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On the vy-reflected processes with fBm input

Peng Liu? Enkelejd Hashorval and Lanpeng Jif
October 5, 2016

Abstract: Define a y-reflected process W, (t) = Yy (t) —vinfocpo g Yu(s), t > 0,7 € [0,1] with {Yp(t),t >
0} a fractional Brownian motion with Hurst index H € (0,1) and a negative linear trend. In risk theory
R (t) =u—W,(t),t > 0 is the risk process with tax of a loss-carry-forward type and initial reserve u > 0,
whereas in queueing theory W1 is referred to as the queue length process. In this paper, we investigate
the ruin probability and the ruin time of R, over a reserve dependent time interval.

Key Words: ~-reflected process; risk process with tax; ruin probability; ruin time; maximum losses;
fractional Brownian motion; Pickands constant; Piterbarg constant.
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1 Introduction

Let {Xg(t),t > 0} be a standard fractional Brownian motion (fBm) with Hurst index H € (0,1), i.e., X

is a centered Gaussian process with almost surely continuous sample paths and covariance function
1
Cov(Xn(t), Xn(s) = S (1" + s/ = [t —s "), t,5>0.
Define a ~y-reflected process

Wy (t) = Yu(t) - Wsé%ft] Yu(s), t=0, (1)
where v € [0, 1] is the reflection parameter and Yy (t) = Xg(t) — ct,t > 0 with some constant ¢ > 0.
In the actuarial literature R, (t) = v — W,(t),t > 0, with u > 0 is referred to as the risk process with tax
of a loss-carry-forward type; see, e.g., [2]. In queuing theory W is referred to as the queue length process

(or the workload process); see, e.g., [3, 18]. We refer to [4, 10, 11, 23, 24, 25, 13] for some recent studies
of WO.
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Next, define the ruin time of the ~-reflected process W, by
Ty = Inf{t > 0: W, (t) > u} (with inf{(} = o0). (2)

Further let T;,,u > 0 be a deterministic positive function and define the ruin probability over a reserve

dependent time interval [0, Ty] by

b1, () 7= P (Tyu < To) -

Hereafter, 1) o0 (u) = P (7,4 < 00) denotes the ruin probability over an infinite-time horizon.
The ruin time and the ruin probability for both T,, = T' € (0,00) and T,, = oo for all u large are studied
in [21, 20]; see also [11, 23, 24]. In [21] the exact asymptotics of ¢ 7(u) and 1) o (u) are derived, which

combined with the results in [23] and [11] lead to the following interesting asymptotic equivalence

Uyr(u) = Crpthor(u)(l+o(1), u— o0 3)

for any T' € (0,00] and v € (0,1), with Cy, some known positive constant. The recent contribution
[20] investigates the approximation of the conditional ruin time 7, ,|(7y., < 00). As shown therein the

following convergence in distribution (denoted by i)

Ty — toU d
m (T'Yvu < OO) — N (4)
holds as the initial reserve u tends to infinity for any + € [0,1), where (and hereafter) N is an N(0,1)

random variable and

H H+2

1
= — AC = T2,

See also [24, 25, 26, 7] for related results. Of course, the ruin time and the ruin probability are studied
extensively in the framework of other stochastic processes, see, e.g., [2, 16, 17, 15].

With motivation from [4] and [9], as a continuation of the aforementioned studies, in this contribution
we shall analyze the ruin probability and the conditional ruin time of the ~-reflected process W, over the
reserve dependent time interval [0,7),]. Allowing the time horizon to be adjusted by the initial reserve
level u of the portfolio is one of the new features in this contribution. The motivation for doing so is the
insurance rational that if the company allocates a high initial reserve u to a specific insurance portfolio,
then the time horizon that this portfolio is not ruined, say with at least 99% probability, should be closely
related to the level u. Our investigation shows that considering a time horizon that depends on the initial

reserve u leads to interesting theoretical results which are also of interest for future practical actuarial



work.

As mentioned above, a novel aspect of this paper is that T, will be a function changing with the initial
reserve u according to three different scenarios defined with the help of (4). In Theorem 2.1 below we
show that similar asymptotic equivalence as in (3) still holds for all the three scenarios. In Theorem
2.2 we derive a truncated Gaussian approximation for the (scaled) conditional ruin time over the long
time horizon, whereas for the short and the intermediate time horizons an exponential approximation is
possible.

We organize this contribution as follows: The main results are presented in Section 2 followed then by a

section dedicated to the proofs.

2 Main Results

For the time horizon [0, T},] we shall consider three interesting scenarios which are specified by determining
the relation between T, and the initial reserve u. In view of (4) asymptotically (and roughly speaking) the
mean of the ruin time equals tou and its standard deviation equals A. gufl (see also (5)). Therefore, for
the choices of T3, both tou and A, gu' should be utilized as scaling parameters, leading to the following

three scenarios:

1) The short time horizon: limy oo T /u = 0;
2) The intermediate time horizon: lim, . T\,/u = so € (0,tp);

Z:;S}} =z € (—o0, 0|

3) The long time horizon: lim,

Hereafter we shall write W(-) for the survival function of the N(0,1) random variable, and
1
Ho = lim —E exp( sup <\/§Xa/2(t) — t‘X)) € (0,00)
S—00 S tel0,5]
for the Pickands constant, where X, /5 is a standard fBm with Hurst index /2 € (0,1). Another important

constant is Piterbarg’s one defined by

Pt =F (exp( sup (\/iXa/Q(t) —(1+ b)t“))) € (0,00), @ €(0,2), b>0. (6)

te[0,00)
We refer to [27, 19, 6, 10, 5, 1, 12, 21, 9, 14, 28, 22, 8] for properties and extensions of the Pickands and
Piterbarg constants. As shown in [4] for the O-reflected risk process Wy with H € (0,1) we have:

() If limy o0 Ty /u = 3¢ € [0,0), then




where

1

2720 (H — co) ' Haop, if H<1/2,
2

_ (1—cp) . - : _ G
Dy = (1—202)’ if H = 1/27 with ¢g = 1T CS(). (8)
1 if H>1/2,
(3) If limy 00 % = € (—00,00], then
o1, (u) = 0,00 (W) @(z)(1 4+ 0(1)), u— oo, 9)
where ®(z) =1 — ¥(x) and
H,1-H 1/H-1
Pooo(u) = Qé—ﬁLszH < HC u 1H)
H(l—H) HH(1-H)
Hyl—H
x U <HH(1—H)1H) (I+o0(1)), u— oo. (10)

Our first result below shows the asymptotic relation between the ruin probability 1., 1, of the ~y-reflected
process W, and that of the O-reflected process Wj. Consequently, in the light of (i) and (ii) above the

exact asymptotics as u — 0o of ¥ 7, (u) follows easily.

Theorem 2.1 Let W, be the y-reflected process defined in (1) with H € (0,1) and v € (0,1). We have
i) If imy o0 Ty /u = so € [0,tg), then

Yy 1, (u) = Muthor, (u)(1+0(1)), u— oo, (11)
where
177»\{
Porr s if H<1/2,
My, = ﬁgg,ﬁﬂzyz
1 if H>1/2.

i) If limy, o ;‘f":g}“} =z € (—00, 0], then

oz () = Pogy Yoz ()L 4 0(1)), 1w oo. (12)

Remarks. a) For the case that v = 1 we can add: Under the statement i) above similar arguments as in
the proof of Theorem 2.1 show that (11) holds as u — oo, with My = Dy (see (8)). Forii) in Theorem
2.1, depending on the values of x different asymptotics will appear; those derivations are more involved

and will therefore be omitted here.



b) As discussed in [4, 26] also of interest is the investigation of the maximum losses given that ruin occurs,

which, in our setup, is defined as

L(y,u) := ( sup W, (t) — u)

t€[0,T%)

(Tyu < Tu)- (13)

Under the assumptions of Theorem 2.1, we have that if i) is satisfied, then

L
(1+cso)“zg];m 4 E, u— oo,

and if ii) is valid, then

2H 2H—1
c (1_H) L(")/,'LL) d
T2H 7 — &, u— oo.

Here (and in the sequel) £ denotes a unit mean exponential random variable. Note in passing that the last
convergence in distribution is clear when v =0, H = 1/2 and T,, = oo since it is known that the random
variable supye(p o) Wo(t) is exponentially distributed with parameter 2c.

Next, we establish approximations for the conditional ruin times. It turns out that for the long time
horizon the (scaled) conditional ruin time can be approximated by a truncated Gaussian random variable.
Surprisingly, this is no longer the case for the short and the intermediate time horizons where the (scaled)

conditional ruin time is approximated by an exponential random variable.

Theorem 2.2 Let W, be the y-reflected process defined in (1) with H € (0,1) and v € (0,1), and let 7,
be the ruin time defined as in (2). We have
1) If imy 00 Ty /u = 0, then

Hu*(T, — Tyu)
T3H+1

(Tyu < Tw) i) E, u— oo.

2) If imy_,o0 Ty /u = sg € (0,tp), then

(14 c¢so)(H — (1 — H)eso)(Ty — Tyu)
2H+1, 2H 1
0

3) If limy, 00 Z&“% =1z € (—o00, 0], then

Tyu — t()’u,

A gull (T’y,uSTu) i N‘(N<ZC), U — 0.
c,H

3 Proofs

In this section, we shall present the proofs of both theorems displayed in Section 2. We start with the

proof of Theorem 2.1. First note that for any « > 0

Uy, (u) = P( sup W, (t) >u>

t€[0,Ty]



=P <0§ss;1tp§Tu (Z(s,t) —c(t — 75)) > u> ,

where Z(s,t) := Xg(t) — vXg(s),s,t > 0. Further, by the self-similarity of the fBm Xy

b = B( sw Vil > 7). (1)
0<s<t<1 T
where, for any u > 0
Z(s,t
Y (s,t) = (5,7) s,t> 0. (15)

1+%(t—'ys)’

For the proof of statement i) in Theorem 2.1 we shall make use of the following result.

Lemma 3.1 Let {Y,(s,t),s,t > 0},u > 0 be a family of Gaussian random fields defined as in (15) with
H € (0,1) and v € (0,1). If the condition of statement i) in Theorem 2.1 is satisfied, then for all u
large enough, the variance function V}%L (s,t) = E (Yuz(s,t)) of the Gaussian random field Y, attains its
mazimum over the set E := {(s,t) : 0 < s <t <1} at the unique point (0,1). Moreover,

u

V., (0,1) = u + T,
U

holds for all u > 0.

Proof of Lemma 3.1 First note that direct calculations yield

D(s,t)
1+ Tl =)

V;%u (s,t)

with D(s,t) = (1 — )t?H 4 (42 — 4)s?H + 4|t — s|?H. Tt follows further that

OV (s,t T, - ’
Iy, (,1) = <1 + C—u(t - 'ys)) (2H (7% — 7)s* =1 — 2HA(t — 5)71) <1 + &(t — 73))
0s u u
+2’y@D(s, t) (1 + ﬂ(t — ’ys))) ,
u u
OV (s,t - ?
P~ (14 L) (<2H<1 - 2t ) (14 Sk - 09)
ot u u
cT, cl,
—2—D 14+ —(t— .
vt (145500 ) )
. 8V2u (s,t) 8V2u (s,t)
Thus if —%—" = —%—" =0, then
PHL | (f = g)2H-1 _ 211 (16)

Moreover, since 2H — 1 < 1 the above does not hold in the interior of the set E. Therefore, we conclude

that the maximum point of V;u (s,t) over E is on one of the three lines I} = {(0,¢),0 <t < 1}, Iy =

6



{(5,£),0<s=t <1} orl3 ={(s,1),0 < s <1}. It can be shown that on /; the maximum is attained
uniquely at (0,1) and on Iy the maximum is attained uniquely at (1,1). Clearly, both (0,1) and (1, 1) lie

on the line /3. Consequently, the maximum point of V}%L (s,t) over E is on l3. Moreover, we have that

dVi2 (s,1)  2e4T, T, -3
nnl 2o (1 Bo) o)

ds U

where, for any d > 0

fuls) = 17— (=) 41—~ D14 d - )

x ((1- 7)s?H=1 (1 - S)QH_I) , §>0.

Next, we show that for any v € [0,1) and d € (0, {Z5)

fa(s) <0, Vse(0,1) (17)
holds. Let us first rewrite fy(s) as
fals) = (1= +7(1 = H)(1 =) —5(1-7) (1~ H)s*
—-H <1 + % - 7> (1—s)2H1 %(1 +d)(1 —~)s?H7L,

Note that
l—y<(1-7)1 -9+ 1—y)s*1 s€(0,1),

hence replacing 1 — v by (1 —7)(1 — s)22~1 + (1 — v)s*7~1 in the above equation yields

fa(s) < (A== 1+ (1 -7 4 41— H)(1— 9" —y(1—y)(1 - H)s*

1 H
-H (1 + i 7) (1—s)2H71 E(l +d)(1 —7)s?H 1
H 2H—1 2H—1 2H
< (1-H-—)(0-s) + (1 =7)s") =1 =) (1 - H)s™,
where in the second inequality we used the fact that
(1= H)(1— s < 5(1— H)(1 = )"0, Vs € (0,1).

Since for any d € (0, %)

o
1 H<
<4

we conclude that (17) is valid. Consequently, by (17) and the fact that

I cT, <
im — =c¢s
u—oo U 0 1-H



we obtain for all u large
dV}gu(s, 1)

0 A 0,1).
o <0, s€(0,1)

Hence, for all u large enough, the maximum of V}gu(s, t) over the set E is attained at the unique point
(0,1). This completes the proof. ]

Proof of Theorem 2.1 i). First, note that (14) can be rewritten as

Yu(s,t)  u+ cTu>
u) =P su .
Yyrlw) <0§s§1t)§1 Vv, (0,1) TH

The claim will be established by applying Theorem 4.1 (see Appendix). We shall verify the assumptions
A1-A3 therein, by employing similar arguments as in the proof of Theorem 2.5 in [21]. Indeed, it follows

that for any fixed large u

1— (H —c(u)(1—t) —y(H —c(u)s +o(1 —t+s), H>1/2,
—c(w)(1—t) —y(1 =2 —c(u)s +o(l —t+s), H=1/2 (18)
1— (H — c(w))(1 — t) — 552 62H 4 o(1 — t 4 52H), H<1/2

= 1—(

N[ =

VYVu (07 1)

holds as (s,t) — (0, 1), where c(u) = ufr:';“Tu Furthermore, for any u > 0

Yu(s,t) Yu(s', ) 71 oy 12H 21 g4 |2H o
1_CW<WAMY%d$ﬁ>_2Ott’ 7| *7) (1 +0(1)) (19)

holds as (s,t),(s',t') — (0,1). In addition, there exists a positive constant Q such that, for all u large

enough

Yu(st) _ Yu(s',t) ) _PH g 2H
E((m(&l) Vyu(O,l)) ) < Q(t =17 +| )

holds for all (s,t) € E. Therefore, by the fact that

lim c(u) =c¢p = Sl
U—00 1+ cso
and using Theorem 4.1 we obtain that
+ e \CF O fu el
u+c u+c
o) = D ()0 () o) 20)
u u

as u — 0o, where
1—y
2721 (H — o) HouPyyy , if H <1/2,

= 4(1—6 )2 . _
iy m7 if H=1/2,

1 if H>1/2.



Combining the above formula with (7) we obtain (11).

Next, we present the proof of statement ii). Assume first that

T tou

In view of (4)

Ty — toU
Tim P <11Hug < afry < oo> _ o).
c,

Clearly, the above is equivalent to

P (Sup0§t§t0u+:pAc’HuH W'Y(t) > u)
lim = ®(x)
U—00 P (T%u < OO)

implying
w%Tu (u) = wv,oo(u>q)($)(1 + 0(1)), u — OQ.

This together with (9) and Theorem 1.1 in [21] yields the validity of (12). Finally, assume that lim, o, - i _tou =

oo. For any positive large M

¢'y,t0u+MAc7HuH (U) S w’Y:Tu (U) S ¢'Yvoo(u)

holds for all u large enough, hence

(M) < liminf 227 iy o Pr1u (W)

<1.
w00 ryo0(U) T oo Pryeolu) T

Letting thus M — oo yields

Yy 1, (U) = Yy eo(u)(l+0(1)), u— o0.

Consequently, (12) is valid, and thus the claim follows. O
Proof of Theorem 2.2 We start with the proof of statement 1). Set T (u) = T, — xT2H+! /u?. Tt follows

from (20) that, for any > 0

w2 (T, — Ty ) P (SupUStSTz(u) W5 (t) > U)
P > e|mu < Th
Tu ]P (SupogtSTu ny (t) > ’LL)

1-2H
utcTy (u) (7 + utcTy (u)
Pra ((Tmm»H) vt (1+0(1))

Duy (sg7) 7w ()
() - ()’

= exp|— 5 (14 0(1))

2H




— exp(—Hz)

holds as u — oo, establishing the claim.

Next, we give the proof of statement 2). Similar arguments as above yield that, for any > 0

- (u+c(Tu7xu2H’l)> B <u+cTu>2
—_ _ 2H—1\H H
P (UH >l < Tu) o |+ o)
— exp(—Az), u— oo,
where \ = (1+CSO)(§ES_H)CSO). Finally, since by (12) for any y <z
0
Ty — tou P <SUP0§t§tou+yAc,HuH W, (t) > u)
P ﬁ < ’y‘T»y’u S Tu =
¢, HU P (supg<s<r, Wy (t) > u)
)
L
P(x)
the claim of statement 3) follows, and thus the proof is complete. O

4 Appendix

We present below a generalization of Theorem D.3 and Theorem 8.2 in [27], which is tailored for the proof

of our main results. We first introduce another Piterbarg-type constant 753, a € (0,2),b > 0 defined by

Pt = lim E exp( sup (\/iXa/Q(t) - (14 b)]t|a)) € (0,00),
S—o00 te[-S,9]

where X, /5 is a standard fBm defined on R; see also (6) for the Piterbarg constant PL. Set E = {(s,t),0 <

s <t <1}andlet {n,(s,t),(s,t) € E},u > 0 be a family of Gaussian random fields satisfying the following

three assumptions:

2

A1: The variance function T

(s,t) of n, attains its muximum on the set E at some unique point (s, to)
for all u large enough, and further there exist four positive constants A;, 3;,7 = 1,2 and two functions
Ai(u),i = 1,2 satisfying lim, o Ai(u) = A;,% = 1,2 such that o, (s,t) has the following expansion for u

large
T (5,8) = 1 — Ay (u)]s — 50| (1 + 0(1)) — Ag(u)|t — to|?2(1 + o(1)), (s,t) — (s0,t0)-

A2: There exist four constants B; > 0,a; € (0,2),7 = 1,2 and two functions B;(u),i = 1,2 satisfying
limy 00 Bi(u) = By,i = 1,2 such that the correlation function 7“77“(8,15;8/ ,t') of n, has the following

expansion for all u large
T (5,838 t") =1 = Bi(u)ls — 8'[*" (1 + o(1)) — Ba(u)ls — §'|**(1 + 0(1)), (s,%),(5',¢)) = (s0, o).

10



A3: For some positive constants Q and -y, and all u large enough

E (nu(s,t) = nu(s',1))" < Q(ls = &' + [t = ]")
holds for any (s,t),(s',t') € E.

Theorem 4.1 Let {ny(s,t),(s,t) € E}, u> 0 be a family of Gaussian random fields with almost surely
continuous sample paths. If A1-A3 are satisfied, then
_ M (2)
P <(;;)1£D77u(3,t) > u> = Fo5(u) Foplu) ¥(u), u— oo,

where
2

~ L 1 2 _2
Ii'HaiBiaiAi ﬂiF(é—i—l) u* P, if a; < B,

Ag

@y ) =5 .
]:a’ﬂ(u) - PCXB;? Zf o = Bia t= 1’ 27
1 if a; > By,
with T'(+) the Euler Gamma function and

A A2
"% PO]il? Zf So € <07 1)7 A% POJC’?? Zf to € (07 1)7
Pall - Ay 7)0422 - Ag
Palt  ifso=0 orl, Pal  ifto=0 orl,
=~ 2, ifso€ (O’ 1)a =~ 2, ifto € (07 1)a
1= 2 =
1 ifsp=0orl, 1 iftg=0 orl.

Proof of Theorem 4.1 It follows from the assumptions A1-A2 that for any € > 0 and for u large

enough we have
(A1 —€)|s — 0|t + (Ag — )|t — to]™? <1 — 0y, (5,1) < (A1 +€)|s — s0|™* + (Az + €)[t — to™
as (s,t) — (so,t0), and
(Bi —¢)|ls =& |*" + (B —e)[t —t'|** <1 —ry,(s,8;8,1') < (Br+¢)|s — §'|* + (By + )|t — t'|*?

as (s,t), (s',t') = (so,to). Therefore, in the light of Theorem 8.2 in [27] we can get appropriate asymptotical

upper and lower bounds, and thus the claims follow by letting € — 0. The proof is complete. U
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