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Abstract

In this paper, we address an unsolved problem in the real world: how to ensure the integrity of the web content in a browser in

the presence of malicious browser extensions? The problem of exposing confidential user credentials to malicious extensions

has been widely understood, which has prompted major banks to deploy two-factor authentication. However, the importance

of the “integrity” of the web content has received little attention. We implement two attacks on real-world online banking

websites and show that ignoring the “integrity” of the web content can fundamentally defeat two-factor solutions. To address

this problem, we propose a cryptographic protocol called DOMtegrity to ensure the end-to-end integrity of the DOM structure

of a web page from delivering at a web server to the rendering of the page in the user’s browser. DOMtegrity is the first solution

that protects DOM integrity without modifying the browser architecture or requiring extra hardware. It works by exploiting

subtle yet important differences between browser extensions and in-line JavaScript code. We show how DOMtegrity prevents

the earlier attacks and a whole range of man-in-the-browser attacks. We conduct extensive experiments on more than 14,000

real-world extensions to evaluate the effectiveness of DOMtegrity.

Keywords Web page integrity · Web Crypto API · Browser extension · WebExtension · Man in the browser · JavaScript ·

DOMtegrity

1 Introduction

Browser extensions have become the dominant method to

extend browser functionality. All major browsers (Chrome,

Firefox, Safari, Opera and Internet Explorer) support exten-

sions, and host dedicated repositories (“stores”) from which

extensions can be downloaded and installed directly from the

Internet. Mozilla reports average rates of more than 1 mil-

lion Firefox extensions downloaded daily and about 100 new

extensions created every day throughout 2017 [18].

Extensions are normally distributed and executed in con-

trolled environments. All extensions uploaded to a repository

are subject to a vetting process, which is a mixture of auto-
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mated program analysis and manual code review aiming

to identify malicious extensions and prevent their spread.

Furthermore, extensions are run in a restricted (so-called

“sandboxed”) environment and only have access to a pre-

defined set of browser APIs.

However, the vetting process is not bullet-proof. A study

conducted by Google researchers found nearly 10% of exten-

sions examined to be malicious [13]. By using obfuscation,

some malicious extensions can slip through the vetting pro-

cess. Furthermore, the extension update mechanism provides

an additional exploit path for the attacker. In 2014, two

popular and previously vetted Chrome extensions, “Add to

Feedly” and “Tweet This Page”, were sold to spammers who

updated the extensions to inject advertisements and affiliate

links into websites opened in the browser.

The problem The key problem with extensions is that,

once installed, they possess over-privileged capabilities that

may be abused by attackers. For example, an extension is

free to modify the Document Object Model (DOM) of a

web page. This allows a malicious extension to manipulate

the display of a web page and deceive users into believing

something false. The change of the web page content may
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be subtle, but when it is combined with social engineering

techniques, it can cause significant harm to user security [9].

In Sect. 2, we will demonstrate two attacks on real-world

banking websites (HSBC and Barclays) to show how a mali-

cious extension may stealthily steal money from the user’s

bank account by making small modifications to the DOM

structure of an online banking web page.

Existing solutions to prevent malicious extensions gener-

ally involve changing the browser’s internal design [6,24,27],

strengthening the vetting process of repositories [4,11,13–

15], asking users to install yet another (trusted) extension

that detects malicious behaviour of other extensions [16,17]

or requiring an external hardware device (e.g. Cronto) that

performs out-of-band transaction verification.

Our solution In this paper, we propose a cryptographic

protocol that we call DOMtegrity to ensure the integrity of the

DOM structure of a web page delivered from a web server to

the rendering of the page at the client browser in the presence

of malicious extensions. Compared to previous solutions,

ours does not require changing the browser’s existing inter-

nal design; it does not need any external hardware device; it

is orthogonal to the strengthening of the vetting process; it

can be easily implemented by embedding in-line JavaScript

code in the web page rather than requiring the user to install

another (trusted) extension. The novelty of our solution lies

in exploiting subtle but important differences between exten-

sions and in-line scripts in terms of their rights to access

Websockets established between the server and the client.

This is combined with leveraging the latest Web Crypto API

that is recently added in all major browsers.

Contributions The main contributions of this paper are

summarized below:

– We propose DOMtegrity, a cryptographic protocol to pro-

tect end-to-end integrity of a web page’s DOM from the

point of delivery at a server to the final display in a client’s

browser. This is the first solution that works with the stan-

dard WebExtensions architecture without needing any

external hardware.

– We present an efficient implementation of DOMtegrity,

using JavaScript on the client side and Node.js on the

server side, and demonstrate that the proposed solution

is effective and only adds a small overhead to the com-

putation load and communication bandwidth.

– As part of the evaluation, we implement two attacks on

real-world online banking systems (HSBC and Barclays)

to show how a malicious extension can compromise the

security of the user’s bank account, and how DOMtegrity

can prevent such attacks as well as a whole range

of man-in-the-browser (MITB) [7] attacks that involve

maliciously changing the DOM structure of a web page.

2 Malicious extension attacks on online
banking

Attacks caused by malicious extensions are often known

as man-in-the-browser (MITB) attacks. To demonstrate the

importance of understanding the threats imposed by mali-

cious extensions in modern browsers, we show two proof-

of-concept attacks on real-world banking websites, HSBC

and Barclays, by exploiting the capability of browser exten-

sions to modify the DOM of a web page. The extensions are

developed for both Firefox and Chrome based on the standard

WebExtensions framework. In the proof-of-concept demon-

stration of the attacks, the money was transferred between

the authors’ accounts. All the experiments were approved by

Newcastle University’s ethics committee.

2.1 WebExtensions capabilities

Before describing the attacks, we should first explain WebEx-

tensions.1 The WebExtensions framework is a W3C stan-

dard cross-browser architecture [26] for developing browser

extensions using HTML, CSS and JavaScript. It is now sup-

ported in all major browsers except Safari.

An extension developed based on WebExtensions consists

of three components: the background page, the UI pages

and the content scripts. The background page is in charge

of long-term operations that last beyond the lifetime of a

particular browser window and is provided with access to

browser APIs. The UI pages put together the extension user

interface. Content scripts are JavaScript programs that are

run in the context of a web page and are allowed to interact

with the page.

Although the background and UI pages do not have access

to the DOM of the page, content scripts can modify the DOM.

Through content scripts, an extension can hide elements of

the DOM and insert another element in the same location

to effectively replace the original element. For example, a

text box can be placed by a malicious extension in place of

a password text box to capture a user’s password.

2.2 Attackmodel

In the rest of this paper, the attackers implement their threat

scenario through a malicious extension installed in the vic-

tim’s browser. Thus, the capabilities of a malicious extension

are limited to the context of a browser. We assume attack-

ers have not installed any operating system level malicious

software on the victim’s device to extend their capabilities

beyond the browser execution context.

In the following demonstration, we assume that a mali-

cious extension is already installed on a client’s browser.

1 https://developer.chrome.com/extensions/overview.
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This can be done through disguising malicious extensions as

legitimate browser extensions, using Trojans to install such

extensions, missing plug-in attacks or purchasing popular

extensions and then adding malicious code during updates

[9,23]. In both attacks, the web pages that are presented to

the victim are from the genuine banking websites via HTTPS.

We assume that the attacker has an account that they wish

to move funds to, and the details of this account are either

hard-coded into the browser extension or received in real

time from a remote Command & Control (C&C) centre [20].

The attacker’s bank account will eventually be exposed by

checking the victim’s bank transaction records. However, we

assume this is not any issue for the attacker since he only

needs to prevent the discovery of the fraud for some short

timescale in which the funds can be withdrawn from the

account.

2.3 HSBC attack

The first attack shows how a malicious extension can eas-

ily bypass the two-factor authentication that is adopted by

major banks, including HSBC. In this attack, the extension

intercepts the victim’s authentication credentials (i.e. login

details), sends them to a remote attacker and redirects the

user to a false maintenance page. Depending on the secu-

rity policy of the banking web site, this authentication could

involve a regular password and an additional one-time pass-

word (OTP) as a second factor which is either sent to the

user’s mobile phone as an SMS or locally generated using a

dedicated device (i.e. a Chip Authentication Program (CAP)

device) provided by the bank.

We developed a proof-of-concept attack that targets the

HSBC online banking web pages. To authenticate their

clients, HSBC uses a password-based user authentication

augmented with an OTP generated by a dedicated device, the

HSBC Physical Secure Key. Our attack works as follows:

1. When the victim requests the login page, the browser

extension content script replaces the username and pass-

word text boxes with its own and records the victim’s

username and password by communicating with the

extension background page.

2. When the victim is prompted for an OTP, the browser

extension records what the victim enters in a similar man-

ner.

3. The victim is then redirected to a genuine customer ser-

vice page. However, the content of the page is changed

on the fly by the extension content script to include

a message, indicating that the website is temporarily

unavailable for maintenance or due to technical difficul-

ties as shown in Fig. 1.

4. The stolen login credentials are sent to the attacker who

can then log into the victim’s online banking account.

Fig. 1 The HSBC customer service page modified by the malicious

extension to contain a message indicating website technical difficulties

We have implemented the attack by developing extensions

for both Firefox and Chrome based on WebExtensions. Our

extensions were able to perform the attack successfully with-

out being detected by the bank server. Consequently, we were

able to impersonate the victim and log into his or her bank

account on a separate machine.

2.4 Barclays attack

The second attack shows how a malicious extension can

defeat transaction-specific user authorization, which is added

by many banks such as Barclays as an extra layer of security

on top of two-factor authentication. Here, when an already

authenticated user requests a transaction, she is required to

provide a transaction-specific authorization code which is

either sent to the user out of band or generated by a dedicated

device upon unique transaction-specific input. This transac-

tion authentication is designed to prevent modification of

transaction data (e.g. recipient and amount) by man-in-the-

browser attackers.

Barclays uses the strongest form of transaction authen-

tication (the so-called full transaction authentication [1])

in which the unique transaction authorization code (i.e. the

transaction-specific OTP) is cryptographically bound to the

transaction data. The authorization code is calculated by

a dedicated device provided by Barclays called PINsentry.

Alternatively, the user can use the functionally equivalent

Mobile PINsentry application on her smartphone. PINsentry

is a battery-powered device consisting of a numeric keypad,

a small LCD screen, a card reader and a processor. When a

123



E. Toreini et al.

transaction is requested through Internet banking, the user is

required to manually enter the transaction details, including

the payee account number and the amount, on PINsentry (or

Mobile PINsentry) and then enter the PINsentry produced

authorization code on the internet banking web page. How-

ever, in the following we show how a malicious extension can

defeat this security measure by combining social engineering

and DOM modifications. The attack works as follows:

1. When the victim requests a funds transfer, she is pre-

sented a form to provide the details of the funds transfer,

including the payee account number and the amount. The

malicious extension content script replaces the text box

where the victim is supposed to enter the account number

of the intended payee with its own text box and records

the entered account number by communicating with the

extension background page.

2. Then, the user is presented with a dialogue confirming

the transaction details and instructing her how to get

a transaction authorization code from PINsentry. The

instructions include asking the user to “Enter the payee’s

account number as your REF:” followed by the payee’s

account number. The malicious extension content script

replaces this instruction with “Enter this REF number:”

followed by the attacker’s account number, as shown in

Step 3 of the instructions in Fig. 2 with real bank details

suitably redacted.

3. A non-expert user, trusting the HTTPS page to be secure

and failing to notice the above subtle change, then enters

the attacker’s bank details in PINsentry and provides

a code authorizing the funds transfer to the attacker’s

account.

4. The browser extension changes the final confirmation

page before it is displayed to the user so that it shows

the account details of the original intended payee rather

than that of the attacker.

The key issue that we were able to exploit is that PINsentry

prompts the user for two pieces of transaction information:

“REF” and “Amount”. The only information about what

“REF” means is present on the website, which can be mod-

ified by the extension. We have responsibly disclosed our

attack to Barclays and since then Mobile PINsentry has been

updated and the prompt on the app has been fixed to explic-

itly ask the user for the payee’s account number instead of a

REF number.

3 Our proposed solution: DOMtegrity

In this section, we propose a solution, called DOMtegrity,

to address MITB attacks such as those demonstrated in

Fig. 2 The Barclays instructions page modified by the malicious

extension to include the attacker’s account number (redacted as

XXXXXXXX) as the REF number. The modified area is represented

in the green box (color figure online)

the previous section. Our solution is designed based on the

WebExtensions framework, which is now the standard exten-

sion development architecture recommended by W3C and

adopted by Google Chrome, Mozilla Firefox, Microsoft Edge

and Opera.

3.1 WebExtensions security model

The WebExtensions security model as implemented in mod-

ern browsers is based on the model proposed by Reis et al.

[22] who discussed the real-world security issues experi-

enced by Google Chrome and advocated a systematic method

to prevent these attacks. Here, we discuss parts of this model

that are necessary for the description of our protocol.

Browser zones In modern browsers, the execution envi-

ronment is divided into two zones: an unprivileged Internet

zone in which web pages are executed, and a privileged

Chrome zone in which extensions are executed. A schematic

representation of these zones is shown in Fig. 3. Scripts in the

Internet zone (i.e. the so-called in-line scripts within the web

page) cannot have access to the data in the Chrome zone (i.e.

the extension scripts), and vice versa. Therefore, although

the web page scripts and the extension content scripts can

interact with DOM separately, they cannot interact with each

other. This concept is called the isolated worlds principle
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Fig. 3 The Internet and Chrome zones of a modern browser and how

web pages, extensions and plug-ins interact [2]

[10]. The main reason for the isolation is to prevent mali-

cious in-line scripts from exploiting the vulnerabilities that

may exist in extension content scripts [2]. However, as we

will explain, the isolation is also useful in defending against

malicious extensions when the in-line scripts are from a legit-

imate source.

Permissions Every extension must provide a “manifest”

in the JSON format which defines the resources and the cor-

responding permissions for each component of the extension.

Based on this manifest, users are asked to grant the required

permissions at the time the extension is installed, and once

installed, the extension’s access to browser APIs is limited

to these permissions.

3.2 Design overview

DOMtegrity is designed to enable the server to detect any

unexpected modification of the DOM by extensions when the

web page is rendered in the browser. The underlying idea is

that DOMtegrity securely records all the modifications made

to the web page DOM until the final rendering of the page

and then securely communicates the recorded modifications

to the server. The server is then in a position to decide whether

or not the client’s browser has parsed the page as the server

expected.

DOMtegrity is implemented as a JavaScript program,

called pid.js, which is then embedded as an in-line script

(within a <script> tag) in the web page that the server

wishes to protect. This in-line inclusion is necessary since

extensions are not able to restrict the execution of in-line

web page scripts, whereas they can block loading external

script files. For the in-line JavaScript to work, we assume

that JavaScript execution is not disabled in the browser.

Since DOMtegrity is to record all modifications to the

DOM, it is essential that pid.js is placed at the start of

the page source code and before all other HTML tags. Since

parsing the web page in browser proceeds in the order that

tags are placed in the page source code, placing pid.js at

the start of the page ensures that recording changes in the

DOM starts immediately as the browser starts parsing the

page.

The isolated worlds principle guarantees that DOMtegrity’s

recording of modifications in DOM cannot be tampered with

by any extension. When executed, pid.js creates an on-

the-fly DOM property (also called a DOM expando) named

document.pid which implements the DOMtegrity func-

tions within a domain isolated from any extension.

DOMtegrity uses the recently introduced Websocket2

technology which provides a full-duplex communication

channel over TCP (or SSL/TLS for an encrypted channel) and

is now supported by all major browsers. In this paper, we only

consider Websocket established over the secure SSL/TLS

channels. The important property here is that although both

in-line scripts and extension content scripts can establish

Websockets, neither has access to Websockets established

by the other.

The extension’s inability to access Websocket communi-

cation established by DOMtegrity provides assurance on the

integrity of the communication between pid.js and the

server. The in-line script pid.js establishes a Websocket

with the server, and this Websocket is used as a secure chan-

nel to convey a secret key which is later used to authenticate

the DOM modifications that document.pid records. We

should emphasize that although an extension has extensive

access to HTTP(S) communications, it can only access the

Websockets that are established by the same extension.

Table 1 summarizes the relevant capabilities of extensions

compared with in-line scripts such as pid.js based on the

latest W3C specification (dated 23 July 2017) [26]. Both

can access the DOM and establish Websockets, but neither

can block Websocket communications. The extension cannot

access the expando created by pid.js. Neither pid.js

nor the extension can access or close Websockets established

by the other.

3.3 Detailed description

DOMtegrity runs in three stages: initialization, recording and

verification. The initialization stage sets up the protocol, the

recording stage is in charge of storing all DOM modifications,

and eventually in the verification stage evidence of DOM

integrity is generated on the client side and is sent to the

server for verification. These stages are described in detail in

the following. A sequence diagram of the protocol is shown

2 https://www.w3.org/TR/Websockets.
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Table 1 Capabilities of

extension and in-line script

(W3C [26])

Capability Extension pid.js

Access the DOM ✓ ✓

Establish websockets ✓ ✓

Block websocket establishment ✗ ✗

Block websocket communications ✗ ✗

Access an expando created by pid.js ✗ ✓

Access/close websockets established by pid.js ✗ ✓

Access/close websockets established by the extension ✓ ✗

Serverpid.js

 Define DOM Expando

If Duplicate Request Received

Return REJECT

Establish WebSocket

Generate Random Key k

 Generate Page ID: PID

k(PID)

If Duplicate Request Received

Return REJECT

Retrieve Expected Page ID: PID’

If HMACk(PID’) Does Not Match A

Return REJECT

Return SUCCESS

Open WebSocket And Request Key

Send Key And Close WebSocket

Recording

Send Decision

Fig. 4 Sequence diagram for DOMtegrity

in Fig. 4. We assume the web page is served over HTTPS.

The client is identified by the TLS session ID.

Stage 1: Initialization

This stage begins as the browser starts parsing the web page.

In this stage, the required setup for DOMtegrity is carried out

as follows:

Open websocket and request key First, pid.js sends a

request to open a Websocket in order to receive an HMAC key

from the server. The server caters for such a request only once

within an HTTPS session. To cater for the request, the server

establishes a Websocket channel with the client, and through

this channel sends a random 256-bit key k. The Websocket

is subsequently closed, and the rest of the communication

is continued over HTTPS. Any further requests for a key in

the same HTTPS session are refused by the server. If the

server receives more than one request for the client, it is an

indication that a malicious extension tries to impersonate the

client.

Define mutation observer The next step is to assign a

mutation observer3 to the document class. Mutation observer

is a JavaScript global API that provides developers a way to

react to DOM modifications. It records all the changes in

the DOM tree, including the alternations in attributes. This

covers every possible DOM modification with the exception

of the changes in the way events are handled in DOM. We

discuss how to deal with this exception below.

Stop event propagation In this step, pid.js stops

assignment of new events to DOM elements by calling

the stopImmediatePropagation method4 for all ele-

ments. Note that (in DOM Level 2 and above) existing

assigned events cannot be changed or removed unless the

browser is presented with the reference to the registered

event, and the isolated worlds principle ensures that exten-

sions do not have access to such references.

Define DOM expando Next, the script adds an expando

(i.e. an on-the-fly property) to the document node of

the DOM, as shown in Fig. 5. This property is called

document.pid. As a property, it does not change the

DOM node structure and hence is not visible to exten-

sion content scripts due to the isolated worlds princi-

ple. document.pid is implemented as an object with

encapsulated functions. All document.pid functions are

3 https://developer.mozilla.org/en/docs/Web/API/MutationObserver.

4 https://developer.mozilla.org/en/docs/Web/API/Event/

stopImmediatePropagation.
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Fig. 5 An overview of document.pid and the inability of extensions to

modify this region of DOM

private (using so-called “closures”5) except for one (i.e.

document.pid.request()) which we discuss later.

Stage 2: Recording

After initialization, DOMtegrity enters a persistent passive

mode and records all DOM mutations through the muta-

tion observer. The recorded mutations include adding or

removing child elements to a node, inserting or changing

an attribute in a node, or modifying the data of a DOM node.

The recording continues until the user’s interaction with the

web page finishes and the filled form is to be posted to the

server.

Stage 3: Verification

In this stage, a page identifier (PID) containing the recorded

changes in the DOM is generated. The stage starts when the

function document.pid.request() is called. This is

the only public expando function and should be called when

the client “returns” the form, e.g. by clicking a “submit”

button. This stage uses Web Crypto API,6 a relatively new

JavaScript capability to perform cryptographic operations in

browser.

Generate Page ID The first step is to generate the

PID which consists of two parts: the list of recorded

DOM mutations throughout the recording stage, and the

source code of the page at the time the verification stage

starts. According to the W3C standard, there are seven

mutations observable. Each possible DOM mutation is

encoded into a unique digit to achieve a short representa-

tion of the list. The source code (accessible to JavaScript

5 https://developer.mozilla.org/en/docs/Web/JavaScript/Closures.

6 www.w3.org/TR/WebCryptoAPI.

via the document.documentElement.innerHTML

attribute) represents the final state of the DOM elements in

the page. Here, we consider the protection of integrity for the

whole page, but it is possible to define a custom PID to cover

only part of the page.

Compute assertion Next, a message authentication code

(MAC) on the generated PID is produced in the browser using

the secret key k. We opted to use HMAC with the SHA-

256 hash function as our MAC. This selection is based on

two main reasons: first, the 128 bit security of the HMAC-

SHA256 is adequate for nearly all practical web applications;

second, the HMAC function is supported consistently in all

modern browsers. The computed HMAC tag is sent to the

server for verification as an assertion.

Verify assertion On the server side, upon receiving the

assertion, the server first checks if more than one request for

fetching the HMAC key has been received earlier within the

HTTPS session, and rejects the assertion if that is the case.

Multiple key fetching requests indicate man-in-the-browser

impersonation attacks. If only one request has been received,

the server retrieves the expected PID, computes the HMAC of

the expected PID and compares it with the received assertion.

Normally, there is no need for the client to send the PID. The

server expects no changes in the DOM other than those made

by the web page scripts. Hence, the server has a specific

expectation of the recorded DOM mutations and the final

source code of the page, and therefore a known expected PID.

The server accepts the assertion on the integrity of the page if

the HMAC verification succeeds. Depending on the decision,

the server proceeds to provide or refuse further service to the

client. In case of refusal, the server may additionally send an

error message through an out-of-band channel, e.g. an SMS

message to the user’s mobile phone.

In the protocol described above, we assume the legitimate

changes of DOM can be pre-determined; hence, the server is

able to derive an expected PID. In this case, the client does

not need to send the actual modifications to the server. The

server can verify the HMAC tag against an expected PID to

decide acceptance or rejection. However, in some cases the

changes of DOM may not be fixed (e.g. they may depend on

user interactions). To address this, we only need to slightly

modify the protocol by sending PID along with the assertion

to the server. This way, the server can first verify the HMAC

tag against the received PID, and then examine the changes

recorded in the PID according to some rules to determine if

they are legitimate or not.

Choosing HMAC versus hash

DOMtegrity uses the Websocket to securely transport a key

which is later used in the generation of the HMAC tag. The

Websocket channel only lasts for the duration of the key

transport and is immediately closed by the server once it
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sends the key. An alternative approach would be to keep the

Websocket open for the duration of the protocol, and instead

of sending an HMAC of the PID, the client can securely send

a hash (say SHA-256) of the PID through the Websocket. We

chose the HMAC approach to minimize the cost of commu-

nication since maintaining a full-duplex Websocket requires

exchanges of ping-pong messages to keep the channel alive.

By using HMAC, DOMtegrity minimizes the duration of a

Websocket only for the essential purpose of transporting a

short (32 bytes) key. As we will show, the computation of

HMAC based on WebCryptoAPI incurs a negligible cost in

the client browser. The computed HMAC tag can be sent

through an XHR request over HTTPS.

3.4 HowDOMtegrity prevents attacks

In this section, we review a number of design choices in

DOMtegrity that are essential to effectively defend against

DOM manipulation attacks by malicious extensions.

Influencing the execution of pid.js A malicious exten-

sion may try to influence the execution of pid.js through

the content scripts or the injected scripts. First of all, it cannot

stop or change pid.js functions through its content scripts.

Due to the isolated worlds principle, and that DOMtegrity

procedures are defined as document.pid expando func-

tions, the extension content scripts cannot block or manip-

ulate these procedures. Furthermore, a malicious extension

cannot stop or change pid.js functions through injection

of scripts into the page. Injected scripts do not have access to

thepid.jsWebsocket due to closure. The only interference

that injected scripts can cause with DOMtegrity is to call the

public function document.pid.request(). However,

this will result in the rejection of the integrity assertion since

the inject script changes DOM by adding a new <script>

tag.

Polluting JavaScript variables A malicious extension

may inject malicious scripts into the page, trying to pol-

lute the local and global variables used by pid.js. First,

because we leverage JavaScript closure to make a protected

reference to Websocket, an injected malicious script cannot

access the local Websocket variable in pid.js. Second,

an injected script cannot prevent Websocket establishment

by DOMtegrity through redefining global JavaScript APIs (a

process known as “monkey patching”). The isolated worlds

principle prevents extensions from modifying parameters of

a page’s global environment through content scripts. Hence,

the only avenue to modify such global definitions would be

injecting scripts into the page. There are two cases here. In

the first case, the malicious extension ensures the injected

script runs before pid.js (which can be realized by setting

run_at to document_start in the manifest). However,

at document_start which refers to the time before the

DOM is created by the browser engine, there is no DOM

for the injected script to insert a <script> object, as a

result there is no influence on the parsing of pid.js. In the

second case, when the injected script runs after pid.js,

DOMtegrity’s objects have already been created based on

default (clean) variable definitions. In the implementation

of pid.js, we leverage the Object.freeze() [12]

function to freeze the DOMtegrity APIs in the initialization

phase, hence making the DOMtegrity object immutable. This

prevents an injected malicious script from performing any

modifications to the global variables used in pid.js after

it is parsed.

Eavesdropping the secure channel The pid.js Web-

socket provides a secure communication channel between

pid.js and the server. This channel is inaccessible to the

malicious extension [5]. In other words, the extension cannot

read or modify data sent through this channel.

Impersonation The design of DOMtegrity was based on

the W3C standard on “browser extensions” [26]. A malicious

extension may try to impersonate pid.js by sending a request

to establish the Websocket first. However, according to the

W3C specification [26], an extension is not allowed to stop

pid.js from sending its own Websocket request. The set-

ting of document_start in the manifest of the extension

can enforce the execution of content scripts before parsing the

loading page. However, a meaningful attack would need the

user to interact with a web page that is loaded in the browser

(e.g. to fill in a form or to click a button). The inclusion of

pid.js before the web page HTML code ensures that the

user interaction can only happen after pid.js sends its own

Websocket establishment request. Hence, any attempt for an

impersonation attack by the malicious extension is detected

at the server side as a result of observing multiple Websocket

establishment requests.

4 Implementation and evaluation

In this section, we describe how we implemented a number of

proof-of-concept malicious extensions to test our solution in

several attack scenarios and provide performance measure-

ments.

On the client side, DOMtegrity is implemented as a sin-

gle JavaScript program which is integrated in-line within a

<script> tag in the beginning of a web page. On the server

side, we implemented the server using Node.js version 4.4.0.

All cryptographic operations in pid.js are programmed as

asynchronous operations using JavaScript Promise objects.7

7 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/

Global_Objects/Promise.
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4.1 Confirming DOMtegrity effectiveness

Detecting online banking attacks To confirm that our

implementation of DOMtegrity can detect the attacks we

discussed in Sect. 2, we implemented copies of the online

banking web pages for both systems on our local server and

embedded pid.js in-line. Then, we re-ran the attacks by

the malicious extensions we developed on Chrome and Fire-

fox. In both cases, the server was able to successfully detect

the malicious modifications made on the web pages and block

further requests from the client.

Detecting other possible DOM modifications To con-

firm that our implementation of DOMtegrity can detect

other possible DOM modifications, we considered a com-

prehensive list of changes extensions can make to DOM and

developed extensions that make such changes through con-

tent scripts. These changes include:

1. insert a new DOM element into the tree;

2. remove a targeted DOM element from the tree;

3. hide a targeted DOM element and replace it with its own

element (possibly of an identical type) with a different

ID;

4. change the style of a targeted DOM element; and

5. embed another script file which in turn changes an

attribute of a targeted DOM element.

We developed five extensions (based on WebExtensions),

each making one of the above modifications. All these exten-

sions are tested on a simple login web page, which contains

username and password text boxes and a “Sign in” button,

withpid.js embedded in-line. We tested each of our exten-

sions on Chrome and Firefox. As we expected, in all the

experiments our server was able to detect the malicious DOM

modifications on the client side.

4.2 Performance evaluations

On the client side, the web page is run in Firefox v50.1

and Chrome v54 on a machine equipped with Intel Core

i7 2.8 GHz with 8 GB of RAM and Windows 7 Enterprise.

The server is set up on a machine with Windows 8.1 × 64

Enterprise Edition equipped with Intel Core i5 2.3 GHz with

8 GB of RAM.

File size The client-side JavaScript is 550 lines of code and

adds 21.6 KB in the normal mode and 6.33 KB in the minified

mode to the original web page source code. Our simple login

page, the HSBC web page and the Barclays web page are

31.5 KB, 2.1 MB and 3.6 MB, respectively. The overhead of

the DOMtegrity client source code is relatively small com-

pared to those of other popular JavaScript frameworks. For

example, the popular JQuery framework8 adds 84.6 KB to

the web page in the minified mode. The server side Node.js

implementation is 240 lines of code with a size of 4.25 KB.

Computation load The computation load of the initial-

ization stage is proportional to the number of elements in the

web page since the browser needs to stop event registration

for every node of the DOM. We measured the time it takes for

this step to complete for our own login page and for the com-

paratively richer HSBC and Barclays online banking pages.

For each page, we ran the experiment 100 times and we report

the average here. For our login page, this step took 15.64 ms

on Firefox and 16.53 ms on Chrome to complete, resulting

in an average of 0.71 to 0.75 ms per DOM element. For the

Barclays page, the richest page, this step took 624.76 ms on

Firefox and 839.83 ms on Chrome to complete, resulting in

an average of 0.49 to 0.65 ms per DOM element. Further

details are reported in Table 2.

The recording stage only stores an encoding of the DOM

change for every DOM modification and incurs a negligible

computational overhead. In our experiments, the latency for

recording each mutation is 0.005 ms.

The verification stage requires the calculation of PID and

HMAC tag. In our measurements, the average elapsed time

for computation of PID is 1.97 ms in Chrome and Opera, and

2.79 ms in Firefox, and the average elapsed time for com-

puting the HMAC tag is 2.63 ms in Chrome and Opera, and

2.68 ms in Firefox. The box plots of elapsed times for 100

executions in Firefox and Chrome are illustrated in Fig. 6.

All values are rounded up to the closest 0.01 ms.

Computations on the server side are very efficient. The

most time consuming step on the server side is retrieving

PID from storage which takes 1.96 ms on average. It takes

0.17 ms to compute a HMAC tag and another 0.03 ms to

compare the tag against the received. The average elapsed

time for 100 executions of each step on the server side is

shown in Table 3. All values are rounded up to the closest

0.01 ms.

Communication bandwidth DOMtegrity is designed to

be efficient in terms of required communication bandwidth.

The key and the MAC tag are only 32 bytes each, amounting

to a negligible fraction of the usual data transmission between

the client and the server. The embedded JavaScript code is

relatively compact (21.6 KB in the normal and 6.33 KB in

the minified mode), as compared to other popular JavaScript

frameworks such as JQuery (84.6 KB in the minified mode).

The establishment of the Websocket is also efficient as the

underlying technology is designed to be lightweight. By the

design of DOMtegrity, the duration of the Websocket channel

is kept to the minimum only for the essential purpose of

transporting the HMAC key.

8 https://jquery.com.
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Table 2 Average elapsed times

for stopping event propagation

in Chrome and Firefox for our

experimental web pages

#Elements Total time (ms) Time/element (ms)

Chrome Firefox Chrome Firefox

Simple login page 22 16.53 15.64 0.75 0.71

Simulated HSBC page 987 713.68 485.08 0.72 0.49

Simulated Barclays page 1283 839.83 624.76 0.65 0.49

Fig. 6 Box plots of elapsed times for PID and HMAC calculations in

100 executions in Chrome and Firefox

Table 3 Average and standard deviation of the elapsed times on the

server side for 100 executions of each step of the protocol

Step Average time (ms) STD (ms)

Key generation 0.02 0.02

PID retrieval 1.96 1.59

HMAC calculation 0.17 0.01

Decision 0.03 0.02

4.3 Compatibility with real-world extensions

DOMtegrity is designed to detect all DOM changes. In

the simplest case, when the server is able to anticipate all

DOM changes, pid.js only needs to send back a short

HMAC tag, which the server can verify against the antic-

ipated changes. However, this may not work with existing

real-world extensions that work by modifying the DOM.

Examples of such extensions include Grammarly (a pop-

ular grammar and spell checker) and LastPass (a popular

password manager). In this section, we investigate the com-

patibility of DOMtegrity with real-world extensions.

Real-world extension set For this experiment, we have

downloaded a large set of extensions from the Chrome Web

Store and the official Mozilla Add-on repositories. Over-

all, we investigated more than 14,000 WebExtensions-based

extensions in the two repositories, as follows:

– all extensions from Chrome’s Starter Kit list,

– all extensions from Chrome’s Editor Picks list,

– all extensions returned with the search keyword “block”,

– all extensions returned with the search keyword “blocker”,

– all extensions with more than 100 active users in each

Chrome Web Store extension category, and

– all WebExtension-based add-ons in Mozilla’s top 1000

most popular extensions (57 extensions).

We installed each extension in a mint instance of the

browser, and then, we requested a DOMtegrity-protected web

page, i.e. a page in which the pid.js script was embedded.

When the page was completely loaded in the browser, we

recorded the generated PID in the presence of the extension

on the client side, plus the assertion verification result on the

server side.

Results We compared the generated PID on the client side

with the expected PID on the server side for each rejected

extension in order to investigate the type of modification

they applied. The W3C specification on DOM categorizes

page mutations into three groups: attributes, characterData

and childList [25]. The attributes category includes mutations

involving modifications of attributes of existing nodes. Char-

acterData refers to mutations that change any data between

the opening and closing tags of a text node. Finally, ChildList

includes mutations that involve insertion or removal of nodes

in the DOM tree. We investigated the generated PID on the

client side and classified the rejected extensions into the

above categories. A rejection by the server may be caused

by a mixture of the mutation types. In that case, the PID

records every type of the mutations.

Overall, 15% of the extensions caused rejection of the

assertion. In other words, 15% the extensions we collected

from the web store modified the DOM. Among the 15%

rejections, 86% of them involved attribute mutations, 2%

characterData mutations and 98% childList mutations. If we

simply record every mutation caused by the extension in

the PID, the percentage of occurrence for each of mutations

types for attribute, characterData and childList mutations was

43.9%, 0.2% and 55.9%, respectively. It would be interesting

to investigate whether the DOM modification made by the

15% extensions contains any malicious intent (which we plan

to do in future research). Normally, Google quickly removes

extensions from the Chrome web store as soon as they are
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(a)

(c) (d)

(b)

Fig. 7 Examples of source code modifications during parsing in browsers. Note that modifications observed in Firefox a do not apply to Chrome,

and modifications in Chrome b do not apply to Firefox

reported to contain malicious code. In the latest example, a

malicious Chrome extension, called Droidclub, was removed

by Google in February 2018 (along with 88 other malicious

extensions) [8], after it had affected half a million users.

Droidclub works by injecting a malicious script; hence, it

falls within the category of childList mutations. Note that

our attacks on online banking systems lie in the Character-

Data category since the extension changed the fields within

a text node.

Possible mitigations One possible mitigation strategy to

accommodate existing extensions is to consider a more flexi-

ble policy on DOM modifications. This will require pid.js

to send the PID to the server along with the assertion. The

PID consists of the recorded mutations and the final source

code. The server can then check the PID against a set of

policies to decide if the mutations are acceptable. Thus, fur-

ther compatibility can be gained by the client sending more

data (i.e. the PID) and the server performing slightly more

complex verification.

The above solution also works with dynamic web pages

where the DOM modifications depend on how the user inter-

acts with the web page. Such interactions cannot always be

anticipated by the server, but can still be checked by the server

against rules later once a record of the DOM modifications

is obtained.

5 Further discussion

Browser Parsing Inconsistencies. During the testing of our

protocol, we observed two unexpected and undocumented

DOM changes made by the browsers in Fig. 7. These changes

are caught by DOMtegrity because they modify the source

code of the web page. These modifications do not alter the

content of the page, but they change the DOM structure.

Such changes are harmless from a security perspective, but

they are unnecessary and inconsistent between browsers. We

reported these minor issues to W3C and Google, and were

advised that these appeared to be implementation bugs in

the browsers and should be fixed in future releases. This

finding shows that although DOMtegrity is designed to detect

malicious tempering of DOM, it is also useful to uncover

browser implementation bugs.

Dynamic web pages A dynamic web page is one with

variable content depending on the user or her actions. This

is done by either server-side or client-side scripting, or a

mixture of both.

If only server-side scripting is used, a web page is con-

structed on the server side at the time of request and

transmitted to the client. No further changes to the DOM

are expected in this case. Hence, such pages can be protected

using DOMtegrity as it is designed.

If client-side scripting is used, the dynamic web page

DOM is modified in browser based on the user’s interac-

tions with the page. In this case, there would be no way for

the server to predict user’s interactions with the page, and

hence, it would be necessary for pid.js to send the PID

along with the HMAC tag to the server so that a decision on

the integrity of the page can be made based on the server’s

policies.

Private mode Extension availability policies in private

mode are different across browsers. Firefox permits exten-

sions to function in private mode. In contrast, Chrome dis-

ables the extensions by default in its private mode (incognito).

In each case, DOMtegrity functions as normal, regardless if

the extensions are enabled in the client browser.

Enabling JavaScript Our solution requires that JavaScript

is enabled in the user browser. Obviously, it will not work if

JavaScript is disabled (e.g. manually by the user, or by setting

the CSP response header). In fact, when JavaScript is disabled
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in the browser, any web page with embedded JavaScript code

will stop working. In practice, there are standard techniques

to detect if JavaScript is enabled in the browser, and deliver

JavaScript-rich content only when it is enabled. The same

techniques would apply to DOMtegrity.

Confidentiality of data DOMtegrity is designed to pro-

tect the integrity of the DOM structure as it is rendered in the

browser, but it cannot guarantee the confidentiality of data. A

malicious extension is able to read the content of DOM ele-

ments as well as http(s) traffic data (and may send the stolen

credentials to an external party). This is a privileged capabil-

ity explicitly permitted by the browser, which treats a browser

extension as a “trusted” part of the browser [26]. While our

work presents a way to address the integrity problem caused

by malicious extensions, we leave it to the future work to

address the confidentiality problem, which may require fun-

damental changes in the browser architectural design.

6 Related work

This section reviews related work on countering the threats

imposed by malicious browser extensions. Existing coun-

termeasures can be categorized into four types: modify-

ing browsers, strengthening the vetting process, requiring

another trusted extension and using external hardware.

Modifying browsers Proposals in this category require

their system to be integrated natively within the browser.

Ter Louw et al. design systems for protecting code integrity

and user data [24]. The latter is a mechanism that augments

the browser to support policy-based run-time monitoring of

extension behaviour. The goal is to protect sensitive user data

from being accessed or modified by the extension. Dhawan

et al. proposed “Sabre”, an in-browser information-flow

monitor to detect malicious activities of JavaScript-based

extensions during run-time [6]. Sabre associates an appro-

priate label to all in-memory JavaScript objects based on

whether they carry sensitive information. Then, it monitors

the objects carrying sensitive information for any insecure

access. Wang et al. proposed an extension access control

framework [27], which dynamically analyses the behaviour

of extensions at run-time and controls policies to restrict

their access to resources. All the proposals in this category

require modification of browser code base. Unfortunately,

none of these proposals have been adopted by mainstream

browsers so far. In fact, some of these proposals are based on

the XPCOM model for creating extensions in Firefox which

is due to be deprecated in favour of WebExtensions.

Strengthening the vetting process Proposals in this cat-

egory involve various techniques to improve detection rates

of malicious extensions during the vetting process. Jagpal

et al. shared their three years of experience in fighting with

malicious browser extensions in Chrome Web Store [13].

They developed a detection system called WebEval to vet

the extensions in the market. WebEval combines both static

and dynamic analysis of the source code, as well as tak-

ing into consideration of the reputation of the extension’s

developer, and involving human experts in manual reviews

whenever necessary. Their method was able to identify real-

world malicious extensions with a success rate of 96.5%.

Besides methods adopted by the industry, academic

researchers also propose various techniques to strengthen

the vetting process. Kashyap et al. proposed a framework to

automate the vetting process in official extension repositories

[15]. They proposed a notion of add-on security signature

which provides detailed information on its data flow and

API usages. Kapravelos et al. presented Hulk as a dynamic

analysis system to detect malicious extensions [14]. They

monitored the execution and network activities of extensions

to detect their malicious intentions. The had an extensive

collection of real-world extensions from Chrome Web Store,

and one of their findings was discovering a malicious exten-

sion that affected 5.5 million users. Guha et al. proposed

an IBEX framework for authoring, analysing, verifying and

deploying secure browser extensions [11]. They suggested

a high level programming language to develop extensions.

They also proposed Datalog to specify fine-grained access

control to restrict the extension’s access to security-specific

web content. Bandhakavi et al. presented the VEX framework

for highlighting potential security vulnerabilities in browser

extension [4]. They applied static information-flow analysis

to catch malicious JavaScript code in the extension imple-

mentation.

Requiring another trusted extension Proposals in this

category require users to trust one particular extension and

install it consciously. Marouf et al. proposed a run-time

framework called REM that monitors the access made by

extensions and provides customized permission [17]. They

developed an extension for monitoring other extension based

on REM. They monitored API calls from an extension to

the browser and enforced their policies on the extension.

They notified users about the latest activities of other exten-

sions and allowed them to block future such activities. Liu

et al. demonstrated the same threat in Chrome [16]. They

also implemented an extension to enforce more fine-grained

privileges to extensions in Chrome. They proposed HTML

elements to use another attribute called “sensitivity” to dif-

ferentiate DOM elements and enforce the policy that they

call micro-privilege management.

Using external hardware Cronto9 is a commercial

hardware-based solution to address MITB attacks specif-

ically for online banking. It was initially developed by a

spin-off company from the University of Cambridge in 2005

9 https://www.vasco.com/products/two-factor-authenticators/

crontosign.html.
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and was later acquired by VASCO Data Security Inter-

national for £17m in 2013. The product has been widely

deployed by major banks in Chile, Switzerland and Ger-

many to secure online banking. The Cronto solution works

by using a special client device, which shares a secret key

with the sever. When the user performs transactions during

online banking, the server sends a 2-D barcode to display

on the client’s web page, which encodes the encrypted trans-

action details such as the amount, timestamp and account

number. The 2-D barcode is then read and verified by the

Cronto device that has the decryption key. Upon successful

verification, Cronto generates a one-time password (OTP),

which the user can enter in the browser to authenticate the

transaction. Here, the Cronto device can be either custom-

built hardware with an embedded camera or a smart phone.

DOMtegrity is similar to Cronto in preventing malicious

modifications on the client side against MITB attacks. How-

ever, ours is a JavaScript-based software solution and does

not require an external hardware token. We note that although

the main design aim of Cronto is to ensure the integrity of

transactions, it has a secondary function as a second factor

for authentication since the device has a shared secret key

with the server. DOMtegrity does not have this function, but

it can be used in combination with any existing two-factor

authentication scheme, e.g. the Chip Authentication Program

(CAP) currently used by HSBC and Barclays.

Other related work Reis et al. proposed the idea of ensur-

ing web content integrity by JavaScript [21]. Their method

was inspired by the Linux integrity check and AEGIS [3].

The authors developed a client-side JavaScript framework

named TripWire, which detects unexpected modifications

done by ISPs and other intermediate nodes over HTTP com-

munication. Once the page rendering is complete, the code

requested the page’s source code from the server through

AJAX requests, then the internal source code is compared

with the server’s one at the client side. Tripwire did not

consider browser extensions in their attack model because it

considers them as “trusted”. They discussed that their method

was comparable to HTTPS with better performance. Patil

[19] proposed another method to isolate DOM from con-

tent script. They used shadow DOM to present an encrypted

view of the page data to the content script. They developed

a proof-of-concept prototype in their research.

7 Conclusion

In this paper, we present DOMtegrity, a JavaScript-based

solution to provide end-to-end protection of integrity for web

content from the point of delivery at a sever to the final render-

ing in a client’s browser. Our solution works with the standard

WebExtensions framework and does not require modifying

existing architectures of web browsers, nor using any external

hardware device. As part of the evaluation, we implement two

attacks on real-world online banking websites: HBSC and

Barclays, to demonstrate how malicious extensions can com-

promise the online banking security, and how DOMtegrity

can effectively prevent such attacks as well as other man-in-

the-browser attacks caused by malicious extensions. We run

an extensive study of the top 14,000 extensions to investi-

gate the prevalence and types of DOM changes. Our study

confirms that DOMtegrity is compatible with the vast major-

ity of widely used extensions and can be made compatible

with other extensions after small modifications. We present

detailed timing measurements to show that DOMtegrity is

efficient and adds only a relatively small overhead to the per-

formance on both the client and the server sides.
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