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perturbed hyperbolic surfaces with cusps

Michael Levitin Alexander Strohmaier

30 December 2018; revised 2 June 2019

Abstract

In this paper we describe a simple method that allows for a fast direct computation of the
scattering matrix for a surface with hyperbolic cusps from the Neumann-to-Dirichlet map on
the compact manifold with boundary obtained by removing the cusps. We illustrate that even if
the Neumann-to-Dirichlet map is obtained by a Finite Element Method (FEM) one can achieve
good accuracy for the scattering matrix. We give various interesting examples of how this can be
used to investigate the behaviour of resonances under conformal perturbations or when mov-
ing in Teichmiiller space. For example, based on numerical experiments we rediscover the four
arithmetic surfaces of genus one with one cusp. This demonstrates that it is possible to identify
arithmetic objects using FEM.
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1 Introduction and setup

Suppose that H = {z = = + iy | y > 0} is the upper half-plane with the hyperbolic (of constant
curvature —1) metric

y 2 (da? + dy?).

The Riemannian measure is then y~2dady and the L?-inner product is given by

(1.9) = [ H5Ey dady.

The metric Laplace operator
A=Ag=—y*(+0)

is essentially self-adjoint with domain C°(H), and later on we do not distinguish notationally oper-
ators and their closures, if there is no danger of confusion.

The map (z,y) — (x + 1,y) is an isometry of the upper half-space , and the quotient of the
set H, = {# = 2 + 1y | y > a} by this isometry results in a so-called hyperbolic cusp with height
a > 0. Thus, such a cusp Z* is topologically equivalent to S x [a, 00) and it is equipped with a
metric of constant negative curvature.

Figure 1 shows a fundamental domain that becomes Z¢ when the parallel sides are identified. Of
course the space of smooth functions C*>°(Z“) on Z* can be identified with smooth functions on
H periodic in « (with period one) and similarly, L?(Z®) can be identified with the set of measurable
functions f(z) on H, periodic in « (with period one), such that the L%-norm

+1/2
/ / )2y dedy
—1/2

is finite. We will in the following use these identifications without further mention. The Neumann
Laplace operator Az« on the cusp Z¢ is obtained by imposing Neumann boundary condition on

PaGEs
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1.5}

0.5+

Figure 1: Fundamental domain of a cusp in H. The two parallel sides are identified.

Figure 2: Part of a cusp isometrically embedded into R3
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COMPUTATION OF RESONANCES

the operator A = —y? (92 4 0?) on the boundary (R/Z) x {a}. This operator is self-adjoint and
has spectrum consisting of an absolutely continuous part [1, 00) and of a discrete set of non-negative
eigenvalues with finite dimensional eigenspaces (see for example [Miil83] or [Iwao2] and references
there).

Suppose that X is a complete two-dimensional Riemannian manifold (or orbifold with finitely
many isolated orbifold singularities) that is either a hyperbolic cusp or a disjoint union of hyperbolic
cusps outside of a compact region. Thus, we are assuming that X has the form

X=MUps Z, Z=2ZU---UZ, Zp=(R/Z)X [a,oc0)

such that the Riemannian metric g on X restricted to a neighbourhood of the cusp Zj, is the hyper-
bolic metric defined above (see Figure 3).

Figure 3: A surface of genus one with two hyperbolic cusps

Now assume that P is a formally self-adjoint differential operator of Laplace type on X acting on
functions (which means that P = — ¢/ 9,0, + lower order terms), and let A be the Laplace operator
acting on functions on X. Thus, P — A is a first order operator and we will assume that P — A is
compactly supported away from each Z;,. The simplest example would be

P=A+ V().

where V' € C°(X) is a potential that is supported in the interior of M. However, we do not want
to exclude more general cases here. Since X is complete the operator P is essentially self-adjoint on
Ce(X).

Remark1. All our formulae and conclusions hold true with the obvious modifications if M has addi-
tional boundary components and/or conical singularities away from cusps Z, and appropriate elliptic
boundary conditions are imposed there to make P a self-adjoint operator.
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Manifolds with such cusps were considered and analysed in [Miil83] and [Miilo2] and the glu-
ing constructions for the heat kernel carry over to our setting. The structure of the spectrum and
the generalised eigenfunctions can also be inferred from the meromorphic continuation of the resol-
vent. This approach can be found for example in [Guigs]. In the following we summarise the known
results.

As the Neumann Laplace operator on Z¢, the operator P has spectrum consisting of the abso-
lutely continuous part [1/4, 00) of multiplicity p and, maybe, eigenvalues of finite multiplicity. As
usual the resolvent (P — \) ™! is often more conveniently described using other parameters s and ¢
which are related to the spectral parameter A in the following way,

A=s(1—-3s),
1+'t
s=—4i
2 Y
1
A=+ 1%
4—|-

The set on which the resolvent is naturally defined as a meromorphic function with values in the space
of bounded operators is C\[1, 00) in terms of ), the half-plane Re(s) > 1/2 in terms of s, and the
lower half-space in terms of the parameter ¢. The resolvent,

(P=X)" = (P=s(l-s)"

viewed as an operator from Lfomp (X) to H2 (X)), admits a meromorphic continuation as a function
of s to the entire complex plane with poles of finite rank (that is, all the negative Laurent coefhicients
are finite rank operators). These poles correspond to eigenvalues and so-called scattering resonances.

The generalised eigenfunction E;(z, s) of the operator P, attached to the cusp Z;, can be con-
structed from the resolvent and therefore admits a meromorphic continuation to C as a function of

s. When restricted to Z, it is of the form
Ej(2,8)l 5, = 0a9i + Cin()yn ™" + Tik(zh, 5), ©

where T} (2, s) is in L*(Zy). Here 2, = x), + 1y denotes the coordinates on the cusp Z. Both
C(s) and T'(z, s) are meromorphic matrix-valued functions of s in the entire complex plane. The
matrix-valued meromorphic function C(s) is defined by (1) and is normally referred to as the scatter-
ing matrix. It satisfies the relations

C(s) = C*(s) = C(5), (2)
C(s)C(1—s) =1, (3)

implying that it is unitary on the absolutely continuous spectrum.
Since Z® has a natural S'-action we can decompose, in the case P = A, the solutions of

(A= s(1-)f(z) =0

into the Fourier modes f(2) = Y f,.(y)e*™ ™ that satisfy
meZ

d2
(_de_yQ + 47T2m2y2 — S(l — 3)) fm(y) =0.

Form = 0and s # % this implies that fo(y) is a linear combination of y* and y* ~*. For m # 0 the
general solution of this ODE can be expressed in terms of Bessel functions. Then we obtain

Tin(2,8) =y Z am,j,k(S>Kit(2ﬂ-’m|y)e27rimm7
mez\{0}
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COMPUTATION OF RESONANCES

where convergence is in C*°(Z®). Here K, is the modified Bessel K -function of order v.

Poles of the scattering matrix C'(s) are called resonances. Resonances correspond to poles of the
generalised eigenfunctions E(z, s) and the coefficient of the lowest term in the Laurent expansion
at a resonance S, is proportional to a function f, € C°(X) such that

(P —=s:(1=s)) fr =0,
and
fr‘zk = ar,ky]i_ST + Rr,k(zk)7

where R, , is exponentially decaying as i, — oo. The function f, is sometimes referred to as the
resonant state at the resonance s,.

2 Plan of the paper and discussion of the results

The main aim of this paper is to demonstrate that the domain decomposition using the Neumann-to-
Dirichlet map leads to a simple and fast numerical scheme allowing to compute the scattering matrix
on spaces with hyperbolic cusps.

The paper is structured as follows.

In Sections 3 and 4 we construct the Neumann-to-Dirichlet maps on the compact part of a hy-
perbolic surface and on the cusps, respectively. In Section 5 we show that the scattering matrix can
be extracted from the Neumann-to-Dirichlet operator of a compact part of a hyperbolic surface with
cusps by means of simple linear algebra methods. In particular, if a numerical approximation of the
Neumann-to-Dirichlet map at a spectral point is provided by any method, fast and standard linear
algebra routines can be used to extract the scattering matrix. In Section 6 we show that in fact stan-
dard finite element methods are already sufficient to calculate the scattering matrix, and hence the
scattering resonances, with good accuracy if the spectral parameter is not too large. Various examples
of constant but also non-constant curvature are treated and discussed in detail in Section 7. We com-
pare them to known values for arithmetic surfaces as computed for example by Winkler ([Win88])
and Hejhal ([Hejo2]). Since our method is extremely fast and flexible we were able to produce moving
pictures that show how scattering resonances move with conformal perturbations or in Teichmiiller
space. Figures illustrating this are included in Section 7. In particular, in genus one case we identified
several surfaces for which the scattering matrix is expressible in terms of the Riemann zeta function.
These surfaces correspond to the four arithmetic surfaces known to exist in genus one with one cusp.
It seems that these arithmetic surfaces are the only ones (up to isomorphism) for which the resonances
are lined up along critical lines.

For surfaces of constant negative curvature there are direct fast converging methods that allow the
computation of embedded eigenvalues and scattering resonances. For example Hejhal’s algorithm
can be used to compute embedded eigenvalues with extreme accuracy (see for example [BSVo6b],
see also [BSVo6a]), and is used to compute large numbers of high lying eigenvalues (for example
[JST14] for arithmetic examples). Variations have also been used to track resonances (for example
[FLos, Aveoy, Avero]). Our approach is different in that it treats the compact part as a black-box and
also allows for perturbations away from constant curvature. The correspondence between the scat-
tering matrix and the Neumann-to-Dirichlet map can be used to relate number theoretic questions
to transmission problems. This approach was taken independently in [CC18] in the context of quo-
tients of hyperbolic space by Fuchsian groups and leads to a reformulation of the Riemann hypothesis
in terms of transmission eigenvalues.

We would like to point out that numerical instabilities leading to spurious eigenvalues or eigen-
values being missed seem to be absent in our approach. We give several tables comparing our results
to known computations in arithmetic constant curvature situations.

PaGe7y
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3 The Neumann-to-Dirichlet operator on O

The operator P is a formally self-adjoint elliptic differential operator on X that coincides with the
Laplace operator near the boundary of M. Therefore, we have Green’s formula

95 a¢

(Puo.0)~ 0. Po) = [ (U052 - G005 0

forall ¢, ¢ € C°°(M). Inour case the boundary OM is a disjoint union of components dM, = 07,
each of which is isometric to the circle. We therefore have

/@M(wugﬁ() % () )d—szk( 2 - T a

Given a particular boundary component M), we can choose coordinates (, y) such that the cusp
Z corresponds to S* X [ay, 00). In this case idm is the natural Riemannian measure induced by

the metric on the boundary and aka% is the unit normal vector field. We therefore have

/8 " (¢<Z>§—§< ) - aw( )6 (2 )) /% <¢(z>akg_§<z> —ak%@)&z))

1
2

1
—dz.

ag

Yy=ag

We can hence construct another self-adjoint operator Pye, on L*(M) by restricting P to M and
imposing Neumann boundary conditions at the boundary 9M. Since Py, is self-adjoint and elliptic
there exists an orthonormal basis in L?(M) consisting of smooth eigenfunctions (®;) jen such that

PNeu )\ q)jv
ov .
on |,

where A\; < Ay < ... = o0 are the corresponding eigenvalues.
If A € CisnotaNeumann eigenvalue then foreach f € C'°(9M) there exists a unique function

¥ € C*(M) such that
(P— M\ =0, inM,

|
oy T

(4)

The so-called Neumann-to-Dirichlet operator NM () : C>®°(OM) — C°°(OM ) is defined as

NM(s)f = lom,
where 1) € C°°(M) is the solution of (4).

Separating between the different boundary components the Neumann-to-Dirichlet map can also
be thought of as a matrix of operators N}/ (s) : C*(OM;) — C*°(dMy). It is well known that
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COMPUTATION OF RESONANCES

N™M(s) is a pseudodifferential operator of order —1 whose full symbol depends only on the germ of
the metric near the boundary (see [LU89] in case s = 0, but the proof given there works in general).
In particular the off-diagonal terms of the matrix NV, k]\f (s) are smoothing operators and the diagonal
ones are pseudodifferential operators of order —1 acting on C*°(9M/;). Using Green’s formula one
easily obtains

s)f = Z y 5 9z 5 (s)
where ¢; = ;| are the restrictions of the Neumann eigenfunctions ®; to the boundary OM of
M and the sum converges in H'/2(0M) (see [LMo8]). Taking differences one obtains

So(1 — s0) — s(1 — s)
s(1 = 5))(Aj = 50(1 = 50))

(NM(s) = NM(s0)) f = Z o= (fs j)L200n) 5. (6)

This converges in H*/2(9M) uniformly with respect to the H*(9M)-norm of f. In particular,
N™M{(s) is a meromorphic family of pseudodifferential operators of order —1 with first order poles
at s; that are related to the Neumann eigenvalues A; of Pye, by A; = s;(1 — s;). The family of
operators N (s) is hence completely determined by the data (¢;, \;) jen-

4 The Neumann-to-Dirichlet operator on cusps

Since the Z® admits an S*-action the space L?(Z®) every function f € L*(Z®) may be decomposed

into Fourier modes

mEZ

where €,,,(x) = €*™™*. The functions with vanishing zero Fourier coefficients form a sub-space in
L*(Z®), the so called cuspidal functions

Lewp(Z®) ={f € L*(Z°) | foly) = 0 a.c.}.

The orthogonal complement L3 (Z®) of L2 (Z®) is then the space of functions that do not depend

cusp
on z. This space is canonically isomorphic to L*((a, o0), y~2dz). The Neumann Laplace operator

leaves both spaces invariant. Its restriction to L3(Z®) has absolutely continuous spectrum [, 00)
and the restriction to Lgusp(Z ) has purely discrete spectrum consisting of eigenvalues of finite mul-
tiplicity accumulating at co. If A = s(1 — s) is not a eigenvalue of the Neumann Laplace operator
1/2
on L2, (Z%) then for each f € L*(S") with f/ f(x)dz = 0 there exists a unique function
~1/2
Y € L*(Z") such that
(A= XNy =0,
0
_a/_’l?D — f‘
oy y=a

We will define the cuspidal Neumann-to-Dirichlet operator NZ° (s): C>(S 1) — C>(S 1) as
NZ(s)(f —av(f)) == |y,

where
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This operator has an explicit description in terms of Bessel functions. Namely, it follows directly from
the expansion into Fourier modes that for any m # 0 we have

1 K] -
N2 (8)ey = — | = + 2nim|a=—L(27|m|ar) | em,
2 Ky

and N'%¢(s)ey = 0. Since the boundary of M consists of a disjoint union of components 9 M,
we can assemble the Neumann-to-Dirichlet operator to an operator N(s) acting on L*(OM) =

v _, L*(OMj,) by defining

p

Ne(s) = P N7 (s).

k=1

In the same way the averaging operator can be assembled to a map av: L*(OM) — L*(OM).

s Therelation between the Neumann-to-Dirichlet operator and
the scattering matrix

The generalised eigenfunctions £ (2, s) form a meromorphic family of functions satisfying (P —
AN E;(z,s) = 0onall of M. Hence,

= Ej(zka S)’aMk .
oM,

N (s) (aza%Ej(zl, 3))

On the other hand the restriction of £}(z, s) to each cusp has an expansion of the form (1) with a
decaying tail term. We therefore have
8Mk)

0
N7 (s) <—ak8—yk(Ej(Zk7 s) = 8iun — Cin(9)yy )

= (Bj(z,5) = 605 — Cin(5)ut ) ons, -

This means in particular that B%Ej (2, $)|an is in the kernel of the map
(1 —av)NM + N©.

Note that the averaging map av : L?(OM) — L?(OM) is the orthogonal projection onto the
space of locally constant functions L3(0M) on @M. This space is naturally identified with CP, the
k-th component being identified with the function value on the boundary component 9 M.

Theorem 2. Suppose that s # L is a complex number that is not a pole of N (s) or N°(s), and not a
pole of the scattering matrix C(s). Suppose furthermore that s(1—s) is not an L*-eigenvalue of P. Then
the kernel of the map (1 — av)N™M (s) + N¢(s) is p-dimensional and spanned by {%Ek(z, $)|onr |
1<k <p}.

Proof. The assumptions imply that the generalised eigenfunctions E;(z, s) existat s. We have already
shown that ;& E (2, s)|oa is in the kernel of (1 — av)N™(s) + N(s). Moreover, any non-zero
linear combination of E' = . ¢; EJ; such that 2 Ej(2, 8)|on = 0 will give rise to an L2-Neumann
eigenfunction on Z by taking the non-zero part of its Fourier expansion. Since we excluded Neumann
eigenvalues on the cusp by the requirement that s is not a pole of N, the functions %Ej (z,8)|om
are linearly independent. Now suppose that g € L?(OM) is in the kernel of (1 — av)N™M + N

PAGE 10



COMPUTATION OF RESONANCES

Both (1 — av)N™ and NV are elliptic pseudodifferential operators of order —1 and their principal
symbols coincide. Hence, their sum is elliptic too and, by elliptic regularity, g € C°°(OM). This
means that there is a function Fj; € C°°(M) and a function F; € L*(Z) N C*(M) such that

(P—s(l—3s)Fy =0, (P—s(1-s))F;=0,

9 o)
(I —av)Fylom = Fzlon, (1—av)—Fy| =——=—Fz |,
an oM an oM
0
on M o g

These equations imply that the functions F; and F’, when expanded into Fourier modes, have the
same non-zero Fourier coefficients on each cusp. Hence, for each cusp Zj, there exist coefficients ay,
and by, such that the function

aryy + iy S+ Fz,

has the same Fourier expansion as F'y; on Zj,. Therefore, we can construct a globally defined function
F € C*°(X) which agrees with Fi; on M, such that

Flz.(zx) = ary; + bky,i_s + Fz, (21).

Now use Green’s identity on a cut-off domain My, obtained by cutting off the cusps Zj, aty = R
and use the fact that the tail term is exponentially decaying:

0= lim (Ej(z,s)(P—s(1—=9))F(z) = F(2)(P —s(1 —s))Ej(z,5))dz

R—o0 Mg
P p
= (1—5)b; + SZ apCjk(s) — (1 —s) Zaij,k(s) — sb;
k=1 k=1
P
=(1-2s) (bj - Zak0j7k(s)) :
k=1

p

Define E(z) := Y axEx(2,s). Then the above implies that ' — E € L. Since s(1 — s) was
k=1

assumed not to be an Lz—eigenvalue we conclude that ' = F. ]

Theorem 3. Suppose that s # 3 is a complex number that is not a pole of N () or N¢(s), and not
a pole of the scattering matrix C(s). Suppose furthermore that s(1 — s) is not an L*-eigenvalue of P.
Let V be the kernel of the map (1 — av)N™ (s) + N¢(s) and define the maps

Q:V —=CP g av(g),
Qy:V = CP, g av(NM(g)).
Then the map (s — 1)Qa + Q1 is invertible and
Cls) = A1 (sQ2 = Q1) (s = 1)Q2 + Q1) A", 7)

where A is the diagonal matrix A = diag(ay, as, . . ., ay).

Proof. By the previous theorem we can use the basis { ¢y, := = Ej,(2, s)|on | 1 <k < p}inV to

check the invertibility of the map (s — 1)Q2 + @)1 and the formula for the scattering matrix. By the
expansion (1) we have

(Q1d;)k = s6;a; + (1 — 8)Cix(s)a ™,
(Q20))1 = 6 5a; + Cjl(s)ay >

PAGE 1
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Therefore, (((s — 1)Q2 + Q1)9;), = (25 — 1)d; xa;, and the right hand side is a non-singular ma-
trix. Moreover, ((sQ2 — Q1)®;), = (25 — 1)Cx(s)a; ®. The formula (7) is immediately implied
by this. O

In the case of one cusp the above reduces to a generalised eigenvalue problem.

Corollary 4. Assume X bas one cusp, i.e. p = 1, and suppose that s 73 is a complex number that
is not a pole of NM () or N°(), and not a pole of the scattering matrix C’ (s). Then either the pair
(NM(s) + N(s),av) bas precisely one generalised eigenvalue G(s), or C(s) = —27a* 1. In the

former case the scattering matrix can be computed from this eigenvalue as

C(s) = (sG(s) = 1) ((s = DG(s) + 1) T a2,

6 Numerical computation of the scattering matrix, resonances
and embedded eigenvalues

6.1 Scattering matrix and resonances

Theorems 2 and 3 yield an extremely simple and fast algorithm to compute the scattering matrix,
resonances or eigenvalues for the situation described above. In this section we will assume that s # %
is 2 complex number that is not a pole of N (s) or N%(s), and not a pole of the scattering matrix
C/(s). In the following we take (€,,)mez to be the orthonormal basis of L?(R/Z, dz) consisting of
Fourier modes em(x) = e?mme, Since each boundary component OM}, can be identified with a
the index set for @ = (v, ) is [ :=7Z x {1,... ,p}

The boundary data (¢;, A;) jen of Neumann eigenvalues can be used to compute the matrix ele-
ments of the Neumann-to-Dirichlet operator N"M (s) using (5) and the Fourier expansion in the basis

(€q) giving

Nas(s) = (NM(s)ea, ) r2on) Z Jy—— <6a>¢j><¢j7€B>L2(8M)~ (8)

Using (6), convergence in (8) is accelerated if we compute the matrix elements O% (s0) directly ata
single particular value s, cf. [LMo8]. Then

" u B so(1 — s9) — s(1 — s)
Nys(s) = Nys(s0) = Z (A — s(1—5))(A\; — so(1 — s

J

))<€a7¢j><¢j7€ﬁ>L2(8M)a (9)

and the series in (9) converges more rapidly than the onein (8). The acceleration trick may be repeated
if one computes directly N, % (s;) for several particular values of s;.
The matrix elements of V7" (s) are simply

0 ifa # B,

Za
a ( ) ! -1
AN (1= 6,0) (% + 2ﬁ|m\ak§—;;(2ﬂm|ak)) ifa =8 = (m,k).

Moreover, av, 3 = 0q, 008,.0-
We would then like to find the p X p matrix G(s) such that

dim ker (MY (s) + N“(s) — G(s)av) = p.
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The idea of the numerical approximation is of course to truncate this Fourier basis and approximate
the above matrices by finite matrices by considering only 0 < |a4 |, |81] < J for some large integer J.

We denote by NM s N ¢, and av the finite matrices obtained from truncating the Fourier expansion
at .J. Then these matrices are (2J + 1)p x (2J + 1)p matrices with complex entries.

We use the finite element method to compute the Neumann boundary data (¢, A;) jen in terms
of the numbers \; and the Fourier modes (¢;, e,). Once these data are obtained a finite element

approximation to N (s) can be computed very quickly for arbitrary s € Cinagiven compactsubset

of the complex plane. The matrices N can be computed very fast using a well known continued
fraction expansion for the Bessel K -function [CBV 08, Section 17],

1 K/ 0o —t2 . (Qn—l)2
- ~rit - _ _ 4
<2 + 27|mla y (27r|m|a)) 27|mla n:[:<1 Tmaton | (1)

where we use Gauss’ notation

f% Dn b1
n=1 Gn D2 ’
o+
Y25

q2 +
q3+...

In order to compute the scattering matrix numerically in the above approximation we proceed as
follows. By Theorem 2 the operator T'(s) := (1 — av)N™(s) + N(s) has a p-dimensional kernel
spanned by B%Ek(z , 5)|aar. We compute the cut off approximation

T(s) := (1 — av)NM(s) + N°(s).

If J is large enough this matrix will have precisely p small singular values. We can therefore perform
a singular value decomposition to construct an orthonormal system of singular vectors (v1, . . ., )
with small singular values. The system of vectors (av(v;), ..., av(v,)) determines a p X p matrix
Q1. Similarly the vectors (aV N (vy), ..., av N (v,)) determine a p X p matrix Q. Since the set of
invertible maps is open the matrix (s — 1)Q + Q is invertible if the approximation is good enough.
By Theorem 3 we then get a numerical approximation of the scattering matrix by

C(s) = A1 (sQy — Q1) ((3 —1)@s + @1) B A

As before A is the diagonal matrix A = diag(as, ag, . .., ap).
Since resonances are poles of C'(s) and we have the functional equation C'(s)C(1 — s) = 1, the
resonances are precisely the zeros of the determinant of C'(1 — s).

6.2 Error estimates for the scattering matrix

In this section we will show that in principle the error in the computation can be made rigorous if
the exterior and interior Neumann-to-Dirichlet maps are obtained by a method with rigorous errors.
Let us start assuming that we have a mechanism at our disposal to estimate the first Sobolev norm of
NM ()P — U for given smooth functions ® and W. This depends on a chosen method of computa-
tion of the Neumann-to-Dirichlet map.

On L?(OM ) we have the orthonormal basis (€.,  )mez, k=1....p- We define the Fourier multiplier
q: H(OM) — H* 1 (OM) by gem s, = (|m| + 1) €, k. The operator ¢ is a first order pseudod-
ifferential operator and can also be expressed in terms of the Laplace operator on the boundary. For
concreteness we fix the H*-norm on OM as |||

msom) = || P L2on0)-
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In the following we will assume that s € C s fixed such that the assumptions of Theorem 3 hold:
s # 3 isnotapole of N'M(s) or N'%(s), not a pole of the scattering matrix C'(s) and s(1 — s) is not
an eigenvalue of P. Then

T'(s) == qT(s) = ¢ (1 — av)N"M(s) + N“(s))

is a zero order elliptic pseudodifferential operator. In particular 0 is not in the essential spectrum
of T"*T". This implies that the self-adjoint operator |1”| has 0 as a multiplicity p eigenvalue and a
spectral gap in the sense that the spectrum is contained in {0} U K7, 00) for some K7 > 0.

Our numerical approximation takes place in the finite dimensional subspace WW; of functions f
that have a finite Fourier expansion of the form

F()= Y fuly)em().
Im|<J

As before J is a sufficiently large integer. The method will then usually find an orthonormal set
vectors (vy, . .., vp) in Wy such that

| T vk || < 01 < 1.
If Py is the orthogonal projection onto the p-dimensional kernel of |77| it follows that
I(L = Poyuwll < K7 ar.

Applying the numerical approximation of A"M (s) we obtain another set of vectors (w1, . . ., w,) in
the subspace. Given an error estimate on the Dirichlet-to-Neumann map as assumed we will get a
bound of the form

INM(8)vp — w2 < 6.

The approximations @1 and @2 of the maps (); and ()3 can be though of as finite rank operators
with range in the subspace Y that vanish on the orthogonal complement of WW;. Recall that @1 =
(av(vy),...,av(v,)) and Q, = (av(wy), . .. ,av(wy)). If we choose (Pyvy, . .., Pyv,) as a basis
in the kernel of T" to describe (01 and (05 we obtain

1Q1 — Qill < B K701, [|Q2 — Qall < /B (62 + [INM ()| KT61)
where the norms are the operator norms of the respective matrices. Let
€ = \/ﬁKflcSl +|s —1|3/p (52 + ||NM(8)||K1_151) ,
€2 = /PK 01+ |s|y/p (02 + [NV (s) || K1 '61)

and

Ky = H ((S ~1)Q2 + @1)1

, Kz= HSCN22 - @1“

Then, assuming €; Ky < 1, we obtain

Collecting everything we can now estimate the error of the approximated scattering matrix

-1 €1K22

< —
- 1—61K2

((s= D@+ Q)" = ((s = 1)Q2 + Q)

5(3) = A5_1(3@2 - @1) <(5 - 1)@2 + ©1>_1 A®.
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as

~ K2(K
1666) - el < ey (I g k).

If the error for the Neumann-to-Dirichlet map is known, and the norm || A (s)]| and the spec-
tral gap K; can be estimated or computed, the error for the scattering matrix can be explicitly bounded.
Im principle this make it possible to use interval arithmetics to rigorously prove interval bounds for
the scattering matrix. The scattering matrix is holomorphic in the resolvent set and by a classical the-
orem of Hurwitz the zeros of uniform approximations of C/(s) converge to zeros of C'(s). A quan-
titative version of this is given in [R69]. This allows to estimate the error of the approximation of
the computed resonances. Note that using a finite truncation of (6) approximates the Neumann-to-
Dirichlet operator in the correct norm.

6.3 Embedded eigenvalues

Since we assumed P was self-adjoint any eigenvalues will have to be on the real line. There are two
classes of eigenvalues: those below the continuous spectrum and those embedded into the continuous
spectrum. We will refer to the eigenvalues A < 1/4 as small eigenvalues and the eigenvalues A > 1/4
as the embedded eigenvalues. Embedded eigenvalues correspond to real values of ¢ and therefore
the real part of s for these eigenvalues will always be 1/2. As a consequence the zero modes of the
Fourier expansion of these eigenfunctions in the cusp has to vanish. We therefore make the following
observation.

Theorem s. The embedded eigenvalues away from the poles of N and N¢ are exactly those values of
A =s(1—s) € [§,+00) for which there exists a non-zero vector f € C>(S*) such thatav(f) =0
and

(MM (s) +N(s)) f=0.

Computations of embedded eigenvalues face the problem that it is not possible to numerically
distinguish between an embedded eigenvalue and a resonance that is close to the spectrum. Rigorous
error estimates that guarantee the existence of an embedded eigenvalue therefore always need some
additional information about the geometry or, in the constant curvature case, arithmetic nature of
the surface (see for example [BSVo6b]). The mathematically rigorous numerical part of this work is
mostly about the computation of the scattering matrix and of resonances. We therefore only briefly
sketch how one detects embedded eigenvalues or resonances close to the spectrum. We are looking

for vectors v that satisty avv = 0 and for which (Kf Mo N C> v is small. For numerical stability the

QR-decomposition B(s) = Q(s)R(s) of the matrix
B:= <J\7M+NC> save N @ N°

is performed. This matrix maps C@J/HVp o CIHUP @y C2IHVP g C@IHIP @ CRIHVP, [t P
be the projection onto the first two summands. We are looking to find values of s for which there
exists a vector v for which P B(s)v is very small whereas (1 — p) Bv is not. Since R is invertible these

are exactly the small singular values of the matrix PQ(s). Thus, our method of finding embedded

eigenvalues is to plot the smallest singular value of PQ(S) asafunctionof s = £ +1iy/A — 1. If the

smallest singular value is close to zero for some s = % +iy /A — %L this amounts to a small spectral gap

K, ie. asmall (p+ 1)-stsingular value of 7. Hence the error estimate for the scattering matrix near
such a point becomes much worse, reflecting the fact that we may also have a resonance close to the
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spectrum. The existence of resonances near the spectrum or embedded eigenvalues and completeness
of a list of computed values can heuristically be verified using Turing’s method and variants of the
Weyl law that have been proved in this context [Mil83]. Versions of the Weyl law with error estimates
are available in the constant curvature case, see e.g. [Stri9].

7 Examples and numerical studies

7.1 General set-up

In this section we will consider several examples of manifolds with cusps. We will be focusing on the
Laplace operator acting on functions, i.e. in all the examples we will have P = A. These examples
are divided into groups as follows.

Ay the modular domain with its constant curvature metric changed by a conformal factor e?. This
family is parametrised by smooth functions ¢ on the modular surface.

B, atriangular domain that is sometimes referred to as Artin’s billiard and that interpolates be-
tween the Hecke triangular surfaces. This family is parametrised by a real number r > 1.

Cy, thesurfaces of genus (1, 1) and constant curvature, i.e. the punctured torus. The Teichmiiller
space of genus (1, 1) has dimension 2 and therefore this family is parametrised by a length
parameter ¢ > 0 and a twist parameter 7 € [0, 1).

D the unique hyperbolic surface of genus zero with three cusps.

In all these examples we decomposed the surface into compact part M and a cusp-part. The
method allows the freedom of choosing a cut-off parameter a. In the examples below a was usually
chosen in the interval [0.3, 2], depending on the geometry. Note that choosing significantly higher
values of a decreases the accuracy of a Neumann-to-Dirichlet map approximation, and choosing a
small @ creates meshing problems due to a “narrow” compact part M. Experiments indicate that the
dependence of computed eigenvalues and resonances upon a choice of @ in a suitable subset of the
above interval is negligible.

To compute a numerical approximation of the Neumann-to-Dirichlet map we use the accelerated
expansion (9). We used the finite element framework FreeFEM ++ ([Hec18] and [Hec12]) to compute
the Neumann-to-Dirichlet map at some point 59 and to compute the boundary data of the first 1000
Neumann eigenvalues. On the boundary Fourier modes up to |m| = 40 were used. In the FEM
implementation we used discretisation with up to 200 points on the boundary of the compact part.
The Neumann-to-Dirichlet map on the cusps is computed using (10) and (11).

The corresponding data were expressed in terms of Fourier modes on the boundary and imported
into a Mathematica script that directly computed the scattering matrix by the method described be-
fore. Since then the scattering matrix was available as a numerical function, we used Newton’s root
finding algorithm to locate zeros of its determinant. The functional equation (3) was then used to
determine the scattering resonances. The poles and the zeros of the scattering matrix are located in
the half-planes Re s > % and Re s < %, respectively. Unless resonances are very close to the spec-
trum there are therefore no issues due to poles and zeros being close together. One can thus use the
argument principle and contour integration to count the number of resonances in a region bounded
away from the spectrum. We have found that in practice Newton’s root finding algorithm finds all
resonances away from the spectrum in a fast reliable manner. This is due to the well-behaved analytic
properties of the scattering matrix. To locate and track resonances that are very close to the spectrum
we start from a perturbation of the surface and then use predictive algorithms based on polynomial
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extrapolation to follow the path of the resonance. This way even the resonances that seem to have
high order touching points with the spectrum could be tracked.
The following conventions are assumed in all videos and graphs:

* Resonances and eigenvalues are traced in a part of (Re s, Im ) € (—o0, 3] x [0, +00) quad-

2
rant of the s-plane.

* The resonances very close to the continuous spectrum 3 + [0, +00), as well as embedded
eigenvalues, are shown in blue. Not all embedded eigenvalues are shown.

* The resonances on the critical line 1 4 i[0, 4-00) or very close to it are shown in red.

* The resonances on the line Re s = 0 or very close to it are shown in green.
* The eigenvalue at s = 0 is never shown.

* Ingraphsshowing the trajectories of resonances, the starting points of the trajectories are marked
by a disk, and the end points by a square.

7.2 Benchmarking

In the case of the modular surface Ay the scattering matrix can be expressed in terms of the Riemann
zeta function, see (12), and we could compare and compute the relative error of our approximation.
The scattering matrix C/(s) computed for s = £ +it, ¢ € [0.,30.] (this amounts to the interval
[0.25,900.] in the spectrum) had a maximal relative error of about 0.25%. On the interval [0, 10]
for ¢ we even obtained a maximal relative error not exceeding 0.004%. Similar errors hold on the
critical line. We note that these approximations are surprisingly good considering that a finite element
approximation was used. The finite element method and subsequent computations were carried out
with double precision.

As shown in Subsection 6.2 the (p + 1)-th singular value of ¢T is 2 measure of the spectral gap.
Away from resonances close to the real line or embedded eigenvalues the size of the first p smallest
singular values of qT compared to the (p + 1)-th small singular value was extremely small (typically
of an order of a double precision rounding error) in our computations. Hence, using the terminol-
ogy of Subsection 6.2 the numerical estimate for K, '§; was very small and the theoretical error was
dominated by d; which stems from the approximation of the Neumann-to-Dirichlet map. In our
case most of the errors are due to the FEM approximation and decrease with mesh refinement.

The computational cost of building the scattering matrices using FEM realisation of Neumann-
to-Dirichlet maps is relatively low if Im s < 30 (this of course depends on the FEM implementation
and the number of eigenvalues used). The real runtime costs actually occur when we look for complex
roots and poles of the scattering matrix and trace individual resonance dependence on the parameters.

7.3 Ag. The modular domain and conformal perturbations
7.3.1  Description of the surface

This surface can be obtained from the domain
2 2 1 1
(wy)eH|[a"+y 21, g <w<g

by gluing along the boundary as follows. The sides x = —% and z = 1 are identified by means of
the parallel translation # — x + 1. The circular arc {(z,y) € H | 2+ y?> = 1,0 < o < 1} is

PAGE 17



MicHAEL LEVITIN and ALEXANDER STROHMAIER

identified with {(z,y) € H | 22 + y? = 1, —3 < 2 < 0} using the map x — —z. This resultsin a
hyperbolic surface with one cusp and two orbifold singularities at the points (0, 1) and (1/2, v/3/2),
the latter identified with (—1/2,v/3/2). This surface can be decomposed into a compact part and

Y
3. -

Figure 4: Fundamental domain for the modular surface decomposed into cusp with a = 2 (lighter
shading) and a compact part (darker shading). The arcs of the same colour are identified.

a cusp as indicated in Figure 4. It can also be obtained directly as a quotient X = PSL(2,Z)\H
as the above described domain is a fundamental domain of the PSL(2, Z) action, and the boundary
components are identified using the maps z +— 2 + land z — —% (see, for example, [Iwaoz] for an
introduction).

While the metric y 2 (dx? + dy?) has constant curvature — 1 we can consider a function ¢ which
is compactly supported in the interior of the shaded region and change the metric by a conformal
factor e? to e?@¥y~2(dx? + dy?). If

/ (1 —e®)y 2dady = 0,
M

this conformal transformation leaves the volume of X unchanged. The surface equipped with this
modified metric will in general have non-constant curvature.

7.3.2 Known properties of the spectrum

Case ¢ = 0: In the case of constant curvature —1 (¢ = 0) this surface is arithmetic. It has infinitely
many embedded eigenvalues (the so-called Maass-eigenvalues) satisfying a Weyl law as shown by Sel-
berg [Sel89] using his trace formula. The scattering matrix C'(s) can be computed explicitly and
equals

A(2s—1)

Cls) = A(2s)

: (12)
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where A(s) = 77 2'(£)((s) and ((s) is the Riemann zeta function [Hej7s], [Hux84] . Moreover,
the Maass eigenvalues have been computed with great accuracy and verified by a rigorous algorithm
[BSVo6b], see also [BSVo6a]. This surface therefore provides an excellent test for our method.
General case: In case ¢ is non-constant (i.e. if curvature is non-constant) one expects at least some
of the embedded eigenvalues to dissolve and become resonances ([’S92]). This has become known as
the Sarnak-Phillips conjecture. Similarly the resonances will move away from the critical line.

~.3.3 Numerical results

Case ¢ = 0: Since the surface is symmetric with respect to the transformation  — —x one can use
symmetry reduction and consider the space of even and odd functions. These are functions on

1
{(x,y)eH\x2+y221, nggi}

satisfying either Dirichlet (odd functions) or Neumann (even functions) boundary conditions at the
boundary. The spectrum on the space of odd functions is purely discrete, and there are no reso-
nances. Several first eigenvalues on the space of odd functions, and their comparison with the results
of [BSVo6a] are presented in Table 1.

The results for the space of odd functions are below in Section 7.4.3.
The curve in moduli space: We chose the the family of the conformal factors

ed’q(-’”’y) =14+ q C(I’, y)7

c(x,y) = sin(5z — 0.5) e 10(E@E—0D =15

with parameter ¢ in the interval ¢ € [—2.,2.]. One can sum over the group PSL(2, Z) to make this
conformal factor a function on the surface. For numerical purposes the additional terms introduced
in that way are however irrelevant as they are below working (double) precision. Note that the result-
ing family of metrics has constant curvature precisely at ¢ = 0. Moreover, the volume is constant
along this curve in the moduli space of metrics. We computed the Neumann-to-Dirichlet data at 200
points in the parameter interval on the cutoff surface with boundary at @ = 2.2, with 100 discrete
points on the boundary, as well as 600 eigenvalues and their boundary data, and Fourier modes with
m between —15 and 15. One can then trace the resonances as they move along the curve, see Video 1.

[mi chaellevitin.net/hyperbolic.html#video 1}
[youtu . be/anszLQZCIJ

Link to Video 1: The dynamics of the resonances for A, as g changes

The same computation was performed using the family of conformal factors

M) =14 ge(a, ).
E(:L’, y) = Sin(S(y _ 1_5)) 6740((170.1)2+(y71.5)2).

We omit the results which are very similar.
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Figure s: ¢(z, y) as a function on the modular domain

Surface A¢q
Ims
—e—~)
o=
e —® 16 -
O
= —9 121
|
e
8L
.-——.
Res
0 0.25 0.5

Figure 6: Trajectories of eight selected resonances of A, as g changes
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7.4 B,. Artin’s billiard
7.4.1 Description of the surface

Given a positive parameter r > 3 this surface can be obtained from the domain

1 1
vy EH[a® +y* >0% o <w <
2 2
by gluing along the boundary as follows. The sides 2 = —1 and # = 1 are identified by means of

the parallel translation & —  + 1. The circular arc {(z,y) € H | 2 + 3> = 1%,0 < 2 < 3} is
identified with {(z,y) € H | 2 + y* = 1, —3 < 2 < 0} using the map « — —x. This results
in hyperbolic surface with one cusp and two conical singularities. Since the surface is symmetric with
respect to the transformation  — —x one can use symmetry reduction and consider the space of
even and odd functions. These are functions on

1
{(w,y)€H|I2+yQZT2, Oéxéé},

see Figure 7, satisfying Dirichlet or Neumann boundary conditions at the boundary. Since the spec-
trum on the space of odd functions is pure discrete we consider here only the spectrum on the sub-
space of even functions.

Figure 7: The reduced modular domain for Artin’s billiard B , /5. Neumann conditions are imposed

on the boundary.

7.4.2 Known properties of the spectrum

There are various cases when this surface can be obtained as a quotient of H by a Hecke triangle group
Gy, q > 3, namely when r~! = 2cos g. In particular, for r = \/Lg, r= \/Li’ and r = 1, the resulting
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surfaces are arithmetic and correspond to the surfaces obtained from the Hecke triangle groups G,
in the cases ¢ = 6, 4, 3, respectively (see [MMS12]). These are the only arithmetic cases.

They have infinitely many embedded eigenvalues satisfying Weyl’s law. In each of the above three
cases the scattering matrix, and hence the resonances, can be expressed explicitly in terms of the zeros
of the Riemann (-function. This has been done explicitly in [Howoz7] but the formulae can also be
deduced using the known expressions for the congruence subgroups ([Hej76] and [Hux84]). The
results are

1 143 A2s - 1)

r = —\/g : C(s) = 113 A(29) (13)
1 14278 A(2s - 1)

NG ¢ =55 A(2s) (14)
B ‘ ~ A(2s—1)

r =1 (thesameas Ay) : C(s) = TA@s) (15)

Because of the different choice of cusp-width our formulae differ by a factor 31/2=5 apnd 21/2—5 respec-
tively from [Howo7] in the first two cases. These surfaces were recently investigated in the context
of the Sarnak-Phillips conjecture by Hillairet and Judge, who proved that for generic 7 there are no
eigenvalues ([H]J18]) in the subspace of even functions.

7.4.3 Numerical results

We have computed resonances for 1000 equidistant points in the parameter range r € [0.54, 1.20]
and tracked them, see Video 2, and also Figure 8 for selected resonances.

[mi chaellevitin.net/hyperbolic. html#videij
[youtu . be/pn3szL9ZCIj

Link to Video 2: The dynamics of the resonances for B, as r changes

The resonances and embedded eigenvalues for the special arithmetic cases are shown in Figure 9.

We have also investigated the case r = 0.5001, which is close to the limiting case 7 = 1/2. Since
in this case another layer of continuous spectrum appears one expects resonances to accumulate near
the spectrum as 7 — 3. Apart from these resonances clustering around the spectrum we find stable
ones that seem to converge to half the Riemann zeros, see Figure 9.

The numerical values of resonances and embedded eigenvalues for four special cases, and com-
parison with theoretical predictions and known results are collected in Tables 2 and 3.

7.5 Cir. Hyperbolic surfaces of genus one with one cusp
7.5.1 Description of the surface

The Teichmiiller space for genus one surfaces of constant negative curvature —1 and one cusp is two
dimensional and can be parameterised by the two Fenchel-Nielsen coordinates ¢ > Oand 7 € [0, 1).
The parameter £ is the length of a primitive closed geodesic and the angle 7 is the twist parameter along
this geodesic. Given the above two parameters we have an explicit description of the corresponding
surface of genus one with one cusp as follows.

For a fixed ¢ > 0, let & > 0 be the angle @ = 2arctan(tanh £) = arcsin(tanh £). Then
the fundamental domain of the surface with Fenchel-Nielsen coordinates (¢, 7) is the non-compact
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Surface B,

/.

B

0.25 0.5

Im s

15+

10 +

5L
Res

" [0l 5> H, ¢ — sizai e v,
—g +a,g —a] SH, i+ Cozai e,
—g—l-oz,g—oc]—)H, 1/Jl—>—;l+cozalew
Y [—a,0] = H, ¢ %—i— sizal e,
75 1 [0, — H, 1/1'—>—%+Si%1ew
76:[81117&,00)—>H, 1/1l—>%+i1/1,

V7 {Slza,oo) —H, ¢ +=+iy;

for brevity, we use the complex coordinate z + iy on H.

Note that 72, 74 and s are the images of 3, 5 and 77 respectively under the reflection about the
y-axis x 4 iy — —x + iy. Figure 10 depicts the fundamental domain decomposed into a compact
part (darker shading) and a cusp (lighter shading). The surface Cy - is formed as follows. The infinite
geodesic s is identified with 77 using the hyperbolic translation z — z — 1. The geodesic arc 2
is identified with 73 using the hyperbolic motion along ;. Once these identifications are completed
both 7; and 4 U5 become closed boundary geodesics of length £. These boundary components can
be glued together as follows. First shift all points on 7, by 7¢. Then use hyperbolic translation along
72 and 73 to map the geodesic onto 4 U 5. The resulting surface Cy ; is a surface of genus one with

Figure 8: Trajectories of four selected resonances for B, r € [0.54, 1.20]

domain D bounded by the following oriented geodesic arcs, 71, Y2, V3, V4, V5, V65 V7>
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Surface By 5001 Surface B, 5
Ims Ims
F . 20. 20.
°
“
. 15. 15.
e e
L4 10. 10.
H
R
® o 5 5.
°
‘
. e Res - Res
—0.25 0. 0.25 0.5 —0.25 0. 0.25 0.5
Surface B, 5 Surface B,
Ims Ims
- 20. - 20. ¢
15.+ 15.+
10. + 10.
5.+ 5.+
: Res : Res
—0.25 0. 0.25 0.5 —-0.25 0. 0.25 0.5

Figure 9: Resonances for B, with special values of r

one cusp such as the one depicted in Figure 2. The light-shaded region in Figure 10 gives a hyperbolic
surface M of genus one with horocyclic boundary.
In addition to the closed geodesics of length ¢, Cy ; has another closed geodesics of length

cosh(¢7) (cosh (g))2 +1
(sinh (5))°

(' =1{'(¢,7) = arccosh

The two lengths are equal whenever

arccosh(cosh ¢ — 2)
E Y

T=1")=

or equivalently when ¢ = £*(7) is the positive solution of

cosh ¢ = 2 + cosh(¢T).

7.5.2 Known properties of the spectrum

In general the Laplace operator on the surface will have simple continuous spectrum and may have em-
bedded eigenvalues. The expectation is however, that these embedded are generically absent. There
are several special cases for which the surface Cy - is symmetric, and therefore a symmetry reduction
can be performed. We will single out and discuss several particular families.
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0.75

Y7 V6

-0.5 —0.25 0 0.25 0.5

Figure 10: Fundamental domain for a hyperbolic surface of genus one with one cusp, shown here is
C, arccosh(3),1- Identified boundary arcs are shown in the same colour. The shading indicates the

decomposition into a cusp and a compact part

7.5.3 Numerical results, case 1: 7 = 0, varying ¢

With the twist parameter 7 fixed the only remaining parameter is the length parameter . Since in this
case the twist is zero, the curve 7y, becomes a closed simple geodesic of length

/ / 2
¢ =1{'(¢,0) = arccosh (1 + W) . (17)

on the resulting surface. As the function ¢'(¢, 0) is monotone decreasing in ¢, ¢/ (¢'(¢,0),0) = ¢, and
also ¢ = ('(¢,0) when ¢ = (*(0) = arccosh(3) ~ 1.762747, our parametrisation of Cy is not
unique: namely, the surfaces Cy g and Cp(y,0) o are always isometric. Therefore it only makes sense to
track resonances for £ < ¢*(0). We have nevertheless analysed some special values of ¢ > ¢*(0) to
verify that our numerical results do not depend on the choice of parametrisation.

We have tracked the resonances in the interval £ € [1.2, arccosh(3)], see Video 3, and also Figure
11 for the trajectories traced by four selected resonances.

(mi chaellevitin.net/hyperbolic. html#video3]
(youtu.be/Li6Azx011G4]

Link to Video 3: The dynamics of the resonances for Cy o as ¢ changes

In this interval there are several special lengths. The numerically found resonances and the first
ten embedded eigenvalues for these special lengths are in Tables 4 and 6, resp.
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Surface Cy o

Im s

Res

0 0.25 0.5

Figure 1: Trajectories of four selected resonances for Cy, ¢ € [1.2, arccosh(3)]

¢ = arccosh(2) ~ 1.316957

In this special case the scattering matrix takes the form

L1421 1+ 3175 A(25 — 1)
1425 143  A(2s)

C(s) =2 (18)

Indeed, one can conjugate the generators of the corresponding Fuchsian group into the following

three matrices
L 3 3 i 6 1 1 2
V6 \6 3)7 6\-6 0/ \0 1)°

These clearly generate a subgroup I' of the arithmetic group [(6), that is the group generated by
I'y(6) together with its Atkin-Lehner (Fricke) involutions. Since the Atkin-Lehner involutions act
transitively on the four cusps of T'y(6)\H the domain T'o(6)\H has only one cusp. The scattering
matrix for I'g(/V) has been computed in [Hej76] and [Hux84]. If NV is square-free then according to
Hejhal [Hej76, Vol 2, p 536] the full scattering matrix equals

2 — 1
cs) = 22 =1y (19)
q|N
q prime
where . .
-1 ¢—-q
M, (s) = —— s .
Q() q23—1(q3—q1 q—l )

1+q175

T The Atkin-Lehner involutions

1
act transitively on the cusps for square-free N. Therefore, in this case, fo (), the group generated by

The vector (1> is an eigenvector of M,(s) with eigenvalue
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the Atkin-Lehner involutions and I'g(/V), gives rise to a quotient with one cusp. The scattering ma-
trix for I'g (V') must then be the restriction of the scattering matrix to functions invariant under the

. , . N . 1
Atkin-Lehner involutions. The invariant functions correspond to the the span of the vector Q) (1
alNv
in this representation of the scattering matrix. This vector is an eigenvector of Q) M, () with eigen-
alN

1+q1—s
value T

q|N
by

. Summarising, in the case of square-free IV, the scattering matrix for I'g (V) is given

A(2s —1) H 1+ g

) = 5@y Tte

(20)

q prime

This has also been obtained in [JST14, Lemma s]. Since f0(6) acts on the fundamental domain for
our group but leaves the cusp invariant, the scattering matrix for I" must be the same, apart from
the extra factor 2! 7% appearing because of the cusp width 2. We refer to [Vengo] for details of this
argument.

Figure 13 shows the computed resonances for ¢ = arccosh(2).

¢ = arccosh(3) ~ 1.762747

2
In this case @ = z, so all the boundary arcs of Cy have the same radius ——. Also, the length

¢'(¢,0) of the second distinguished closed geodesic 7, coincides with £. We can carry out the following
sequence of symmetry reductions, see Figure 12.

e, e -
S e - S M Y2 Y4 0% Y2 4 M -m

Figure 12: Sequence of symmetry reductions of Cy, ¢ = arccosh(3). The arcs are identified with
the dashed counterpart of the same colour. Neumann condition is imposed on arcs coloured black

First of all the domain X = (¢ has a reflection symmetry  +— —x. It follows that we have
a natural decomposition of L?(X) into invariant subspaces for A consisting of even and odd func-
tions. On the subspace of odd functions the spectrum of A is discrete since it is part of the space of
cups forms, and the Eisenstein series are all even. The subspace of even functions corresponds to the
space of functions on half of the domain {z = z + iy € X | > 0} satisfying Neumann bound-
ary conditions along 76, 2 and along the y-axis part of the boundary of the resulting domain and
periodic boundary conditions that identify -4 with the right half of ;. Now we have another sym-

metry & 1 x. Again the space of odd functions is contained in the space of cusp forms and the
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1
even part corresponds to considering the domain {z =r+iye X |0<z< 4_1} with Neumann
boundary conditions everywhere along its boundary. The resulting domain has yet another symme-

1
try T — 1 x. The Laplace operator on the space of even functions on this domain corresponds the

1
Laplace operator on the domain {z =r+iyeD|0<z < g} with Neumann boundary con-

ditions everywhere along its boundary. Since the symmetry reduction of Artin’s billiard for r = —

V2
1
leads, after scaling by a factor —, to an isometric domain this shows that the continuous spectral sub-

space of Ciarecosh(3),0 and that of B_1_ are unitarily equivalent and the scattering matrices as well as the

2
resonances coincide up to a scaling factor. One therefore has

L 1275 A(2s — 1)
1425 A(2s)

C(s)=14 (21)

The above discussion also shows that the discrete spectrum consists of several parts, each belonging
to mixed Dirichlet-Neumann problems on certain domains.

Figure 13 shows the computed resonances for ¢ = arccosh(3).

In a similar way as before one can conjugate the generators of the corresponding Fuchsian group

T IR C N R

which is a subgroup of the arithmetic group Ty (2). Equation (21) can therefore also be derived from
(20) in the same way as before.

¢ = arccosh(5) ~ 2.29243

This case is isometric to the case ¢ = arccosh(2) since these two lengths are related by (17), see also
the discussion following that formula.

¢ = arccosh(9) ~ 2.88727

This case is isometric to the case ¢ = (arccosh (2)) = 0.962424 which lies outside our computed
range. In this case the scattering matrix is given by

1 0s 1+ 5B A(2s —1)

OO =2 A (22)

The generators of the corresponding Fuchsian group can be conjugated to

50 5) 567 60

These therefore generate a subgroup I' of To(5). The surface I'o(5)\H has one cusp. The group
I'o(5) acts on our surface G'\H and the action fixes the cusp. This implies that the scattering matrices

of G and of fg(5) coincide modulo a possible factor coming from the normalisation of the cusp-
width. In the same way as before, equation (20) (see also [Aveo8, equation (s)]) gives the formula
(22).

Figure 13 shows the computed resonances for ¢ = arccosh(9).
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Surface Curccosh(2)‘0 Surface Carccosh(.‘i)‘o
Ims Ims
12+ 12+
8 8
4l ° 4l
Res Res
0 0.25 0.5 0 0.25 0.5

Surface Cirecosh(9),0

Res
0 0.25 0.5

Figure 13: Resonances and embedded eigenvalues for Cy o with special lengths ¢

=.5.4 Numerical results, case 2: 7 = %, varying (

We have tracked the resonances in the interval ¢ € [1.12485,2.72485], see Video 4, and also Figure
14 for the trajectories traced by four selected resonances.

[mi chaellevitin.net/hyperbolic. html#videolL]
(youtu.be/2kn2ZWYObAE)

Link to Video 4: The dynamics of the resonances for Cy 1 /2 as £ changes

For twist 7 = % we find the following special lengths. The numerically found resonances and the

first ten embedded eigenvalues for these special lengths are in Tables 5 and 6, resp.

¢ = 2 arccosh (%) ~ 1.924847

One can check by direct computation that for this particular ¢ the twist parameter 7 = 1 is the
unique twist for which the length of the second simple closed geodesic generating the fundamental
group coincides with . Any hyperbolic surface of genus one with one cusp that possesses two simple
closed curves of that length that intersect in one point only will therefore be isometric to this surface.
In particular, it is isometric to the arithmetic one punctured torus described by Cohn in [Gre74] and
by Gutzwiller in [Gut83]. The scattering matrix is known to be equal to

A(2s—1)

C(s) =62 A2s)

(23)
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Surface C) 1
2

Im s
| 9|
6L
il
|
20
' ' : Res
—-0.75 —-0.5 —0.25 0 0.25 0.5

Figure 14: Trajectories of four selected resonances for Cy 12, £ € [1.12485,2.72485]

where the extra factor 6172¢

relative to [Gut83] is because the cusp width in [Gut83] was chosen to
be 6 rather than one. Its scattering resonances coincide with the one for the modular domain and
are there directly related to the non-trivial zeros of the Riemann zeta function. Figure 15 shows the
computed resonances for / = 2arccosh (%) The form of the scattering matrix (23) can also be

derived as follows. The generators of the Fuchsian group can be conjugated into

21 0 -1 1 6
1 1)7\1 3/)7\0 1)”
which is a subgroup of PSL(2,R). Therefore, PSL(2, R) acts on our surface and fixes the cusp.

Hence, the scattering matrix coincides with that of the modular domain up to a factor 61725, since

the generator

(1) 613) yields a cusp of width 6.

The special values close to the critical line and to the imaginary line are compared with theoretical
prediction of (23) in Table s.

We list some embedded eigenvalues for the twist parameter 7 = % in Table 6. Note that some
of the double eigenvalues coincide with those for the group I'* from [Str12]. Additionally, some em-
bedded eigenvalues for the twist parameter 7 = % have been computed in [KTZMi3], however the
authors have missed quite a few embedded eigenvalues in their list. They correctly identify two multi-
plicity two eigenvalues at 2.95648 and 4.51375, but do for example miss the multiplicity two eigenvalue
atabout3.53606 and the simple eigenvalue atabout 3.70339, cf. Table 6. We have performed a heuristic

check using Weyl’s law and Turing’s method and our list appears to be complete.

¢ = 2arccosh(2) ~ 2.6339157

This case can be shown to be isometric to the surface Cyrecosh 3,0 by computing the generators, and
our independent numerical results are in full agreement.
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Figure 15 shows the computed resonances for ¢ = 2 arccosh(2).

Surface Oy oo OF Surface C, arccosh(2), 1
Ims Ims
12+ 12
8 8+
4 ° n
Res Res
0 0.25 0.5 0 0.25 0.5

Figure 15: Resonances for Cy ; /5 for special lengths ¢

= 2arccosh(3) &~ 3.525494

This surface is isometric to the one with £ = 2 arccosh (%), and our independent numerical results
are in full agreement.

7.5.s Numerical results, case 3: / = 2 arccosh (%) ~ 1.924847, varying 7

The dynamics of resonances is shown in Video s.

(michaellevitin.net/hyperbolic.html#video5)
[youtu . be/QkSrmvT?goY}

Link to Video 5: The dynamics of the resonances for C.

2arccosh(2),1/2 as 7 changes in the interval
2 b
[0,0.5]

7.5.6 Numerical results, case 4: equal length geodesics, varying 7 and ¢ = (*(7)

The dynamics of resonances is shown in Video 6.

[mi chaellevitin.net/hyperbolic. html#videoGJ
[youtu . be/7_prOxoY9IJ

Link to Video 6: The dynamics of the resonances for Cy»(;) » as T changes in the interval [0, 0.489]

Remark 6. There are precisely four isomorphism classes of smooth arithmetic surfaces of genus one
with one cusp (see [MR83], and also [Tak83]). One can use the generators for the four surfaces
Clarceosh(2),0 Carceosh(3),00 Carceosh(9),00 Cs arccosh(3),2 and identify them, using [ Tak83, Theorem 4.1],
with the four known arithmetic cases. We discovered these special parameters by looking for values

of the Fenchel-Nielsen parameters for which the resonances are all along critical lines. The numerical
data and the location of the scattering poles then allowed us to conjecture formulae for the scattering
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matrix. We are very grateful to Andreas Strombergsson, who saw the relation to Ty (N) from the for-
mulae and was willing to share his expertise on Atkin-Lehner theory. This made it possible to provide
proofs for the corresponding formulae (18) and (22).

7.6  D. The hyperbolic surface of genus zero with three cusps
7.6.1 Description of the surface

This surface is unique up to isometry and can be constructed as follows. Take the domain in the upper
half space with boundary given by the the four curves 71, 2, 3 and 74 (see Figure 16). Here y; and 2
are the two half-circles of radius % centered at z = ;11 and z = —i respectively. The curves 3 and 74
are the half lines perpendicular to the real axis originating from z = —1 and 2 = ] respectively. The
surface is obtained by identifying v; and 72, as well as 3 and 7y4. The three cusps are then located at
z2=0,z = %, and at infinity. The surface can also be obtained as a quotient of the upper half space

by the subgroup I'g(4) in PSL(2, R) which is generated by the matrices ((1) }) and (411 (1)) . The

cuspsatz = Oand z = % can be removed from the surface by cutting along a horocycle (see Figure 16)
and one then obtains two cusps. Each cusp is isometric to a standard cusp of some height. Removing
the three cusps in this way one remains with a compact surface with three boundary components.
This corresponds to the darker shaded region in Figure 16. Note that the points z = L and z = —1

2
(belonging to the compactification of the hyperbolic plane) are identified.

0.75

. 4

v \

|

[l 1 1 T
—0.5 —0.25 0. 0.25 0.5

Figure 16: Fundamental domain for a hyperbolic surface of genus zero with three cusp. The shading
indicates the decomposition into cusps and compact part
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7.6.2 Numerical results

Here the scattering matrix is a 3 X 3 matrix, and our algorithm computes this reliably. In order to
find the resonances we locate the zeros of the determinant of the scattering matrix and make use of
the functional equation. Numerically we find that the resonances in this case are of multiplicity three
at half the non-trivial roots of the Riemann zeta function, with additional resonances of multiplicity
two at the points 12’“;2 , k € Z\{0}, see Figure 17 and Table 7. Our root finding algorithm finds roots
very close to one another in the case of multiplicities. It factors out an already detected root from
the function and is therefore able to detect other roots close to the already found one. We can not

distinguish numerically between true multiplicities and resonances that are very close to one another.

What we find numerically is in excellent agreement with the known value of the scattering matrix for

[o(4) [BFM12]:

21725 1 — 21725 1— 21723
1 — 21—23 21—25 1— 21—25
1 — 21—25 1— 21—25 21—25

1 A@2s—1)

C) = =1 Ay

Y

and the resonances 1;’;”2, k € Z\{0} are again due to the rational factors in the scattering matrix.
Surface D
Im s
o
16 -
®
I 12+
{
S
®
® 41
Res
0 0.25 0.5

Figure 17: Resonances for D
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Appendix A Tables of resonances and eigenvalues

Computed?¢ Data from [BSVo6a]

9.53369 9.5336...
12.1730 12.1730...
14.3585 14.3585...
16.1381 16.1380...
16.6443 16.6442...
18.1809 18.1809...
19.4847 19.4847...

Table 1: Eigenvalues A\ = %1 + t* for the space of odd functions on Ay. Data from [BSVo6a] for

comparison

Bleo

Computed resonances for

Bl/\/g

BO.5001

Poles of (13)—(15)

0.2500 + 7.0674 1
0.2500 + 10.§1101
0.2500 + 12.5054 1
0.2500 + 15.2125 1
0.2501 + 16.4676 1
0.2500 + 18.7931 1

0.2499 + 20.4594 1

0.2499 + 7.0676 1
0.2499 + 10.5116 1
0.2504 + 12.5063 i
0.2495 + 15.2145 i
0.2495 + 16.4700 i
0.2496 + 18.7960 1
0.2507 + 20.4635 1

-0.0000 + 4.5325 1

0.0002 + 13.5984 1

0.250I + 7.0681 1
0.2502 + 10.§129 1
0.2497 + 12.5093 1
0.2489 + 15.2165 1
0.2491 + 16.4747 1
0.2497 + 18.8023 1
0.2424 + 20.4683 1
-0.0001 + 2.8597 1

-0.0006 + 8.5796 1

0.0007 + 14.300T 1

0.2499 + 7.0707 i
0.2484 + 10.51821
0.2516 + 12.5168 1
0.2470 + 15.2297 i
0.2528 + 16.4889 i
0.2419 + 18.8246 1
0.2570 + 20.48801

(1/2 ~ 0.2500 + 7.0674 1
(2/2 =~ 0.2500 + 10.5110 1
(3/2 ~0.2500 + 12.5054 1
(4/2 ~0.2500 + 15.2124 1
(5/2 ~ 0.2500 + 16.4675 i
(6/2 ~o0.2500 + 18.7931 1
(7/2 A~ 0.2500 + 20.4594 1
7i/log(3) ~ 2.85961
7i/log(2) ~ 4.53241
3mi/log(3) ~ 8.5788 i
3mi/log(2) ~13.59711
5mi/log(3) ~14.29801

Table 2: Resonances for B,
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By = Ay Bl/ﬁ B1/\/§
Computed Datafrom Computed Data from Computed Data from
t [BSVoo6a] t [Hejo2, Win88] t [Hejoz, Wing8]
13.7798 13.7797... 8.92297 8.92288 5.09885 5.09874
17.7387 17.7386... 10.9206 10.9204 8.03918 8.03886
19.4237  19.4847...  13.7802 13.7798" 9.74450 9.74375
14.6855 14.6852 11.3470 11.3464
16.4044 16.4041 11.8906 11.8900
17.7394 17.7386" 13.1362 13.1351
17.8788 17.8780 13.7810 13.7798%
19.1261 19.1254 14.6278 14.6262
19.4245 19.4235" 15.8012 15.7995
16.2727 16.2710
16.7384 16.7362
17.5021 17.5006
17.7413 17.7385"
18.6501 18.6474
18.9662 18.9626
19.4268 19.4235"
19.8997 19.8961

Table 3: Embedded eigenvalues A = }1 + t? for the space of even functions on B,. All eigenvalues
have multiplicity one. * denotes eigenvalues for the so called old-forms missed in [Win88]
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Computed resonances for

C'achcosh(Q),O
and

Oarccosh(S),O

Oarccosh(?)),()

C’a»rccosh(Q) ,0

Poles of (18)—(22)

0.2500 + 7.0678 1
0.2498 + 10.51301
0.2507 + 12.5071 1
0.2508 + 15.21701
0.2505 + 16.4737 1

0.2498 + 7.0680 1
0.2501 + 10.§127 i
0.2495 + 12.5079 i
0.2496 + 15.2183 1

0.2497 + 16.47421

0.2500 + 7.0677 1
0.2496 + 10.§117 i
0.2495 + 12.5082 1
0.2488 + 15.2183 1

0.2499 + 16.4745 1

(1/2 ~o.25+7.06741
(2/2 ~o.25 + 10.51101
(3/2 ~o0.25 + 12.5054 1
(1/2 mo.2s +15.21241
(5/2 ~o.25 + 16.4675 1

0.0000 + 2.8596 1
-0.0001 + 4.5324 1

-0.0007 + 8.5797 1
0.0041 + 13.6006 1

0.0009 + 14.30461

-0.0001 + 4.53261

-0.0034 + 13.6003 1

-0.0000 + 1.95201

-0.0000 + §.8562 1

-0.0005 + 9.7608 i

-0.0022 + 13.6671 i

7i/log(5) ~ 1.95201

7i/log(3) ~ 2.85961

7i/log(2) ~ 4.53241

3mi/log(5) ~5.85591
3mi/log(3) ~ 8.5788 i
5mi/log(5) ~ 9.75991
3mi/log(2) ~ 13.59711
71/ log(h) &~ 13.66391
5/ log(3) ~ 14.29801

Table 4: Resonances for Cy o when £ is a special length. The actual computed values for Cyrecosn(s),0

may differ by one in the last digit from those shown in the first column

Computed resonances for

CQ arccosh(%),l/Q

C(2 arccosh(2),1/2

C2 arccosh(3),1/2

Poles of (23)

0.2499+7.0681 1
0.2503+10.5123 1
0.2499+12.5078 1

0.2499+7.0678 1
0.2501+10.5128 1
0.2512+12.5067 1

0.2499+7.0681 1
0.2500+10.5121 1
0.2492+12.5079 1

(1/2 =~ o0.25+7.06741
(2/2 ~o.25+10.51101
(3/2 ~o.25+12.5054 1

0.0+4.5324 1
0.0003+13.6004 1

mi/log(2) & 4.53241

3mi/log(2) ~ 13.59711

Table 5: Resonances for Cy 1 /2 when £ is a special length
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C(arccosh(Q),O Carccosh(S),O Oarccosh(9),0 02 arccosh(%),1/2 C(2 arccosh(2),1/2
and and
C(arccosh(5),0 CY2 arccosh(3),1/2
toop@) ot p(d) topd) ot p(t) t )
2.42507 I 2.89100 2, 2.00968 I 2.95648 2, 2.89101 2,
3.24141 I 3.25000 I 3.44480 I 3.53606 2 3.25001 I
3.97879 I 4.13811 2, 3.70334 I 3.70339 1 4.13811 2,
4.54850 I 4.36806 I 4.13245 I 4.51375 2 4.36809 I
4.64665 1 4.95729 2 4.65694 1 = 5.50420 2 4.95731 2
4.94791 I 5.62822 1 4.89729 I 5.81512 2, 5.62824 1
5.09888 I 6.02334 2, 5.05935 I 5.87951 I 6.02335 2,
5.19203 I 6.22332 I 5.34525 I 6.62069 I 6.22332 I
5.35557 I 6.69430 2 5.87949 I 6.64683 2 6.69441 2
6.12073 I 7.22111 I 6.05422 I 6.78381 2 7.22571 I
8.92338 1
10.9213 I

Table 6: Embedded eigenvalues A = }1 + 2 and their multiplicities (t) for C g and Cy 1 /o when £ is
aspecial length. The actual computed values for Circcosn(s),0 and C% arccosh (3),1/2 may differ in the last
digit from those shown in the first and fourth columns, resp. The last two eigenvalues for Cirecosh(3),0
are shown for comparison with those for B, /3 in Table 3. A subset of these eigenvalues are eigen-

values for the groups f0(5), fo(G), and I'®. These are in good agreement with those computed in
[JST14] and [Str12]
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0.2500 + 7.0675 i
0.2500 + 7.0676 1
0.2499 + 7.0680 1
0.2497 + 10.5117 i
0.2496 + 10.§121 i
0.2500 + 10.§125 i
0.2504 + 12.5060 i
0.2506 + 12.5062 1
0.2496 + 12.5078 i
0.2510+ 15.21521
0.2489 + 15.2153 1
0.2490 + 15.2154 1
0.2503 + 16.4695 1
0.2504 + 16.4699 i
0.2494 + 16.4724 1
0.2463 + 18.7973 1

0.2454 + 18.7983 1
0.2503 + 18.7984 1

(1/2 ~ 0.25+7.0674 1

(2/2 ~ 0.25+10.5110 1

(3/2 ~ 0.25+12.5054 1

(5/2 ~ 0.25+16.4675 1

(6/2 = 0.25+18.7931 1

-0.0000 + 4.5324 1
-0.0000 + 4.§325 1
0.0002 + 9.0654 1
0.0002 + 9.0657 1
-0.000§ + 13.5988 1
-0.0006 + 13.5997 1
-0.0000 + 18.1367 1
0.0018 + 18.1369 1

7i/log(2) ~ 4.5324 1
271/ log(2) ~ 9.0647 i
3mi/log(2) ~ 13.59711

}
|
-
|
|
|
!

}47r1/ log(2) ~18.1294 i

Table 7: Resonances for D.
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