the
computed resonances for ℓ = 2 arccosh

(
3
2

)
. The form of the scattering matrix (23) can also be

derived as follows. The generators of the Fuchsian group can be conjugated into
(
2 1
1 1

)
,

(
0 −1
1 3

)
,

(
1 6
0 1

)
,

which is a subgroup of PSL(2,R). Therefore, PSL(2,R) acts on our surface and fixes the cusp.
Hence, the scattering matrix coincides with that of the modular domain up to a factor 61−2s, since

the generator

(
1 6
0 1

)
yields a cusp of width 6.

The special values close to the critical line and to the imaginary line are comparedwith theoretical
prediction of (23) in Table 5.

We list some embedded eigenvalues for the twist parameter τ = 1
2
in Table 6. Note that some

of the double eigenvalues coincide with those for the group Γ3 from [Str12]. Additionally, some em-
bedded eigenvalues for the twist parameter τ = 1

2
have been computed in [KTZM13], however the

authors havemissed quite a few embedded eigenvalues in their list. They correctly identify twomulti-
plicity two eigenvalues at 2.95648 and 4.51375, but do for examplemiss themultiplicity two eigenvalue
at about 3.53606 and the simple eigenvalue at about 3.70339, cf. Table 6. Wehaveperformed aheuristic
check usingWeyl’s law and Turing’s method and our list appears to be complete.

ℓ = 2arccosh(2) ≈ 2.6339157

This case can be shown to be isometric to the surface Carccosh 3,0 by computing the generators, and
our independent numerical results are in full agreement.
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Figure 15 shows the computed resonances for ℓ = 2arccosh(2).

Figure 15: Resonances forCℓ,1/2 for special lengths ℓ

ℓ = 2arccosh(3) ≈ 3.525494

This surface is isometric to the one with ℓ = 2 arccosh
(
3
2

)
, and our independent numerical results

are in full agreement.

7.5.5 Numerical results, case 3: ℓ = 2arccosh
(
3
2

)
≈ 1.924847, varying τ

The dynamics of resonances is shown in Video 5.

✞

✝

☎

✆
michaellevitin.net/hyperbolic.html#video5

✞

✝

☎

✆
youtu.be/Qk3rmvT7goY

Link to Video 5: The dynamics of the resonances for C2 arccosh( 3

2
),1/2 as τ changes in the interval

[0, 0.5]

7.5.6 Numerical results, case 4: equal length geodesics, varying τ and ℓ = ℓ∗(τ)

The dynamics of resonances is shown in Video 6.

✞

✝

☎

✆
michaellevitin.net/hyperbolic.html#video6

✞

✝

☎

✆
youtu.be/7_yBpOxoY9I

Link to Video 6: The dynamics of the resonances forCℓ∗(τ),τ as τ changes in the interval [0, 0.489]

Remark 6. There are precisely four isomorphism classes of smooth arithmetic surfaces of genus one
with one cusp (see [MR83], and also [Tak83]). One can use the generators for the four surfaces
Carccosh(2),0,Carccosh(3),0,Carccosh(9),0,C2 arccosh( 3

2
), 1

2

and identify them, using [Tak83, Theorem4.1],

with the four known arithmetic cases. We discovered these special parameters by looking for values
of the Fenchel-Nielsen parameters for which the resonances are all along critical lines. The numerical
data and the location of the scattering poles then allowed us to conjecture formulae for the scattering
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matrix. We are very grateful to Andreas Strömbergsson, who saw the relation to Γ̃0(N) from the for-
mulae andwas willing to share his expertise onAtkin-Lehner theory. Thismade it possible to provide
proofs for the corresponding formulae (18) and (22).

7.6 D. The hyperbolic surface of genus zero with three cusps

7.6.1 Description of the surface

This surface is unique up to isometry and canbe constructed as follows. Take the domain in the upper
half spacewith boundary given by the the four curves γ1, γ2, γ3 and γ4 (see Figure 16). Here γ1 and γ2
are the two half-circles of radius 1

2
centered at z = 1

4
and z = −1

4
respectively. The curves γ3 and γ4

are the half lines perpendicular to the real axis originating from z = −1
2
and z = 1

2
respectively. The

surface is obtained by identifying γ1 and γ2, as well as γ3 and γ4. The three cusps are then located at
z = 0, z = 1

2
, and at infinity. The surface can also be obtained as a quotient of the upper half space

by the subgroup Γ0(4) inPSL(2,R)which is generated by the matrices

(
1 1
0 1

)
and

(
1 0
4 1

)
. The

cusps at z = 0 and z = 1
2
can be removed from the surface by cutting along a horocycle (see Figure 16)

and one then obtains two cusps. Each cusp is isometric to a standard cusp of some height. Removing
the three cusps in this way one remains with a compact surface with three boundary components.
This corresponds to the darker shaded region in Figure 16. Note that the points z = 1

2
and z = −1

2

(belonging to the compactification of the hyperbolic plane) are identified.

Figure 16: Fundamental domain for a hyperbolic surface of genus zero with three cusp. The shading
indicates the decomposition into cusps and compact part
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7.6.2 Numerical results

Here the scattering matrix is a 3 × 3 matrix, and our algorithm computes this reliably. In order to
find the resonances we locate the zeros of the determinant of the scattering matrix and make use of
the functional equation. Numerically we find that the resonances in this case are ofmultiplicity three
at half the non-trivial roots of the Riemann zeta function, with additional resonances of multiplicity
two at the points ikπ

log 2
, k ∈ Z\{0}, see Figure 17 and Table 7. Our root finding algorithm finds roots

very close to one another in the case of multiplicities. It factors out an already detected root from
the function and is therefore able to detect other roots close to the already found one. We can not
distinguish numerically between truemultiplicities and resonances that are very close to one another.
What we find numerically is in excellent agreement with the known value of the scattering matrix for
Γ0(4) [BFM12]:

C(s) =
1

22s − 1

Λ(2s− 1)

Λ(2s)




21−2s 1− 21−2s 1− 21−2s

1− 21−2s 21−2s 1− 21−2s

1− 21−2s 1− 21−2s 21−2s,




and the resonances ikπ
log 2

, k ∈ Z\{0} are again due to the rational factors in the scattering matrix.

Figure 17: Resonances forD
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Appendix A Tables of resonances and eigenvalues

Computed t Data from [BSV06a]

9.53369 9.5336. . .
12.1730 12.1730. . .
14.3585 14.3585. . .
16.1381 16.1380. . .
16.6443 16.6442. . .
18.1809 18.1809. . .
19.4847 19.4847. . .

Table 1: Eigenvalues λ = 1
4
+ t2 for the space of odd functions on A0. Data from [BSV06a] for

comparison

Computed resonances for Poles of (13)–(15)
B1 = A0 B1/

√
2 B1/

√
3 B0.5001

0.2500 + 7.0674 i 0.2499 + 7.0676 i 0.2501 + 7.0681 i 0.2499 + 7.0707 i ζ1/2 ≈ 0.2500 + 7.0674 i
0.2500 + 10.5110 i 0.2499 + 10.5116 i 0.2502 + 10.5129 i 0.2484 + 10.5182 i ζ2/2 ≈ 0.2500 + 10.5110 i
0.2500 + 12.5054 i 0.2504 + 12.5063 i 0.2497 + 12.5093 i 0.2516 + 12.5168 i ζ3/2 ≈ 0.2500 + 12.5054 i
0.2500 + 15.2125 i 0.2495 + 15.2145 i 0.2489 + 15.2165 i 0.2470 + 15.2297 i ζ4/2 ≈ 0.2500 + 15.2124 i
0.2501 + 16.4676 i 0.2495 + 16.4700 i 0.2491 + 16.4747 i 0.2528 + 16.4889 i ζ5/2 ≈ 0.2500 + 16.4675 i
0.2500 + 18.7931 i 0.2496 + 18.7960 i 0.2497 + 18.8023 i 0.2419 + 18.8246 i ζ6/2 ≈ 0.2500 + 18.7931 i
0.2499 + 20.4594 i 0.2507 + 20.4635 i 0.2424 + 20.4683 i 0.2570 + 20.4880 i ζ7/2 ≈ 0.2500 + 20.4594 i

-0.0001 + 2.8597 i πi/ log(3) ≈ 2.8596 i
-0.0000 + 4.5325 i πi/ log(2) ≈ 4.5324 i

-0.0006 + 8.5796 i 3πi/ log(3) ≈ 8.5788 i
0.0002 + 13.5984 i 3πi/ log(2) ≈13.5971 i

0.0007 + 14.3001 i 5πi/ log(3) ≈14.2980 i

Table 2: Resonances forBr
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B1 = A0 B1/
√
2 B1/

√
3

Computed Data from Computed Data from Computed Data from
t [BSV06a] t [Hej92, Win88] t [Hej92, Win88]

13.7798 13.7797. . . 8.92297 8.92288 5.09885 5.09874
17.7387 17.7386. . . 10.9206 10.9204 8.03918 8.03886
19.4237 19.4847. . . 13.7802 13.7798∗ 9.74450 9.74375

14.6855 14.6852 11.3470 11.3464
16.4044 16.4041 11.8906 11.8900
17.7394 17.7386∗ 13.1362 13.1351
17.8788 17.8780 13.7810 13.7798∗

19.1261 19.1254 14.6278 14.6262
19.4245 19.4235∗ 15.8012 15.7995

16.2727 16.2710
16.7384 16.7362
17.5021 17.5006
17.7413 17.7385∗

18.6501 18.6474
18.9662 18.9626
19.4268 19.4235∗

19.8997 19.8961

Table 3: Embedded eigenvalues λ = 1
4
+ t2 for the space of even functions on Br. All eigenvalues

have multiplicity one. ∗ denotes eigenvalues for the so called old-forms missed in [Win88]
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Computed resonances for Poles of (18)–(22)
Carccosh(2),0 Carccosh(3),0 Carccosh(9),0

and
Carccosh(5),0

0.2500 + 7.0678 i 0.2498 + 7.0680 i 0.2500 + 7.0677 i ζ1/2 ≈ 0.25+ 7.0674 i
0.2498 + 10.5130 i 0.2501 + 10.5127 i 0.2496 + 10.5117 i ζ2/2 ≈ 0.25 + 10.5110 i
0.2507 + 12.5071 i 0.2495 + 12.5079 i 0.2495 + 12.5082 i ζ3/2 ≈ 0.25 + 12.5054 i
0.2508 + 15.2170 i 0.2496 + 15.2183 i 0.2488 + 15.2183 i ζ4/2 ≈ 0.25 + 15.2124 i
0.2505 + 16.4737 i 0.2497 + 16.4742 i 0.2499 + 16.4745 i ζ5/2 ≈ 0.25 + 16.4675 i

-0.0000 + 1.9520 i πi/ log(5) ≈ 1.9520 i
0.0000 + 2.8596 i πi/ log(3) ≈ 2.8596 i
-0.0001 + 4.5324 i -0.0001 + 4.5326 i πi/ log(2) ≈ 4.5324 i

-0.0000 + 5.8562 i 3πi/ log(5) ≈ 5.8559 i
-0.0007 + 8.5797 i 3πi/ log(3) ≈ 8.5788 i

-0.0005 + 9.7608 i 5πi/ log(5) ≈ 9.7599 i
0.0041 + 13.6006 i -0.0034 + 13.6003 i 3πi/ log(2) ≈ 13.5971 i

-0.0022 + 13.6671 i 7πi/ log(5) ≈ 13.6639 i
0.0009 + 14.3046 i 5πi/ log(3) ≈ 14.2980 i

Table 4: Resonances forCℓ,0 when ℓ is a special length. The actual computed values forCarccosh(5),0

may differ by one in the last digit from those shown in the first column

Computed resonances for
Poles of (23)

C2 arccosh( 3

2
),1/2 C2 arccosh(2),1/2 C2 arccosh(3),1/2

0.2499+7.0681 i 0.2499+7.0678 i 0.2499+7.0681 i ζ1/2 ≈ 0.25+7.0674 i
0.2503+10.5123 i 0.2501+10.5128 i 0.2500+10.5121 i ζ2/2 ≈ 0.25+10.5110 i
0.2499+12.5078 i 0.2512+12.5067 i 0.2492+12.5079 i ζ3/2 ≈ 0.25+12.5054 i

0.0+4.5324 i πi/ log(2) ≈ 4.5324 i
0.0003+13.6004 i 3πi/ log(2) ≈ 13.5971 i

Table 5: Resonances forCℓ,1/2 when ℓ is a special length
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Carccosh(2),0 Carccosh(3),0 Carccosh(9),0 C2 arccosh( 3

2
),1/2 C2 arccosh(2),1/2

and and
Carccosh(5),0 C2 arccosh(3),1/2

t µ(t) t µ(t) t µ(t) t µ(t) t µ(t)

2.42507 1 2.89100 2 2.00968 1 2.95648 2 2.89101 2
3.24141 1 3.25000 1 3.44480 1 3.53606 2 3.25001 1
3.97879 1 4.13811 2 3.70334 1 3.70339 1 4.13811 2
4.54850 1 4.36806 1 4.13245 1 4.51375 2 4.36809 1
4.64665 1 4.95729 2 4.65694 1 5.50420 2 4.95731 2
4.94791 1 5.62822 1 4.89729 1 5.81512 2 5.62824 1
5.09888 1 6.02334 2 5.05935 1 5.87951 1 6.02335 2
5.19203 1 6.22332 1 5.34525 1 6.62069 1 6.22332 1
5.35557 1 6.69430 2 5.87949 1 6.64683 2 6.69441 2
6.12073 1 7.22111 1 6.05422 1 6.78381 2 7.22571 1

...
8.92338 1

...
10.9213 1

Table 6: Embedded eigenvalues λ = 1
4
+ t2 and their multiplicities µ(t) forCℓ,0 andCℓ,1/2 when ℓ is

a special length. The actual computed values forCarccosh(5),0 andC2 arccosh(3),1/2may differ in the last
digit from those shown in the first and fourth columns, resp. The last two eigenvalues forCarccosh(3),0

are shown for comparison with those for B1/
√
2 in Table 3. A subset of these eigenvalues are eigen-

values for the groups Γ̃0(5), Γ̃0(6), and Γ3. These are in good agreement with those computed in
[JST14] and [Str12]
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0.2500 + 7.0675 i


ζ1/2 ≈ 0.25+7.0674 i0.2500 + 7.0676 i

0.2499 + 7.0680 i
0.2497 + 10.5117 i



ζ2/2 ≈ 0.25+10.5110 i0.2496 + 10.5121 i

0.2500 + 10.5125 i
0.2504 + 12.5060 i



ζ3/2 ≈ 0.25+12.5054 i0.2506 + 12.5062 i

0.2496 + 12.5078 i
0.2510 + 15.2152 i



ζ4/2 ≈ 0.25+15.2124 i0.2489 + 15.2153 i

0.2490 + 15.2154 i
0.2503 + 16.4695 i



ζ5/2 ≈ 0.25+16.4675 i0.2504 + 16.4699 i

0.2494 + 16.4724 i
0.2463 + 18.7973 i



ζ6/2 ≈ 0.25+18.7931 i0.2454 + 18.7983 i

0.2503 + 18.7984 i

-0.0000 + 4.5324 i
}
πi/ log(2) ≈ 4.5324 i

-0.0000 + 4.5325 i
0.0002 + 9.0654 i

}
2πi/ log(2) ≈ 9.0647 i

0.0002 + 9.0657 i
-0.0005 + 13.5988 i

}
3πi/ log(2) ≈ 13.5971 i

-0.0006 + 13.5997 i
-0.0000 + 18.1367 i

}
4πi/ log(2) ≈ 18.1294 i

0.0018 + 18.1369 i

Table 7: Resonances forD.
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