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Summary

We introduce a fundamental restriction on the strain energy function and stress tensor for initially

stressed elastic solids. The restriction applies to strain energy functions W that are explicit functions

of the elastic deformation gradient F and initial stress τ , that is W := W (F, τ ). The restriction is a

consequence of energy conservation and ensures that the predicted stress and strain energy do not

depend upon an arbitrary choice of reference configuration. We call this restriction initial stress

reference independence (ISRI). It transpires that most strain energy functions found in the literature

do not satisfy ISRI, and may therefore lead to unphysical behaviour, which we illustrate through

a simple example. To remedy this shortcoming, we derive three strain energy functions that do

satisfy the restriction. We also show that using initial strain (often from a virtual configuration)

to model initial stress leads to strain energy functions that automatically satisfy ISRI. Finally, we

reach the following important result: ISRI reduces the number of unknowns in the linear stress

tensor for initially stressed solids. This new way of reducing the linear stress may open new

pathways for the non-destructive determination of initial stresses through ultrasonic experiments,

among others.

1. Introduction

Materials in many contexts operate under a significant level of internal stress, which is often called

residual stress if the material is not subjected to any external loading. Residual stress is desirable

in many circumstances; for example, living matter uses residual stress to preserve ideal mechanical

conditions for its physiological function (1, 2). In manufacturing, if residual stress is controlled, it

can be used to strengthen materials such as turbine blades (3) and toughened glass (4); however,

residual stress is often problematic as it can cause materials to fail prematurely (5, 6). Pre-stress

is another common term, which is often used to refer to internal stress caused by an external load

(7, 8, 9, 10). In this article, the term initial stress is used to describe any internal stress, irrespective

of boundary conditions, and therefore encompasses both residual stress and pre-stress.
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456 A. L. GOWER et al.

In both industrial and biological contexts, the origin and extent of initial stresses are often unknown.

One way to determine these stresses is by measuring how they affect the elastic response of the

material. In metallurgy, it is well known that residual stress can be estimated by drilling small

holes into a metal and observing how they change shape (11). Elastic waves are also used in many

applications, since their behaviour is very sensitive to the initial stress in a material (12).

One alternative to link the response of a material to a very general dependence on the internal

stress, therefore including initially stressed materials, is the implicit form of elasticity described

by Rajagopal et al. (13, 14, 15), but this generality comes with the drawback of adding greater

constitutive complexity. Explicit hyperelastic models are simpler and are accurate for many

applications — the work of Hoger (16, 17) and Man (18; 19) has led to improved inverse methods

for measuring initial stress (20, 21, 22, 23, 24, 25) and monitoring techniques (26).

The mechanical properties of a hyperelastic material can be conveniently determined from its strain

energy function W , which gives the strain energy per unit volume of the initially stressed reference

configuration. In classical elasticity, W is a function of only the elastic deformation gradient F

(that is W := W (F)). The simplest way to account for initial stresses is to allow W to depend on

either the initial Cauchy stress tensor τ , or on an initial deformation gradient F0 from some stress-

free configuration B0. For the first method, W := W (F, τ ) (27, 28, 29), whereas for the second,

W := J−1
0 W0(FF0) (17, 30), where J0 = det F0 and W0 is the strain energy per unit volume in

B0. In both cases, F is the elastic deformation gradient from the initially stressed to the current

configuration.

The two approaches each have relative advantages and disadvantages. If measuring the initial

stress is the main goal, then using W := W (F, τ ) is the more direct method, but requires an extra

restriction (which is presented below). It is also the more useful form when the initial stress is known

or postulated a priori — by assuming that the stress gradient in an arterial wall is homogeneous (31),

for example. If W := J−1
0 W0(FF0), then the classical theory of non-linear elasticity can be used

(by taking B0 as the reference configuration), and ISRI is automatically satisfied. This form is more

useful when a stress-free configuration is known, or when the exact form of the initial stress is not

important. The two approaches are not equivalent because it is not always possible to deduce F0 from

τ explicitly, as they are related by the equilibrium equation of the initially stressed configuration,

which is a non-linear partial differential equation in F0. We discuss initially strained models in

Section 3.

The primary purpose of this article is to deduce a fundamental restriction on W := W (F, τ ),

and discuss its consequences. To motivate the need for a new restriction, we show how a simple

uniaxial deformation can lead to unphysical results when this restriction is ignored in Section 2.1. In

Section 2.2, we derive this restriction, which follows from the fact that elastic deformations conserve

energy, and we call it initial stress reference independence (ISRI), for reasons that will be clarified

later. We assume the only source of anisotropy is the initial stress, though a more general form of

ISRI could also be deduced for materials that include other sources of anistropy.

It transpires that it is not easy to choose a strain energy function that satisfies ISRI. In fact, almost

every strain energy function found by the authors in the literature to date does not satisfy it, in both

finite elasticity 29, 32, 33, 34, 35, 36) and linear elasticity (19, 28). To the authors’ knowledge, the

only existing strain energy function that does satisfy ISRI is that derived in (31), which is an initially

stressed incompressible neo-Hookean solid, as discussed in Section 2.3. To address this lack of valid

models, we present two new strain energy functions that satisfy ISRI in Section 2.4. In Section 3,

we discuss strain energy functions based on initial strain, and show that they automatically satisfy

ISRI in Section 3.1.
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A NEW RESTRICTION FOR INITIALLY STRESSED ELASTIC SOLIDS 457

The equations associated with small deformations of initially stressed solids are much simpler than

their finite strain analogues. This makes them ideal for establishing methods to measure initial stress.

An important consequence of ISRI is that it restricts the linearised elastic stress tensor δσ (F, τ ), as

we discuss in Section 4. For materials subjected to small initial stress, we use ISRI to reduce the

number of unknowns in δσ (F, τ ) in Section 4.3. The result is a reduced version of the stress tensor

deduced in (19), which could ultimately improve the measurement of initial stress via ultrasonic

experiments, among others.

In the literature, it is common to deduce the linear stress tensor δσ by considering an initial strain

from a stress-free configuration (37, 38, 39). This approach is broadly called acousto-elasticity, and

as discussed in Section 3, the resulting δσ automatically satisfies ISRI, but leads to an indirect

connection between δσ and τ . In fact, acousto-elasticity was used by Tanuma and Man (40) to

restrict the form of δσ (F, τ ) when both strain and initial stress are small, which led them to our

equation (4.36) (their equation (81)). In our approach we clarify that this equation must hold for

every initially stressed elastic material, regardless of the origins of this stress.

2. ISRI

The mechanical properties of an elastic material can be determined from its strain energy function W ,

which gives the strain energy per unit volume of the reference configuration. For an initially stressed

material, W can be expressed in terms of the deformation gradient F from the reference to the

current configuration and τ , the Cauchy stress in the reference configuration, so that W := W (F, τ ).

In general, W may also depend on position, but we omit this dependency for clarity. We call τ

the initial stress tensor and, when discussing consititutive choices, we will not require any specific

boundary conditions in the reference configuration, in agreement with (32) (that is the boundaries

can either be loaded or unloaded).

In what follows, we assume that F is within the elastic regime of the material, but make no

assumptions about how the initial stress formed. The Cauchy stress tensor σ (41, 27) for an initially

stressed material is given by

σ := σ (F, τ ) = J−1F
∂W

∂F
(F, τ ) − pI, (2.1)

where J = det F, I is the identity tensor and p is zero if the material is compressible or, otherwise,

is a Lagrange multiplier associated with the incompressibility constraint det F = 1. We define

differentiation with respect to a second-order tensor as follows:

(
∂

∂P

)

ij

=
∂

∂Pji
. (2.2)

Before moving on, we present an example where a specific choice of W (F, τ ) leads to two different

stress responses for the same uniaxial deformation.

2.1 Motivating example

To study the influence of initial stress on the elastic response of a material, a simple strain energy

function was postulated by Merodio et al. (32) as follows

WMOR =
µ

2

(
tr(FTF) − 3

)
+

1

2

(
tr(FT

τF) − tr τ

)
, (2.3)
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458 A. L. GOWER et al.

where µ is a material constant — a quantity that is inherently associated with the material and does

not depend upon the reference configuration or level of residual stress, the superscript T indicates

the transpose operator and tr the trace. As WMOR is used for incompressible materials, the Cauchy

stress (2.1) becomes

σ = −pI + µFFT + FτFT. (2.4)

Consider an initially stressed material described by Euclidean coordinates (X, Y , Z). Suppose the

initial stress takes the form of a homogeneous tension T along the X axis, and that the material is

subsequently stretched along the same axis, then the components of the deformation gradient and

initial stress tensor are given by

F =

⎛
⎝

λ 0 0

0 λ−1/2 0

0 0 λ−1/2

⎞
⎠ and τ =

⎛
⎝

T 0 0

0 0 0

0 0 0

⎞
⎠ , (2.5)

where λ is the amount of stretch. Applying stress-free boundary conditions on the faces not under

tension gives p = λ−1µ, which in turn leads to

σ11 := σ11(λ, T ) = λ2(µ + T ) − λ−1µ, (2.6)

which is the stress necessary to support any stretch λ given an initial tension T . We will now choose

two different ways of achieving the same uniaxial stretch λ = λ̃ that should, but do not, result in the

same stress when using the strain energy function (2.3). First, we consider a direct application of the

stretch λ = λ̃ and assume that the initial tension is T = τ0. In this case,

σ̃11 = σ11 (̃λ, τ0) = λ̃2(µ + τ0) − λ̃−1µ. (2.7)

We can also achieve the same stretch in two steps by taking λ̃ = λ̂λ. That is, first we stretch by λ

and then apply a further stretch λ̂, as shown in Fig. 1. Taking λ = λ, and again using T = τ0, results

in the stress

σ 11 = σ11(λ, τ0) = λ
2
(µ + τ0) − λ

−1
µ, (2.8)

in the intermediate configuration. To further stretch the material, we take this intermediate

configuration as our intially stressed reference configuration, where the initial tension is now T = σ 11.

Upon applying the second stretch λ̂, we obtain

σ̃11 = σ11 (̂λ, σ 11) = λ̂2(µ + σ 11) − λ̂−1µ (2.9)

= λ̂2λ
2
(µ + τ0) + λ̂2µ − λ̂2λ

−1
µ − λ̂−1µ. (2.10)

Both (2.7) and (2.10) result from the same uniaxial deformation, so should be identical, but, upon

substituting λ̃ = λ̂λ into (2.7), we find they are not.

If, instead of (2.4), we had used an initially strained model, for example an incompressible

neo-Hookean model W := µ tr(FF0)/2, then this unphysical result would not occur. However, as

explained in the introduction, when the initial strain or stress are unknown, both τ and F0 are

unknown, and an explicit form W := W (F, τ ) leads to more direct connections between the elastic

response and initial stress τ .
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A NEW RESTRICTION FOR INITIALLY STRESSED ELASTIC SOLIDS 459

Fig. 1 Uniaxial deformation of an initially stressed cube (depth not illustrated), with sides of length ℓ, into a

cuboid of height λ̂λℓ and width (equal to depth) λ̂−1/2λ
−1/2

ℓ. The hollow arrows represent the stress applied to

the top boundary. The uniaxial stretch λ̃ is indicated by the bottom arrow. This stretch can also be achieved in two

steps: first a stretch of λ, then a further stretch of λ̂. The second of these stretches treats the middle configuration

as its reference configuration. Both of these ways of achieving the same uniaxial stretch λ̂λ should require the

same stress σ̃11 in the rightmost configuration

The unphysical behaviour illustrated by this example is typical of many of the strain energy

functions of the form W := W (F, τ ) in the literature and highlights the need to restrict what forms

are physically permissible. Therefore, in the following section, we present a restriction on W (F, τ )

that ensures that such unphysical behaviour does not occur.

2.2 The restriction

The elastic energy stored in a material should remain constant under a rigid motion, so W (F, τ ) =

W (QF, τ ) for every proper orthogonal tensor Q (so that QQT = I and det Q = 1). This identity can

be used to show that W depends on F only through the right Cauchy–Green tensor C = FTF (41),

which we use to rewrite the Cauchy stress (2.1) as

σ (F, τ ) = 2J−1F
∂W

∂C
(C, τ )FT − pI. (2.11)

The presence of initial stress generally leads to an anisotropic material response, but for simplicity

we assume that no other source of anisotropy is present. Referring to the three configurations shown

in Fig. 2, let the strain energy per unit volume in B̃ be denoted by ψ . The strain energy stored as a

result of the elastic deformation from B to B̃ should be the same as that due to successive elastic

deformations from B to B, then from B to B̃. In detail, taking B as the reference configuration, we

conclude ψ = J̃−1W (̂FF, τ ), where J̃ = Ĵ J , Ĵ = det F̂ and J = det F, whereas if B is taken as the

reference configuration, we conclude ψ = Ĵ−1W (̂F, σ (F, τ )). Since these two quantities must be

equal, we therefore have

W (̂FF, τ ) = JW
(̂
F, σ (F, τ )

)
for every τ , F and F̂, (2.12)
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460 A. L. GOWER et al.

Fig. 2 Deformation of an initially stressed elastic solid. The stress and strain energy in B̃ should not depend

on whether B or B is taken as the reference configuration

where both F and F̂ are associated with elastic deformations (which may be constrained by

incompressibility). We call this criterion initial stress reference independence (ISRI).

When F = I, (2.12) reduces to W (̂F, τ ) = W (̂F, σ (I, τ )), which, from (2.11), is always satisfied if

σ (I, τ ) = 2
∂W

∂C
(I, τ ) − pI = τ , (2.13)

for every τ . We refer to this well-known restriction as initial stress compatibility. Additionally, if

F = Q, where again Q is a proper orthogonal tensor representing a rigid body motion, then, using

(2.11) and (2.13), we obtain σ (Q, τ ) = QτQT. Using this result, along with F = Q in (2.12), we

obtain

W (̃F, τ ) = W
(

F̃QT, QτQT
)

, (2.14)

where F̃ = F̂F. The above identity is typically used for anisotropic materials (42) and can be used

to derive the following 10 invariants (29)‡

I1 = tr C, I2 =
1

2
[(I2

1 − tr(C2)], I3 = det C, (2.15)

Iτ 1 = tr τ , Iτ 2 =
1

2
[(I2

τ 1
− tr(τ 2)], Iτ 3 = det(τ ), (2.16)

J1 = tr(τC), J2 = tr(τC2), J3 = tr(τ2C), J4 = tr(τ 2C2), (2.17)

‡ Note that the invariants Iτ1
, Iτ2

and Iτ3
are different from, but can be expressed as combinations of, those derived in (29).
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A NEW RESTRICTION FOR INITIALLY STRESSED ELASTIC SOLIDS 461

though only nine of theses invariants are independent (43). Using these invariants, the Cauchy stress

can be rewritten as

σ (F, τ ) = −pI +
1

J

(
2WI1

B + 2WI2
(I1B − B2)

+2I3WI3
I + 2WJ1

FτFT + 2WJ2
(FτFTB + BFτFT) + 2WJ3

Fτ
2FT

+2WJ4
(Fτ

2FTB + BFτ
2FT)

)
, (2.18)

where B = FFT is the left Cauchy–Green tensor, WIi
= ∂W/∂Ii and WJj

= ∂W/∂Jj, with i ∈ {1, 2, 3}

and j ∈ {1, 2, 3, 4}. For an incompressible material I3 = 1 and WI3
= 0. Note that the Cauchy stress

in a standard non-linear elastic material can be obtained from (2.18) simply by letting W depend

only on the strain invariants I1, I2 and I3.

By evaluating (2.18) at F = I we obtain another form of the initial stress compatibility

equation (2.13):

τ = I(−
I
p + 2

I
W I1

+ 4
I

W I2
+ 2

I
W I3

) + τ (2
I

WJ1
+ 4

I
WJ2

) + τ
2(2

I
WJ3

+ 4
I

WJ4
), (2.19)

where the notation
I
· is used to denote that · is evaluated at F = I after differentiation. Since

this equation has to hold for any initial stress tensor τ , the initial stress compatibility condition

is equivalent to

2
I

W I1
+ 4

I
W I2

+ 2
I

W I3
=

I
p, 2

I
WJ1

+ 4
I

WJ2
= 1,

I
WJ3

+ 2
I

WJ4
= 0. (2.20)

In the literature, W is often chosen as a simple function of the 10 invariants (2.15–2.17) that satisfy

initial stress compatibility (2.20). However, it is highly unlikely that any W chosen a priori will

satisfy ISRI (2.12).

A version of ISRI can also be stated in terms of the stress tensor, without reference to a strain

energy function. To do so, let us assume the internal stress is given by some constitutive choice

σ := σ (F, τ ), then using reasoning similar to that which led to (2.12) we find that

σ (̂FF, τ ) = σ (̂F, σ (F, τ )), for every τ , F and F̂. (2.21)

This restriction states that the Cauchy stress in B̃ should not change when a different reference

configuration is selected. As the above is stated solely in terms of stress tensors, it could be possible

to extend ISRI to materials without an explicit strain energy function.

By choosing F̂F = I and using (2.13), we obtain τ = σ (F
−1

, σ ), where σ = σ (F, τ ). This

restriction was derived in (31) and termed initial stress symmetry. It allowed a straightforward way

to model the adaptive remodelling of living tissues such as arterial walls towards an ideal target

stress (44, 45). For more details see (31) and (46). To the authors’ knowledge, the only strain energy

function that does satisfy initial stress symmetry and ISRI is that derived in (31).

As demonstrated in Section 2.1, strain energy functions that do not satisfy ISRI may exhibit

unphysical behaviour. We prove this in the following section, then derive two new strain energy

functions that satisfy ISRI in Section 2.4.
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462 A. L. GOWER et al.

2.3 An incompressible strain energy function that satisfies ISRI

In a recent paper, Gower et al. (31) proposed the strain energy function

WGCD =
1

2
(p0(Iτ 1 , Iτ 2 , Iτ 3 )I1 + J1 − 3µ), (2.22)

where p0 is a function of Iτ 1 , Iτ 2 and Iτ 3 given by

p0 =
1

3

(
T3 +

T1

T3
− Iτ 1

)
, (2.23)

T1 = I2
τ 1

− 3Iτ 2 , T2 = I3
τ 1

−
9

2
Iτ 1 Iτ 2 +

27

2
(Iτ 3 − µ3), (2.24)

T3 =
3

√√
T2

2 − T3
1 − T2. (2.25)

One way to derive WGCD is to rewrite an initially strained neo-Hookean strain energy function as an

initially stressed strain energy function (31). An alternative derivation is given in Appendix 5. Using

WGCD in (2.18), the left side of (2.21) becomes

σ (̂FF, τ ) = p0F̂BF̂T − p̃ I + F̂FτFTF̂T, (2.26)

and the right side becomes

σ (̂F, σ (F, τ )) = (p1 − p)B̂ + p0F̂BF̂T − p̂ I + F̂FτFTF̂T, (2.27)

where p1 is the Lagrange multiplier associated with F. In Appendix 5 we show that p = p1, and

therefore (2.27) reduces to

σ (̂F, σ (F, τ̂ )) = p0F̂BF̂T − p̂ I + F̂FτF
T

F̂T. (2.28)

Equation (2.21) then gives

σ (̂FF, τ ) = σ (̂F, σ (F, τ )) ⇔ p̂ = p̃. (2.29)

Since equations (2.26) and (2.28) have exactly the same functional form and they must be subjected

to the same boundary conditions because they both represent the Cauchy stress in B̃, their Lagrange

multipliers must be equal (i.e. p̂ = p̃ ). Therefore, WGCD does satisfy ISRI.

2.4 Two compressible strain energy functions that satisfy ISRI

By using the same method as that used in Appendix 5 to derive WGCD, we have derived two new

strain energy functions for compressible materials. Both are based on compressible extensions of

the neo-Hookean model:

WCNH1 =
µ

2
(I1 − 3 − 2 log

√
I3) +

λ

2
(log

√
I3)2, (2.30)
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A NEW RESTRICTION FOR INITIALLY STRESSED ELASTIC SOLIDS 463

and

WCNH2 =
µ

2
(I1 − 3 − 2 log

√
I3) +

λ

2
(
√

I3 − 1)2, (2.31)

where µ and λ are the ground state first and second Lamé parameters, respectively. The initially

stressed strain energy functions corresponding to these are

WGSC1 =
q1

2
I1 +

J1

2
−

µ

2K1

(
3 + 2 log(K1

√
I3)

)
+

λ

2K1

(
log(K1

√
I3)

)2
(2.32)

and

WGSC2 =
q2

2
I1 +

J2

2
−

µ

2K2

(
3 + 2 log(K2

√
I3)

)
+

λ

2K2

(
K2

√
I3 − 1

)2
, (2.33)

where q1, q2, K1 and K2 are functions of Iτ 1 , Iτ 2 and Iτ 3 and can be thought of as initial stress

parameters defined implicitly by the equations

µ3

K1
= q3

1 + q2
1Iτ 1 + q1Iτ 2 + Iτ 3 , q1 =

1

K1
(µ − λ log K1), (2.34)

µ3

K2
= q3

2 + q2
2Iτ 1 + q2Iτ 2 + Iτ 3 , q2 =

µ

K2
+ λ(1 − K2), (2.35)

where the solutions for K1 and K2 should both be real and such that K1 → 1 and K2 → 1 when

τ → 0. The Cauchy stress tensors corresponding to these strain energy functions are, respectively,

σGSC1 =
1

J

(
q1B +

1

K1
(λ log(JK1) − µ)I + FτFT

)
, (2.36)

and

σGSC2 =
1

J

(
q2B +

(
λ(I3K2 − J) −

µ

K2

)
I + FτFT

)
. (2.37)

These constitutive equations provide a simple way to study the effects of initial stress on any

deformation.

3. Initially strained materials

Another way to model initial stress is via initial strain. This is normally done by including

an initial deformation gradient F0 from some configuration B0 in the strain energy function

W := J−1
0 W0(FF0), where J0 = det F0 and W0 is the strain energy per unit volume in B0. This

representation of W is a consequence of both a fundamental covariance argument (47, 48), and

utilising a virtual stress-free configuration (30). The Cauchy stress tensor is then given by (47, 48)

σ := σ (FF0) = J−1J−1
0 F

∂W0

∂F
(FF0) − pI. (3.1)

Usually, W0(FF0) is chosen such that B0 is stress-free, that is, σ (I) = 0. Assuming that the initial

strain is the only source of anisotropy, the strain energy can be shown to depend only on the isotropic
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464 A. L. GOWER et al.

invariants of FT
0CF0:

Î1 = tr(FT
0CF0), Î2 =

1

2
(̂I2

1 − tr((FT
0CF0)2)), Î3 = det(FT

0CF0), (3.2)

so that W := J−1
0 W0 (̂I1, Î2, Î3). These strain energy functions automatically satisfy ISRI, as shown

below in Section 3.1. An example of such a strain energy function is this initially strained form of

the Mooney–Rivlin strain energy function:

W0 = C1 (̂I1̂I
−1/3

3 − 3) + C2 (̂I2̂I
−2/3

3 − 3) + C3 (̂I
−1/2

3 − 1)2, (3.3)

where C1, C2 and C3 are material constants that must be chosen such that the body is stress free

when F = F0 = I.

Taking W as a function of F and τ , or of F and F0, gives two different perspectives on the same

phenomenon, each being useful in different circumstances. The former is more useful when the initial

stress is known, whereas the latter is more useful when the initial strain can somehow be inferred.

3.1 All initially strained materials satisfy ISRI

We have discussed, in previous sections, that it is not easy to choose a function of the form W :=

W (F, τ ) that satisfies ISRI (2.12). Let us consider the case of initially strained materials with

W = W (F, τ ) := J−1
0 W0(FF0), and τ = σ 0(F0). (3.4)

We will prove that if W = W (F, τ ) is defined as above, and the function σ 0 is invertible, it satisfies

ISRI for any choice of W0(FF0). First we assume that for any W0 and initial stress τ there is a

deformation gradient F0
§ such that

τ = σ 0(F0) where σ 0(F0) = J−1
0 F0

∂W0(F0)

∂F0
− pI. (3.5)

Next, we define an initially stressed strain energy function

W (F, τ ) = W (F, σ 0(F0)) := J−1
0 W0(FF0) for every F and τ . (3.6)

By substituting F = F̂F into (3.6) we obtain

W (̂FF, τ ) = J−1
0 W0((̂FF)F0) = JJ

−1
J−1

0 W0 (̂F(FF0)) = JW (̂F, σ 0(FF0)). (3.7)

Then, using (3.1), we obtain

σ0(FF0) = J
−1

J−1
0 F

∂W0

∂F
(FF0) − pI, (3.8)

§ For there to be a unique F0, for every τ , the strain energy W0 needs to be rank-one convex (49) and some restrictions need
to be made about the reference configuration of F0 (30).
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and, since J−1
0 W0(FF0) = W (F, τ ),

σ0(FF0) = J
−1

F
∂W

∂F
(F, τ ) − pI, (3.9)

which, using (2.1), gives

σ0(FF0) = σ (F, τ ). (3.10)

Substituting the above into (3.7) we obtain W (̂FF, τ ) = JW (̂F, σ (F, τ )), which is the ISRI

restriction (2.12).

While such strain energy functions are guaranteed to satisfy ISRI, it is not often possible to state

their dependence on the stress invariants Iτ 1 , Iτ 2 and Iτ 3 explicitly (a notable exception being the strain

energy function discussed in Section 2.3). Instead, it may be necessary to define that dependence

implicitly, as is the case for the two models presented in Section 2.4.

4. Linear elasticity with initial stress

Elastic waves in solids are highly sensitive to initial stress, and linear elastic models fit measurements

from currently-employed experimental techniques well. Our aim here is, in the long run, to improve

these measurements by using a linearised version of ISRI (2.12).

In Section 4.1 we deduce the linearised stress without considering ISRI. Then, in Section 4.2, we

calculate a linearised form of ISRI and discuss how to use it to restrict the linearised stress. Hoger

(16, 50), Man et al. (18, 19) derived the equations for small initial stress, up to first order in τ .

In (19) the authors remark that many experiments indicate that for small deformations the elastic

stress depends linearly on the initial stress, at least for metals. Motivated by these observations, we

linearise the elastic stress in both the elastic strain and initial stress in Section 4.3 and reach a reduced

form for the stress (4.37) which adds a restriction to all previous models, to the authors’ knowledge.

The restriction (4.36) has been used before in the literature (see equation (81) from (40)) but was

deduced from the context of acousto-elasticity.

4.1 Linear elastic stress

For a small elastic deformation, we can write the associated deformation gradient as F = I + ∇u,

where u is a small displacement. By Taylor series expanding the Cauchy stress (2.1) about F = I,

the linearised Cauchy stress becomes

δσ (F, τ ) = τ +

I
∂σ

∂F
: ∇u + O((∇u)2), (4.1)

where we have exploited the fact that σ (I, τ ) = τ and we remind the reader that
I
· denotes that · is

evaluated at F = I after differentiation. We define

(
∂P

∂Q

)

ijkl

=
∂Pij

∂Qlk
and (C : P)ij = CijαβPβα, (4.2)
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466 A. L. GOWER et al.

for any second-order tensors P and Q and fourth-order tensorC, using Einstein summation convention

for the repeated dummy indices α and β. Using (2.11) and (4.2) it can be shown that

I
∂σ

∂F
: P =

∂

∂F

(
2J−1F

∂W

∂C
FT

)∣∣∣∣
F=I

: P = Pτ + τPT − τ tr P + 4

I

∂2W

∂C2
: P, (4.3)

for every second-order tensor P, where we have exploited the fact that 2∂W/∂C|F=I = τ from

(2.13). We now introduce the linear strain and rotation tensors:

ε =
1

2
(∇u + (∇u)T) and ω =

1

2
(∇u − (∇u)T), (4.4)

respectively, which satisfy ∇u = ε + ω. Substituting ω for P in (4.3), we obtain

I
∂σ

∂F
: ω = ωτ − τω, (4.5)

since tr ω = 0 and

⎛
⎜⎝

I

∂2W

∂2C
: ω

⎞
⎟⎠

ij

=

I

∂2W

∂Cji∂Cαβ
ωαβ = −

I

∂2W

∂Cji∂Cβα
ωβα ⇒

I

∂2W

∂2C
: ω = 0, (4.6)

where we have used the fact that ω
T = −ω and CT = C. Using (4.4) and (4.5) we can now rewrite

(4.1) as

δσ = τ + ωτ − τω +

I
∂σ

∂F
: ε + O((∇u)2). (4.7)

At this point, we do not yet know the form of ∂σ/∂F|F=I : ε explicitly. It could be calculated directly

from (2.18); however, an alternative approach is to write it as a general rank two symmetric tensor

in terms of τ that is expanded up to first order in ε:

I
∂σ

∂F
: ε = α1ε + (α2I + α3τ + α4τ

2) tr(ε) + (α5I + α6τ + α7τ
2) tr(ετ )

+ α8(ετ + τε) + α9(ετ
2 + τ

2
ε) + O((∇u)2), (4.8)

where αi, (i = 1, ..., 9) are, in general, functions of Iτ1 , Iτ2 and Iτ3 . Note that neither tr(ετ
2),

τετ , τ
2
ετ + τετ

2, nor any power of τ higher than two is present because they can be written

as combinations of the terms already included (see Appendix 5). For more details on linearising

elasticity see (50, 51, 52, 29).

We now seek to restrict the parameters α1, ..., α9. We begin by rearranging (4.3) and contracting

it twice on the left with an arbitrary second-order tensor Q, to obtain

4Q :

I

∂2W

∂C2
: P = (Q : τ ) tr P − Q : (Pτ ) − Q : (τPT) + Q :

I
∂σ

∂F
: P. (4.9)
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Since (4.9) must hold for any P and Q, we can swap them to obtain

4P :

I

∂2W

∂C2
: Q = P : τ tr Q − P : (Qτ ) − P : (τQT) + P :

I
∂σ

∂F
: Q. (4.10)

Now, due to the fact that
⎛
⎜⎝

I

∂2W

∂2C

⎞
⎟⎠

ijkl

=

⎛
⎜⎝

I

∂2W

∂2C

⎞
⎟⎠

klij

(4.11)

we must have

P :

I

∂2W

∂C2
: Q = Q :

I

∂2W

∂C2
: P, (4.12)

for every P and Q. Upon substituting (4.9) and (4.10) into (4.12), and assuming that P and Q are

small and symmetric, so that (4.8) holds with P and Q substituted for ε, we find that (4.12) can hold

if and only if

α4 = α7 = 0 and α5 = α3 + 1. (4.13)

Substituing the above into (4.7), we obtain a reduced expression for the stress:

δσ = τ + ωτ − τω + I tr(ετ ) + α1ε + α2I tr(ε) + α3 (τ tr(ε) + I tr(ετ ))

+ α6τ tr(ετ ) + α8(ετ + τε) + α9(ετ
2 + τ

2
ε).

(4.14)

In Section 4.2, we discuss the linearised version of ISRI and its relationship to the linear stress tensor

given in (4.14). When the initial stress is small, we are able to derive a closed-form expression for

the linear stress that satisfies ISRI, as is shown in Section 4.3.

4.1.1 Initially stressed neo-Hookean models. As an aside, we note that if the stress tensors

for the initially stressed neo-Hookean models given in (2.36) and (2.37) are expanded for small

deformations, the resulting linear stress tensors have the above form with

α1 =
2

K1
(µ − λ log K1), α2 =

λ

K1
, α3 = −α8 = −1, α6 = α9 = 0, (4.15)

for the first model, and

α1

2
=

µ

K2
+ λ(1 − K2), α2 = λ(2K2 − 1), α3 = −α8 = −1, α6 = α9 = 0, (4.16)

for the second.
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4.2 The linearised equations of ISRI

We now wish to consider the restrictions that are imposed by ISRI in the case of small deformations.

We begin by differentiating (2.12) with respect to F to obtain

∂W

∂F
(̂FF, τ )̂F =

∂J

∂F
W (̂F, σ (F, τ )) + J

∂W

∂σ

(̂F, σ (F, τ ))
∂σ

∂F
(F, τ ), (4.17)

where ∂/∂F denotes partial differentiation with respect to the first argument of the function and

∂/∂σ denotes partial differentiation with respect to the second. Evaluating (4.17) at F̂ = F = I and

contracting twice on the right with the linear strain tensor ε gives

τ : ε = tr ε

I
W +

I
∂W

∂τ

:

I
∂σ

∂F
: ε for every τ and ε, (4.18)

which was simplified using (2.13). One of the terms on the right side can be expanded using the

chain rule as follows
I

∂W

∂τ

= β1I + β2τ + β3τ
2, (4.19)

where

β1 =

I
∂W

∂ tr τ

=

I
∂W

∂Iτ 1

+ Iτ 1

I
∂W

∂Iτ 2

+ Iτ 2

I
∂W

∂Iτ 3

+

I
∂W

∂J1
+

I
∂W

∂J2
, (4.20)

β2 = 2

I
∂W

∂ tr(τ )
= −

I
∂W

∂Iτ 2

− Iτ 1

I
∂W

∂Iτ 3

+ 2

I
∂W

∂J3
+ 2

I
∂W

∂J4
, (4.21)

β3 = 3

I
∂W

∂ tr(τ3)
=

I
∂W

∂Iτ 3

. (4.22)

Using (4.14) and (4.19) and the Cayley–Hamilton theorem (see Appendix 5) we can rewrite the

restriction (4.18) in the form

tr(ετ ) = (γ0 +
I

W ) tr ε + γ1 tr(ετ ) + γ2 tr(ετ
2) for every τ and ε, (4.23)

where γ0, γ1 and γ2 are functions of α1, ..., α9, β1, β2, β3, Iτ 1 , Iτ 2 and Iτ 3 . Since (4.23) has to hold

for every τ and ε (for more details see the supplementary material of (31)), we obtain the three

equations

γ0 = −
I

W , γ1 = 1 and γ2 = 0, (4.24)

which can be written in matrix form as

M ·

⎛
⎝

β1

β2

β3

⎞
⎠ =

⎛
⎜⎝

−
I

W

1

0

⎞
⎟⎠ , (4.25)

where the matrix M depends only on α1, ..., α9, Iτ 1 , Iτ 2 and Iτ 3 (the entries of M are given explicitly

in Appendix C.1). Since β1, β2 and β3 depend on
I

W , the above gives three linear partial differential
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A NEW RESTRICTION FOR INITIALLY STRESSED ELASTIC SOLIDS 469

equations for the single variable
I

W . This implies that if α1, ...α9 are unrestricted,
I

W is over-

prescribed. Hence, the only way to satisfy (4.25) is to restrict α1, ..., α9, as we show in the following

section.

4.3 The case of small initial stress

Our goal is to expand the linearised stress (4.14) for small ‖τ‖, where ‖ · ‖ can be the Frobenius

norm, and then use linear ISRI (4.18), or equivalently (4.24), to restrict the coefficients of the stress.

To achieve this we need to expand linear ISRI up to higher orders in ‖τ‖, as potentially some of

these terms may restrict our linearised stress. For more details on linearising functions of isotropic

invariants, see (51).

Our approach is to take the (4.24) and expand for small ‖τ‖ and neglect O(‖τ‖3) terms. With

reference to (4.23), we note that γ1 multiplies an O(‖τ‖) term and γ2 multiplies an O(‖τ‖2) term.

Therefore, it is only necessary to expand γ1 up to O(‖τ‖) and γ2 up to O(‖τ‖0). Upon doing so, we

obtain

β1 (α1 + 3α2 + α3 tr τ ) + β2

(
α2 tr τ + α3 tr(τ 2)

)
+ β3α2 tr(τ 2) = −

I
W , (4.26)

β1 (3(α3 + 1) + α6 tr τ + 2α8) + β2 (α1 + (α3 + 1) tr τ ) = 1, (4.27)

2β1α9 + 2β2α8 + β3α1 = 0. (4.28)

Next, we expand α1, ..., α9 and neglect O(‖τ‖2) terms:

αi = αi0 + αi1 tr τ + αi2(tr τ )2 + αi3 tr(τ 2) for i = 1, 2, ..., 9, (4.29)

where the αij, for i = 1, ...9, j = 0, ..., 3, are constants. We also expand
I

W up to O(‖τ‖3):

I
W = ψ0 + ψ1 tr τ + ψ2(tr τ )2 + ψ3 tr(τ 2) + ψ4(tr τ )3 + ψ5 tr τ tr(τ2) + ψ6 tr(τ 3), (4.30)

where ψ0, ..., ψ6 are constants and we immediately choose ψ0 = 0 since we expect

lim
τ→0

I
W = 0. (4.31)

Upon substituting (4.30) into (4.20)–(4.22), we can obtain β1, β2 and β3 expanded up to O(‖τ‖2),

O(‖τ‖1) and O(‖τ‖0), respectively, which can then be substituted into (4.26)–(4.28). We then solve

the resulting system of equations for the parameters αij and ψi, where we note that the stress tensor

of an initially stressed material must generalise that derived from classical linear elasticity. In other

words, when τ → 0 we must have

δσ = α10ε + α20I tr(ε), where α10 = 2µ and α20 = λ, (4.32)
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where λ and µ are the first and second Lamé parameters, respectively. Using (4.32), the final system

of equations simplifies to the following conditions:

ψ1 = 0, ψ2 = −
λ

12κµ
, ψ3 =

1

4µ
, (4.33)

ψ4 =
2λ2(3α11 − 2α80) + 2λµ(4α11 + 4α30 + 3) − 8µ2α21

216κ2µ2
, (4.34)

ψ5 =
λ(2α80 − 3α11) − 2µ(α11 + α30 + 1)

24κµ2
, ψ6 = −

α80

6µ2
, (4.35)

α80 =
2µα30 − 3κα11

2λ
, (4.36)

where κ = λ + 2µ/3 is the bulk modulus of the material under consideration. (4.36) relates α80 to

λ, µ, α11 and α30, and therefore reduces the number of free parameters in the system by one. We

now use the above to write the linearised Cauchy stress in terms of the strain and initial stress:

δσ = τ + ωτ − τω + I tr(ετ ) + 2(µ + µ1 tr τ )ε + (λ + λ1 tr τ )I tr(ε)

+ η (τ tr(ε) + I tr(ετ )) +

(
µη

λ
−

3κµ1

2λ

)
(ετ + τε),

(4.37)

where we have renamed α11 = 2µ1, α21 = λ1 and α30 = η and all the parameters in the equation

above are constants. Equation (4.37) differs from the stress tensor first deduced in (19) because of

the restriction given in (4.36). The parameters above may be further restricted by considerations

such as strong-ellipticity (53, 54), but ultimately, they can be determined by ultrasonic, indentation

or hole drilling experiments.

4.3.1 Initially stressed neo-Hookean models. If (2.34) and (2.35) are expanded for small τ , they

can be solved for K1 and K2, which have the same series expansion up to order one in τ :

K1 = K2 = 1 +
Iτ 1

3κ
+ O(τ 2). (4.38)

Equation (4.38) can then be substituted into (4.15) and (4.16) to obtain

α1 = 2µ −
2(λ + µ)

3κ
Iτ 1 + O(τ 2), α2 = λ −

λ

3κ
Iτ 1 + O(τ 2), (4.39)

for the first model, and

α1 = 2µ −
2(λ + µ)

3κ
Iτ 1 + O(τ 2), α2 = λ +

2λ

3κ
Iτ 1 + O(τ 2). (4.40)

for the second. Therefore, for both models, we have

α10 = 2µ, α11 = −
2(λ + µ)

3κ
, α20 = λ α30 = −1, and α80 = 1, (4.41)
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which satisfy (4.36), as required. The linearised stress tensors associated with the two models are

δσGSC1 = τ + ωτ − τω − τ tr(ε) + 2

(
µ −

λ + µ

3κ
tr τ

)
ε (4.42)

+

(
λ −

λ

3κ
tr τ

)
I tr(ε) + ετ + τε, (4.43)

and

δσGSC2 = τ + ωτ − τω − τ tr(ε) + 2

(
µ −

λ + µ

3κ
tr τ

)
ε (4.44)

+

(
λ +

2λ

3κ
tr τ

)
I tr(ε) + ετ + τε. (4.45)

5. Discussion

Many constitutive choices in the literature of the form W := W (F, τ ) do not satisfy the ISRI

restrictions (2.12) and (4.18) presented in this article. In Section 2.1, we gave an example of how these

constitutive choices may lead to unphysical behaviour even for simple deformations such as uniaxial

extension. This is also true of more complex deformations. Taking an example from biomechanics,

where residual stresses play a crucial role, suppose we wish to model the mechanics of an arterial

wall that supports an internal pressure. Let us choose two different reference configurations: first,

the unloaded configuration where the fluid in the artery has been removed, and second, the opening

angle configuration (60, 30) where the fluid has been removed and the artery has been cut along its

axis. Both these configurations are subject to no external loads, but there will be less (and differently

distributed) internal stress in the opening angle configuration. If we use a strain energy function

W (F, τ ) that does not satisfy ISRI, then each of the two reference configurations will lead to a

different stress distribution in the intact, inflated configuration of the arterial wall. We therefore

cannot believe the preditions from either reference configuration since a physically correct model

should not give different results due to an arbitrary choice of reference configuration.

By using ISRI, we were able to derive a restricted form for the linear elastic stress tensor (4.37) in

the case of small initial stress. This reduced form may ultimately improve material characterisation

based on ultrasonic and indentation experiments. Many studies (see (19) and the references therein)

have confirmed that a linearised stress tensor of the form given in (4.37) is well-suited to fitting

experimental data.

One outstanding problem for metals (55), biological soft tissues and other materials (56) is the

difficulty in differentiating between the effects of structural anisotropy (57) and anisotropy caused

by initial stress. The linear form of ISRI given in (4.18) will help to differentiate between these

effects, as it dictates a specific dependency of the elastic stress on the initial stress. Nevertheless,

future work should focus on developing the consequences of ISRI for materials with structural

anisotropy. This will be particularly important for collagenous soft tissues, which are known to be

structurally anisotropic due to the presence of collagen fibres (58, 59). Initial stresses in soft tissues

can be significant (60, 25, 46), so assuming a small initial stress may not give accurate predictions.

Currently, the internal stress in soft tissues is often measured by excising a sample and then estimating

its initial deformation from a theoretically stress-free configuration. To measure stress in-vivo, non-

invasive techniques need to be improved. Ultrasound techniques are among the most suitable and
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promising methods for measuring initial stress (61, 62), and the ISRI restrictions could ultimately

improve them.
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APPENDIX A

A.1 Deduction of the strain energy function WGCD

The strain energy function (2.22) was first derived in (31). Here, an alternative derivation is presented by

considering deformations of an incompressible neo-Hookean material from a stress-free configuration B0 to

the stressed configurations B and B (see Fig. A1 and compare with Fig. 2).

The neo-Hookean strain energy function is given by

WNH = µ(I1 − 3), (A.1)

where µ is the ground state shear modulus of the material under consideration. Upon substituting (A.1) into

(2.18) with WI3
= 0 (because the material is incompressibile) and then taking F = F0 and F = F1, it follows

that

τ = µB0 − p0I and σ = µB1 − p1I, (A.2)

where B0 = F0FT
0

, B1 = F1FT
1

and p0 and p1 are the Lagrange multipliers associated with the two respective

deformations. By rearranging (A.2)1 and taking the determinant of both sides, the following is obtained:

det(µB0) = det(τ + p0I) ⇔ µ3 = p3
0 + p2

0Iτ 1 + p0Iτ 2 + Iτ 3 , (A.3)

where det(B0) = 1 because the material is incompressible. Only one of the three roots of the above polynomial

is physically meaningful (31) and it is given by (2.23). Using F1 = FF0, (A.2)2 gives

σ = µFB0F
T

− p1I. (A.4)

The aim is to derive an initially stressed strain energy function that gives (A.4) with B as the reference

configuration. For simplicity, it is assumed that the strain energy function depends only upon I1, J1 and the
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Fig. A1 Deformation of an incompressible neo-Hookean material from a stress-free configuration B0 to the

stressed configurations B and B

three initial stress invariants Iτ 1 , Iτ 2 and Iτ 3 . Making this assumption and substituting F = F into (2.18) with

WI3
= 0, it follows that

σ = σ (F, τ ) = 2W1B + 2WJ1
FτF

T
− pI (A.5)

= 2W1B + 2WJ1
(µFB0F

T
− p0B) − pI. (A.6)

For equation (A.6) to be equivalent to (A.4), the following equations must be satisfied:

2W1 = p0, 2WJ1
= 1, p = p1. (A.7)

The third of these equations does not tell us anything about the required functional form of W ; however, upon

solving the first two, the following is obtained:

W =
1

2
(p0(Iτ 1 , Iτ 2 , Iτ 3 )I1 + J1) + f (Iτ 1 , Iτ 2 , Iτ 3 ), (A.8)

where f is an arbitrary function of Iτ 1 , Iτ 2 and Iτ 3 . Upon choosing f (Iτ 1 , Iτ 2 , Iτ 3 ) = − 3
2
µ, the final form

of the strain energy function (2.22) is obtained. This choice ensures that the energy derived using the initially

stressed strain energy function is the same as that obtained by considering a direct deformation of a neo-Hookean

material from the stress-free configuration.

All that remains is to prove that, when using WGCD, the third equation of (A.7) holds. Equations (A.2)1 and

(A.4) can be rearranged to give

p0I = µB0 − τ and p1I = µFB0F
T

− σ , (A.9)

respectively. Multiplying the first of these equations on the left by F and on the right by F
T

, and upon substituting

equation (A.8) into equation (A.5) and equation (A.5) into equation (A.9)2, we obtain

p0B = µFB0F
T

− FτF
T

(A.10)
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and

p1I = µFB0F
T

− p0B + pI − FτF
T
, (A.11)

respectively. Then substituting (A.10) into (A.11), we obtain

p1I = pI ⇒ p1 = Wp, (A.12)

as required.

APPENDIX B

B.1 Tensor identities

The Cayley–Hamilton theorem allows us to determine which tensors are independent. It states that any 3 × 3

tensor A satisfies

A3 − IA1
A2 + IA2

A − IA3
I = 0, (B.1)

where IA1
, IA2

and IA3
are the invariants of A analagous to Iτ 1 , Iτ 2 and Iτ 3 for τ . From (B.1), we can see that

any power of τ higher than two can be rewritten in terms of τ
2, τ , I and the invariants Iτ 1 , Iτ 2 and Iτ 3 .

We will now show that tr(τ2
ε) and τετ , τ

2
ετ + τετ

2 can be written as combinations of terms already

present in (4.8). First substitute A = ε + γ τ in (B.1), where γ is an arbitrary scalar. Since the resulting equation

must hold for every γ , each coefficient multiplying a different power of γ must be zero individually. The term

multiplying γ 2 is given by

τετ + ετ
2 + τ

2
ε − (ετ + τε)Iτ 1 − τ

2 tr ε + τ (Iτ 1 tr ε − tr(ετ )) + εIτ 2

+ I(Iτ 1 tr(τε) − Iτ 2 tr ε − tr(ετ
2)) = 0. (B.2)

By taking the trace of both sides of this equation (and using the properties tr(A + B) = tr A + tr B and

tr(AB) = tr(BA)) we establish that tr(τ2
ε) is indeed a combination of the terms already present in (4.8). The

same can then be said for τετ directly from (B.2), and for τ
2
ετ + τετ

2 by multiplying (B.2) on the left by τ .

APPENDIX C

C.1 The entries of the matrix M

The entries of the matrix M are as follows:

M11 = α1 + 3α2 + α3 tr τ , M12 = α2 tr τ + α3 tr(τ2) + 2α9Iτ 3 , (C.1)

M13 = α2 tr(τ2) + α3 tr(τ3) + 2α8Iτ 3 + 2α9Iτ 1 Iτ 3 , (C.2)

M21 = 3(α3 + 1) + α6 tr τ + 2α8, (C.3)

M22 = α1 + (α3 + 1) tr τ + α6 tr(τ2) − 2α9Iτ 2 , (C.4)
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M23 = (α3 + 1) tr(τ2) + α6 tr(τ3) − 2α8Iτ 2 + 2α9(Iτ 3 − Iτ 1 Iτ 2 ), (C.5)

M31 = 2α9, M32 = 2α8 + 2α9 tr τ , (C.6)

M33 = α1 + 2α8 tr τ + 2α9 tr(τ2). (C.7)
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