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Initial Stress Symmetry and

Applications in Elasticity

A. L. Gower†‖, P. Ciarletta§¶, M. Destrade†‡

July 23, 2018

Abstract

An initial stress within a solid can arise to support external loads or from pro-
cesses such as thermal expansion in inert matter or growth and remodelling in living
materials. For this reason it is useful to develop a mechanical framework of initially
stressed solids irrespective of how this stress formed. An ideal way to do this is to
write the free energy density Ψ = Ψ(F , τ ) in terms of initial stress τ and the elastic
deformation gradient F . In this paper we present a new constitutive condition for
initially stressed materials, which we call the initial stress symmetry (ISS). We focus
on two consequences of this symmetry. First we examine how ISS restricts the free
energy density Ψ = Ψ(F , τ ) and present two examples of Ψ(F , τ ) that satisfy ISS.
Second we show that the initial stress can be derived from the Cauchy stress and the
elastic deformation gradient. To illustrate we take an example from biomechanics and
calculate the optimal Cauchy stress within an artery subjected to internal pressure.
We then use ISS to derive the optimal target residual stress for the material to achieve
after remodelling.

Keywords: residual stress, initial stress, biomechanics, elasticity, constitutive equations

1 Introduction

When all loads are removed a body can still hold a significant amount of internal stress,
called the residual stress. In manufacturing, residual stress has long been noted to be
detrimental to, or enhance, the performance of a material. For biological tissues, residual
stress is used to self-regulate stress and strain, and ultimately preserve ideal mechanical
conditions for the tissue (Fung, 1991; Holzapfel and Ogden, 2003). In geophysics, due to
gravity the Earth has developed high initial stress within, which greatly influence the
propagation of elastic waves.

Here we use the term initial stress to broadly mean the internal stress of some reference
configuration, irrespective of how the stress was formed or the boundary conditions. In
this sense residual stress is a form of initial stress.

The initial stress felt by any region of a material is due to the push and pull of the
surrounding regions. If any region were to be cut out from the material, the stress on its
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newly formed boundary would be zero, thus reducing the potential energy in the bulk.
Based on this concept Hoger developed constitutive laws for residually stressed materials,
see for example Hoger (1986); Hoger (1993); Johnson and Hoger (1995). Hoger showed
that by taking this idea to its limit, and cutting the material into possibly an infinite
number of disconnected regions, the material may be relieved of all of its internal stress in
a configuration called the virtual stress-free state. From that configuration, a hyperelastic
energy can be defined as a function of the strain from the virtual state to the current
configuration.

Though the use of this virtual state is technically sound, it leads to challenging cal-
culations even for simple deformations and rarely yields analytic results, unless great
simplifications are assumed. Moreover, the experimentally identification of the virtual
state requires cutting the material, which is not always suitable, especially for living or-
ganisms. However, using a virtual stress-free reference is routinely seen as the only viable
alternative, quoting Chuong and Fung (1986): “To characterize the arterial wall or any
other biological soft tissue, we need a stress-free state”. Conversely, We believe that by
developing tools to work directly with initially stressed reference configurations, without
the need of a stress-free state, will be very useful, specially in biomechanics.

An ideal way to account for the initial stress would be to have a free energy density
function Ψ = Ψ(F , τ ) written explicitly in terms of the deformation gradient F and the
initial stress τ , without any a priori restrictions. For the development of constitutive
laws there is no need to distinguish between residual stresses and initial stresses, a view
which is shared with Merodio et al. (2013). The initial stress τ could then be determined
from elastic wave speeds (Shams and Ogden, 2014; Destrade and Ogden, 2012; Man and
Lu, 1987) or by solving the linear equations of momentum balance.

Shams et al. (2011) and Shams (2010) worked towards a general framework for ini-
tially stressed solids, while others have investigated the mechanics for some examples of
Ψ(F , τ ) (Merodio et al., 2013; Merodio and Ogden, 2015). For a more complex geometry,
Wang et al. (2014) found that including one residual stress invariant in the free energy den-
sity was a simple way to model the effects of residual stress on the myocardium. However,
in general a major obstacle still remains: how to write Ψ(F , τ ) in terms of the combined
invariants of F and τ? If the only source of anisotropy is due to the residual stress, then
the free energy still depends on ten independent invariants.

Johnson and Hoger (1995) developed representations for the Cauchy stress response
σ = ς̂(F , τ ) in terms of F and τ by assuming a stress free virtual state and numeri-
cally inverting the residual stress-strain equation. However, this approach often requires
solving numerical nonlinear implicit equations. Johnson and Hoger (1995); Johnson and
Hoger (1998) exemplified this approach for a material with virtual state composed by a
Mooney-Rivlin strain energy.

In this work, we introduce a new constitutive requirement on Ψ(F , τ ) called the Initial
Stress Symmetry (ISS). ISS restricts the constitutive form of the stress σ = ς̂(F , τ ) by
providing a constitutive equation for the initial stress τ = ς̂(F−1,σ) that must hold for
every F and τ . To our knowledge this symmetry has never been discussed before.

The ISS also helps answer an important question: how much can the Cauchy stress be
altered by adjusting the initial stress? From a modelling perspective, initial stress has been
used to make the material more or less compliant (Johnson and Hoger, 1998), to control the
Poynting effect (Merodio et al., 2013) or to maintain an ideal internal stress (Fung, 1991).
Given a Ψ(F , τ ) that satisfies ISS, then τ = ς̂(F−1,σ) suggests that for any choice of σ,
there will exist an initial stress τ that supports σ.

The basic equations for an elastic material subject to initial stress are summarized
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in Section 2, and then the initial stress symmetry is first presented in Section 2.1. ISS
is satisfied automatically if the initial stress is due to an elastic deformation of a stress
free configuration, which we demonstrate in Appendix A. For this reason we develop in
Section 3 an example for Ψ(F , τ ), that satisfies ISS, by deforming an incompressbile neo-
Hookean material from a stress free virtual state.

In Section 4 we express ISS, in all generality, as nine scalar equations for an incompress-
ible material, written in terms of Ψ; two undetermined scalars p and pτ ; and the invariants
of F and τ . This form of ISS makes it easier to select representations for Ψ(F , τ ). For
example, in Section 4.1 we show, with a minor adjustament to the equations, how to use
the scalar equations of ISS to deduce an example of Ψ(F , τ ) for a compressibly material.

It is commonly thought that arteries attempt to maintain a homogeneous stress gra-
dient within their walls (Taber and Eggers, 1996). In Section 5 we calculate this optimal
Cauchy stress for a simplified arterial wall, and then show how by using ISS we can calcu-
late the residual stress that exactly supports this optimal Cauchy stress in Section 5.3. We
finally compare these results against the commonly used opening-angle method (Chuong
and Fung, 1986).

2 Initially stressed elastic materials

A common approach to model the effect of residual stress is to consider a virtual stress free

configuration B̃, from which the material is deformed and “glued” together to produce a

residually stressed equilibrium state
◦
B. See Figure 1 for a diagram of all the configurations.

An elastic stored energy density Ψ can then be defined as a function of the deformation

gradient F̃ from B̃ to the current configuration B so that Ψ = Ψ(F̃ ).

τ

σ

B̃ ◦
B

B

◦
F

F

F̃

Figure 1: B is the current configuration with internal stress σ, while
◦
B is a reference

configuration with internal stress τ . The virtual stress-free state B̃ is a collection of
configurations where the body is stress-free.

In this paper we want to write the free energy density Ψ as a function of the initial
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stress τ and of the deformation gradient F :
◦
B → B, so that Ψ = Ψ(F , τ ), and

◦
B will not

necessarily be an unloaded configuration. We feel that it is natural to consider that initial
stress contributes to the potential energy stored by a material. One extreme example is
the wapa tree, which has been know to burst open once cut, possibly causing injury, due
to its immense level of residual stress (Détienne and Thiel, 1988).

We assume that F is a purely elastic deformation, but we do not make any assumptions
about the origins of the initial stress τ , except that τ affects the stored energy density Ψ.
Assuming that the body is incompressible, i.e. J = detF = 1 at all times, the Cauchy
stress tensor σ reads (Guillou and Ogden, 2006):

σ = F
∂Ψ

∂F
(F , τ )− pI, (1)

where p is the Lagrange multiplier associated with the constraint of incompressibility, I
is the identity matrix and τ is the initial stress. If the material is compressible then p is
replaced by −2I3∂Ψ/∂I3. Note we have and will omit the possible dependence of Ψ on

the position X ∈
◦
B for the sake of simplicity. For the body in the configuration

◦
B we have

that F = I and σ = τ ; thus we require that

τ =
∂Ψ

∂F
(I, τ )− ◦

pI, (2)

where
◦
p is the value of p when F = I. We call the above equation the residual stress

compatibility.
The presence of residual stress generally leads to an anisotropy response of the material

in reference to
◦
B. Here we assume no other source of intrinsic anisotropic so that Ψ can

be written as a function of all the independent invariants generated by τ and C = F TF ,
the right Cauchy-Green deformation tensor. Following Shams et al.(2011), we take the
following complete set of 10 independent invariants

I1 = trC, I2 =
1

2
[(I21 − tr(C2)], I3 = detC, (3)

Iτ1 = tr τ , Iτ2 =
1

2
[(I2τ1 − tr(τ 2)], Iτ3 = det τ , (4)

J1 = tr(τC), J2 = tr(τC2), J3 = tr(τ 2C), J4 = tr(τ 2C2). (5)

The Cauchy stress Eq. (1) can then be written as (Shams et al., 2011)

σ = 2ΨI1B + 2ΨI2(I1B −B2)− pI + 2ΨJ1FτF T + 2ΨJ2F (τC +Cτ )F T

+ 2ΨJ3Fτ 2F T + 2ΨJ4F (τ 2C +Cτ 2)F T (6)

where B = FF T , and ΨI1 ,ΨI2 ,ΨJ1 ,ΨJ2 ,ΨJ3 ,ΨJ4 are the partial derivatives of Ψ with
respect to I1, I2, J1, J2, J3, J4 respectively. There are no partial derivative of Ψ with respect
to Iτ1 , Iτ2 and Iτ3 appearing in (6) because τ does not depend on F .

The residual stress compatibility Eq. (2) becomes

2
∂Ψ

∂I1
+ 4

∂Ψ

∂I2
− ◦

p = 0, 2
∂Ψ

∂J1
+ 4

∂Ψ

∂J2
= 1,

∂Ψ

∂J3
+ 2

∂Ψ

∂J4
= 0. (7)

Another important physical restriction that can be imposed is the strong-ellipticity

condition, which is satisfied when the fourth-order tensor

A0piqj = J−1FpαFqβ
∂2Ψ

∂Fiα∂Fjβ
,
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satisfies
A0piqjnpnqmimj > 0 for every n,m ∈ R

3, (8)

for compressible materials, while for incompressible materials the above need only hold for
n ·m = 0. Imposing SE implies that plane waves may propagate in every direction with
a real valued speed (Truesdell, 1966), and other physically expected behaviour (Walton
and Wilber, 2003). For a representation of A0piqj in terms of the invariants of τ and F

see Shams et al. (2011).
The issue we address now is how to write Ψ explicitly in terms of the invariants (3), (4)

and (5)? We advocate three criteria. The free energy density Ψ should satify the initial
stress compatibility (7). Second, it should satisfy strong-ellipticity (8) for all deformations
in which the material is expected to be stable (Merodio and Ogden, 2003), and the third
criterion we call the initial stress symmetry (ISS).

2.1 Initial Stress Symmetry

For convenience let the response function ς̂ be denoted by

ς̂(F 1,σ2, p1) := F 1
∂Ψ

∂F
(F 1,σ2)− Ip1, (9)

for every F 1 and σ2, where the argument on the right hand side is evaluated by taking
the partial derivative of Ψ(F , ·) with respect to F . The scalar p1 is undetermined if the
material is incompressible and p1 = −2I3ΨI3 with F replaced with F 1 if the material is
compressible.

The ISS states that ς̂ has no preferred reference configuration. Refering to Figure 1,

if we take
◦
B as the reference configuration, then the Cauchy stress becomes

σ = ς̂(F , τ , p). (10)

However, we can also take B as the reference configuration and
◦
B as the current configu-

ration and therefore express the initial stress as

τ = ς̂(F−1,σ, pτ ), (11)

for some scalar pτ . For a compressible material pτ = −2I3ΨI3 with F replace with F−1.
In a more precise form, ISS can be stated as

σ = ς̂(F , τ , p) and τ = ς̂(F−1,σ, pτ ), (12)

for every F and τ , such that τ = τ T and detF = 1 for incompressible materials, and p and
pτ are respectively given by p = p̂(σ,F , τ ) and pτ = p̂(τ ,F−1,σ) for some scalar function
p̂. The boundary conditions can determine p through its dependence on σ, and analogously
for pτ . The ISS agrees with the initial stress compatibility, i.e. the condition (2), when
we have ς̂(I, τ , p) = τ for every τ .

Another way to view the ISS symmetry is to assume that τ and σ are due to the
elastic deformation of a virtual stress-free state, which we demonstrate in Appendix A.
Hoger emphasized many times that using the virtual stress-free state does not restrict
how the residual stress was formed. The same can be said about ISS; only F is an elastic
deformation. Moreover, the ISS is not restricted to elasticity and should hold for other
constitutive equations such as those encountered in viscoelasticity and plasticity.

One practical outcome from the ISS is to restrict the possible constitutive choices for
ς̂. In Section 4.1 we show that Ψ = 1

2µ(I1 − 3) + 1
2(J1 − Iτ1) proposed by Merodio et
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al. (2013) does not satisfy ISS, and we also use ISS to deduce an expression for Ψ(F , τ )
for compressible materials.

A second practical feature arising from ISS is that we can write the residual stress as
a function of the Cauchy stress (11). This proves useful when σ is known a priori, as it
will be discussed in Section 5.2 where we determine σ from a homeostasis principal and
then use Eq. (11) to derive τ . The alternative of choosing the residual stress τ first can
be far more complicated.

Before further developing the implications of ISS in Section 4, we will introduce below
an example of stored energy Ψ(F , τ ) that satisfies ISS, stress compatibility (2) and strong-
ellipticity (8).

3 Initially stressed neo-Hookean material

Here we derive a simple constitutive equation for an initially stressed body by assuming
that both τ and σ arise from deforming an incompressible neo-Hookean material. The
result will be an explicit representation of Ψ in terms of F and τ , given by Eq. (23) below,
that automatically satisfies ISS, the stress compatibility (7) and strong-ellipticity (8). Both
ISS and stress compatibility hold because τ arises due to an elastic deformation from a
stress-free state, see Appendix A, and strong-ellipticity is satisfied because the material is
a neo-Hookean solid (Ogden, 1997).

Refering to Figure 1, as the material is stress-free in B̃, we have

Ψ =
µ

2
(tr C̃ − 3), (13)

where µ > 0 is the constant shear modulus and C̃ = F̃
T
F̃ . The Cauchy stress (1) then

becomes
σ = µF̃ F̃

T − pI. (14)

We can rewrite tr C̃ by substituting F̃ = F
◦
F and using the properties of the trace

tr C̃ = tr(F̃
T
F̃ ) = tr(

◦
F TF TF

◦
F ) = tr(

◦
F

◦
F TF TF ) = tr(

◦
BC),

where
◦
B =

◦
F

◦
F T and C = F TF , which leads to

Ψ =
µ

2

[

tr(
◦
BC)− 3

]

. (15)

We can write
◦
B in terms of τ by evaluating Eq. (14) at F = I, σ = τ , p =

◦
p and

rearranging the term as follows

µ
◦
B = τ +

◦
pI. (16)

To write
◦
p as a function of τ we require that

◦
F be isochoric, so that det(µ

◦
B) = det(τ +

◦
pI) = µ3, which results in a cubic equation for

◦
p

◦
p
3
+

◦
p
2
Iτ1 +

◦
pIτ2 + Iτ3 − µ3 = 0. (17)
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The real roots for
◦
p are given by,

◦
p =



































1

3

[

T3 +
T1

T3
− Iτ1

]

, T2 ≤ T
3/2
1 ,

1

3

[

c1T3 + c∗1
T1

T3
− Iτ1

]

, −T
3/2
1 ≤ T2,

1

3

[

c∗1T3 + c1
T1

T3
− Iτ1

]

, −T
3/2
1 ≤ T2 ≤ T

3/2
1 ,

(18)

while if T1 = 0 then
◦
p = µ− Iτ1/3, where

T1 =I2τ1 − 3Iτ2 , T2 = I3τ1 −
9

2
Iτ1Iτ2 +

27

2
(Iτ3 − µ3), (19)

T3 =
3

√

√

T 2
2 − T 3

1 − T2, c1 = −1

2
+

√
3

2
i. (20)

In terms of the eigenvalues τ1, τ2 and τ3 of τ , we can write

T2 = −27

2
µ3 +

1

2
[(τ1 − τ2)− (τ3 − τ1)] [(τ2 − τ3)− (τ1 − τ2)] [(τ3 − τ1)− (τ2 − τ3)] ,

T1 =
1

2
(τ1 − τ2)

2 +
1

2
(τ1 − τ3)

2 +
1

2
(τ2 − τ3)

2, (21)

so that when T1 = 0 we have that τ1 = τ2 = τ3. From the above we see that T1 ≥ 0 and
T
3/2
1 ≥ |T2 + µ327/2| for any∗ τ1, τ2, τ3 ∈ R. So if T2 < 0 then clearly T2 < T

3/2
1 , else if

T2 ≥ 0 then T2 < |T2 + µ327/2| ≤ T
3/2
1 . Therefore T2 < T

3/2
1 , and so the condition for

the first case for
◦
p in Eq. (18) is always satisfied. We discard the second and third case

for
◦
p because we expect Ψ, and therefore

◦
p, to be continuous for every τ ∈ R

3. When

τ1 = τ2 = τ3 the only viable solution for
◦
p is (18)1. If τ moves into a region where (18)2

or (18)3 becomes real, then
◦
p can not change from (18)1 to (18)2 or (18)3 because it can

be shown that (18)1 does not equal (18)2 or (18)3 for any τ ∈ R
3.

To represent tr(
◦
BC) in terms of the invariants of τ and C, we multiply each side of

Eq. (16) on the right with C and take the trace to get

µ tr(
◦
BC) = tr(τC) +

◦
p trC, (22)

which we use to write the free-energy density Eq.(15) as

Ψ =
1

2

(◦
pI1 + J1 − 3µ

)

(23)

with
◦
p given by Eq. (18)1. Note that in the absence of residual stress τ = 0,

◦
p = µ

by (17), J1 = I1, and then Ψ reduces to the classical neo-Hookean model, as expected.
Equation (23) represents the general extension of the neo-Hookean strain energy function
to a residually stressed material, resulting in a function of only five of the nine independent
invariants of C and τ .

Substituting (23) in the Cauchy stress Eq. (1) we arrive at the constitutive relation

σ =
◦
pB + FτF T − pI. (24)

∗http://math.stackexchange.com/questions/1255883/prove-that-a2b2c2-geq-2a-b2b-c2a-c21-
3/1255907#1255907
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Taking B as the reference configuration,
◦
B as the current configuration and leaving B̃ as

the stress-free configuration, see Figure 1, the initial stress becomes σ, the Cauchy stress
becomes τ , and Eq. (24) becomes

τ =
◦
pτC

−1 + F−1σF−T − pτI, (25)

where
◦
pτ is given by replacing τ for σ in Eq. (18)1, and pτ is an undetermined scalar.

Substituting (24) in (25) we find the connection

(
◦
pτ − p)C−1 = (pτ −

◦
p)I. (26)

As this equation must hold for every C we conclude that

◦
pτ = p and pτ =

◦
p. (27)

Note that, as is expected of a neo-Hookean material, the above equations do not determine
p in terms of τ or F .

3.1 Plane Strain

The free energy density (23) is simplified when the residual strain has only planar com-

ponents. Accordingly, let us assume
◦
B13 =

◦
B23 = 0 and

◦
B33 = 1, which substituted in

Eq. (16) results in τ13 = τ23 = 0 and τ33 = µ − ◦
p. We let BP , CP ,

◦
BP , IP , σP and τP

be B, C,
◦
B, I, σ and τ restricted to the (x1, x2) plane respectively. From equation (16)

we get

µ
◦
BP = τP +

◦
pIP . (28)

To obtain
◦
p in terms of τP we take the determinant of each side of Eq. (28) giving

det

(

µ
◦
BP

)

= det(τP +
◦
pIP ) =⇒ µ2 =

◦
p
2
+

◦
p tr τP + det τP (29)

where we used det(µ
◦
B) = µ2. We solve the above for

◦
p to get

◦
p± = −tr τ

2
± 1

2

√

−4 det τ + (tr τ )2 + 4µ2, (30)

where −4 det τ + (tr τ )2 + 4µ2 = (τ1 − τ2)
2 + 4µ2 in terms of the eigenvalues of τ . The

solution
◦
p =

◦
p− should be discarded due to the following:

◦
p− = −µ when τP = 0, and

Eq. (28) shows that
◦
p should be positive when τP = 0, so for τP = 0 the only viable

solution is
◦
p =

◦
p+. Further, as we expect

◦
p to be continuous in τP for every τP ∈ R

2,

and
◦
p− 6= ◦

p+ for every τP , we should discard the solution
◦
p−.

For simplicity we assume C32 = C31 = 0 and then Eq. (15) reads

Ψ =
µ

2

(

tr(
◦

BPCP )− 2

)

+
µ

2
(C33 − 1), (31)

and substituting
◦

BP from Eq. (28) we get

Ψ =
1

2
tr(τPCP ) +

1

2

◦
p trCP − µ+

µ

2
(C33 − 1), (32)

8



where
◦
p =

◦
p+ given by Eq. (30). The Cauchy stress Eq. (1) becomes,

σP =
◦
pBP − pIP + F PτPF

T
P , (33)

and σ33 =
◦
p− p+ τ33 = µ− p, where we have used that τ33 = µ− ◦

p. For F = I we have

σ = τ and
◦
p = p.

4 The Initial Stress Symmetry Equations

In this Section we explained how to express the ISS condition (12) as a set of scalar
equations that relates the free energy density Ψ; p and pτ from Eq. (12); and the invariants
of τ and C. Let us first consider a simple example, namely assuming Ψ = I1J1/2. One

can check that this strain energy satisfies the compatibilty equations (2) with
◦
p = tr τ ,

but does it satisfy the ISS (12)? We can use the stress in the form (1) to write

σ = ς̂(F , τ , p) = tr(τC)B − pI + tr(C)FτF T , (34)

and then from ISS we have that

τ = ς̂(F−1,σ, pτ ) = tr(σB−1)C−1 − pτI + tr
(

B−1
)

F−1σF−T . (35)

To check that both Eqs. (34) and (35) hold for every τ and F we substitute σ into Eq. (35),
which after some rearranging becomes

(1− I1I2)τ = (3J1 − 2pI2 + I1Iτ1)C
−1 + (I2J1 − pτ )I, (36)

where we have used that tr(B−1) = I2, which can be shown by applying the Cayley-
Hamilton theorem to B with I3 = 1 (due to incompressibility). In order to satisfy Eq. (36)
for every F and τ , the coefficients of τ , C−1 and I must all be identically zero (this is
shown rigorously in Appendix B). For the coefficient of τ to be zero, the identity I1I2 = 1
must hold for every F , which is obviously impossible: so we conclude that Ψ = I1J1/2
does not correctly furnish the Cauchy stress for every reference configuration.

In Appendix B we reduce ISS to nine scalar equations, following a procedure similar
to the one above. They are compactly written as

b+ P {1}Ψσ
J1 + P {2}Ψσ

J2 +ΨJn

(

P
{3}
{n}Ψ

σ
J3 + P

{4}
{n}Ψ

σ
J4

)

= 0, (37)

ΨJn

(

Q
{1}
{n}Ψ

σ
J1 +Q

{2}
{n}Ψ

σ
J2 +Q

{3}
{n}Ψ

σ
J3 +Q

{4}
{n}Ψ

σ
J4

)

= 0, (38)

where n sums over 0, 1, 2, 3, 4, ΨJ0 := 1,

ΨIk = ΨIk(F , τ ), ΨJm = ΨJm(F , τ ), (39)

Ψσ
Ik

:= ΨIk(F
−1,σ), Ψσ

Jm
:= ΨJm(F

−1,σ), (40)

for k ∈ {1, 2} and m ∈ {1, 2, 3, 4} with σ given by (6),

b =

















2Ψσ
I2

−2Ψσ
I1

pτ
0
0
1

















, P {1} = 4

















ΨI2

p/2
−ΨI1

−2ΨJ2

2I2ΨJ2

−ΨJ1 − 2I1ΨJ2

















, P {2} = 4

















p
I2p− 2ΨI1 − 2I1ΨI2

2ΨI2

0
−2ΨJ1

−4ΨJ2

















, (41)

Q
{1}
{1} = Q

{1}
{2} = Q

{2}
{1} = Q

{2}
{2} = 0, (42)
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while all over matrices are given in Appendix C. Eqs (37) and (38) represent 6 and 3 scalar
equations, respectively, with the unknowns being the functions Ψ, p and pτ .

We now look at special cases of Ψ which simplify the ISS equations and lead to more
practical representations for free energy density.

4.1 Free energy independent of J3 and J4

When Ψ is independent of J3 and J4, Eq. (38) is identically zero and only the first three
terms of Eq. (37) are non-zero. The fourth scalar equation of (37) becomes −8ΨJ2Ψ

σ
J1

= 0
which is true, for every F and τ , only when Ψ does not depend on J2 or does not depend
on J1. We will investigate the first case in more detail below.

Assuming Ψ independent of J2

If Ψ does not depend on J2, J3 and J4 then Eq. (37) reduces to

4ΨJ1Ψ
σ

J1 = 1,
Ψσ

I2
√

Ψσ

J1

+
ΨI2

√

ΨJ1

= 0, pΨσ

J1 = Ψσ

I1 , pτΨJ1 = ΨI1 , (43)

where we have used Eq. (43)1 to derive the other three equations. We can check if these
equations are consistent with the compatibility Eqs. (7) by letting F = I, σ = τ and

pτ = p =
◦
p. This results in ΨJ1 = ±1/2, 2ΨI1 = ±◦

p and ΨI2(1 ± 1) = 0, which only

satisfies Eqs. (7) if ΨJ1 = 1/2, 2ΨI1 =
◦
p and ΨI2 = 0 for F = I.

Let us apply Eqs. (43) to the following example

Ψ =
1

2
µ(I1 − 3) +

1

2
(J1 − Iτ1), (44)

used by Merodio et al.(2013). In this case, Eqs. (43)1 and (43)2 are satisfied while
Eqs. (43)3 and (43)4 become p = pτ = µ. However, restricting p to be constant, which is
normally determined through boundary conditions, would result in physically unexpected
behaviour. This is best seen with an example.

Example 1 For the free energy density expressed in Eq. (44) the Cauchy stress from

Eq.(6) becomes

σ = µF TF − Ip+ F TτF . (45)

Let us consider a cube in the reference configuration, subject to the residual stress τij =
τiδij, aligned with the axes of the cube. For the current configuration we impose two

clamped conditions that fix F11 = λ1 and F33 = λ3, then F22 = λ2 = (λ1λ3)
−1 due

to incompressibility, with all the other components of F being zero. With this imposed

deformation the Cauchy stress is diagonal with components σij = δijσi. We can also

prescribe the stress σ2, as this will not alter λ1 and λ3 because they are kept fixed. We

choose σ2 = τ2, to ensure compatibility with the reference configuration when λ1 = λ3 = 1,
which results in

τ2 = µλ2
2 − p+ λ2

2τ2.

Clearly it is not possible for p to satisfy the above and be fixed at p = µ so that ISS is

satisfied. This means that the free energy density Eq. (44) either results in non-physically

behaviour, or it does not satisfy ISS; which implies that the constitutive relation (45) does
not hold for every reference configuration.
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The choice of Ψ should satisfy Eqs. (43) without restricting the deformation F , initial
stress τ or p, otherwise the material will likely exhibit non-physical behaviour. Below we
deduce a a free energy density Ψ for a compressible model, inspired by the neo-Hookean
example in Section 3, that satisfies ISS without any unphysical restrictions.

For a compressible material we substitute p with −2I3ΨI3 and pτ with −2I−1
3 Ψσ

I3
in the

ISS Eqs. (43). We will find under what conditions does the following free energy density

Ψ =
1

2
g(τ , I3)I1I

−1/3
3 +

1

2
f(τ , I3) +

J1
2
I
−1/3
3 (46)

satisfy ISS (43) and stress compatibility (7), where f and g are arbitrary scalar functions.
The Cauchy stress (6) becomes

σ = g(τ , I3)I
−1/3
3 B + 2I3ΨI3I + I

−1/3
3 F TτF , (47)

with

ΨI3 =
1

2
fI3(τ , I3) +

1

2
gI3(τ , I3)I1I

−1/3
3 − 1

6
I
−4/3
3 [g(τ , I3)I1 + J1] . (48)

The ISS Eq. (43)1 is satisfied as ΨJ1Ψ
σ

J1
= (1/2)I

−1/3
3 (1/2)I

1/3
3 = 1/4 and stress com-

patibility (7)2 is satisfied as 2ΨJ1 = 1 when F = I. By substituting p for −2I3ΨI3 , the
remaining compatibility Eq. (7)1 becomes

g(τ , I3) = −2ΨI3 evaluated at F = I. (49)

Eq. (49) is satisfied if we set fI3(τ , 1) = tr τ/3 − 3gI3(τ , 1), then Eq. (49) and Eq. (47)
together imply that σ = τ when F = I.

The ISS Eqs. (43)3 and (43)4 now read respectively

− 2I3ΨI3 = g(σ, I−1
3 ) and − 2I−1

3 Ψσ

I3 = g(τ , I3), (50)

for every F and τ , where fI3 and gI3 are respectively the partial derivatives of f and g
with respect to I3. Note that the above two equations are equivalent as Eq. (50)1 becomes
Eq. (50)2 when we substitute F for F−1 and τ for σ. For this reason it is sufficient to
satisfy Eq. (50)1. If F = I, Eq. (50)1 is satisfied as it reduces to Eq. (49). The rest of this
section will focus on showing that Eq. (50)1 is satisfied for every F and τ .

By rearranging Eq. (47) and taking the determinant on either side we get

det (σ − 2I3ΨI3I) = det
(

I
−1/3
3 F TτF + g(τ , I3)I

−1/3
3 B

)

= I−1
3 detB det(τ + g(τ , I3)I),

and by using incompressibility detB = 1 we find that

I
1/2
3 det(σ − 2I3ΨI3I) = I

−1/2
3 det(τ + g(τ , I3)I). (51)

If we choose g(τ , I3) such that

I
−1/2
3 det(τ + g(τ , I3)I) = k, (52)

where k is a constant, then the right handside of Eq. (51) is also equal to k, thus σ must
satisfy

I
1/2
3 det(σ − 2I3ΨI3I) = k. (53)

By swapping τ for σ and F for F−1 Eq. (52) becomes

I
1/2
3 det(σ + g(σ, I−1

3 )I) = k. (54)
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For g(τ , I3) to satisfy Eq. (52) there are three possible solutions given by replacing µ3

with kI
1/2
3 and g(τ , I3) with

◦
p in (18)1,(18)2 and (18)3, which we respectively denote by

g1(τ , I3), g2(τ , I3) and g3(τ , I3). We highlighted in Section 3 that only g(τ , I3) = g1(τ , I3)
is a physically viable solution. So if we choose g(τ , I3) = g1(τ , I3), then for Eq. (50)1 to
be satisfied we need

g1(σ, I
−1
3 ) = −2I3ΨI3 for every F and τ . (55)

We will show that the above is a consequence of Eqs. (53), (54) and stress compatibil-
ity (49). Due to Eq. (49), we know that initially for F = I Eq. (55) is true. We can also
conclude from Eqs. (53) and (54) that −2I3ΨI3 will equal either g1(σ, I

−1
3 ), g2(σ, I

−1
3 ) or

g3(σ, I
−1
3 ) for every F . Since −2I3ΨI3 should be a continuous function of F and τ , it can

not change from g1(σ, I
−1
3 ) to another solution gk(σ, I

−1
3 ) because it can be shown that

gk(σ, I
−1
3 ) 6= g1(σ, I

−1
3 ) for every σ and I3. For this reason if g1(τ , 1) = −2ΨI3 for F = I,

then g1(σ, I
−1
3 ) = −2I3ΨI3 for every F .

In conclusion, the model (46) satisfies ISS as long as g(τ , I3) = g1(τ , I3), where g1(τ , I3)

is given by replacing µ3 with kI
1/2
3 in (18)1.

5 Homogeneous stress gradient in a hollow cylinder

It is now well acknowledged that residual stresses in living materials are vital to maintain
ideal mechanical conditions. When an external load changes, growth and remodelling
will alter the residual stress to best adapt to the new load. An excellent example is how
arteries remodel in response to the internal pressure. The residual stress in arteries is
thought to protect the arterial wall against strain concentration (Destrade et al., 2012) or
stress concentration (Fung, 1991; Taber and Eggers, 1996). Here we will adopt the most
accepted hypothesis, that the residual stress in the artery acts to minimize the stress
gradient (Fung, 1991; Cardamone et al., 2009). The reasoning behind this hypothesis is
that if a given tissue grows in response to stress, then homoeostasis is only possible if the
tissue is under similar stress conditions throughout. So by minimizing the stress gradient
we are selecting the most homogeneous stress possible. We will also consider a simplified
artery with only one layer and no shear stress applied to the interior of the artery.

Our workflow is to first choose an optimal Cauchy stress field σ, and then the to
derive the residual stress from the ISS equation τ = ς̂(F−1,σ, pτ ). So first we calculate
the Cauchy stress with a near homogeneous circumferential and radial components in
Section 5.2, then we find the residual stress that supports this optimal Cauchy stress in
Section 5.3. In Section 5.2 we also show that the optimal Cauchy stress has a simple
asymptotic formula.

We finally compare the results with the corresponding ones obtained using the opening
angle method (Chuong and Fung, 1986). Pasquale: cute the rest.

5.1 Plain Strain Cylinder

To describe the arterial wall we use cylindrical coordinates (r, θ, z) with the components
of σ written in terms of unit basis vectors. We assume that the arterial wall retains its
cylindrical symmetry when the internal pressure is removed and that there is no shear
stress at the inner wall. These simplifications imply that when a pressure is applied in the
cylinder the resulting deformation is an inflation.
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Due to radial symmetry, the Cauchy stress σ is independent of θ and z, so in the
absence of body forces the equilibrium equations reduce to

∂

∂r

(

r2σθr
)

= 0,
∂

∂r
(rσzr) = 0, (56)

∂

∂r
(rσrr)− σθθ = 0, (57)

with the boundary conditions

σθr = 0, σzr = 0 and σrr = −P for r = a, (58)

σθr = 0, σzr = 0 and σrr = 0 for r = b, (59)

where a and b are the inner and outer radius of the loaded artery, respectively. The
equilibrium Eqs. (56) together with the boundary conditions lead to σθr = 0 and σzr = 0
for all r. As neither σzθ nor σzz appear in the equations of equilibrium, they are only
restricted by the constitutive choice and boundary conditions on the cross-section of the
artery. We use this degree of freedom to assume there is no axial torsion σzθ = 0. Note
that for the constitutive choice Eq. (6) τZZ can be chosen so that σzz is constant, while
for the simpler choice of plain strain Eq.(33) (with σzz = σ33) σzz is determined by p.
Finally, the remaining equation of equilibrium we need to enforce is Eq. (57).

5.2 Minimal stress gradient

Here we develop a method to minimize the stress gradient fields σ′
rr and σ′

θθ, where the
prime denotes differentiation in r. We make no assumptions about any reference configu-
ration nor do we make any constitutive choice. We only make use of the assumptions from
the section above which result in both σrr and σθθ being independent of the coordinates
θ and z; σθr = σzr = σzθ = 0; and for simplicity we will not consider σzz.

Once σθθ and σrr are determined, we use ISS Eq.(11) to write the residual stresses τΘΘ

and τRR in terms of σθθ, σrr and the deformation gradient in Section 5.3.
Using the equilibrium Eq. (57) we write σθθ in terms of σrr as

σθθ = σrr + rσ′
rr =⇒ σ′

θθ = 2σ′
rr + rσ′′

rr. (60)

As there are aortas and veins of many different sizes, for the sake of generality let us
introduce the following dimensionless variables:

̺ =
r − a

b− a
and ς(ρ) =

σrr(r)

P
, (61)

which result in

σ′
rr = ς ′

P

b− a
, σ′′

rr = ς ′′
P

(b− a)2
, (62)

and

σ′
θθ =

P

b− a

(

2ς ′ + (ρ+ α)ς ′′
)

. (63)

Our aim is to minimize the stress gradient density

1

b− a

∫ b

a

[

(

σ′
rr

)2
+ (σ′

θθ)
2
]

dr =
P 2

a2
α2

∫ 1

0

[

(

ς ′
)2

+
(

2ς ′ + (̺+ α) ς ′′
)2
]

d̺ (64)

with the constraint

ς(1) = 0 and ς(0) = −1 =⇒
∫ 1

0
ς ′d̺ = 1, (65)
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where we have introduced the quantity α = a(b− a)−1.
Using the calculus of variations (Gregory and Lin, 1992) we find that ς ′ must satisfy

the Euler-Lagrange equation

∂f

∂ς ′
− d

d̺

∂f

∂ς ′′
= Λ for ̺ ∈ (0, 1) and

∂f

∂ς ′′
= 0 for ̺ = 0, 1, (66)

where
f =

(

ς ′
)2

+
(

2ς ′ + (̺+ α) ς ′′
)2

, (67)

and Λ is a Lagrange multiplier due to the constraint (65). The solution to (66) is given
by

ς ′ =
Λ

6
− Λ

6
(
√
13− 3)

α
√
13

2
+ 1

2 − (1 + α)
√
13

2
+ 1

2

α
√
13 − (1 + α)

√
13

(α+ ̺)
√
13

2
+ 1

2

+
2Λ

3(
√
13− 3)

α
√
13

2
− 1

2 − (1 + α)
√
13

2
−1 1

2

α
√
13 − (1 + α)

√
13

(

α(1 + α)

α+ ̺

)

√
13

2
+ 1

2

. (68)

We determine Λ from the constraint (65) to be

Λ

6
=

(

∫ 1

0
1− (

√
13− 3)

α
√
13

2
+ 1

2 − (1 + α)
√
13

2
+ 1

2

α
√
13 − (1 + α)

√
13

(α+ ̺)
√

13

2
+ 1

2

+
4√

13− 3

α
√
13

2
− 1

2 − (1 + α)
√

13

2
−1 1

2

α
√
13 − (1 + α)

√
13

(

α(1 + α)

α+ ̺

)

√
13

2
+ 1

2

d̺
)−1

. (69)

Realistic values for α = a(b − a)−1 can be obtained from in vivo measurements of the
lumen radius (inner radius) a and total artery thickness b−a. For the descending thoracic
aorta of healthy men around 51 years old the mean lumen radius is 20mm (Stefanadis
et al., 1995) and the mean thickness is 1.4mm (Mensel et al., 2014). These estimates give
α−1 ≈ 0.07 making it appropriate to expand ς ′ and Λ as a power series in α−1, which gives

ς ′ =
Λ

2

(

1 + (1− 2ρ)α−1 +
1

3

(

9ρ2 − 6ρ− 1
)

α−2

)

+O
(

α−3
)

, (70)

Λ = 2 +
2

3
α−2 +O

(

α−3
)

, (71)

or simply
ς ′ = 1 + (1− 2ρ)α−1 + ρ(3ρ− 2)α−2 +O

(

α−3
)

. (72)

We can substitute ς ′ in Eqs. (60), (61) and (63) to obtain

σrr = −P (1− ρ)(1− ρα−1 + ρ2α−2) +O
(

α−3
)

, (73)

σθθ = Pα(1 + α−3ρ2(4ρ− 3)) +O
(

α−3
)

. (74)

We plot the above Cauchy stress for α−1 from 0.05 to 0.1, which is within a physiological
range, in Figure 2. A graph for σrr/P would show all the curves bunched along the same
straight line, so instead we have depicted the curves for σrr/P − ρ. Figure 2 reveals that
as the relative thickness of the arterial wall increases (shading from blue towards red), the
circumferential stress σθθ decreases while the radial stress σrr both increases and becomes
less homogeneous.
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Figure 2: The plots of the dimensionless Cauchy stress against the dimensionaless radius
ρ, where the color shades from blue to red as α−1 (the wall thickness divided by the inner
radius) goes from 0.05 to 0.1.

A well established method to quantify the residual stresses within arteries is the open-
ing angle method (Chuong and Fung, 1986). For a neo-Hookean material (13) we will use
the opening angle method to minimize the circumferential stress component

1

b− a

∫ b

a

(

dσθθ
dr

)2

dr, (75)

in terms of the opening angle φ, restricted to the boundary conditions (58) and (59). The
only two parameters with a unit of time, and mass, are P and µ, so by rewriting P = P0µ
the stress will not depend on µ. The results for P0 = 0.05, P0 = 0.2 and P0 = 0.35 are
compared with the optimal stress Eqs. (73) and (74) with parameters for the descending
thoracic aorta in Figure 3. We can see that σθθ for the opening angle method converges
to the optimal stress σθθ as P/µ tends to zero, while the plots for σrr all overlap. Note
however that σzz for the opening angle method is not necessarily homogeneous in r.

0.0 0.2 0.4 0.6 0.8 1.0

ρ14.26

14.28

14.30

14.32

14.34

σθθ/P

0.0 0.2 0.4 0.6 0.8 1.0

ρ-0.995

-0.990

-0.985

-0.980

-0.975

-0.970

σrr/P-ρ

P/µ

Figure 3: The graphs of the dimensionless Cauchy stress against the dimensionless ra-
dius ρ for the opening angle method (dashed curves) and the optimal stress Eqs. (73)
and (74) (red solid curves), for which we used parameters for the descending thoracic
aorta: a = 20mm, b = 21.4mm, α−1 = 0.07 and λz = 1. As the dashed curves shade from
yellow to green P/µ goes through the values 0.05, 0.2 and 0.35 with optimal opening angle
φ = 65.9◦, 204.2◦ and 261.723◦; stress free reference inner radius 20.3mm, 25.2mm and
31.1mm; and stress free reference outer radius 22mm, 27.8mm and 34.4mm respectively.
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We can now invoke Finite Elasticity to derive the residual stress τ in the unloaded
state necessary to sustain the optimal homogeneous Cauchy stress, and then compare our
results with the residual stress predicted by the opening angle method. To do so, we let
Ψ be a function of both stress and strain and use the initial stress symmetry (ISS), in the
form of Eq. (11), to determine τ as a function of σ and F .

5.3 Residual stress

Here we use Finite Elasticity to connect the current state with the unloaded state. Since
the cylindrical symmetry of the artery is maintained when the internal pressure is re-
moved, we describe the unloaded state with the cylindrical coordinates (R,Θ, Z), then
the deformation gradient for the unit basis vectors er, eθ, ez, ER, EΘ and EZ becomes

F =
∂r

∂R
er ⊗ER +

r

R
eθ ⊗EΘ + λzez ⊗EZ , (76)

where we let λz be a constant. Assuming the material is incompressible we get

detF = 1 =⇒ ∂r

∂R

r

R
λz = 1. (77)

Let the reference configuration be a hollow cylinder with inner and outer radius A and B,
respectively, so that

r =

√

(R2 −A2)λ−1
z + a2 =⇒ ∂r

∂R
=

R

r
λ−1
z , (78)

which we will use to replace ∂r/∂R wherever it appears. We will assume that the residual
stress τ is homogeneous in Θ and Z, as the deformation,the Cauchy stress from Eqs. (73)
and (74), the boundary conditions (80) and (81) are all homogeneous in Θ and Z.

The equilibrium equations now reduce to

τΘΘ = (RτRR)
′ for A < R < B, (79)

with the zero-traction boundary conditions

τRR = 0 for R = A, (80)

τRR = 0 for R = B. (81)

After making a constitutive choice for Ψ, the residual stresses τRR and τΘΘ will be com-
pletely determined from F , σ and pτ due to ISS (11).

Ψ independent of I2, J2, J3 and J4

To simplify we assume Ψ independent of I2, J2, J3 and J4, so the Cauchy stress (6)
becomes

σ = 2ΨI1FF T − pI + 2ΨJ1FτF T , (82)

and, from ISS (12), we can swap τ , F and p respectively with σ, F−1 and pτ to get

τ = 2Ψσ
I1F

−1F−T − pτI + 2Ψσ
J1F

−1σF−T . (83)

Substituting F from Eq. (76) into the above equation we arrive at

τRR = 2λ2
z

r2

R2

(

Ψσ
I1 +Ψσ

J1σrr
)

− pτ , (84)

τΘΘ = 2
R2

r2
(Ψσ

I1 +Ψσ
J1σθθ)− pτ . (85)
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We remark that τZZ has not been derived since we have not taken into consideration σzz
in Section 5.2.

To compare unloaded arteries of different sizes we write r and R in terms of the
dimensionless radius ρ,

r = (b− a)ρ+ a and R =
√

A2 + λz [(a+ (b− a)ρ)2 − a2], (86)

which we use to rewrite the ODE (79) in the form

R
dτRR

dR
+ τRR − τΘΘ = R

dτRR

dρ

dρ

dR
+ τRR − τΘΘ (87)

=
dτRR

dρ
R

(

dR

dρ

)−1

+ τRR − τΘΘ = 0, (88)

which implies that
dτRR

dρ
+

1

R

dR

dρ
(τRR − τΘΘ) = 0. (89)

Integrating both sides in ρ and using the unloaded boundary condition (80) and (81) we
reach

τRR =

∫ R

0

τΘΘ − τRR

R

dR

dρ
dρ = 0 and

∫ 1

0

τΘΘ − τRR

R

dR

dρ
dρ = 0. (90)

Eq. (90)2 is independent of pτ , and can be used to solve for one of the parameters P , a,
b, A, λz or µ, note that B depends on the other parameters because Eq. (78) evaluated at
R = B gives B2 = A2+λz(b

2− a2). The only two parameters with a unit of time or mass
are P and µ, so by rewriting P = P0µ the Eqs.(90) will not depend on µ. To illustrate, we

adopt the neo-Hookean material model (32), which results in Ψσ
J1

= 1/2 and 2Ψσ
I1

=
◦
p(σ)

where
◦
p is given by substituting τ for σ restricted to (r, θ) in

◦
p+ of Eq. (30).

To calculate the residual stress that supports the optimal Cauchy stress, we substitute
σθθ and σrr Eqs. (73) and (74) into τΘΘ and τRR Eqs. (84) and (85). We can then use
Eq. (90)2 to determine the unloaded geometry from the loaded geometry. To illustrate
we take the parameters for the descending thoracic aorta, as used in the previous section,
a = 20mm, b = 1.4mm, and λz = 1. We can then determine the unloaded inner radius A
for different values of P0, which is shown in Figure 4. Surprisingly the unloaded geometry
given by the opening angle method is approximately the same as shown in Figure 4.

We can also investigate the residual stress in the unloaded state. Once A is determined
from Eq. (90)2 we can use Eq. (90)1 to determine τRR, and then τΘΘ from Eq.(79). To
compare with the opening angle method we choose P/µ = 0.05, 0.2 and 0.35, which all
give a reasonable unloaded geometry, see Figure 4. The results are shown in Figure 5.

Biological tissues are very energy efficient. It is a common line of reasoning that
biological systems adapt so as to minimize their potential energy. So it is possible that
biological materials remodel their residual stress to lower their potential energy. Figure 6a
below shows the free energy density Ψ for the opening angle method and for the model (32)
with the optimal stresses Eqs. (73) and (74). In all cases Ψ is approximately a straight line
that descreases as ρ increases away from the pressured boundary ρ = 0 (r = a). Figure 6b
shows the difference between Ψ/P from the opening angle method minus Ψ/P from the
model (32), which we denote as ∆Ψ/P . The integral of ∆Ψ/P over ρ ∈ [0, 1] is positive
if the opening angle method has on average a larger free energy density than the model
(32), with the optimal stresses Eqs. (73) and (74). We found that as P/µ increased, so
did the total free energy in the cylinder cross-section

∫ 1
0 ∆Ψ/P (b− a)(ρ(b− a) + a)dρ; for
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Figure 4: The loaded artery wall is illustrated by the red curves, while the unloaded artery
wall is illustrated by the blue curves. The y–axis illustrates the position of the loaded and
unloaded walls measured from the center of the artery. The stress in the loaded geometry
is taken to be the optimal Cauchy stress (73) and (74), and we assume a residually stressed
neo-Hookean material (32).
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ρ
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τΘΘ/P
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ρ

-0.14
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τRR/P

P/µ
P/µ

Figure 5: shows the dimensionless residual stress against the dimensionless radius ρ. The
dashed curves are from the opening angle method and the solid curves are from Eq. (79)
together with the optimal stresses Eqs. (73) and (74). As P/µ goes through the values
0.05, 0.2 and 0.35, the dashed curves shade from yellow to green and the solid curves shade
from blue to red. The unloaded geometry for both methods is approximately the same
and shown in Figure 4. The other parameters are a = 20mm, b = 21.4mm, α−1 = 0.07
and λz = 1.

instance, this integral evaluates to −1.6410−4 for P/µ = 0.05, 2.3710−3 for P/µ = 0.2 and
4.2510−3 for P/µ = 0.35.

Essentially we can see from the Figures 3 and 6 that the optimal stresses Eqs. (73)
and (74) with the neo-Hookean material (32) produce a more homogeneous stress and lower
free energy than the opening angle method, though the two methods gave very similar
results. The advantage in using the ISS (12) for a homoeostasis hypothesis for the Cauchy
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stress σ is two fold. First is the freedom to choose σ so as to satisfy the homoeostasis
hypothesis, which with ISS becomes a separate step from choosing a constitutive equation.
Second is that it can be relatively straightforward to use ISS (12) to quantify the residual
stress needed to support the chosen σ.

0.2 0.4 0.6 0.8 1.0

ρ2

3

4

5

Ψ/P

0.2 0.4 0.6 0.8 1.0

ρ
-0.002

0.002

0.004

0.006

ΔΨ/P
P/µ = 0.2

P/µ = 0.05

P/µ = 0.2

P/µ = 0.05

a) b)

Figure 6: (a) compares the dimensionless strain energy density Ψ/P versus the dimension-
less radius ρ resulting from the opening angle method, yellow (green) dashed curves, with
the model (32) whose residual stress maintains the optimal stress Eqs. (73) and (74), the
red (blue) solid curves. The parameters used are given in Figure 5. (b) shows Ψ/P from
the opening angle method minus Ψ/P from the model (32), which we denote as ∆Ψ/P .

6 Conclusions

In order to quantify the initial stress within a solid using non-destructive experimental
techniques, it is convenient to write the free energy density Ψ = Ψ(F , τ ) in terms of the
deformation gradient F and the initial stress τ .

In this article we presented a new constitutive condition, the initial stress symmetry,
that aids in proposing suitable constitutive relations for Ψ = Ψ(F , τ ) by providing nine
scalar equations, see Eqs. (37) and (38). One immediate result is that guessing a functional
dependence for Ψ = Ψ(F , τ ) is not a trivial task. In fact all choices for Ψ(F , τ ) used in
the literature do not satisfy ISS. Conversely, using ISS, we proposed two simple choices for
Ψ = Ψ(F , τ ), one incompressible Eq. (23) and one compressible Eq. (46), which include
a generalization for an initially stressed neo-Hookean material.

One consequence of ISS is that the initial stress can be derived from the Cauchy stress.
Furthermore, ISS suggests that it is possible to first choose the Cauchy stress and, second,
to make a constitutive choice and then use Eq. (11) to determine the corresponding initial
stress. We illustrated this method in Section 5 for a simplified arterial wall, where we chose
the ideal Cauchy stress by using a minimal stress gradient hypothesis as the homeostatic
condition, and then we calculated the optimal residual stresses of the unloaded remodelled
artery.

Since initial stresses are widespread in both inert and living matter, the proposed con-
stitutive theory can be used in many applications towards a non-destructive quantification
of initial tensions in solids. Future research include determining of a wider class of material
behaviours, e.g. including a natural material anisotropy, and linking the initial stress to
elastic wave speeds.
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Appendices

A Stress-free configuration implies ISS

Referring to Figure 1, the virtual stress-free configuration guarantees that for any τ and

F there exists a
◦
F such that

σ = ϑ̂(B̃, p) and τ = ϑ̂(
◦
B,

◦
p). (A.1)

where
◦
B = F−1B̃F−T ; p and

◦
p are a scalar fields where p depends on the boundary

conditions on B and B̃, while
◦
p depends on the boundary conditions on

◦
B and

◦
B; and

ϑ̂(AAT , q) := A
∂Ψ

∂(ATA)
AT − qI.

By setting τ = 0 in Eq. (6) we can see that the right side depends only on AAT and q.

Johnson and Hoger (1995) demonstrated that it is possible to determine
◦
B from any

given τ , together with appropriate boundary conditions on
◦
B, in order to reach useful

constitutive equations such as

ϑ̂(F
◦
BF T , p) = ς̂(F , τ , p) for any F and

◦
B. (A.2)
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As Eq. (A.1)2 is valid for any F and
◦
B, we can substitute

F for F−1,
◦
B for B̃ (A.3)

and swap the boundary conditions on B and
◦
B (these substitutions effectively swap B

for
◦
B), so that Eq. (A.1)2 becomes σ = ϑ̂(B̃, p), where we have assumed that the above

together with the boundary conditions on B has σ as the unique solution. Analogously,

Eq. (A.1)1 becomes τ = ϑ̂(
◦
B,

◦
p).

This means that when we make the substitutions (A.3) in Eq. (A.2) we should also
swap τ and σ, so that

ϑ̂(
◦
B,

◦
p) = ς̂(F−1,σ,

◦
p), (A.4)

The left-hand side is simply τ and the right-hand side is τ given by ISS (12). Finally, the

above condition is identically true, since this result is valid for every F and
◦
B. Moreover,

we assumed that
◦
B can be determined from τ , so Eq. (A.4) holds for every F and τ .

B Reducing ISS to nine scalar equations

Deriving the scalar equations equivalent to ISS requires lengthy calculations. First we use
the stress expansion (6) and ISS (12) to write the residual stress as

τ = −pτI + 2Ψσ

I1C
−1 + 2Ψσ

I2(I2C
−1 −C−2) + 2Ψσ

J1F
−1σF−T + 2Ψσ

J3F
−1σ2F−T

+ 2Ψσ

J2F
−1(σB−1 +B−1σ)F−T + 2Ψσ

J4F
−1(σ2B−1 +B−1σ2)F−T (B.5)

where I2 = tr(C−1) from Cayley-Hamilton with detC = 1. The above, together with (6)
for σ, must hold for every τ and C. To make use of this restriction, we substitute σ

from (6) into Eq. (B.5) to write an equation in terms of only τ , C, p and pτ , compactly
written as

αijkmnC
iτ jCkτmCn = 0, (B.6)

where we adopt the convention that repeated indices in a single term implies summation
over all the values of the index, with i, k, n ∈ {−2,−1, 0, 1, 2} and j,m ∈ {0, 1, 2}. The
αijk’s can be calculated with a computer algebra system and are too cumbersome to
reproduce here, though it is important to remember that the αijk’s are functions of p
and pτ ; the invariants (3), (4) and (5); and the derivatives of Ψ with respect to the
invariants (3) and (5). Due to the Eqs. (B.5) and (6) being symmetric, we have the
symmetries αijkmn = αnjkmi = αnmkji.

Our aim here is to use Eq. (B.6) to obtain the corresponding scalar equations that
hold for any choice of Ψ and the invariants (3), (4) and (5). To acheive this, we need to
understand how we can vary C and τ while keeping the invariants fixed. We can then
apply these variations to Eq. (B.6), which holds true for any C and τ , to reach scalar
equations in terms of the invariants and Ψ.

So first, to keep the invariants (3) and (4) fixed, we have to keep the eigenvalues of
both C and τ fixed. We can assume that the eigenvalues λ2

1, λ
2
2 and λ2

3 of C are all
different, as this is true for most any deformation and so we do not loose generality. The
same assumption can be made for τ1, τ2 and τ3, the eigenvalues of τ .
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The mixed invariants (5) involve the eigenvectors of C and τ . So we write the eigen
decompositions

C =

3
∑

i=1

λ2
iV i ⊗ V i and τ =

3
∑

j=1

τjtj ⊗ tj , (B.7)

where the V i’s and tj ’s are respectively the eigenvectors of C and τ . Using these decom-
positions we see that

J1 = tr(τC) = τjλ
2
i (V i · tj)2, J2 = tr(τC2) = τjλ

4
i (V i · tj)2, (B.8)

J3 = tr(τ 2C) = τ2j λ
2
i (V i · tj)2, J4 = tr(τ 2C2) = τ2j λ

4
i (V i · tj)2, (B.9)

where summation over i and j is implied. Setting the above four terms to be constant can
be seen as four independent equations for the V i’s and tj ’s. Being unit eigenvectors of
symmetric matrices, they must also satisfy the twelve equations

V i · V m = δim and tj · tn = δjn, (B.10)

for i, j,m, n = 1, 2, 3.
So in total, the V i’s and tj ’s have to satisfy 16 equations for the 18 unknown compo-

nents of V 1, V 2, V 3, t1, t2 and t3. This leaves us with two degrees of freedom which we
can carefully use to reduce Eq. (B.6). For example, let V 1 · t1 = V 2 · t1 = 0, which implies
that t1 = ±V 3 and so t1 is an eigenvector of both C and τ . By taking the dot product
of Eq. (B.6) with t1 on the left and right side we conclude that

αijkmnτ
j+m
1 λ

2(i+k+n)
3 = 0. (B.11)

Now, in the same way, we could have used the degrees of freedom to choose V 1 · t2 =
V 2 · t2 = 0 and concluded that

αijkmnτ
j+m
2 λ

2(i+k+n)
3 = 0. (B.12)

and similarily choosing V 1 · t3 = V 2 · t3 = 0 we conclude that

αijkmnτ
j+m
3 λ

2(i+k+n)
3 = 0. (B.13)

We can rewrite the three above equations by using the characteristic polynomial of λ2
q and

of τp,
λ6
3 = I1λ

4
3 − I2λ

2
3 + 1, τ33 = Iτ1τ

2
3 − Iτ2τ3 + Iτ3, (B.14)

to replace powers of λ3 higher than 4 and lower than 0 with λ2
p, λ

4
p and the invariants of C,

and the analogous for powers of τ1, τ2 and τ3. In doing so Eqs. (B.11), (B.12) and (B.13)
respectively become

βijλ
2i
3 τ

j
1 = 0, βijλ

2i
3 τ

j
2 = 0, βijλ

2i
3 τ

j
3 = 0, (B.15)

for i, j = 0, 1 and 2, and where the βij ’s can be written in terms of αijkmn and the
invariants of τ and C. This is best done with a computer algebra system.

As a reminder, the eigenvectors of C and τ in each of the above three equations are
most likely different. However, the eigenvectors only appear in the form of the mixed in-
variants (5), which are the same for the three equations because the of Eqs. (B.8) and (B.9).
Thus we may solve all the above three Eqs. (B.11), (B.12) and (B.13) simultaneously.
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The three equations state that τ1, τ2 and τ3 are the roots of the second-order polynomial
βijλ

2i
3 x

j = 0. As these eigenvalues are assumed to be all different, this is only possible if

βijλ
2i
3 = 0, for j = 0, 1, 2. (B.16)

Finally, there was nothing special about V 3 and λ3, using analogous arguments we can
conclude that

βijλ
2i
1 = 0, βijλ

2i
2 = 0, βijλ

2i
3 = 0, for j = 0, 1, 2. (B.17)

Again, λ1,λ2 and λ3 are assumed to be all different, so the only way that λ1, λ2 and λ3

are the roots of a second-order polynomial is if the polynomials coefficients are all zero,
leading to

βij = 0, for i, j = 0, 1, 2. (B.18)

This result suggest a simple way to reach expression for the βij ’s: we can substitute scalars
λ and τ , in place of the tensors (B.6), followed by repeatedly using the characteristic
polynomials of both λ and t as explained around Eq. (B.14), and then the βij ’s will be
the coefficients of the multivariate polynomial in λ and τ . The results are explicity given
by Eqs. (37) and (38) combined with Appendix C.

C ISS matrices

The matrices appearing in Eqs. (37) and (38) have the following expressions:

P
{3}
{0} = −4

















2Ψ2
I1
+ 2ΨI2(p− I2ΨI2)

p2/2− 4ΨI1ΨI2 − 2I1Ψ
2
I2

2I1Ψ
2
I1
+ 2Ψ2

I2
− 2ΨI1(p− 2I2ΨI2)

0
0
0

















, P
{3}
{1} = 8

















0
0
0

−2ΨI1

2I2ΨI1 + 2ΨI2

p− 2I1ΨI1 − 2I2ΨI2

















, (C.19)

P
{3}
{2} = 16

















0
0
0

p− 2I1ΨI1 − 2I2ΨI2

2(I1I2 − 1)ΨI1 + I2(2I2ΨI2 − p)
I1p− 2(I21 − I2)ΨI1 + 2(1− I1I2)ΨI2

















, (C.20)

P
{3}
{3} = −8

















Iτ3(2ΨJ1 + 4I1ΨJ2 + Iτ1ΨJ3)
4Iτ3ΨJ2

Iτ3(2I1ΨJ1 + 4(I21 − I2)ΨJ2 + I1Iτ1ΨJ3)
(Iτ3 − Iτ1Iτ2)ΨJ3 − 2Iτ2ΨJ1 − 4I1Iτ2ΨJ2

2I2Iτ2ΨJ1 + 4(I1I2 − 1)Iτ2ΨJ2 + (Iτ1Iτ2 − Iτ3)I2ΨJ3

4(I2 − I21 )Iτ2ΨJ2 − 2I1Iτ2ΨJ1 + (Iτ3 − Iτ1Iτ2)I1ΨJ3

















, (C.21)

P
{3}
{4} = 32

















Iτ3
(

2
(

I2 − I21
)

ΨJ2 − I1ΨJ1

)

−Iτ3 (2I1ΨJ2 +ΨJ1)
Iτ3

(

2
(

2I1I2 − I31 − 1
)

ΨJ2 +
(

I2 − I21
)

ΨJ1

)

Iτ2
(

2
(

I21 − I2
)

ΨJ2 + I1ΨJ1

)

Iτ2
(

2
(

I1 + I22 − I21I2
)

ΨJ2 + (1− I1I2)ΨJ1

)

Iτ2
(

2
(

I31 − 2I1I2 + 1
)

ΨJ2 +
(

I21 − I2
)

ΨJ1

)

















+

32

















−Iτ1Iτ3
((

I21 − I2
)

ΨJ4 + I1ΨJ3

)

−Iτ1Iτ3 (I1ΨJ4 +ΨJ3)
−Iτ1Iτ3

((

I31 − 2I1I2 + 1
)

ΨJ4 +
(

I21 − I2
)

ΨJ3

)

(Iτ1Iτ2 − Iτ3)
((

I21 − I2
)

ΨJ4 + I1ΨJ3

)

(Iτ1Iτ2 − Iτ3)
((

I1 + I22 − I21I2
)

ΨJ4 + (1− I1I2)ΨJ3

)

(Iτ1Iτ2 − Iτ3)
((

I31 − 2I1I2 + 1
)

ΨJ4 +
(

I21 − I2
)

ΨJ3

)

















, (C.22)
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P
{4}
{0} = −4

















−4I1Ψ
2
I2
− 8ΨI1ΨI2 + p2

−4I1pΨI2 − 4pΨI1 + 4Ψ2
I2
+ I2p

2

4
(

Ψ2
I1
+ΨI2 (p− I2ΨI2)

)

0
0
0

















, (C.23)

P
{4}
{1} = 16

















0
0
0

2ΨI2

p− 2I2ΨI2

−2ΨI1

















, P
{4}
{2} = 32

















0
0
0

−2ΨI1

2 (I2ΨI1 +ΨI2)
−2I1ΨI1 − 2I2ΨI2 + p

















, (C.24)

P
{4}
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