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Mixing times for exclusion processes on hypergraphs*

Stephen B. Connor† Richard J. Pymar‡

Abstract

We introduce a natural extension of the exclusion process to hypergraphs and prove

an upper bound for its mixing time. In particular we show the existence of a constant

C such that for any connected, regular hypergraph G within some natural class, the

ε-mixing time of the exclusion process on G with any feasible number of particles

can be upper-bounded by CTEX(2,G) log(|V |/ε), where |V | is the number of vertices

in G and TEX(2,G) is the 1/4-mixing time of the corresponding exclusion process with

just two particles. Moreover we show this is optimal in the sense that there exist

hypergraphs in the same class for which TEX(2,G) and the mixing time of just one

particle are not comparable. The proofs involve an adaptation of the chameleon

process, a technical tool invented by Morris ([14]) and developed by Oliveira ([15]) for

studying the exclusion process on a graph.
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1 Introduction

Let G = (V,E) be a finite connected graph with vertex set V and edge set E.

Fix k ∈ {1, . . . , |V |} and consider k indistinguishable particles moving on V using the

following rules:

1. each vertex is occupied by at most one particle,

2. each edge e ∈ E rings at the times of a Poisson process of rate 1, independently of

all other edges,
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Mixing times for exclusion processes on hypergraphs

3. when an edge e = {u, v} rings, the occupancy states of vertices u and v are

switched.

For each v ∈ V and t ≥ 0, let ηt(v) = 1 if v is occupied at time t, and ηt(v) = 0 if v is

vacant at time t. The process (ηt)t≥0 is called the k-particle exclusion process on G: see

Figure 1. In this paper we are interested in a natural extension of the exclusion process

to hypergraphs.

Figure 1: Example transition of 3-particle exclusion process on K5. When the edge

indicated rings, the single particle currently on that edge moves to the vertex at the

other end of the edge.

Let G = (V,E) be a finite connected hypergraph, where E ⊆ P(V ), the power set

of V . For each e ∈ E, denote by Se the symmetric group on the elements in e, and let

fe : Se → [0, 1] be a probability measure on Se. We write f to denote {fe : e ∈ E}, the

set of these measures. Consider k indistinguishable particles moving on V using rules 1.

and 2. above and in addition:

3′. when an edge e rings, a permutation σ ∈ Se is chosen according to fe and every

particle on a vertex in e moves simultaneously according to σ, i.e. a particle

at vertex v moves to vertex σ(v). (Note that as σ is a permutation, rule 1. is

preserved.)

Setting ηt(v) = 1 if v is occupied at time t and 0 otherwise, we obtain a process (ηt)t≥0

referred to as the k-particle exclusion process on (f,G), or simply EX(k, f,G): see Figure

2. (Note that if each edge e ∈ E contains exactly two vertices, and fe puts all of its

mass on the transposition belonging to Se, then EX(k, f,G) is just the k-particle exclusion

process on the graph G, as above.)

Figure 2: Example transition of 3-particle exclusion process on a hypergraph with 5

vertices and 3 edges (indicated by the different shaded regions, i.e. here there are two

edges of size 3 and one of size 4). When the edge containing four vertices rings, the two

particles currently belonging to that edge are permuted.

Our main aim in this paper is to study the total-variation mixing time of EX(k, f,G),

and to establish an upper bound in terms of the mixing time of EX(2, f,G). Recall that

for a continuous-time Markov process X on a finite set Ω with transition probabilities

{qt(x, y)} and equilibrium distribution π, the total variation ε-mixing time is defined as

TX(ε) := inf

{
t ≥ 0 : max

x∈Ω
‖qt(x, ·)− π‖TV ≤ ε

}
, (1.1)
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Mixing times for exclusion processes on hypergraphs

where ‖ · ‖TV is the total-variation norm.

In several parts of the proof it will be useful to consider the associated process where

the k particles are distinguishable. Suppose the particles are labelled 1, . . . , k and set

η̂t(v) to be the label of the particle at vertex v at time t. If there is no particle at v

at time t, set η̂t(v) = 0. The process (η̂t)t≥0 is the k-particle interchange process on

(f,G), or simply IP(k, f,G). Note that the exclusion process may be recovered from the

interchange process simply by ‘forgetting’ the labels of the particles.

Throughout we will make the following assumptions about the hypergraph G and the

set of measures f (with notation appearing below being formally defined in Section 2.1).

Assumption 1.1.

1. The hypergraph G is regular (every vertex has the same degree).

2. For every e, fe is constant on the conjugacy classes of Se (i.e. in group-theoretic

terms, fe is a class function). That is, if σ1 and σ2 are elements from Se with the

same cycle structure, then fe(σ1) = fe(σ2).

3. For every e and each v ∈ e,
∑

σ∈Se
fe(σ)1{σ(v)=v} ≤ 1/5. In other words, the

probability (under fe) of a vertex v ∈ e being a fixed point of σ is at most 1/5.

4. The interchange process IP(k, f,G) is irreducible for any number of particles

k ∈ {1, . . . , |V | − 1}.

These assumptions are more than enough to imply that the exclusion process is

reversible and ergodic, with uniform stationary distribution. Although we state it as an

assumption on f , the fourth assumption also implies that the underlying hypergraph G

is connected. Our main theorem is the following:

Theorem 1.2. There exists a universal constant C > 0 such that for every (f,G) satisfy-

ing Assumption 1.1 and every k ∈ {1, . . . , |V | − 1} and ε > 0,

TEX(k,f,G)(ε) ≤ C log(|V |/ε)TEX(2,f,G)(1/4).

Remark 1.3. In all further statements we implicitly assume that Assumption 1.1 holds.

Remark 1.4. The exclusion process on a hypergraph G with the edge set E consisting

only of edges of size 2 or 3 exhibits the negative correlation property (which we shall

discuss further in the sequel). As a result, for this subset of hypergraphs we can

actually extend the main theorem, replacing the TEX(2,f,G)(1/4) appearing in the right-

hand side by TEX(1,f,G)(1/4) (note that we later refer to EX(1, f,G) as RW(1, f,G), in

recognition that the exclusion process with just one particle is equivalent to a single

particle performing a random walk).

Remark 1.5. A simple example suffices to show that Theorem 1.2 is optimal in the sense

that we cannot replace TEX(2,f,G)(1/4) on the right-hand side with TEX(1,f,G)(1/4) (even

under our standing assumptions). Let G = (V,E) with V = {1, 1′, 2, 2′, . . . ,m,m′} and

E = {{i, i′, j, j′} : i 6= j}. Suppose that f{1,1′,2,2′}(σ) = 1/6 if σ is a cycle of size 4 (and

otherwise f{1,1′,2,2′}(σ) = 0). For {i, i′, j, j′} 6= {1, 1′, 2, 2′}, we set f{i,i′,j,j′}(σ) = 1/3 if σ

is a composition of two disjoint transpositions (and otherwise f{i,i′,j,j′}(σ) = 0). It can

be readily checked that this hypergraph satisfies Assumption 1.1. Note that there are(
m
2

)
edges, each ringing at rate 1. It is easy to see that a random walker mixes in time

of order 1/m since each vertex is in order m edges. Now consider a 2-particle exclusion

process started from {3, 3′}. Notice that up until the first time that both particles occupy

vertices belonging to the edge {1, 1′, 2, 2′}, if vertex i is occupied then vertex i′ is also

occupied. So the process cannot mix until the edge {1, 1′, 2, 2′} is visited by the particles.

Regardless of where the particles are before this time, there are always two edges that
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can ring which would bring the particles to the set {1, 1′, 2, 2′}, and so this happens at rate

2; we conclude that it takes a time of order 1 for the 2-particle exclusion process to mix.

1.1 Motivation and connections with the literature

Our results contribute to the general question of when properties of a multi-particle

system can be deduced from properties of a system with only a few particles. Arguably

the most significant recent result in this area has come from Caputo, Liggett and

Richthammer ([3]) who showed that the spectral gap of the interchange process on a

graph is equal to the spectral gap of a random walker on the same graph, proving a

conjecture of Aldous that had been open for 20 years. Proving results in this area is

particularly important in applications since the large reduction in the size of the state

space often makes it much easier to compute or estimate statistics.

While interacting particle system models (e.g. exclusion process, interchange process,

voter model, contact process, zero range process) on graphs have received considerable

attention, there has so far been little study of such processes on hypergraphs. Studying

these processes on hypergraphs is very natural though, as hypergraphs allow simultane-

ous interactions of multiple particles, rather than only pair-wise interactions. One model

for which its analogue on hypergraphs has been recently studied is the voter model

([4, 8]), for which various properties are considered, including the mixing time.

Any interchange process (with k = |V |) on a graph can be viewed as a card shuffle

by transpositions, and there is now an extensive literature concerning mixing times

of such shuffles. Notable examples include the top-to-random transposition shuffle

(star graph; [6]), random-to-random transposition shuffle (complete graph; [5]) and

nearest-neighbour transposition shuffle (the cycle; [9]). Of course, transposition shuffles

are just one class of shuffle, and there is significant interest in mixing times of more

general shuffles in which multiple cards are moved simultaneously. A large class of time-

homogeneous shuffles can be represented as interchange processes on hypergraphs;

recent examples can be found in [2] and [7].

Achieving tight bounds on the mixing time of an interacting particle system typically

involves finding an argument tailored specifically to the model in question. If we care

less about the specific constant multiple (at which mixing occurs) and instead focus on

the order, a result of Oliveira ([15]) can prove particularly useful as a general way of

bounding mixing times of exclusion processes:

Theorem 1.6 ([15]). There exists a constant C > 0 such that for every connected

weighted graph G and every k ∈ {1, . . . , |V | − 1} and ε ∈ (0, 1/2),

TEX(k,G)(ε) ≤ C log(|V |/ε)TRW(G)(1/4) ,

where TRW(G)(1/4) is the mixing time of the random walk on G.

Our main result extends Theorem 1.6 to a class of hypergraphs. Furthermore, our

results hold for a large class of measures acting on the symmetric group S|V | which goes

beyond the standard framework studied by previous authors, in which a conjugacy class

is fixed and then sampled from uniformly (e.g. [13, 2]). Indeed, our measures fe can

vary dramatically between edges e ∈ E, and furthermore we do not require each fe to

be supported on a fixed conjugacy class.

1.2 Heuristics and structure of the proof

The proof of Theorem 1.2 depends on the size of the vertex set V . If |V | is sufficiently

small, the proof is fairly simple and we state the result as the following lemma:

Lemma 1.7. There exists a constant C > 0 such that for every hypergraph G = (V,E)
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with |V | < 36, every f and every k ∈ {1, . . . , |V |/2} and ε > 0,

TEX(k,f,G)(ε) ≤ C log(1/ε)TEX(2,f,G)(1/4).

On the other hand, the argument for |V | ≥ 36 is much more intricate and is split into

two parts, the first being the following lemma which is of independent interest (and is

stronger than needed for our main theorem, as it relates to the interchange process):

Lemma 1.8. There exists a constant C > 0 such that for every hypergraph G = (V,E)

with |V | ≥ 36, every f and every k ∈ {1, . . . , |V |/2} and ε > 0,

TIP(k,f,G)(ε) ≤ C log(|V |/ε)TEX(4,f,G)(1/4).

Oliveira ([15]) proves his main result (bounding the mixing time of the k-particle

exclusion process by the mixing time of a random walker) by first relating the mixing

time of a k-particle interchange process to that of a 2-particle interchange process.

Roughly speaking, this is possible due to the fact that any time an edge of the graph

under consideration rings, at most two particles move under interchange, and so it is

pairwise interactions that determine the mixing rate. This contrasts with the exclusion

process on hypergraphs considered here, in which many particles can move at the same

time. Nevertheless, a suitable adaptation of the techniques appearing in [15] provides

the proof of Lemma 1.8.

Remark 1.9. Lemma 1.8 only holds when |V | is sufficiently large and k ≤ |V |/2. We

cannot hope to remove these conditions and replace EX(4, f,G) with EX(2, f,G) in this

statement, even for hypergraphs satisfying Assumption 1.1, as the following example

illustrates. Let G = (V,E) with V = {1, 2, 3} and E = {V }, i.e. there is just a single edge

which contains all three vertices in the hypergraph. Suppose that f gives probability 1−δ

to the conjugacy class of 3-cycles, and probability δ to the class of transpositions. For δ

sufficiently small this satisfies Assumption 1.1. The 2-particle interchange process cannot

mix until a transposition is chosen (as half of the states cannot be reached before this

time), whereas this event is not necessary for the 2-particle exclusion process to mix, and

hence it is straightforward to see that as δ → 0 we have TIP(2,f,G)(1/4)/TEX(2,f,G)(1/4) →

∞.

The second part of the proof for |V | ≥ 36 requires showing that TEX(4,f,G) and

TEX(2,f,G) are of the same order:

Lemma 1.10. There exists a constant λ > 0 such that for any hypergraph G with

|V | ≥ 36, and f ,

TEX(4,f,G)(1/4) ≤ λTEX(2,f,G)(1/4).

We now demonstrate that Theorem 1.2 follows simply from Lemmas 1.7, 1.8 and 1.10.

Proof of Theorem 1.2. The contraction principle (see [1]) gives

TEX(k,f,G)(ε) ≤ TIP(k,f,G)(ε) ,

and so provided k ≤ |V |/2, we have the result for |V | ≥ 36 by Lemmas 1.8 and 1.10

and for |V | < 36 by Lemma 1.7. However, note that switching the roles of occupied and

unoccupied vertices in EX(k, f,G) yields the process EX(|V | − k, f,G). It follows that

TEX(k,f,G)(ε) = TEX(|V |−k,f,G)(ε) ,

and so the proof of Theorem 1.2 is complete.
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We finish this section with a brief overview of the rest of the paper. In Section 2 we

define formally the processes considered in this paper and present some preliminary

results. In addition, we demonstrate that the negative correlation property, which is

fundamental to the result in [15], fails to hold for the hypergraph setting. In Section 3

we prove Lemma 1.8 subject to the existence of a process with certain key properties

that relate it to an interchange process: see Lemma 3.1 for the precise statement. This

process is constructed in Section 6 and we show it has the desired properties in Section 7.

Proving Lemma 3.1 is the most challenging (and technical) part of this paper.

In Section 4 we prove Lemma 1.10 by first characterizing every hypergraph as one of

two types depending on how long it takes any two of four independent particles to meet.

We use some of the ideas developed in Section 4 to prove Lemma 1.7 in Section 5. A

few of the more technical proofs required are included in two appendices.

2 Preliminaries

2.1 Random walks, exclusion and interchange processes

We formally define the main processes studied in this paper, RW(f,G), RW(k, f,G),

EX(k, f,G) and IP(k, f,G), by explicitly stating their generators. In the next section we

shall present a graphical construction of these processes, similar to that of Liggett ([12])

for the standard interchange and exclusion processes. This graphical construction will

allow us to simultaneously define the processes on the same probability space, and thus

directly compare them.

Recall Se as the group of permutations of elements in e. Our processes of interest

evolve by the action of permutations from these groups. However, it will often be

convenient to consider permutations as acting on V and we can easily do this by

extending a permutation σe ∈ Se to a permutation in SV by setting σe(v) = v for all

v /∈ e. We can also consider such permutations as acting on a subset of V or on vectors

with elements being distinct members of V . To do this we can define, for a set A ⊆ V ,

σe(A) := {σe(a) : a ∈ A}, and for a vector x of k distinct elements of V we define

σe(x) := (σe(x(i)))
k
i=1.

Set notation: For k ∈ N we define

(
V

k

)
:= {A ⊆ V : |A| = k},

and for a set A ⊆ V we write

(A)k := {a = (a(1), . . . ,a(k)) ∈ Ak : a(i) 6= a(j) ∀i 6= j}.

Generators: We now explicitly state the generators of the processes. For a hyper-

graph G and a suitable set of functions f , the simple random walk on G, RW(f,G), is the

continuous-time Markov chain with state space V and generator

URWh(u) =
∑

e∈E

∑

σ∈Se

fe(σ)(h(σ(u))− h(u))

for all u ∈ V and h : V → R.

We denote by RW(k, f,G) the product of k independent random walkers on G. This

process is the continuous-time Markov chain with state space V k and generator

URW(k)h(u) =
∑

e∈E

k∑

i=1

∑

σ∈Se

fe(σ)(h(u
i
σ(u(i)))− h(u)),
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for all u ∈ V k and h : V k → R, where

ui
v(j) =

{
u(j) j 6= i,

v j = i.

The k-particle exclusion process EX(k, f,G), is the continuous-time Markov chain with

state space
(
V
k

)
and generator

UEXh(A) =
∑

e∈E

∑

σ∈Se

fe(σ)(h(σ(A))− h(A)),

for all A ∈
(
V
k

)
and h :

(
V
k

)
→ R.

The k-particle interchange process IP(k, f,G), is the continuous-time Markov chain

with state space (V )k and generator

U IPh(x) =
∑

e∈E

∑

σ∈Se

fe(σ)(h(σ(x))− h(x)),

for all x ∈ (V )k and h : (V )k → R.

2.2 Graphical construction

We first construct an independent sequence of E-valued random variables {en}n∈N
such that each en is identically distributed with P [en = e] = 1/|E|. Given the sequence

{en}n∈N, let {σn}n∈N be a sequence of permutations with σn ∈ Sen independently chosen

and satisfying for each n ∈ N, and e ∈ E, P [σn = σ| en = e] = fe(σ). Now that we have

the sequence of edges that ring and the permutations to apply, it remains to determine

the update times of the processes.

Let Λ be a Poisson process of rate |E| and for 0 < s < t denote by Λ[s, t] the

number of points of Λ in [s, t]. For every 0 < s < t, we define a random permutation

I[s,t] : V → V associated with the time interval [s, t] to be the composition of the

permutations performed during this time; that is,

I[s,t] = σeΛ[0,t]
◦ σeΛ[0,t]−1

◦ · · · ◦ σeΛ[0,s)+1
.

We set It := I[0,t] for each t > 0, and I(t,t] to be the identity. Note (cf Proposition 3.2 of

[15]) that

L[I(s,t]] = L[I−1
(s,t]] , (2.1)

where we write L for the law of a process.

We can lift the functions I[s,t] to functions on
(
V
k

)
and (V )k in the following way: for

A ∈
(
V
k

)
,

I[s,t](A) = {I[s,t](a) : a ∈ A},

and for x ∈ (V )k,

I[s,t](x) = (I[s,t](x(1)), . . . , I[s,t](x(k))).

The following proposition is fundamental: its proof follows by inspection.

Proposition 2.1. Fix s > 0. Then:

1. For each u ∈ V , the process {I[s,s+t](u)}t≥0 is a realisation of RW(f,G) initialised

at u at time s. We shall often write this process simply as (uRW
t )t≥s.

2. For each A ∈
(
V
k

)
, the process {I[s,s+t](A)}t≥0 is a realisation of EX(k, f,G) ini-

tialised at A at time s. We shall often write this process simply as (AEX
t )t≥s.

3. For each x ∈ (V )k, the process {I[s,s+t](x)}t≥0 is a realisation of IP(k, f,G) ini-

tialised at x at time s. We shall often write this process simply as (xIP
t )t≥s.
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2.3 Total variation and mixing times

There are several equivalent definitions of total variation that we shall make use of in

this paper. Suppose µ and ν are two probability measures on the same finite set Ω. Then

the total variation distance between these measures is defined as

‖µ− ν‖TV := max
A⊂Ω

(µ(A)− ν(A)) (2.2)

= sup
f :Ω→[0,1]

∫
fdµ−

∫
fdν. (2.3)

We shall also make extensive use of the following equivalent definition, which relates the

total variation distance to couplings of µ and ν:

‖µ− ν‖TV = inf
(X,Y )

P [X 6= Y ] , (2.4)

where the infimum is over all couplings (X,Y ) of random variables with X ∼ µ and

Y ∼ ν. We recall a simple result bounding the total variation of product chains (see e.g.

pg 59 of [10]): for n ∈ N and 1 ≤ i ≤ n, let µi and νi be measures on a finite space Ωi

and define measures µ and ν on
∏n

i=1 Ωi by µ :=
∏n

i=1 µi and ν :=
∏n

i−1 νi. Then

‖µ− ν‖TV ≤

n∑

i=1

‖µi − νi‖TV. (2.5)

Recall equation (1.1) as the definition of the mixing time of a continuous-time Markov

process. We will require several general mixing-time bounds throughout this work,

which we present here.

Proposition 2.2 ([10]). Let X be a Markov process on a finite state space. Then for

every ε1, ε2 ∈ (0, 1/2),

TX(ε2) ≤

⌈
log ε2

log(2ε1)

⌉
TX(ε1).

Proposition 2.3. For any m,n ∈ N,

TRW(2m,f,G)(2
−n) ≤ (n+m)TRW(f,G)(1/4).

Proof. This follows by combining Proposition 2.2 with (2.5).

Proposition 2.4 ([1]). Let X be a Markov process on a finite state space Ω with sym-

metric transition rates. Then the equilibrium distribution is uniform over Ω and for all

0 < ε < 1/2 and t ≥ 2TX(ε),

P [Xt = ω2|X0 = ω1] ≥
(1− 2ε)2

|Ω|
,

for all ω1, ω2 ∈ Ω.

2.4 Failure of negative correlation

We conclude this preliminary section with a quick example to demonstrate that the

exclusion process on a hypergraph does not enjoy the negative correlation property

satisfied by the exclusion process on a graph. We first recall the version of the negative

correlation property of the exclusion process on a graph to which we refer, and whose

proof may be found in [11]. Let B ⊂ V and let (AEX
t )t≥0 be a 2-particle exclusion

process on a graph G = (V,E) with A = {u, v}. Suppose (uRW
t )t≥0 and (vRWt )t≥0 are two
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independent realisations of RW(1, f,G), started from u and v respectively. Then for every

t ≥ 0,

P
[
AEX

t ⊆ B
]
≤ P

[
uRW
t ∈ B

]
P
[
vRWt ∈ B

]
.

Now suppose G = (V,E) is the hypergraph with V = {1, 2, 3, 4} and E = {V } (i.e.

there is only one edge), and that f is concentrated uniformly on the six possible 4-cycles.

Let (AEX
t )t≥0 be a realisation of EX(2, f,G), with A = {u, v} = {1, 2}, and let B = {3, 4}.

We claim that there exist values of t such that

P
[
uRW
t ∈ B, vRWt ∈ B

]
< P

[
AEX

t = B
]
. (2.6)

Indeed, since the event {uRW
t ∈ B} is less likely than seeing at least one incident in a

unit-rate Poisson process by time t, we have

P
[
uRW
t ∈ B, vRWt ∈ B

]
= P

[
uRW
t ∈ B

]
P
[
vRWt ∈ B

]
≤ (1− e−t)2.

On the other hand, the event {AEX
t = B} is at least as likely as the edge ringing exactly

once by time t, with the chosen permutation satisfying σ({1, 2}) = {3, 4}. That is,

P
[
AEX

t = B
]
≥

1

3
te−t.

Inequality (2.6) is therefore satisfied for any t < 0.33.

3 From k-particle interchange to 4-particle exclusion

In this section we shall prove Lemma 1.8. Given a hypergraph with vertex set V and

a (k − 1)-tuple z ∈ (V )k−1, let

O(z) := {z(1), . . . , z(k − 1)}

be the (unordered) set of coordinates of z and define a space

Ωk(V ) := {(z, R, P,W ) : z ∈ (V )k−1, and sets O(z), R, P, W partition V }.

As we shall see, most of the work required to prove Lemma 1.8 is to show the

existence of a certain Markov process having some key properties, which we outline

in the Lemma 3.1 below. As we shall see in the sequel, this Markov process is very

similar to the chameleon process used in [15] and it provides a way of tracking how

mixed the kth particle is in a k-particle interchange process. The kth particle is replaced

by three sets of coloured particles, Rt (red particles), Pt (pink particles) and Wt (white

particles), with the colours informing the conditional distribution of the kth particle in

the interchange process. A process (inkxt (b))t≥0 is defined for each vertex b ∈ V , which

records the amount of redness at vertex b (equal to 1 if a red particle is at vertex b and

1/2 if a pink particle is at vertex b). We shall also define an event Fillx as the event

that all vertices unoccupied by the first k − 1 particles in the interchange process are

eventually each occupied by a red particle in the chameleon process.

Lemma 3.1. There exist constants c1, c2 and κ1 such that for every regular hypergraph

G = (V,E) with |V | ≥ 36, every f , every k ∈ {2, . . . , |V |/2}, every x = (z, x) ∈ (V )k, and

every realisation (xIP
t )t≥0 of IP(k, f,G) started from state x, there exists a continuous-

time Markov process (Mt)t≥0 := (zCt , Rt, Pt,Wt)t≥0 with state-space Ωk(V ) defined on

the same probability space as (xIP
t )t≥0 satisfying:

1. (zIPt )t≥0 = (zCt )t≥0 almost surely;
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2. for every t ≥ 0 and b = (c, b) ∈ (V )k,

P
[
xIP
t = b

]
= E

[
inkxt (b)1{zC

t =c}

]
,

where inkxt (b) := 1{b∈Rt} +
1
21{b∈Pt};

3. for every t ≥ 0 and j ∈ N,

E

[
1−

inkxt
|V | − k + 1

∣∣∣Fillx
]
≤ c1

√
|V |e−c2j + exp

{
j −

t

κ1 TEX(4,f,G)(1/4)

}

where inkxt :=
∑

b∈V inkxt (b) and Fillx := {limt→∞ inkxt = |V | − k + 1};

4. for every t ≥ 0 and c ∈ (V )k−1,

P
[
{zCt = c} ∩ Fillx

]
=

P
[
zCt = c

]

|V | − k + 1
.

The proof of Lemma 3.1 is deferred to Section 7 and is a proof by construction:

in Section 6 we will explicitly define a process and then proceed to show that it has

the desired properties. We can now relate the total-variation distance between two

realisations of IP(k, f,G) to a certain expectation involving the amount of ink in the

chameleon process M in the statement of Lemma 3.1. The following result is similar

to Lemma 6.1 of [15]: we include a sketch of the proof to highlight the importance of

constructing in Section 6 a chameleon process satisfying part 2 of Lemma 3.1.

Lemma 3.2. For every t ≥ 0,

sup
x,y∈(V )k

‖L[xIP
t ]− L[yIP

t ]‖TV ≤ 2k sup
w∈(V )k

E

[
1−

inkwt
|V | − k + 1

∣∣∣Fillw
]

Proof. Fix x = (z, x) ∈ (V )k with z ∈ (V )k−1, and denote by xIP
t an interchange process

started from x. Let x̃ be uniform from V \O(z) and denote by x̃IP
t an interchange process

started from x̃ = (z, x̃). Then for any b = (c, b) ∈ (V )k,

P
[
x̃IP
t = b

]
=

P
[
zIPt = c

]

|V | − k + 1
=

P
[
zCt = c

]

|V | − k + 1
= P

[
{zCt = c} ∩ Fillx

]
,

where the second and third equalities follow from parts 1 and 4 of Lemma 3.1, respec-

tively. On the other hand, part 2 of Lemma 3.1 gives

P
[
xIP
t = b

]
= E[inkxt (b)1{zC

t =c}] ≥ E[inkxt (b)1{{zC
t =c}∩Fillx}].

Subtracting we obtain

P
[
x̃IP
t = b

]
− P

[
xIP
t = b

]
≤ E[(1− inkxt (b))1{{zC

t =c}∩Fillx}].

Hence

‖L[xIP
t ]− L[x̃IP

t ]‖TV ≤
∑

(c,b)∈(V )k

E[(1− inkxt (b))1{{zC
t =c}∩Fillx}]

= E[(|V | − k + 1− inkxt )1{Fillx}]

= E

[
1−

inkxt
|V | − k + 1

∣∣∣Fillx
]
.

The result now follows by repeated application of the triangle inequality, as in the proof

of Lemma 6.1 of [15].
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Proof of Lemma 1.8. We combine part 3 of Lemma 3.1 with Lemma 3.2 to give for every

t ≥ 0 and j ∈ N,

sup
x,y∈(V )k

‖L[xIP
t ]− L[yIP

t ]‖TV ≤ 2k

{
c1
√

|V |e−c2j + exp

{
j −

t

κ1TEX(4,f,G)(1/4)

}}
,

for some universal positive constants c1, c2 and κ1. We choose

j =

⌊
t

(1 + c2)κ1TEX(4,f,G)(1/4)

⌋
,

which gives the bound (using k ≤ |V |),

sup
x,y∈(V )k

‖L[xIP
t ]− L[yIP

t ]‖TV ≤ c3|V |3/2 exp

{
−c2t

(1 + c2)κ1TEX(4,f,G)(1/4)

}
,

for some positive c3. Therefore there exists a universal constant C such that for any

ε ∈ (0, 1/2) and t > CTEX(4,f,G)(1/4) log(|V |/ε),

sup
x,y∈(V )k

‖L[xIP
t ]− L[yIP

t ]‖TV ≤ ε.

4 From 4-particle exclusion to 2-particle exclusion

In this section we shall prove Lemma 1.10. We begin by characterizing every con-

nected hypergraph in terms of how long it takes two independent random walkers on

the hypergraph to arrive onto the same edge, which then rings for one of the walkers

– a time we shall refer to as the meeting time of the two walkers (note that we do not

require the two walkers to actually occupy the same vertex). It will be useful to consider

such times, as we will be able to couple two independent walkers with a 2-particle

interchange process, up until this meeting time (see Proposition 4.7 for this statement).

Formalising this, for y ∈ V 2, let (yRW
t )t≥0 be a realisation of RW(2, f,G) with yRW

0 = y.

Denote by Λ1 and Λ2 the Poisson processes used to generate the edge-ringing times for

the two particles, and let {e1n}n∈N and {e2n}n∈N be the two sequences of edge-choices

(all as in Section 2.2). Define MRW(y) to be the first time yRW
t (1) and yRW

t (2) are in the

same edge which then rings in one of the processes:

MRW(y) := inf
{
t > 0 : ∃e ∈ {e1Λ1[0,t], e

2
Λ2[0,t]} with yRW

t− (1),yRW
t− (2) ∈ e

}
. (4.1)

Definition 4.1. We say that a hypergraph G is easy if

sup
y∈V 2

P
[
MRW(y) > 1010TEX(2,f,G)(1/4)

]
≤ 1/1000.

Remark 4.2. We note that this definition is similar to Definition 4.1 in [15], from where

we borrow the dichotomy “easy/non-easy”. However, for the case of hypergraphs, this

characterisation does not reflect the associated difficulty of dealing with each case! One

difference in the case of hypergraphs is that at the meeting time we cannot guarantee

that the two independent walkers occupy the same site, and this results in the analysis

being more challenging.

4.1 From 4-particle exclusion to 2-particle exclusion: easy hypergraphs

We present a preliminary result which shows that we can couple two k-particle

exclusion processes initially sharing k − 1 occupied vertices such that, with positive

probability, at the meeting time of the kth particles the two processes will agree, given
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the kth particles meet on an edge of size at least 5 and the permutation chosen at this

meeting time does not fix the kth particles.

Let Λ be a Poisson process of rate 2|E| (i.e. twice the usual rate), with associated

edge-choices {en}n∈N and permutations {σn}n∈N as in Section 2.2. In addition, let

{θn}n∈N be an i.i.d. sequence of Bernoulli(1/2) random variables: these will be used to

thin the events of Λ and ensure that all particles are moving at the correct rate. We write

Λ̂ for the thinned Poisson process obtained from Λ by removing all points corresponding

to θn = 0. Let Ît be constructed from Λ̂ as in Section 2.2. We make this modification as it

allows us to more easily compare a certain time to the meeting time of two independent

random walkers as defined in (4.1).

Lemma 4.3. Let D ∈
(

V
k−1

)
, a, b ∈ V \D and A = D ∪ {a}, B = D ∪ {b}. Let (AÊX

t )t≥0

and (BÊX
t )t≥0 be two realisations of EX(k, f,G) started from A and B respectively and

evolving according to Ît. Let

τa,b := inf{t ≥ 0 : Ît(a), Ît(b) ∈ eΛ[0,t]} ,

and write ea,b for eΛ[0,τa,b] and σa,b for σΛ[0,τa,b]. Write also a∗ for Î[0,τa,b)(a) and b∗ for

Î[0,τa,b)(b). Then there exist two other realisations of EX(k, f,G) denoted (AẼX
t )t≥0 and

(BEX
t )t≥0 which start and evolve identically to (AÊX

t )t≥0 and (BÊX
t )t≥0 respectively up to

time τa,b− but which satisfy, on the event

{σa,b(a
∗) 6= a∗} ∩ {|ea,b| > 4},

with probability at least 2
25 , A

ẼX
t = BEX

t for all t ≥ τa,b.

Proof. We define two events which will be used to determine the coupling strategy of

the processes (AẼX
t )t≥0 and (BEX

t )t≥0 at time τa,b:

J1(σa,b) =
{
σa,b(a

∗) /∈ {a∗, b∗}, σa,b(b
∗) /∈ {a∗, b∗}

}

J2(σa,b) = J1(σa,b) ∩
{∣∣Îτa,b−(D) ∩ σa,b(a

∗)
∣∣ =

∣∣Îτa,b−(D) ∩ σa,b(b
∗)
∣∣
}
.

In words, J1(σa,b) is the event that the permutation σa,b moves the set of two ‘special’

particles (those initially at vertices a and b) to a new set of positions; event J2(σa,b)

further specifies that the two positions to which σa,b moves the special particles should

either both contain another particle (i.e. one of the already-matched k − 1 particles) or

both be empty.

With this notation in place, we can describe the coupling at time τa,b:

(i) if θa,b = 0 then we do not update the processes at time τa,b;

(ii) if θa,b = 1 but event J2(σa,b) fails to hold, then we apply permutation σa,b in both

processes;

(iii) if θa,b = 1 and event J2(σa,b) holds, we update the ‘A’ process with permutation

σa,b and the ‘B’ process with permutation σa,b, where

σa,b = σa,b ◦
(
σa,b(a

∗) σa,b(b
∗)
)(
σ2
a,b(a

∗) σ2
a,b(b

∗)
)
.

(Here and throughout we use the convention that composition of permutations

corresponds to multiplication on the right: σ ◦ ρ = ρσ.)

Figure 3 demonstrates the relationship between σa,b and σa,b in the simple case where

σa,b is a single cycle. To show that this is a valid coupling, it suffices to show that in case

(iii) the permutation σa,b belongs to the same conjugacy class as σa,b, and that there is a
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Figure 3: The left/right image shows the state of the process on edge ea,b at time τa,b−

in the ‘A’/‘B’ process. Also indicated are the permutations σa,b and σa,b which are to be

applied in case (iii).

bijection between the two permutations. By inspection, the cyclic decomposition of σa,b

is obtained from that of σa,b just by exchanging the elements σa,b(a
∗) and σa,b(b

∗), and

so both permutations belong to the same conjugacy class. Moreover, there is a bijection

between them since

σa,b(a
∗) = σa,b(b

∗) and σa,b(b
∗) = σa,b(a

∗) ,

and so J1(σa,b) = J1(σa,b) and J2(σa,b) = J2(σa,b).

Furthermore, it follows from the above analysis that our coupling strategy in case

(iii) gives σa,b(a
∗) = σ̃a,b(b

∗), and furthermore, σa,b(Îτa,b−(D)) = σa,b(Îτa,b−(D)). Thus in

order to complete this proof, we need to show that

P [θa,b = 1, J2(σa,b) |σa,b(a
∗) 6= a∗}, {|ea,b| > 4] ≥ 2/25.

We have

P [J1(σa,b) | σa,b(a
∗) 6= a∗, |ea,b| > 4]

= P [σa,b(a
∗) /∈ {a∗, b∗} | σa,b(a

∗) /∈ a∗, |ea,b| > 4]

· P [σa,b(b
∗) /∈ {a∗, b∗} | σa,b(a

∗) /∈ {a∗, b∗}, |ea,b| > 4] .

Using parts 2 and 3 of Assumption 1.1) this becomes

P [J1(σa,b) | σa,b(a
∗) 6= a∗, |ea,b| > 4]

≥
4

5

(
1− P [σa,b(b

∗) = b∗]−
1− P [σa,b(b

∗) = b∗]

4

)
≥

12

25
.

Therefore,

P [θa,b = 1, J2(σa,b) | σa,b(a
∗) 6= a∗, |ea,b| > 4]

=
1

2
P [J1(σa,b) | σa,b(a

∗) 6= a∗, |ea,b| > 4]

· P [J2(σa,b) | J1(σa,b), σa,b(a
∗) 6= a∗, |ea,b| > 4]

≥
6

25
P [J2(σa,b) | J1(σa,b), σa,b(a

∗) 6= a∗, |ea,b| > 4] .
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But conditioned on J1(σa,b) and {σa,b(a
∗) 6= a∗, |ea,b| > 4} both holding, J2(σa,b) is the

event that two of the positions in ea,b not containing a∗ or b∗ either both contain a

matched particle or are both empty; since |ea,b| ≥ 5 this probability is at least 1/3, thanks

to part 2 of Assumption 1.1, and so our proof is complete.

We now present the main result of this section.

Lemma 4.4. There exists κ > 0 such that for any easy hypergraph G, any f and

0 < ε < 1/2,

TEX(k,f,G)(ε) ≤ κ log(1/ε)TEX(k−1,f,G)(1/4),

for any 3 ≤ k ≤ |V |/2 if |V | < 36 and any k ∈ {3, 4} if |V | ≥ 36.

In this section we will make use of this lemma only for the case |V | ≥ 36, but this

result will later be used in its full form when dealing with the case of |V | < 36: see

Section 5. The proof uses a coupling argument for two realisations of EX(k, f,G).

Proof. For U = {u1, . . . , uk}, W = {w1, . . . , wk} ∈
(
V
k

)
, let (UEX

t )t≥0 and (W ẼX
t )t≥0 be

two realisations of EX(k, f,G) started from U and W respectively. We define the two

processes on a common probability space, and will show how to couple them in such

a way that we can lower-bound the probability that UEX
κT = W ẼX

κT for some κ > 0 to be

determined, where T := TEX(k−1,f,G)(1/4). The result will then follow by applying (2.4).

We begin by allowing the two processes to evolve independently up to time 10T . Then,

for any S ⊂
(
V
k

)
and t ≥ 0, we have

P
[
UEX
10T+t ∈ S

]
− P

[
W ẼX

10T+t ∈ S
]
= E

[
P
[
UEX
10T+t ∈ S|UEX

10T

]
− P

[
W ẼX

10T+t ∈ S|W ẼX
10T

]]

≤ E

[
‖L[UEX

10T+t |U
EX
10T ]− L[W ẼX

10T+t |W
ẼX
10T ]‖TV

]
,

where the inequality follows from (2.2). Maximizing over S and again using (2.2) gives

‖L[UEX
10T+t]− L[W ẼX

10T+t]‖TV ≤ E

[
‖L[UEX

10T+t |U
EX
10T ]− L[W ẼX

10T+t |W
ẼX
10T ]‖TV

]
. (4.2)

By the Markov property, for any A,B ∈
(
V
k

)
,

‖L[UEX
10T+t |U

EX
10T = A]− L[W ẼX

10T+t |W
ẼX
10T = B]‖TV = ‖L[AEX

t ]− L[BẼX
t ]‖TV

≤ P

[
AEX

t 6= BẼX
t

]
, (4.3)

for any coupling of (AEX
t )t≥0 and (BẼX

t )t≥0, by (2.4), and where L[·|·] denotes a condi-

tional law.

Recall from Section 2.2 the construction of the permutation It for each t ≥ 0. For any

A,B ∈
(
V
k

)
, let a and b be two uniformly and independently chosen elements of A and B,

respectively. Given a, consider now the k-particle process (Aa
t )t≥0 = (It(a), It(A\{a}))t≥0

which evolves in the same way as the exclusion process begun at A, but with the label

of the particle started from position a being tracked. Thus (Aa
t )t≥0 can be thought of

as something ‘between’ an exclusion process (in which no labels are tracked) and an

interchange process (in which all labels are tracked). It’s clear that the k − 1 particles

initially at vertices in A\{a} behave marginally as an exclusion process, while the particle

started from a behaves (again marginally) as a random walk on G. Furthermore, the

exclusion process (AEX
t )t≥0 can be recovered from (Aa

t )t≥0 simply by ‘forgetting’ which

position is occupied by the ‘special’ particle starting from a, i.e. AEX
t = {It(a), It(A\{a})}.

In a similar manner, for given b and another permutation-valued process (Ĩt)t≥0, we also

define the process (B̃b
t )t≥0 = (Ĩt(b), Ĩt(B \ {b}))t≥0.
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Over the time period [0, 10T ] we couple the processes (Aa
t )t≥0 and (B̃b

t )t≥0 using a

maximal coupling of the (k − 1)-particle exclusion processes It(A \ {a}) and Ĩt(B \ {b}).

(Recall that a maximal coupling is one which achieves equality in the coupling inequality

(2.4). This maximal coupling is actually more than is needed here; we will only be

interested in the state of the processes at time 10T .) By Proposition 2.2 we have

TEX(k−1,f,G) (1/500) ≤

⌈
log
(

1
500

)

log
(
1
2

)
⌉
T < 10T. (4.4)

Given the choice of a and b, let Fa,b denote the event that the other (k− 1) particles have

coupled by time 10T , i.e. Fa,b =
{
I10T (A \ {a}) = Ĩ10T (B \ {b})

}
. Using this maximal

coupling it follows from (4.4) that P [Fa,b] ≥ 499/500. Combining this with equations

(4.2) and (4.3) we see that for any K ∈ N,

‖L[UEX
(20+K)T ]− L[W ẼX

(20+K)T ]‖TV

≤
∑

A,B∈(Vk)

P

[
UEX
10T = A, W ẼX

10T = B
]
P

[
AEX

(10+K)T 6= BẼX
(10+K)T

]

=
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]
P

[
AEX

(10+K)T 6= BẼX
(10+K)T

]

≤
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]

·
∑

a∈A
b∈B

1

k2

(
1− P [Fa,b] + P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b

])

≤
1

500
+

∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b

]
,

(4.5)

where the equality is thanks to the independence of U and W over [0, 10T ].

From (4.5) we see that we now need to upper bound the probability that (AEX
t )t≥0 and

(BẼX
t )t≥0 do not agree by time (10 +K)T , on the event Fa,b. As pointed out above, this

event is equivalent (on Fa,b) to the locations of the k particles in Aa
(10+K)T and B̃b

(10+K)T

not agreeing.

We shall bound this probability by coupling the processes (Aa
10T+t)t≥0 and (B̃b

10T+t)t≥0

in the following manner. Recall the Poisson process Λ of rate 2|E| at the start of

Section 4.1 with associated edge-choices {en}n∈N, permutations {σn}n∈N, and Bernoulli

(1/2) random variables {θn}n∈N (used to thin the events of Λ). Prior to a time τa,b defined

below we evolve (Aa
10T+t)t≥0 and (B̃b

10T+t)t≥0 by applying permutation σn to edge en (in

both processes) at the nth incident time of Λ if and only if θn = 1, so formally we have for

each 0 ≤ t < τa,b,

Aa
10T+t = Ît

(
I10T (a), I10T (A \ {a})

)
, B̃b

10T+t = Ît
(
Ĩ10T (b), Ĩ10T (B \ {b})

)
.

Note that, since we use a common set of innovations over the period [10T, 10T + τa,b), on

event Fa,b we have D := Îτa,b−(I10T (A\{a})) = Îτa,b−(Ĩ10T (B \{b})); that is, the locations

of the k − 1 unlabelled particles of Aa and B̃b still agree at time τa,b−. By the Markov

property, on event Fa,b we can thus write

Aa
10T+t = Ît(I10T (a), D), B̃b

10T+t = Ît
(
Ĩ10T (b), D).
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We define τa,b to be the first time that the ‘special’ particles initially at a and b are in

a common edge which then rings (note this has a slightly different definition from τa,b
defined in the statement of Lemma 4.3):

τa,b := inf{t ≥ 0 : Ît(I10T (a)), Ît(Ĩ10T (b)) ∈ eΛ[0,t]} .

Note that the processes (Ît(I10T (a)))t≥0 and (Ît(Ĩ10T (b)))t≥0 when viewed marginally

behave as independent random walks over the period [0, τa,b), and so τa,b has the same

distribution as the meeting time MRW(I10T (a), Ĩ10T (b)) in (4.1).

To determine how to couple the processes at time τa,b we partition the probability

space according to the following four sets (for someK ∈ N which is yet to be determined),

denoting Îτa,b−(I10T (a)) by a∗ for ease of readability:

E1
a,b := {τa,b > KT},

E2
a,b := {τa,b ≤ KT, σa,b(a

∗) = a∗},

E3
a,b := {τa,b ≤ KT, σa,b(a

∗) 6= a∗, |ea,b| > 4},

E4
a,b := {τa,b ≤ KT, σa,b(a

∗) 6= a∗, |ea,b| ≤ 4}.

For the first two cases, we shall not specify the coupling, as it does not matter how

we update the processes at time τa,b. First, for the case of E1
a,b, we have

∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b, E

1
a,b

]

≤
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P
[
E1

a,b

]
≤ max

a,b
P
[
E1

a,b

]
. (4.6)

Second, for the case of E2
a,b, we have

∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b, E

2
a,b

]

≤
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P [σa,b(a

∗) = a∗]

=
∑

a,b∈V

1

k2
P [σa,b(a

∗) = a∗]P
[
a ∈ UEX

10T

]
P

[
b ∈ W ẼX

10T

]

≤
k2

|V |2

∑

a,b∈V

1

k2
P [σa,b(a

∗) = a∗] + ‖L[(a, b)RW10T ]−Unif(V 2)‖TV (4.7)

≤
1

|V |2

∑

a,b∈V

P [σa,b(a
∗) = a∗] +

2

500
, (4.8)

where the penultimate inequality uses (2.1) and (2.3) and the last inequality uses (2.5),

(4.4) and the contraction principle.

Third, conditioned on the event E3
a,b and Fa,b, by Lemma 4.3 we can couple the
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processes so that Îτa,b
(I10T (A)) = Îτa,b

(Ĩ10T (B)) with probability at least 2/25, giving

∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b, E

3
a,b

]

≤
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
23

25
P [σa,b(a

∗) 6= a∗, |ea,b| > 4]

≤
2

500
+

23

25|V |2

∑

a,b∈V

P [σa,b(a
∗) 6= a∗, |ea,b| > 4] , (4.9)

where the last inequality is obtained in the same way as (4.8).

Our fourth and final case to consider is E4
a,b: on this event a simple case-by-case

analysis (sketched in Appendix A) shows that as long as there are no other (already

matched) particles on edge ea,b at time τa,b− (i.e. |Îτa,b−(I10T (A))∩ ea,b| = 1), there exists

a bijection between permutations σa,b and σ̃a,b such that σ̃a,b is a permutation with the

same cycle structure as σa,b, and such that with probability at least 1/2

σa,b

(
Îτa,b−(I10T (a))

)
= σ̃a,b

(
Îτa,b−(Ĩ10T (b))

)
.

That is, in this situation we are able to make the locations of all k particles of AEX
(10+K)T

and BẼX
(10+K)T agree with probability at least 1/2:

P

[
AEX

(10+K)T = BẼX
(10+K)T , Fa,b, E

4
a,b

]
≥

1

2
P

[
|Îτa,b−(I10T (A)) ∩ ea,b| = 1, Fa,b, E

4
a,b

]
.

We use a union bound to control the probability of the complement and write c∗ for

Îτa,b−(I10T (c)) and b∗ for Îτa,b−(Ĩ10T (b)). We have

∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b, E

4
a,b

]

≤
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]

·
∑

a∈A
b∈B

1

2k2

(
P
[
E4

a,b

]
+ P

[
|Îτa,b−(I10T (A)) ∩ ea,b| > 1, a∗ 6= b∗, E4

a,b

])

≤
∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]

·
∑

a∈A
b∈B

1

2k2


P

[
E4

a,b

]
+

∑

c∈A\{a}

P
[
c∗ ∈ ea,b, c

∗ 6= b∗, a∗ 6= b∗, E4
a,b

]



=
∑

a,b∈V

∑

c 6=a

1

2k2



P

[
E4

a,b

]

k − 1
+ P

[
c∗ ∈ ea,b, c

∗ 6= b∗, a∗ 6= b∗, E4
a,b

]



·
∑

A⊃{a,c}
B⊃{b}

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]
. (4.10)

We now upper bound this using (2.1) and (2.3) (using the same method as in (4.7)). This
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gives the following upper bound for (4.10):

2

500
+

k2(k − 1)

|V |2(|V | − 1)

∑

a,b∈V

∑

c 6=a

1

2k2



P

[
E4

a,b

]

k − 1
+ P

[
c∗ ∈ ea,b, c

∗ 6= b∗, a∗ 6= b∗, E4
a,b

]



≤
2

500
+

1

2|V |2

∑

a,b∈V

P
[
E4

a,b

]

+
k − 1

2|V |2(|V | − 1)

∑

a,b∈V

∑

c 6=a

P
[
c∗ ∈ ea,b, c

∗ 6= b∗, a∗ 6= b∗, E4
a,b

]

≤
2

500
+

1

2|V |2

∑

a,b∈V

P
[
E4

a,b

]
+

k − 1

|V |2(|V | − 1)

∑

a,b∈V

P
[
E4

a,b

]
,

since, on the event E4
a,b, the size of edge ea,b is at most four and so on the event

{a∗ 6= b∗} for any choice of ea,b there are only two possibilities for the value of c (since

c∗ /∈ {a∗, b∗} ⊂ ea,b}). This gives

∑

A,B∈(Vk)

P
[
UEX
10T = A

]
P

[
W ẼX

10T = B
]∑

a∈A
b∈B

1

k2
P

[
AEX

(10+K)T 6= BẼX
(10+K)T , Fa,b, E

4
a,b

]

≤
2

500
+

1

|V |2

(
1

2
+

k − 1

|V | − 1

) ∑

a,b∈V

P [σa,b(a
∗) 6= a∗, |ea,b| ≤ 4] . (4.11)

We now combine the bounds in (4.5), (4.6), (4.8), (4.9) and (4.11) to see that

‖L[UEX
(20+K)T ]− L[W ẼX

(20+K)T ]‖TV ≤
7

500
+ max

a,b
P
[
E1

a,b

]
+

1

|V |2

∑

a,b

P [σa,b(a
∗) = a∗]

+
1

|V |2
max

{
23

25
,
1

2
+

k − 1

|V | − 1

}∑

a,b

P [σa,b(a
∗) 6= a∗] .

By assumption, k ≤ |V |/2 if |V | < 36 and k ∈ {3, 4} if |V | ≥ 36, and so

max

{
23

25
,
1

2
+

k − 1

|V | − 1

}
≤

33

34

for all possible combinations of k and |V | being considered here. Combining this bound

with that in Assumption 1.1, we obtain:

‖L[UEX
(20+K)T ]− L[W ẼX

(20+K)T ]‖TV ≤
7

500
+ max

a,b
P
[
E1

a,b

]
+

1

5

(
1 + 4 ·

33

34

)
.

But since τa,b has the same distribution as MRW(I10T (a), Ĩ10T (b)), and G is an easy

hypergraph,

max
a,b

P
[
E1

a,b

]
= max

a,b
P [τa,b > KT ] ≤ max

a,b
P
[
MRW(a, b) > KT

]
≤

1

1000

provided K ≥ 1010. Therefore,

‖L[UEX
1011T ]− L[W ẼX

1011T ]‖TV ≤
8

500
+

1

5

(
1 + 4 ·

33

34

)
<

497

500
.

Finally, by submultiplicativity of the function

d̄(t) := max
U,W∈(Vk)

‖L[UEX
t ]− L[W ẼX

t ]‖TV
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(see e.g. Lemma 4.12 of [10]), we deduce that

‖L[UEX
1014 log(1/ε)T ]− L[W ẼX

1014 log(1/ε)T ]‖TV <

(
497

500

)1000 log(1/ε)

< ε ,

and so the statement of Lemma 4.4 is proved upon taking κ = 1014.

Proof of Lemma 1.10 for easy hypergraphs. We simply apply Lemma 4.4 for the case

|V | ≥ 36 twice, first with k = 4 and then with k = 3 (and take ε = 1/4 both times). We

deduce that

TEX(4,f,G)(1/4) ≤ κ2(log 4)2TEX(2,f,G)(1/4),

and so it suffices to take λ = κ2(log 4)2.

4.2 From 4-particle exclusion to 2-particle exclusion: non-easy hypergraphs

We begin with a result showing that for non-easy hypergraphs the average meeting

time for two independent random walkers is unlikely to be quick. Intuitively, this follows

from the following observations. We know there exists a pair of vertices such that

random walkers started from these two states likely take a long time to meet. If we

look at where these two walkers are at time of order TRW(f,G)(1/4), they will be close to

uniform. Hence, starting random walkers from a uniform pair we see that they will likely

still take a long time to meet. The proofs of Lemmas 4.5 and 4.6, and of Proposition 4.7

are (somewhat technical) extensions of corresponding results of [15], and can be found

in Appendix B.

Lemma 4.5. For every non-easy hypergraph we have

∑

u∈V 2

P
[
MRW(u) ≤ 20T

]

|V |2
≤

1

1000
.

Given a k-tuple z ∈ (V )k, we once again write O(z) := {z(1), . . . , z(k)} for the (un-

ordered) set of coordinates of z. For x ∈ V 4, let xRW
t be a realisation of RW(4, f,G) with

xRW
0 = x. Denote by Λ1,Λ2,Λ3,Λ4 the (independent) Poisson processes used to generate

the edge-ringing times for the four random walkers, and let {e1n}n∈N, {e
2
n}n∈N, {e

3
n}n∈N,

{e4n}n∈N be the four sequences of edge-choices (all as in Section 2.2).

We now define M̄RW(O(x)) to be the first time any two of xRW
t (1), xRW

t (2), xRW
t (3),

xRW
t (4) first arrive onto the same edge which then rings for one of them. Formally,

M̄RW(O(x)) := inf
{
t ≥ 0 : ∃ 1 ≤ i < j ≤ 4, e ∈ {eiΛi[0,t], e

j
Λj [0,t]}

with xRW
t− (i),xRW

t− (j) ∈ e
}
.

Lemma 4.6. Let x ∈ (V )4. Then for any ε ∈ (0, 1),

P
[
M̄RW(O(x)EX

20T ) ≤ 20T
]
≤ 12(ε+ ε−12−20) + 25(1 + ε)

∑

u∈V 2

P
[
MRW(u) ≤ 20T

]

|V |2

Next, we provide a bound which relates the total-variation distance between two

4-particle exclusion processes to the probability that any two of four independent walkers

have ‘met’.

Proposition 4.7. For any x ∈ (V )4 and s ≥ 0:

‖L[O(xRW
s )]− L[O(x)EX

s ]‖TV ≤ P
[
M̄RW(O(x)) ≤ s

]
.
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Lemma 4.8. For every non-easy hypergraph G and any two realisations of EX(4, f,G),

denoted {AEX
t } and {BEX

t }, we have

‖L[AEX
40T ]− L[BEX

40T ]‖TV ≤ P
[
M̄RW(AEX

20T ) ≤ 20T
]
+ P

[
M̄RW(BEX

20T ) ≤ 20T
]
+ 2−18.

Proof. By Proposition 4.7 and the triangle inequality for total-variation, for any u,v ∈

(V )4,

‖L[O(u)EX
20T ]− L[O(v)EX

20T ]‖TV ≤ P
[
M̄RW(O(u)) ≤ 20T

]
+ P

[
M̄RW(O(v)) ≤ 20T

]

+ ‖L[O(uRW
20T )]− L[O(vRW

20T )]‖TV. (4.12)

An identical argument to that used for equation (4.2) tells us that

‖L[AEX
40T ]− L[BEX

40T ]‖TV ≤ E
[
‖L[AEX

40T |AEX
20T ]− L[BEX

40T |BEX
20T ]‖TV

]
.

Applying the inequality in (4.12), with any u,v satisfying O(u) = AEX
20T and O(v) = BEX

20T ,

gives

‖L[AEX
40T ]− L[BEX

40T ]‖TV ≤ E
[
P
[
M̄RW(AEX

20T ) ≤ 20T |AEX
20T

] ]

+ E
[
P
[
M̄RW(BEX

20T ) ≤ 20T |BEX
20T

] ]

+ sup
u,v∈(V )4

‖L[uRW
20T ]− L[vRW

20T ]‖TV .

Using Proposition 2.3 and the contraction principle for the third term on the right-hand

side gives the desired result.

We are now ready to prove the main result of this subsection.

Proof of Lemma 1.10 for non-easy hypergraphs. We in fact show that for any two reali-

sations of EX(4, f,G), denoted {AEX
t } and {BEX

t }, we have

‖L[AEX
40T ]− L[BEX

40T ]‖TV ≤ 1/4.

Combining Lemmas 4.6 and 4.8 we have that for every ε ∈ (0, 1),

‖L[AEX
40T ]− L[BEX

40T ]‖TV ≤ 24(ε+ ε−12−20) + 50(1 + ε)
∑

u∈V 2

P
[
MRW(u) ≤ 20T

]

|V |2
+ 2−18.

Now by Lemma 4.5, this becomes

‖L[AEX
40T ]− L[BEX

40T ]‖TV ≤ 24(ε+ ε−12−20) +
50(1 + ε)

1000
+ 2−18.

Setting ε = 10−3 completes the proof.

5 From k-particle exclusion to 2-particle exclusion for small |V |

We now prove Lemma 1.7. We begin by showing that any hypergraph G with |V | < 36

satisfies

sup
y∈V 2

P
[
MRW(y) > 1010TRW(f,G)(1/4)

]
≤ 1/1000, (5.1)

i.e. the hypergraph G is easy. Indeed, by Proposition 2.4, for any t ≥ 2TRW(f,G)(ε),

sup
y∈V 2

P
[
MRW(y) < t

]
≥

(1− 2ε)2

|V |
≥

(1− 2ε)2

36
,
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and so

sup
y∈V 2

P
[
MRW(y) > 2000TRW(f,G)(1/4)

]
≤ 1/1000,

which certainly implies (5.1). Since G is easy, we can apply Lemma 4.4 multiple times to

deduce that

TEX(k,f,G)(ε) ≤ κk−2(log(1/4))k−3 log(1/ε)TEX(2,f,G)(1/4).

However, since |V | < 36 and k ≤ |V |/2 the statement of the proof is complete taking

C = κ15(log(1/4))14.

6 The chameleon process

Our aim in this section is to construct a continuous-time Markov process which

satisfies the properties of (Mt)t≥0 outlined in Lemma 3.1. We will call this process the

chameleon process. In Section 7 we will prove Lemma 3.1 by demonstrating that the

chameleon process does indeed have the desired properties.

The chameleon process was originally constructed (in a different form but to serve

a similar purpose) by Morris ([14]), and then adapted by Oliveira ([15]) to analyse

the mixing time of the k-particle interchange process on a graph (as opposed to on a

hypergraph, as we consider here). It is built on top of an underlying interchange process,

with the aim of helping to describe the distribution of the location of the kth particle in

this process, conditional on the locations of the k − 1 other particles.

Unlike in a k-particle interchange process which always has k particles, the chameleon

process has |V | particles (one at each vertex), although not all particles are distinguish-

able from each other. In addition, each particle has an associated colour: one of black,

red, pink and white (which correspond to the processes zCt , Rt, Pt, Wt respectively,

appearing in the statement of Lemma 3.1). The movement of particles in the chameleon

process follows that of the underlying interchange process in the sense that the locations

of particles in both processes are updated using the same functions I as described in

the graphical construction of Section 2.2. At some of the updates of the underlying

interchange process we will colour some of the red and white particles pink (precisely

when this happens is rather involved and is the subject of Section 6.2). To provide some

insight into when these pinkening events occur, consider the chameleon process of

[15]: here, if the vertices at the endpoints of a ringing edge are occupied by a red and

a white particle then both of these particles are recoloured pink. In the lazy version

of the interchange process on a graph (in which nothing happens with probability 1/2

when an edge rings), when an edge rings with endpoints occupied by a red and a white

particle, with probability 1/2 they switch places and with probability 1/2 they do not

move. Colouring both particles pink (which should be viewed as half red, half white)

encodes the fact that at either vertex just after the edge rings we may have a red particle

or a white particle, and these are equally likely.

We wish to use this notion of pinkening to encode similar events in the interchange

process on hypergraphs, but the situation here is quite different since more than two

particles are moved when an edge rings, and the way in which they move depends

on the permutation chosen. As a result, describing precisely when these pinkenings

occur for our version of the chameleon process is rather complicated, but the underlying

motivation can be explained relatively simply. As in Oliveira’s argument we will use

pink particles as a way of tracking particles which are either red or white (equally

likely). Whereas Oliveira could make use of laziness to split the conditional distribution

among two sites, when dealing with hypergraphs we have to use a new idea of a “twin”

permutation. Suppose that an edge e rings and a permutation σ is chosen to move
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the particles on that edge. To decide which particles to pinken, we construct a twin

permutation σ̃ with the property that the trajectories of all black particles in the edge

are identical under both permutations (a required property – see part 1 of Lemma 3.1),

and such that, viewed marginally, the distribution of σ̃ agrees with that of σ. We then

look for vertices v such that under σ a red particle is moved to v and under σ̃ a white

particle is moved to v; a certain subset of these particles will be pinkened. The simplest

example to consider is that of an edge of size 3 which contains one red, one white and

one black particle, and for which fe is constant on Se. In this case, it is straightforward

to construct a twin permutation with these required properties, and the construction is

sketched in Figure 4.

Figure 4: Consider an edge of size 3, containing one red, one white and one black

particle, and for which fe is constant on Se. The six possible permutations are sketched

here: in this example the twin of any given permutation σ could be taken to be the

permutation immediately above/below σ. Note that in each case the black particle

follows the same trajectory under both σ and its twin; moreover, if σ moves a red/white

particle to a vertex v, then its twin moves a white/red particle to v. In this simple example

we could therefore pinken the red and white particles, no matter which σ is chosen.

Although this example demonstrates one possibility for generating twin permutations

with our desired properties, this is very particular to the situation in which fe is constant

on Se – a much stronger condition than we are imposing in Assumption 1.1. In general,

we shall make use of the fact that fe is constant on conjugacy classes to construct a twin

permutation σ̃ with the same cycle structure as σ. (Note that the twin permutations

constructed in Figure 4 do not have the same cycle structure as σ, and so we shall need

to come up with an alternative method of pinkening, even when considering edges of

size 3.) Figure 5 gives an indication of how σ̃ will be produced from knowledge of σ and

the particle colours in the case of σ being a single cycle: by modifying the trajectories of

four particular particles we are able to ensure that not only does σ̃ have the same cycle

structure as σ, but that the trajectories of all black particles in the edge are identical

under both permutations. It is for this reason (i.e. needing to know the colours of four

particular particles) that we are able to relate the mixing time of k particles to that of

just four particles in Lemma 1.8.

The chameleon process also updates at additional times (compared to its correspond-

ing interchange). We refer to these additional updates as depinkings, as at these times

we get the opportunity to collectively recolour all pink particles in the system either red

or white. As in [15], we will only perform a depinking once there are a large number of

pink particles (compared to the number of red and white) in the system.
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Figure 5: If σ is the cycle given by the arrows in the image on the left, then one possible

candidate for σ̃ is the cycle given by the arrows in the image on the right. Note that all

black particles follow the same trajectories under both cycles, and that the colour of

σ̃(v) agrees with that of σ(v) for all v.

6.1 Twin permutations

The first step towards constructing the chameleon process is describing how to

generate the twin permutation σ̃ from σ, which is the subject of this section. We begin

with the case of σ being either a product of disjoint transpositions or a single cycle (of

size at least 3), and then describe how to construct σ̃ for a general permutation σ. We

conclude the section by describing an algorithm to generate a certain set A which plays

a crucial role in the construction of the chameleon process.

6.1.1 Composition of transpositions, and cycles of size at least 3

We begin with some notation: for d ∈ N let [d] = {1, 2, . . . , d}, and let d′ = ⌊d/4⌋ (the floor

of d/4). For convenience we also let [0] = {0}.

For d ∈ 2N we let Td be the set of products of disjoint transpositions:

Td :=





d/2∏

i=1

(a2i−1 a2i) : 1 ≤ ai ≤ d for all 1 ≤ i ≤ d, ai 6= aj for all i 6= j



 .

For σ ∈ Td we define an ordering, denoted ≺, of the transpositions in σ as follows:

(ai aj) ≺ (ak aℓ) if and only if (ai ∧ aj) < (ak ∧ aℓ). Without loss of generality we shall

always suppose that any σ ∈ Td is written such that

(a1 a2) ≺ (a3 a4) ≺ · · · ≺ (ad−1 ad),

and a2i−1 < a2i for all 1 ≤ i ≤ d/2.

Given a set A ⊆ [d′] and a permutation σ ∈ Td, we define the permutation βA(σ) to be

the result of multiplying σ (on the right) by a particular set of disjoint transpositions, as

follows:

βA(σ) = σ
∏

i∈A:
a4i−1<a4i−2

(a4i−3 a4i−1)(a4i−2 a4i) . (6.1)

The permutation βA(σ) satisfies some nice properties, which we put together in the

following Lemma. The proofs are straightforward, but it is worth emphasising that part 2

of Lemma 6.1 (that βA is an involution) holds precisely because in (6.1) we only multiply

by transpositions for which a4i−1 < a4i−2.

Lemma 6.1. For any σ ∈ Td and set A ⊆ [d′]:

1. βA(σ) ∈ Td;

2. βA(βA(σ)) = σ;
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3. for all x ∈ [d], βA(σ)(x) = σ(x) unless x ∈ {a4i−3, a4i−2, a4i−1, a4i} for some i ∈ A

with a4i−1 < a4i−2.

We now move onto cycles of size at least 3. For d ∈ N we denote by Cd the conjugacy

class of Sd (the symmetric group on [d]) consisting of cycles of length d. For a cycle

σ ∈ Cd we may write

σ = (σ0(1) σ1(1) σ2(1) . . . σd−1(1))

where for m ∈ N we write σm for the composition of m copies of σ (and where we may

sometimes write σd ≡ σ0 for the identity permutation).

For d ≥ 4 and i = 1, . . . , d′ define the function βi : [d] → [d] by

βi(j) =





2d′ + 2i− 1 j = 2i− 1

2i− 1 j = 2d′ + 2i− 1

j otherwise.

(6.2)

For d = 3 we similarly define the function β0 : [d] → [d] by

β0(j) =





2 j = 1

1 j = 2

3 j = 3 .

(6.3)

For d ≥ 4 and a cycle σ ∈ Cd, for each 1 ≤ i ≤ d′, we define βi(σ) ∈ Cd to be the

permutation satisfying

βi(σ)
j(1) = σβi(j)(1) , j = 1, . . . , d. (6.4)

This permutation is clearly a cycle, and may be written as

βi(σ) = (σ0(1) · · · σ2i−2(1) σ2d′+2i−1(1) σ2i(1)

· · · σ2d′+2i−2(1) σ2i−1(1) σ2d′+2i(1) · · · σd−1(1)).

For a cycle σ ∈ C3, we define β0(σ) using the same formula as in (6.4), yielding the

3-cycle β0(σ) = σ2 = (1 σ2(1) σ(1)).

Remark 6.2. Note that for the case d ≥ 4, βi(σ)may be obtained from σ by multiplication

by the product of two disjoint transpositions:

βi(σ) = σ (σ2i−2(1) σ2d′+2i−2(1))(σ2i−1(1) σ2d′+2i−1(1)) .

Lemma 6.3. For d ≥ 3 and any i, j ∈ [d′]:

1. The function βi is self-inverse;

2. functions βi and βj commute for i 6= j.

Proof. Part 1 follows directly from the definition of βi. Part 2 only applies when d ≥ 4,

and follows from the observation that the transpositions in Remark 6.2 corresponding to

βi and βj commute for i 6= j.

Definition 6.4. Given a set A ⊆ [d′] and a cycle σ ∈ Cd, we define βA : [d] → [d] to be the

composition of the functions {βi : i ∈ A} appearing in (6.2) and (6.3). (Thanks to the

second statement of Lemma 6.3 this function is well-defined.) If A = ∅ then we set βA to

be the identity function.

This in turn defines a cycle βA(σ) ∈ Cd satisfying

βA(σ)
j(1) = σβA(j)(1) , j = 1, . . . , d. (6.5)

EJP 24 (2019), paper 73.
Page 24/48

http://www.imstat.org/ejp/



Mixing times for exclusion processes on hypergraphs

When σ is a d-cycle the permutation βA(σ) satisfies analogous properties to those

already observed to hold (in Lemma 6.1) for βA(σ) when σ ∈ Td. The proofs all follow

simply from the definition of βi and Lemma 6.3. For each i ∈ [d′], write

Hi =

{
{2i− 2, 2i− 1, 2d′ + 2i− 2, 2d′ + 2i− 1} if d′ ≥ 1 (i.e. d ≥ 4) ,

{1, 2, 3} if d′ = 0 (i.e. d = 3) ,
(6.6)

and for A ⊆ [d′] let HA =
⋃

i∈A Hi.

Lemma 6.5. For any d ≥ 3, σ ∈ Cd and set A ⊆ [d′]:

1. βA(σ) ∈ Cd;

2. βA(βA(σ)) = σ;

3. for all x ∈ [d], βA(σ)(x) = σ(x) unless x = σj(1) for some j ∈ HA.

So far we have defined a method for producing a permutation βA(σ) in the event

that σ is either a product of disjoint transpositions or a cycle of length at least 3. Now

consider what happens when we apply the function βA to a permutation chosen uniformly

from either Cd or Td (for some d). Clearly, for any set A chosen independently of σ, the

resulting permutation βA(σ) will be uniformly distributed on the same conjugacy class

as σ. Most importantly, this remains true even when A is allowed to depend upon σ, as

long as a certain condition is met, as explained in the following Lemma. We denote by

PΩ the power set of a set Ω.

Lemma 6.6. Let Gd denote either of the conjugacy classes Cd (d ≥ 3) or Td (d ∈ 2N).

Suppose that A : Gd → P [d′] satisfies for all σ ∈ Gd,

A(βA(σ)(σ)) = A(σ) , (6.7)

and that σ is chosen uniformly from Gd. Then βA(σ)(σ) is also uniform on Gd. Moreover,

if we average over the input permutation σ, then the output βA(σ)(σ) is independent of

the choice of A.

Proof. Given the permutation σ, let σ̃ = βA(σ)(σ). The assumption on A says that

A(σ̃) = A(σ). Since βA is an involution (Lemmas 6.1 and 6.5) it follows that

βA(σ̃)(σ̃) = βA(σ)(σ̃) = βA(σ)(βA(σ)(σ)) = σ .

Thus the function βA(·)(·) is self-inverse.

Although Lemma 6.6 is relatively simple, its importance should be emphasised at this

point. We shall make use of the function βA to generate the random permutations σ̃ used

in the construction of the chameleon process, and in doing so the input A will depend

on the state of the chameleon process. The second part of Lemma 6.6 will be used to

guarantee that the permutation σ̃ = βA(σ)(σ) is independent of A. (The permutations σ̃

will be used to generate an interchange process x̃IP, and so it will be crucial that these

do not depend on the state of the process.)

6.1.2 General permutations

By combining the ideas from the previous two sections we can now describe the algorithm

for the construction of the twin permutation σ̃ (which will be given by βA(σ)(σ) for some

function βA(·)(·) to be defined) when σ ∈ Sn is a general permutation. The first step is to

decompose the input permutation σ into its canonical cyclic decomposition form. Indeed,
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except for transpositions, the function βA(·)(·) will act independently on each cycle in a

given permutation’s decomposition.

Suppose σ has canonical cyclic decomposition form (where we omit fixed points):

σ = ρ0 ◦ ρ1 ◦ · · · ◦ ρK , (6.8)

where K denotes the number of cycles in σ of size at least 3, and ρ0 is a (possibly empty)

product of disjoint transpositions.

For i = 0, 1, . . . ,K we write mi for the minimal element of ρi, and write di for the

size of the non-trivial orbit of ρi. (For example, if σ = (1 4)(2 9)(3 7 6 8 5) ∈ S9 then K = 1,

m0 = 1, m1 = 3, d0 = 4 and d1 = 5.) Given the elements of the non-trivial orbit of

ρi, there is an obvious natural bijection between permutations of those elements and

permutations of the set [di] = {1, . . . , di}, in which the minimal element mi is mapped

to 1. Rather than writing out this correspondence in detail, in order to ease notation in

what follows we shall simply consider ρi to be a member of the set Cdi
etc, even though

the set of elements belonging to ρi will not in general be {1, . . . , di}.

With this understanding in mind, suppose that A(σ) is a vector of the form

A(σ) = (A0(ρ0), A1(ρ1), . . . , AK(ρK)) , (6.9)

where A0 : Td0
→ P [d′

0] and Ai : Cdi
→ P [d′

i] for i = 1, . . . ,K. Then we can easily extend

the idea of our functions βA to apply to general permutations.

Definition 6.7. Let σ ∈ Sn be a permutation with cyclic decomposition (6.8), and assume

that A is a function on Sn satisfying (6.9). Then we define β̃A(σ)(σ) to be the composition

of the permutations obtained by applying the functions βAi(ρi) separately to each ρi:

β̃A(σ)(σ) =

K∏

i=0

βAi(ρi)(ρi) ,

where βAi(ρi)(ρi) are as defined in Section 6.1.1 (but with mi replacing the element 1, as

already explained).

Definition 6.7 says that β̃A(σ)(σ) is obtained from σ by modifying each of its cycles

of size at least 3, and the set of disjoint transpositions, independently using functions

βAi(·)(·) with which we are already familiar. We therefore have the following corollary to

Lemmas 6.1 and 6.5.

Corollary 6.8. For any σ ∈ Sn and function A on Sn satisfying (6.9):

1. β̃A(σ)(σ) belongs to the same conjugacy class as σ;

2. β̃A(σ)(β̃A(σ)(σ)) = σ;

3. for all x ∈ [n], β̃A(σ)(x) = σ(x) unless x ∈ {a4i−3, a4i−2, a4i−1, a4i} for some i ∈

A0(ρ0) with a4i−1 < a4i−2, or x = σj(mi) for some j ∈ ∪K
i=1HAi(ρi).

Furthermore, note that if we choose a random permutation σ ∈ Sn according to a

law f which is constant on conjugacy classes, then given the sizes of the cycles in the

decomposition of σ, the elements of [n] belonging to each cycle are (marginally) uniform.

We can therefore also obtain a corollary to Lemma 6.6:

Corollary 6.9. Suppose that A is a function on Sn satisfying (6.9), and that for all σ ∈ Sn

with cyclic decomposition (6.8) and each i = 0, 1, . . . ,K,

Ai(βAi(ρi)(ρi)) = Ai(ρi) .

If σ is chosen according to law f on Sn which is constant on conjugacy classes then

β̃A(σ)(σ) also has law f on Sn. Moreover, if we average over the input permutation σ,

then the output β̃A(σ)(σ) is independent of the choice of A.
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6.1.3 Choosing the set A

We have described in Section 6.1.2 how to generate the twin permutation σ̃ = β̃A(σ)(σ)

from a permutation σ such that it has the same law as σ. We now detail our method

for choosing the vector A(σ) appearing in the definition of β̃A, in such a way that

the conditions of Corollary 6.9 are satisfied; an illustrative example can be found in

Figures 6 and 7. Our choice of A will depend not only on σ but also on particular subsets

of vertices in the edge under consideration. (Later on these subsets will be specified in

the chameleon process, but for now we keep them as general subsets.) Indeed, given an

edge e ∈ E and a permutation σ ∈ Se, the function A is of the form A(R,W, σ), where R

and W are two disjoint subsets of V .

Recall the definition of the set Hi in (6.6), and the canonical cyclic decomposition of

σ from (6.8) in which K denotes the number of cycles of size at least 3 in σ. For a set of

integers B let us write σB(x) = {σi(x) : i ∈ B}. Then for each 1 ≤ i ≤ K, we define

Ai(R,W, ρi) =





{
j ∈ [d′i] : ρ

Hj

i (mi) ∈ {{r1, w1, w2}, {w1, r1, r2}}

for some r1, r2 ∈ R, w1, w2 ∈ W
}

if di = 3{
j ∈ [d′i] : ρ

Hj

i (mi) ∈ {{r1, w1, w2, w3}, {w1, r1, r2, r3}}

for some r1, r2, r3 ∈ R, w1, w2, w3 ∈ W
}

if di ≥ 4 .

(6.10)

Recall that ρ0 denotes the composition of all disjoint transpositions in σ. Using our

usual ordering we can write

ρ0 =

d0/2∏

i=1

(a2i−1 a2i)

for some d0 ∈ 2N and elements aj ∈ e, where a2i−1 < a2i for all 1 ≤ i ≤ d0/2. This allows

us to define

A0(R,W, ρ0) =
{
j ∈ [d′0] : {a4j−3, a4j−2, a4j−1, a4j} ∈

{
{r1, w1, w2, w3}, {w1, r1, r2, r3}

}

for some r1, r2, r3 ∈ R, w1, w2, w3 ∈ W
}
. (6.11)

Finally, we define A(R,W, σ) to be the vector

A(R,W, σ) = (A0(R,W, ρ0), A1(R,W, ρ1), A2(R,W, ρ2), . . . , AK(R,W, ρK)) . (6.12)

We conclude this section by showing that this construction ofA satisfies the conditions

of Corollary 6.9. This in turn guarantees that the permutation σ̃ = β̃A(σ)(σ) has the same

law on Se as σ.

Lemma 6.10. Fix an edge e ∈ E. For any disjoint subsets R,W of V and permutation

σ ∈ Se, the functions Ai(R,W, ρi) defined in (6.10) and (6.11) satisfy

Ai(R,W, βAi(R,W,ρi)(ρi)) = Ai(R,W, ρi).

Proof. The idea here is that, as in part 3 of Corollary 6.8, βAi(R,W,ρi)(ρi)(x) = ρi(x) unless

x belongs to a special set of three or four elements (whose exact definition depends

upon the conjugacy class of ρi). Furthermore, βAi(R,W,ρi) permutes all elements of such

a special set amongst themselves, and so the numbers of red and white vertices within

the set are unchanged by the action of βAi(R,W,ρi). (See Figure 7 again for a pictorial

example.)
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Figure 6: An example of a permutation applied to an edge of size 25. Parti-

cles at vertices in R = {1, 2, 5, 6, 9, 12, 20, 22} are coloured red and at vertices

in W = {3, 4, 8, 10, 14, 16, 19, 21, 24} are coloured white . (The other colours –

black and pink – will become important later, but may be ignored for now.)

Arrows are used to denote the input permutation σ so here we see that σ =

(5 21)(8 10)(16 20)(3 12 22)(1 6 17 18 19 2 13 25 24 9 7 15 14 4 11 23). Since the first pair

of transpositions (5 21)(8 10) involve one red and three white particles, we deduce that

A0 = {1}; similarly, A1 = {0}. Looking at the large cycle ρ2, we see that both of the

sets ρH1
2 (1) = {1, 6, 24, 9} and ρH3

2 (1) = {19, 2, 14, 4} contain a 3:1 split of reds:whites or

whites:reds, and so A2 = {1, 3}. Putting these together we arrive at A = ({1}, {0}, {1, 3}).

Figure 7: A pictorial description of the result of using the set A derived in Fig-

ure 6 to construct the twin permutation σ̃ = β̃A(R,W,σ)(σ); here we see that σ̃ =

(5 10)(8 21)(16 20)(3 22 12)(1 9 17 18 19 4 13 25 24 6 7 15 14 2 11 23).

We provide some details here for the case when ρi is a cycle of length di ≥ 4: the

arguments for 3-cycles and ρ0 are similar. Suppose j ∈ Ai(R,W, ρi). Without loss of
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generality, suppose that

ρ2j−2
i (mi) ∈ W, ρ

2d′
i+2j−2

i (mi) ∈ R,

ρ2j−1
i (mi) ∈ W, ρ

2d′
i+2j−1

i (mi) ∈ W.

Since j ∈ Ai(R,W, ρi), from equation (6.5) we deduce that

βAi(R,W,ρi)(ρi)
2d′

i+2j−2(mi) = ρ2j−2
i (mi) ∈ W,

βAi(R,W,ρi)(ρi)
2j−2(mi) = ρ

2d′
i+2j−2

i (mi) ∈ R,

βAi(R,W,ρi)(ρi)
2d′

i+2j−1(mi) = ρ2j−1
i (mi) ∈ W,

βAi(R,W,ρi)(ρi)
2j−1(mi) = ρ

2d′
i+2j−1

i (mi) ∈ W.

Therefore k ∈ Ai(R,W, βAi(R,W,ρi)(ρi)). The other cases follow similarly. This shows that

Ai(R,W, ρi) ⊆ Ai(R,W, βAi(R,W,ρi)(ρi)), but an identical argument shows the reverse

implication and we deduce the result.

6.2 Construction of the chameleon process

In this section we detail the construction of the chameleon process. The connection

to the algorithm described in the previous section to generate σ̃ from σ will be made

clear in Lemma 6.12. In order to deal with edges of size 2, it will be convenient to modify

the graphical construction of IP(k, f,G) introduced in Section 2.2, by doubling the rate

at which edges ring, and compensating for this by making the process lazy.

More formally, consider the following ingredients:

1. a Poisson process Λ of rate 2|E|;

2. an i.i.d. sequence of E-valued random variables {en}n∈N;

3. an i.i.d. sequence of permutations {σn}n∈N with σn ∈ Sen for each n ∈ N and with

P [σn = σ] = fen(σ);

4. an i.i.d. sequence of coin flips {θn}n∈N with P [θn = 1] = P [θn = 0] = 1/2.

We now define σθn
n to equal σn if θn = 1 and to be the identity if θn = 0. We modify the

definition of the maps I[s,t] from Section 2.2 as follows:

I[s,t] = σ
θΛ[0,t]
eΛ[0,t]

◦ σ
θΛ[0,t]−1
eΛ[0,t]−1

◦ · · · ◦ σ
θΛ[0,s)+1
eΛ[0,s)+1

.

The thinning property of Poisson processes implies that the joint distribution of the maps

I[s,t], 0 ≤ s ≤ t < ∞, is the same as in Section 2.2. The chameleon process will be built

on top of this modified interchange process.

6.2.1 Formal description of the chameleon process

Given a (k − 1)-tuple z ∈ (V )k−1, recall that O(z) := {z(1), . . . , z(k − 1)} denotes the

(unordered) set of coordinates of z. The chameleon process is a continuous-time Markov

process with state-space

Ωk(V ) := {(z, R, P,W ) : z ∈ (V )k−1, and sets O(z), R, P,W partition V }.

A particle at vertex v is said to be red if v ∈ R, white if v ∈ W , pink if v ∈ P and black if

v ∈ O(z). Note that, due to the nature of the state-space, we can distinguish between the
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various black particles, whereas any two red/white/pink particles are indistinguishable

from each other.

We denote the state at time t of the chameleon process started from M0 = (z, R, P,W )

as

Mt = (zt, Rt, Pt,Wt).

We say that a particle at vertex v at time t is red at time t if v ∈ Rt (and similarly for the

other colours). We define now a notion of ink, which represents the amount of redness

either at a vertex or in the whole system. A vertex v has 1 unit of ink at time t if v ∈ Rt

and half a unit if v ∈ Pt. Formally then, we define for each v ∈ V and t ≥ 0,

inkt(v) := 1{v∈Rt} +
1

2
1{v∈Pt}. (6.13)

We are now able to complete our formal definition of the chameleon process corre-

sponding to an interchange process on a hypergraph. We set T = 20TEX(4,f,G), and call

T the phase length. As stated previously, the chameleon process is time-inhomogeneous,

and behaves differently depending on which phase we are in. There will be just two

different kinds of phase: those in which no colour-changing is permitted and particles are

just moved around the graph according to the underlying interchange process; and those

in which colour-changing (pinkening of red and white particles) can occur. Furthermore,

there will be (deterministic) times at which depinking can occur. To be more precise,

the chameleon process is updated at the incident times {τn} of the Poisson process Λ

and also at deterministic times 2iT , i ∈ N.

To describe which particles are pinkened during a colour-changing phase, let σ (= σn)

be the permutation applied to some edge e (= en) at time t = τn and once again recall

the cyclic decomposition from (6.8):

σ = ρ0 ◦ ρ1 ◦ · · · ◦ ρK .

Given that t is in a colour-changing phase, we define subsets of V in the following way.

For cycles ρi with di = 3, recall that Ai(Rt−,Wt−, ρi) is either equal to {0} or ∅. For

j ∈ Ai(Rt−,Wt−, ρi) we define

Li,j
t :=

{
{r, ρi(r)} if ρ

{0,1,2}
i (mi) = {r, w1, w2} for some r ∈ Rt−, w1, w2 ∈ Wt−,

{w, ρi(w)} if ρ
{0,1,2}
i (mi) = {w, r1, r2} for some w ∈ Wt−, r1, r2 ∈ Rt−.

We note that, by construction, if j = 0 then Li,j
t contains two vertices, with one in Rt−

and the other in Wt−.

For cycles ρi with di ≥ 4, we define a set Li,j
t for each j ∈ Ai(Rt−,Wt−, ρi) as follows:

• if |ρ
Hj

i (mi) ∩Rt−| = 1 (so one vertex in the set ρ
Hj

i (mi) contains a red particle, and

the other three contain white particles), then set

Li,j
t :=

{
{ρ2j−2

i (mi), ρ
2d′

i+2j−2
i (mi)} if |{ρ2j−2

i (mi), ρ
2d′

i+2j−2
i (mi)} ∩Rt−| = 1,

{ρ2j−1
i (mi), ρ

2d′
i+2j−1

i (mi)} otherwise.

• alternatively, if |ρ
Hj

i (mi) ∩ Wt−| = 1 (so one vertex in the set ρ
Hj

i (mi) contains a

white particle, and the other three contain red particles), then set

Li,j
t :=

{
{ρ2j−2

i (mi), ρ
2d′

i+2j−2
i (mi)} if |{ρ2j−2

i (mi), ρ
2d′

i+2j−2
i (mi)} ∩Wt−| = 1,

{ρ2j−1
i (mi), ρ

2d′
i+2j−1

i (mi)} otherwise.
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Once again, this ensures that Li,j
t contains two vertices, one in Rt− and the other in Wt−.

For ρ0 (the product of disjoint transpositions), we proceed similarly. For each j ∈

A0(Rt−,Wt−, ρ0) satisfying a4j−1 < a4j−2, we define L0,j
t as follows:

• if |{a4j−3, a4j−2, a4j−1, a4j} ∩Rt−| = 1, then set

L0,j
t :=

{
{a4j−3, a4j−1} if |{a4j−3, a4j−1} ∩Rt−| = 1,

{a4j−2, a4j} otherwise;

• alternatively, if |{a4j−3, a4j−2, a4j−1, a4j} ∩Wt−| = 1, then set

L0,j
t :=

{
{a4j−3, a4j−1} if |{a4j−3, a4j−1} ∩Wt−| = 1,

{a4j−2, a4j} otherwise.

(If a4j−1 > a4j−2 then set L0,j
t = ∅.)

We then let

Lt :=
K⋃

i=0

⋃

j∈Ai(Rt−,Wt−,ρi)

Li,j
t .

Recall the example in Figure 6 (and suppose R = Rt− and W = Wt−). Here we

obtain L0,1
t = {5, 8}, L1,0

t = {3, 12}, L2,1
t = {1, 24} and L2,3

t = {2, 4}, and hence Lt =

{1, 2, 3, 4, 5, 8, 12, 24}.

The particles at the pairs of vertices selected in this way are those that we wish to

pinken at time t. However, it turns out to be useful to limit the number of pinkenings

that can occur (during a single colour-changing phase) so that the total number of pinks

cannot exceed either the number of reds or the number of whites (this will be crucial

to be able to appeal directly to a result of [15] in the proof of Lemma 7.2). In order to

achieve this, we pick (arbitrarily) a subset L∗
t of

{
Li,j
t : i = 0, 1, . . . ,K, j ∈ Ai(Rt−,Wt−, ρi)

}

with the property that |L∗
t | is as large as possible while still satisfying

|Pt−|+ 2|L∗
t | ≤ min{|Rt|, |Wt|} = min{|Rt−|, |Wt−|} − |L∗

t |,

i.e.

|L∗
t | ≤

1

3
(min{|Rt−|, |Wt−|} − |Pt−|) .

Note that L∗
t is a set of pairs of vertices, with each pair containing one red and one

white particle. Finally, we let L̄t be the union of the elements of L∗
t .

It is precisely the particles at vertices in L̄t that we will pinken at time t.

Box 6.11. Formal description of chameleon process updates

There are three kinds of updates to the chameleon process – which update is

performed at time t depends on the value of t.

Constant-colour phases: For t = τn ∈ (2(i − 1)T, (2i − 1)T ], update as the

interchange process:

(zt, Rt, Pt,Wt) = (σθn
n (zt−), σ

θn
n (Rt−), σ

θn
n (Pt−), σ

θn
n (Wt−)) .

Colour-changing phases: For t = τn ∈ ((2i− 1)T, 2iT ], update as interchange

(i.e. update as in a constant-colour phase) unless |Pt−| < min{|Rt−|, |Wt−|} and we

are in one of the following two situations:
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• |en| > 2, θn = 1 and σn 6= id.

In this case, we pinken all particles in the set L̄t (half of which belong to Rt−,

the others to Wt−, by design).

Regardless of which particles are pinkened, we then update as the interchange

process at this time (using σn). Formally then, we update as

(zt, Rt, Pt,Wt)

= (σn(zt−), σn(Rt− \ (L̄t ∩Rt−)), σn(Pt− ∪ L̄t), σn(Wt− \ (L̄t ∩Wt−))).

• en = {w, r} for some w ∈ Wt−, r ∈ Rt−, and σn 6= id.

In this case, we pinken both particles on the edge. Formally update as

(zt, Rt, Pt,Wt) = (zt−, Rt− \ {r}, Pt− ∪ {r, w},Wt− \ {w}).

Depinking: For t = 2iT with i ∈ N, if |Pt−| ≥ min{|Rt−|, |Wt−|} then we generate

a Bernoulli(1/2) random variable Yi: if Yi = 1, we colour all pink particles red,

otherwise we colour all pink particles white. Hence the update is

(zt, Rt, Pt,Wt) =

{
(zt−, Rt− ∪ Pt−,∅,Wt−) if Yi = 1,

(zt−, Rt−,∅,Wt− ∪ Pt−) if Yi = 0.

Recall again the example from Figure 6, and suppose this represents the state at time

t− of a chameleon process. Then Figure 8 represents the state at time t (assuming that t

belongs to a colour-changing phase, and that the associated random variable θ equals 1).

Figure 8: The result of updating the chameleon process from the state pictured

in Figure 6. Particles belonging to the set Lt = {1, 2, 3, 4, 5, 8, 12, 24} have been

pinkened, and then all particles have been moved according to the permutation

σ = (5 21)(8 10)(16 20)(3 12 22)(1 6 17 18 19 2 13 25 24 9 7 15 14 4 11 23). (The number

of particles that we are allowed to pinken depends upon the values of |Rt−| and |Wt−| of

course, but here we have assumed for simplicity that L̄t = Lt.)
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The connection between the permutations β̃A(σn), which we spent time developing in

Section 6.1, and the chameleon process is made explicit in the following lemma, which

shall later be employed in the proof of part 2 of Lemma 3.1.

Lemma 6.12. Suppose t = τn is in a colour-changing phase and |en| > 2. Then there

exists a permutation g : V → V such that both of the following statements hold:

1. for any vertex u containing (at time t−) a particle which is pinkened at time t in

the chameleon process,

u ∈ Rt− iff g(u) ∈ Wt− and u ∈ Wt− iff g(u) ∈ Rt− ;

2. for any vertex u containing a particle which is not pinkened at time t, the particle

at vertex g(u) at time t− has the same colour at time t as the particle at vertex u at

time t−.

Moreover, we can take g to satisfy

β̃A(Rt−,Wt−,σn)(σn)(g(u)) = σn(u).

Proof. This follows simply by comparing the construction of β̃A(Rt−,Wt−,σn)(σn) with the

construction of the chameleon process.

7 Properties of the chameleon process

In this section we show that the chameleon process satisfies the properties outlined in

Lemma 3.1. Part 1 follows immediately from the construction of the chameleon process,

since each black particle moves identically in the chameleon process and the underlying

interchange process.

In order to prove the other three parts, we will need to understand the evolution of

the total amount of ink in the chameleon process. We first of all note that the number of

pink particles accumulates over time until we have a large number of them; at the next

depinking time all pink particles are recoloured (either red or white) and the process of

accumulation starts again. The process will continue in this manner until either we have

no white particles or we have no red particles (which will occur immediately after some

depinking). At this point, no more pink particles can be made and so there is no more

recolouring of particles. In order to bound the mixing time of the interchange process

we need a good understanding of how quickly the chameleon process reaches the state

where no more recolouring can occur. There are two factors which affect this: the time

we must wait between depinking events and how the process behaves at depinking

times.

Writing x = (z, x), for each j ∈ N let Dj(x) denote the jth depinking time of a

chameleon process started from state (z, {x},∅, V \ (O(z) ∪ {x})) ∈ Ωk(V ). Let inkxt
denote the total amount of ink in the process at time t; note that 0 ≤ inkxt ≤ |V | − k + 1.

Motivated by [15], recall that in part 2 of Lemma 3.1 we defined the event

Fillx :=
{
lim
t→∞

inkxt = |V | − k + 1
}
.

This is the event that all initially-white particles are eventually coloured red. We shall

make use of the following result concerning inkxt , whose proof may be found in [15]. It

is applicable in this setting because the event Fillx is independent of zCt (as it depends

only on the outcomes of coin-flips at depinking times and these do not affect zCt ) and

because inkxt is a martingale (clear from the construction). We note also that this result

is identical to Lemma 3.1 part 4, and thus serves as its proof.
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Proposition 7.1. Fix x = (z, x) ∈ (V )k. For each c ∈ (V )k−1 and t ≥ 0,

P
[
{zCt = c} ∩ Fillx

]
=

P
[
zCt = c

]

|V | − k + 1
.

Consider now the expectation on the right-hand side of the statement of Lemma 3.2:

an identical argument to that in Section 6 of [15] shows that this can be bounded in

terms of the tail probability of the time of the jth depinking.

Lemma 7.2. There exist positive constants c1 and c2 such that for every j ∈ N,

sup
x∈(V )k

E

[
1−

inkxt
|V | − k + 1

∣∣∣Fillx
]
≤ c1

√
|V |e−c2j + sup

x∈(V )k

P [Dj(x) > t |Fillx] .

We therefore see that we need good control on the probability that there have only

been a few depinkings by time t. Here we cannot simply rely on results from [15], since

our chameleon process constructed in Section 6 clearly obeys very different dynamics.

We shall need the following fundamental result – a lower bound on the number of

red particles that are lost (due to pinkening) during a colour-changing phase of the

chameleon process (where we start the phase with more white particles than red). The

proof is deferred to Section 7.1.

Lemma 7.3. Suppose |V | ≥ 36 and consider a chameleon process with initial configura-

tion (z, R, P,W ) satisfying |P | < |R| ≤ |W |. Then

E[|R2T−|] ≤ (1− 10−6)|R|.

We use this to bound the probability appearing in the statement of Lemma 7.2.

Lemma 7.4. There exists a universal constant κ1 > 0 such that for every interchange

process on a regular hypergraph G = (V,E), every j ∈ N and x ∈ (V )k, if |V | ≥ 36 then

P [Dj(x) > t |Fillx] ≤ exp

{
j −

t

κ1 TEX(4,f,G)(1/4)

}
.

Proof. Thanks to Lemma 7.3, the proofs of Lemmas 6.2 and 9.2 of [15] can be emulated

to show that there exists a positive constant κ such that E[eDj(x)/κT |Fillx] ≤ ej for all

j ∈ N. Thus by Markov’s inequality,

P [Dj(x) > t |Fillx] = P

[
eDj(x)/κT > et/κT |Fillx

]

≤ e−t/κT
E[eDj(x)/κT |Fillx] ≤ ej−t/κT .

Writing κ1 = 20κ completes the proof.

Combining Lemmas 7.2 and 7.4 completes the proof of part 3 of Lemma 3.1.

It therefore only remains to show that the chameleon process also satisfies part 2 of

Lemma 3.1.

Let {τ̄n}n∈N denote the update times of the chameleon process {Mt}t≥0; thus each τ̄n
is either an incident time of the Poisson process Λ from Section 6.2, or a depinking time

(of the form 2iT with i ∈ N, as in Box 6.11). For each j ∈ N, consider a process {M j
t }t≥0

which is identical to {Mt}t≥0 for all t < τ̄j but evolves as the interchange process (i.e.

with no further recolourings) for all t ≥ τ̄j . More formally, for all t ≥ τ̄j ,

M j
t = (I(τ̄j ,t](zτ̄j ), I(τ̄j ,t](Rτ̄j ), I(τ̄j ,t](Pτ̄j ), I(τ̄j ,t](Wτ̄j )),

where I is the map used in the modified graphical construction of the interchange

process {xIP
t } (see Section 6.2).
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Notice that the almost-sure limit of {M j
t }t≥0 as j → ∞ is the chameleon process

{Mt}t≥0. As a result, by the dominated convergence theorem, it suffices to prove that

for each j ∈ N and b ∈ V ,

P
[
xIP
t = b | zIPt

]
= E[inkjt (b) | z

IP
t ],

where ink
j
t (b) is the amount of ink at vertex b in the process M j

t . We prove this by

induction on j. The case j = 1 is trivial since the particle initially at x is the only red

particle (and there are no pink particles). For the inductive step we wish to show that

almost surely

E[inkjt (b) | z
IP
t ] = E[inkj+1

t (b) | zIPt ].

For t < τ̄j , these are equal since the two processes evolve identically for such times. The

update at time τ̄j of process {M
j+1
t } is a chameleon step and could be of two types: also

an update of the interchange process (i.e. τ̄j is an incident time of the Poisson process

Λ), or not (i.e. it is a depinking time). Suppose we are in the first case. We condition on

the common state of M j and M j+1 at time τ̄j−1. We want to show that almost surely

E

[
E[inkjτ̄j (b) | z

IP
τ̄j ,M

j
τ̄j−1

]
]
= E

[
E[inkj+1

τ̄j (b) | zIPτ̄j ,M
j+1
τ̄j−1

]
]
. (7.1)

By the strong Markov property at time τ̄j−1 we can construct a chameleon process {M̃ j
t }

(with associated interchange process x̃IP) which is identical to {Mt} for all t < τ̄j , but

for all t ≥ τ̄j evolves as an interchange process (i.e. with no further recolourings) and

uses permutation choices:

• σn if t = τn is in a constant-colour phase,

• β̃A(σn)(σn) if t = τn is in a colour-changing phase.

We claim that

1

2
E[inkjτ̄j (b) | z

IP
τ̄j ,M

j
τ̄j−1

] +
1

2
E[ĩnk

j

τ̄j (b) | z̃
IP
τ̄j , M̃

j
τ̄j−1

] = E[inkj+1
τ̄j (b)| zIPτ̄j ,M

j+1
τ̄j−1

] ,

for all b ∈ V , almost surely (where ĩnk is the ink process under M̃ j). If τ̄j is in a

constant-colour phase, then the statement is immediate (since all three processes update

in exactly the same way). If τ̄j is in a colour-changing phase and the particle which is at

b at time τ̄j has just been pinkened in the chameleon process then ink
j+1
τ̄j (b) = 1/2 and by

Lemma 6.12, {inkjτ̄j (b), ĩnk
j

τ̄j (b)} = {0, 1}, and so the statement is true. Finally, if τ̄j is in

a colour-changing phase but the particle at b at time τ̄j has not just been pinkened, then

the three expectations are all equal since σj and β̃A(σj)(σj) have the same distribution,

by Corollary 6.9 and Lemma 6.10 (and black particles move identically under each by

Corollary 6.8). We thus have

E

[
E[inkjτ̄j (b) | z

IP
τ̄j ,M

j
τ̄j−1

]
]
=

1

2
E

[
E[inkjτ̄j (b) | z

IP
τ̄j ,M

j
τ̄j−1

]
]
+

1

2
E

[
E[ĩnk

j

τ̄j (b) | z̃
IP
τ̄j , M̃

j
τ̄j−1

]
]

= E

[
E[inkj+1

τ̄j (b) | zIPτ̄j ,M
j+1
τ̄j−1

]
]
.

We are left to deal with the second case, when τ̄j is not an update of the interchange

process. In this case there must be a depinking at time τ̄j . We wish to show (7.1) holds,

so again use the strong Markov property at time τ̄j−1 to obtain

E

[
E[inkj+1

τ̄j (b) | zIPτ̄j ,M
j+1
τ̄j−1

]
]
= E

[
E[inkj+1

τ̄j (b) | zIPτ̄j−1
,M j+1

τ̄j−1
]
]

= E

[
E[inkjτ̄j (b) | z

IP
τ̄j−1

,M j+1
τ̄j−1

]
]
,

where the second equality follows from the fact that an independent Bernoulli(1/2)

random variable is used to determine the outcome of a depinking. This completes the

induction, and with it the proof of part 2 of Lemma 3.1.
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7.1 Bounding the rate of pinkening

In order to prove Lemma 7.3, we need to show that during a colour-changing phase

(started with more white particles than red particles) the number of pink particles we

create is in expectation at least a constant times the number of red particles at the start

of that phase. We prove this result in this section.

Suppose we wish to lower-bound the number of white particles that are pinkened

(which we shall refer to as the number of pinkenings) during the first colour-changing

phase [T, 2T ]. Since we start with 1 red particle, there will be more white particles

at time T than red. We will wish to apply the following analysis for a general colour-

changing phase (and not just the first) but the calculations will carry through since we

are assuming the number of white particles is at least the number of red.

We make a change to the chameleon process in this section in order to ease our

analysis – we remove the condition that we only pinken if we have fewer pink particles

than either red or white particles and replace the set L̄t in the formal description

(Box 6.11) with the potentially larger set Lt. Although this means we can end up with

more pinkening events, this will only happen if a certain number of pinkening events

have already happened (since pink particles are only created at times of pinkening

events), and in that case we will be happy regardless. We shall refer to this new process

as the modified chameleon process.

Let a ∈ V . We define ta to be the smallest integer n such that T < τn ≤ 2T and a ∈ en.

If no such n exists we set ta = ∞. Also, we set φa = τta with notation τ∞ = ∞; hence φa

is the first time (after time T ) that vertex a is in a ringing edge of the underlying Poisson

process. We define a third variable, Fa, set to be equal to ∗ in the case φa = ∞. If, on

the other hand, φa < ∞, there are five possible cases. Let cta denote the cycle of σta

containing vertex a and |cta | denote the number of elements in cta . For ease of notation

we write d′ for ⌊
|cta |
4 ⌋ and m for the smallest element in cta .

1. If |cta | = 2 and |eta | = 2, then set Fa = I−1
[T,φa)

(cta(a)).

2. If |cta | = 2 and |eta | ≥ 3, then denote by

(a1 a2) ≺ · · · ≺ (al−1 al)

the ordered transpositions in the canonical cyclic decomposition of ρta . If there

exists j ∈ {1, . . . , ⌊l/4⌋} with a ∈ {a4j−3, a4j−2, a4j−1, a4j} and a4j−1 < a4j−2, then:

(a). if a = a4j−3 set Fa = I−1
[T,φa)

(a4j−1, a4j−2, a4j);

(b). if a = a4j−2 set Fa = I−1
[T,φa)

(a4j , a4j−3, a4j−1);

(c). if a = a4j−1 set Fa = I−1
[T,φa)

(a4j−3, a4j−2, a4j);

(d). if a = a4j set Fa = I−1
[T,φa)

(a4j−2, a4j−3, a4j−1).

3. If |cta | = 3, then set Fa = I−1
[T,φa)

(cta(a), c
2
ta(a)).

4. If |cta | ≥ 4, and there exists j ∈ {1, . . . , d′} with a ∈ c
Hj

ta (m), then:

(i). if a = c2j−2
ta (m), set

Fa = I−1
[T,φa)

(
c2d

′+2j−2
ta (m), c2j−1

ta (m), c2d
′+2j−1

ta (m)
)
;

(ii). if a = c2d
′+2j−2

ta (m), set

Fa = I−1
[T,φa)

(
c2j−2
ta (m), c2j−1

ta (m), c2d
′+2j−1

ta (m)
)
;
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(iii). if a = c2j−1
ta (m), set

Fa = I−1
[T,φa)

(
c2d

′+2j−1
ta (m), c2j−2

ta (m), c2d
′+2j−2

ta (m)
)
;

(iv). if a = c2d
′+2j−1

ta (m), set

Fa = I−1
[T,φa)

(
c2j−1
ta (m), c2j−2

ta (m), c2d
′+2j−2

ta (m)
)
.

5. In all other cases, set Fa = ∗.

Remark 7.5. From this construction it is easy to see that (for any b, c, d ∈ V )

1. In case 1 above, we have

{Fa = b, φa = φb} = {Fb = a, φa = φb}.

2. In case 3 above, we have

{Fa = (b, c), φa = φb = φc} = {Fb = (c, a), φa = φb = φc}

= {Fc = (a, b), φa = φb = φc}.

3. In all other cases, we have

{Fa = (b, c, d), φa = φb = φc = φd} = {Fb = (a, c, d), φa = φb = φc = φd}

= {Fc = (d, a, b), φa = φb = φc = φd} = {Fd = (c, a, b), φa = φb = φc = φd}.

A possible evolution of the chameleon process during the first two phases is shown in

Figure 9.

We now present a method to count the number of pinkenings during a colour-changing

phase of the modified chameleon process. For ease of notation we shall write I for the

map I[0,T ]. The proofs of the first three results below are fairly simple extensions of

equivalent results in [15] and can be found in Appendix C.

Lemma 7.6. Consider a modified chameleon process with its starting configuration

(z, R, P,W ) satisfying |P | < |R| ≤ |W |. Then the number of pinkenings during (T, 2T ) is

at least the number of b ∈ I(W ) such that one of the following holds:

• Fa = b for some a ∈ I(R) with φa = φb,

• Fa = (b, c) for some a ∈ I(R) and c ∈ I(W ) with φa = φb = φc, and θta = 1,

• Fa = (b, c, d) for some a ∈ I(R) and c, d ∈ I(W ) with φa = φb = φc = φd, and θta = 1.

In bounding the expected number of pinkenings during a colour-changing phase, it

turns out to be useful to have a lower bound on the probability that Fa 6= ∗ given φa 6= ∞.

This is because even if vertex a is in a ringing edge during time interval [T, 2T ], in order

for the particle initially at a to be pinkened in the modified chameleon process at this

time, it is necessary (but not sufficient) that Fa 6= ∗. The proof of this lemma makes use

of part 3 of Assumption 1.1.

Lemma 7.7. For every a ∈ V , P [Fa 6= ∗ |φa 6= ∞] ≥ 4/15.

Proposition 7.8. Consider a modified chameleon process with initial configuration

(z, R, P,W ). Then for any vertices a, b, c, d,

(i). P [|{a, b} ∩ I(R)| = 1, |{a, b} ∩ I(W )| = 1] ≥ (1− 2−9)2|R| |W |

(|V |
2 )

,
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Figure 9: In this example we suppose that V = {1, 2, 3, 4, 5, 6}, E =

{{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 5, 6}}, and permutations chosen are uniform 4-cycles. Parti-

cles are labelled according to their initial location. We see that IT (R) = IT ({1}) = {4},

t4 = 3 (the first time vertex 4 is in a ringing edge after time T is τ3), τ3 = φ1 = φ2 =

φ3 = φ4 (the first time vertices 1, 2, 3 and 4 are in a ringing edge after time T is τ3), and

F4 = (2, 1, 3). Particles at vertices 2 and 4 (at time T ) are coloured pink at time τ3.

(ii). P [|{a, b, c} ∩ I(R)| = 1, |{a, b, c} ∩ I(W )| = 2] ≥ (1− 2−9)2|R|
(|W |

2 )
(|V |

3 )
,

(iii). P [|{a, b, c, d} ∩ I(R)| = 1, |{a, b, c, d} ∩ I(W )| = 3] ≥ (1− 2−9)2|R|
(|W |

3 )
(|V |

4 )
.

We now present the main result of this section – a version of Lemma 7.3 but proved

for the modified chameleon process. As explained earlier in this section, this implies the

corresponding result for our original chameleon process.

Lemma 7.9. Suppose |V | ≥ 36 and consider a modified chameleon process with initial

configuration (z, R, P,W ) satisfying |P | < |R| ≤ |W |. Then

E[|R2T−|] ≤ (1− 10−6)|R|.

Proof. Write N(b) for the set of vertices that share at least one edge of the hypergraph

with b. By Lemma 7.6, we have
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|R2T−|

≤ |R| −
∑

b∈I(W )

1{⋃
a∈N(b){Fa=b,φa=φb, a∈I(R)}

}

−
∑

b∈I(W )

1{⋃
a,c∈N(b){Fa=(b,c),φa=φb=φc, a∈I(R),c∈I(W ), θta=1}

}

−
∑

b∈I(W )

1{⋃
a,c,d∈N(b){Fa=(b,c,d),φa=φb=φc=φd, a∈I(R),c,d∈I(W ), θta=1}

}

= |R| −
∑

b∈I(W )

∑

a∈N(b)

{
1{Fa=b,φa=φb, a∈I(R)}

+
∑

c∈N(b)

{
1{Fa=(b,c),φa=φb=φc,a∈I(R),c∈I(W ),θta=1}

+
∑

d∈N(b)

1{Fa=(b,c,d),φa=φb=φc=φd,a∈I(R),c,d,∈I(W ),θta=1}

}}
.

Note now that the event {Fa = (b, c, d), φa = φb = φc = φd} is determined entirely

by the process after time T , and in particular is independent of the process between

times 0 and T , and hence of the map I = I[0,T ]. This is also true for the event {Fa =

(b, c), φa = φb = φc} and the event {Fa = b, φa = φb}. Recalling Remark 7.5 we see that

the expectation of the above is equal to

|R| −
∑

b∈V

∑

a∈N(b)

{
1

2
P [Fa = b, φa = φb] P [|{a, b} ∩ I(R)| = 1, |{a, b} ∩ I(W )| = 1]

+ P [θta = 1]
∑

c∈N(b)

{
1

3
P [Fa = (b, c), φa = φb = φc]

· P [|{a, b, c} ∩ I(R)| = 1, |{a, b, c} ∩ I(W )| = 2]

+
∑

d∈N(b)

1

4
P [Fa = (b, c, d), φa = φb = φc = φd]

P [|{a, b, c, d} ∩ I(R)| = 1, |{a, b, c, d} ∩ I(W )| = 3]

}}
.

Using Proposition 7.8 and P [θta = 1] = 1/2 we obtain the bound

E [|R2T−|]− |R| ≤ − (1− 2−9)2
∑

b∈V

∑

a∈N(b)

{
1

2

|R| |W |(
|V |
2

) P [Fa = b, φa = φb] (7.2)

+
∑

c∈N(b)

{
1

6

|R|
(
|W |
2

)
(
|V |
3

) P [Fa = (b, c), φa = φb = φc]

+
∑

d∈N(b)

1

8

|R|
(
|W |
3

)
(
|V |
4

) P [Fa = (b, c, d), φa = φb = φc = φd]

}}
.

Consider the final probability in the above equation. We can write it as

P [Fa = (b, c, d), φa = φb = φc = φd]

=
∑

e∈E:
a,b,c,d∈e

P [Fa = (b, c, d), φa = φb = φc = φd, eta = e]
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=
∑

e∈E:
a,b,c,d∈e

P
[
Fa = (b, c, d)

∣∣ |Fa| = 3, eta = e
]
P [|Fa| = 3, φa = φb = φc = φd, eta = e]

=
∑

e∈E:
a,b,c,d∈e

P
[
Fa = (b, c, d)

∣∣ |Fa| = 3, eta = e
]
P [|Fa| = 3]P [φa = φb = φc = φd, eta = e] ,

where we have made use of the fact that the choice of the permutations (which deter-

mines |Fa|) is independent of the choice of the edges that ring. We next make use of the

regularity of the hypergraph (and that all edges ring at the same rate) to obtain that

P [φa = φb = φc = φd, eta = e] ≥ 1/(4D) where D is the degree of each vertex. Summing

the above over a, b, c, d gives

∑

b∈V

∑

a,c,d∈N(b)

P [Fa = (b, c, d), φa = φb = φc = φd] ≥
1

4D

∑

e∈E

∑

a∈e

P [|Fa| = 3] . (7.3)

Similarly

∑

b∈V

∑

a,c∈N(b)

P [Fa = (b, c), φa = φb = φc] ≥
1

3D

∑

e∈E

∑

a∈e

P [|Fa| = 2] , (7.4)

and
∑

b∈V

∑

a∈N(b)

P [Fa = b, φa = φb] ≥
1

2D

∑

e∈E

∑

a∈e

P [|Fa| = 1] . (7.5)

Combining (7.2), (7.3), (7.4) and (7.5) gives

E [|R2T−|]− |R| ≤ −
1

4D
(1− 2−9)2

1

8

|R|
(
|W |
3

)
(
|V |
4

)
∑

a∈V

∑

e: e∋a

P [Fa 6= ∗] .

Using Lemma 7.7,

P [Fa 6= ∗] = P [φa 6= ∞]P [Fa 6= ∗ |φa 6= ∞] ≥
4

15
P [φa 6= ∞] . (7.6)

Also,

P [φa = ∞] ≤ P
[
I(T,2T )(a) = a

]
= P

[
aRWT = a

]
,

where {aRWt } is a realisation of RW(1, f,G) started from a. Since

T = 20TIP(4,f,G)(1/4) ≥ 20TRW(f,G)(1/4) ≥ TRW(f,G)(2
−20)

(by Proposition 2.2) we have

P [φa = ∞] ≤ P
[
aRWT = a

]
≤

1

|V |
+ 2−20.

From (7.6), we deduce that

P [Fa 6= ∗] ≥
4

15
(1− 2−20 − 1/|V |) . (7.7)

Finally, the assumptions in Lemma 7.3 on the sizes of the sets P , R and W imply that

3|W | ≥ |W |+ |R|+ |P | = |V | − k + 1 ≥ |V |/2 ,

and since |V | ≥ 36 we arrive at our stated result:

E [|R2T−|]− |R| ≤ −
1

4D
(1− 2−9)2

|R|

864|V |

∑

a∈V

∑

e:e∋a

4

15
(1− 2−20 − 1/|V |)

=−
1

4D
(1− 2−9)2

|R|

864|V |
|V |D

4

15
(1− 2−20 − 1/|V |)

≤− 10−6|R| .
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A Case by case analysis from Proof of Lemma 4.4

Figure 10: The bijection between σa,b and σ̃a,b. We see that there are certain failure

permutations, for which no match occurs, where a match refers to the event that

particles a∗ and b∗ are moved to the same location after applying permutations σa,b and

σ̃a,b, respectively. For a fixed cycle structure we see that the probability of ‘no match’ is

at most 1/2, which is achieved when the edge-size is 3 and a cycle of size 3 is chosen.

B Technical proofs for Section 4

Here we include some of the more technical proofs required to compare the mixing

time of EX(4, f,G) with that of EX(2, f,G).
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Proof of Lemma 4.5. Since the hypergraph is non-easy there exists x ∈ V 2 such that

P
[
MRW(x) > 1010T

]
> 1/1000.

We have

P
[
MRW(x) > 1010T

]

= E
[
E[1{MRW(x)>1010T}|x

RW
(1010−40)T ]

]

= E

[
E

[
1{MRW(x)>(1010−40)T}|x

RW
(1010−40)T

]
E

[
1{

MRW(xRW
(1010−40)T

)>40T
}|xRW

(1010−40)T

]]

≤ E

[
E

[
1{MRW(x)>(1010−40)T}|x

RW
(1010−40)T

]
sup
y∈V 2

P
[
MRW(y) > 40T

]
]

= sup
y∈V 2

P
[
MRW(y) > 40T

]
P
[
MRW(x) > (1010 − 40)T

]

≤

(
sup
y∈V 2

P
[
MRW(y) > 40T

]
) 1010

40

.

Hence there exists y ∈ V 2 such that

P
[
MRW(y) > 40T

]
≥

(
1

1000

)40(10−10)

> 1− 10−7.

Now,

P
[
MRW(y) > 40T

]
≤ P

[
MRW(yRW

20T ) > 20T
]

=
∑

v∈V 2

P
[
yRW
20T = v

]
P
[
MRW(v) > 20T

]
.

However, by Definition (2.3) of total-variation, Proposition 2.2, and the fact that (by the

contraction principle) TRW(2,f,G)(1/4) ≤ TEX(2,f,G)(1/4),

∑

v∈V 2

P
[
yRW
20T = v

]
P
[
MRW(v) > 20T

]
−
∑

v∈V 2

P
[
MRW(v) > 20T

]

|V |2

≤ ‖L[yRW
20T ]−Unif(V 2)‖TV ≤ 2−20.

Hence

∑

v∈V 2

P
[
MRW(v) > 20T

]

|V |2
≥
∑

v∈V 2

P
[
yRW
20T = v

]
P
[
MRW(v) > 20T

]
− 2−20

≥ 1− 10−7 − 2−20

≥ 1−
1

1000
.

Proof of Lemma 4.6. We begin by conditioning on the value of O(x)EX
20T .

P
[
M̄RW(O(x)EX

20T ) ≤ 20T
]

=
∑

{a1,a2,a3,a4}∈(V4)

P
[
M̄RW({a1, a2, a3, a4}) ≤ 20T

]
P
[
O(x)EX

20T = {a1, a2, a3, a4}
]
.

For each a ∈ (V )4, we have

P
[
M̄RW(O(a)) ≤ 20T

]
≤

4∑

i=2

i−1∑

j=1

P
[
MRW((a(i),a(j))) ≤ 20T

]
,
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and so

P
[
M̄RW(O(x)EX

20T ) ≤ 20T
]

≤
∑

{u1,u2}∈(V2)

P
[
MRW((u1, u2)) ≤ 20T

]
P
[
O(x)EX

20T ⊃ {u1, u2}
]

≤
4∑

i=2

i−1∑

j=1

∑

{u1,u2}∈(V2)

P
[
MRW((u1, u2)) ≤ 20T

]
P
[
{x(i),x(j)}EX

20T = {u1, u2}
]
. (B.1)

Now, for each 1 ≤ j < i ≤ 4 (and motivated by [15]) set

Goodi,j :=

{
{a, b} ∈

(
V

2

)
:
∣∣∣P
[
{x(i),x(j)}EX

20T = {a, b}
]
−

1(
|V |
2

)
∣∣∣ ≤ ε(

|V |
2

)
}
.

We decompose the sum over u above into u ∈ Goodi,j and u ∈ Badi,j , where

Badi,j =

(
V

2

)
\Goodi,j .

For the Good terms, we have

4∑

i=2

i−1∑

j=1

∑

{u1,u2}∈Goodi,j

P
[
MRW((u1, u2)) ≤ 20T

]
P
[
{x(i),x(j)}EX

20T = {u1, u2}
]

≤

4∑

i=2

i−1∑

j=1

∑

{u1,u2}∈Goodi,j

P
[
MRW((u1, u2)) ≤ 20T

] (1 + ε)(
|V |
2

)

≤ 25(1 + ε)
∑

u∈V 2

P
[
MRW(u) ≤ 20T

]

|V |2
. (B.2)

For the Bad terms, we have

4∑

i=2

i−1∑

j=1

∑

{u1,u2}∈Badi,j

P
[
MRW((u1, u2)) ≤ 20T

]
P
[
{x(i),x(j)}EX

20T = {u1, u2}
]

≤

4∑

i=2

i−1∑

j=1

∑

{u1,u2}∈Badi,j

P
[
{x(i),x(j)}EX

20T = {u1, u2}
]

=

4∑

i=2

i−1∑

j=1

P
[
{x(i),x(j)}EX

20T ∈ Badi,j
]
. (B.3)

Note that for each 1 ≤ j < i ≤ 4,

‖L(xEX
20T )−Uniform‖TV =

1

2

∑

{u1,u2}∈(V2)

∣∣∣P
[
{x(i),x(j)}EX

20T = {u(1),u(2)}
]
−

1(
|V |
2

)
∣∣∣

>
1

2

ε(
|V |
2

) |Badi,j | ,

since every {u1, u2} ∈ Badi,j contributes at least ε/
(
|V |
2

)
to the sum. However, the

left-hand side in the above equation is at most 2−20 by the choice of T . We deduce that

|Badi,j | ≤ ε−12−19

(
|V |

2

)
,
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and thus

|Goodi,j | ≥ (1− ε−12−19)

(
|V |

2

)
.

However, for each {u1, u2} ∈ Goodi,j we know that

P
[
{x(i),x(j)}EX

20T = {u1, u2}
]
≥

1− ε(
|V |
2

) .

Therefore,

P
[
{x(i),x(j)}EX

20T ∈ Goodi,j}
]
≥

1− ε(
|V |
2

) |Goodi,j | ≥ 1− ε− ε−12−19.

We deduce that

P
[
{x(i),x(j)}EX

20T ∈ Badi,j}
]
≤ ε+ ε−12−19.

Plugging this into (B.3) gives

4∑

i=2

i−1∑

j=1

∑

{u1,u2}∈Badi,j

P
[
MRW((u1, u2)) ≤ 20T

]
P
[
{x(i),x(j)}EX

20T = {u1, u2}
]

≤ 12(ε+ ε−12−19).

Combining this with (B.2) and (B.1) gives

P
[
M̄RW(xIP

20T ) ≤ 20T
]
≤ 12(ε+ ε−12−19) + 25(1 + ε)

∑

u∈V 2

P
[
MRW(u) ≤ 20T

]

|V |2
.

Proof of Proposition 4.7. This proof is similar to the proof of Proposition 4.6 in [15]. By

the graphical construction of Section 2.2, O(x)EX
s and O(xIP

s ) have the same distribution.

Thus by the contraction principle it suffices to show that

‖L[xRW
s ]− L[xIP

s ]‖TV ≤ P
[
M̄RW(O(x)) ≤ s

]
.

We present a coupling of {xIP
t }t≥0 and {xRW

t }t≥0 such that the two processes agree up

to time M̄RW(O(x)). The coupling has state-space S := (V )2 × V 2 which we split into

two parts: ∆ := {(z, z) : z ∈ (V )2} and ∆∁. Denote by q(·, ·) the transition rates. We

construct the coupling as follows:

1. if (x,y) ∈ ∆∁, the transition rate to any other state in S is the same as that of

independent realisations of IP(4, f,G) and RW(4, f,G).

2. if (x,x) ∈ ∆,

(a) for e ∈ E with |e ∩ {x(1), x(2), x(3), x(4)}| = 1 and for each σe ∈ Se,

q
(
(x,x), (σe(x), σe(x))

)
= fe(σe).

(b) for e ∈ E with |e ∩ {x(1),x(2),x(3),x(4)}| > 1 and for each σe ∈ Se,

q
((

x,x
)
,
(
σe(x), (σe(x(1)),x(2),x(3),x(4))

))
= fe(σe),

q
((

x,x
)
,
(
x, (x(1), σe(x(2)),x(3),x(4))

))
= fe(σe),

q
((

x,x
)
,
(
x, (x(1),x(2), σe(x(3)),x(4))

))
= fe(σe),

q
((

x,x
)
,
(
x, (x(1),x(2),x(3), σe(x(4)))

))
= fe(σe).
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3. all other transitions have rate 0.

By inspection of the marginals it is clear that this indeed gives a coupling of the two

processes. Furthermore, if we start the coupling from a state x ∈ ∆, the two processes

can only differ after a transition has occurred according to rule 2.(b); but the first time

this happens is precisely M̄RW(O(x)).

C Technical proofs for Section 7

Here we include proofs of some of the results used in Section 7.1.

Proof of Lemma 7.6. We shall show that in each situation the particle at vertex b at time

T is pinkened during (T, 2T ).

In the first situation with Fa = b for some a ∈ I(R) with φa = φb, we deduce that

|eta | = 2 and I[T,φa)(b) = σta(a). Since φa = φb, we have

σta(a) = I[T,φa)(b) = I[T,φb)(b) = b.

Since a ∈ I(R), b ∈ I(W ) and φa = φb, we have that a ∈ I[0,φa)(R) and b ∈ I[0,φa)(W ). This

implies that the particle at b at time T (and also the particle at a at time T ) is pinkened

at time φa.

In the second situation with Fa = (b, c) for some a ∈ I(R), c ∈ I(W ) with φa = φb = φc

and θta = 1, we deduce that |cta | = 3 and I[T,φa)(b, c) = (cta(a), c
2
ta(a)). Since φa = φb = φc,

we have

(cta(a), c
2
ta(a)) = (b, c).

Since a ∈ I(R), b, c ∈ I(W ) and φa = φb = φc, we have that a ∈ I[0,φa)(R) and

b, c ∈ I[0,φa)(W ) and hence it is immediate that there exists 1 ≤ i ≤ K satisfying

Ai(Rφa−,Wφa−, cφa
) = {0}. Since θta = 1 we deduce that the particle at b at time T is

pinkened at time φa.

In the third situation with Fa = (b, c, d) for some a ∈ I(R), c, d ∈ I(W ) with φa = φb =

φc = φd and θta = 1 we have two cases. The first case is if |cta | = 2. We denote by

(a1 a2) ≺ · · · ≺ (al−1 al)

the ordered transpositions in the cyclic decomposition of σta and denote by ρ0 the

composition of these transpositions. There are four sub-cases which are all similar, and

we just prove the result for one of them. So suppose there exists j ∈ {1, . . . , ⌊l/4⌋} with

a = a4j−3. Then we have I[T,φa)(b, c, d) = (a4j−1, a4j−2, a4j). Since φa = φb = φc = φd, we

have

(a4j−1, a4j−2, a4j) = (b, c, d).

Since a ∈ I(R), b, c, d ∈ I(W ) and φa = φb = φc = φd, we have that a ∈ I[0,φa)(R) and

b, c, d ∈ I[0,φa)(W ) and hence j ∈ A0(Rφa−,Wφa−, ρ0) with L0,j
φa

= {a, b}. Since θta = 1 we

deduce that the particle at b at time T is pinkened at time φa. The other three sub-cases

follow similarly.

The second possibility when Fa = (b, c, d) is that |cta | ≥ 4. Again there are four

sub-cases which are all similar, and we just prove the result for one of them. So

suppose there exists j ∈ {1, . . . , d′} with a = c2j−2
ta (m). Then we have I[T,φa)(b, c, d) =

(c2d
′+2j−2

ta (m), c2j−1
ta (m), c2d

′+2j−1
ta (m)). Since φa = φb = φc = φd, we have

(c2d
′+2j−2

ta (m), c2j−1
ta (m), c2d

′+2j−1
ta (m)) = (b, c, d).

Since a ∈ I(R), b, c, d ∈ I(W ) and φa = φb = φc = φd, we have that a ∈ I[0,φa)(R)

and b, c, d ∈ I[0,φa)(W ) and hence j ∈ Ai(Rφa−,Wφa−, σta) for some 1 ≤ i ≤ K with
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Li,j
φa

= {a, b}. Since θta = 1 we deduce that the particle at b at time T is pinkened at time

φa.

Proof of Lemma 7.7. For a fixed a ∈ V we wish to upper bound P [Fa = ∗ |φa 6= ∞].

Recall that we write cta for the cycle of σta containing vertex a, d′ for ⌊
|cta |
4 ⌋, and m for

the smallest element in cta . On the event {φa 6= ∗}, the event {Fa = ∗} is equivalent to

the event that at time φa one of the following occurs:

Event B1: |cta | = 1,

Event B2: |eta | ≥ 3, |cta | = 2 and l = 2

(i.e. there is only one transposition and it contains vertex a),

Event B3: |eta | ≥ 3, |cta | = 2, l 6= 2, a ∈ {al−1, al} and l /∈ 4N,

Event B4: |eta | ≥ 3, |cta | = 2, there exists j ∈ {1, . . . , ⌊l/4⌋} with

a ∈ {a4j−3, a4j−2, a4j−1, a4j} and a4j−1 > a4j−2,

Event B5: |cta | ≥ 4 but there does not exist a j ∈ {1, . . . , d′} and

r ∈ {2j − 2, 2d′(cta) + 2j − 2, 2j − 1, 2d′(cta) + 2j − 1} with a = crta(m).

These events are all disjoint so we have P

[⋃5
i=1 Bi

]
=
∑5

i=1 P [Bi]. Now,

P [B2] = P
[
|cta | = 2

∣∣ |eta | ≥ 3, l = 2
]
P [|eta | ≥ 3, l = 2] ≤

2

3
P [|eta | ≥ 3, l = 2] ,

by part 2 of Assumption 1.1. Next,

P [B3]

= P
[
a ∈ {an−1, an}

∣∣ |eta | ≥ 3, |cta | = 2, l 6= 2, l /∈ 4N
]
P [|eta | ≥ 3, |cta | = 2, l 6= 2, l /∈ 4N]

≤
1

3
P [|eta | ≥ 3, |cta | = 2, l 6= 2, l /∈ 4N] ,

again by part 2 of Assumption 1.1 and noting that the first probability is maximised

when l = 6. To deal with event B4, we condition on the values of the two sets {a1, . . . , al}

and {a1, . . . , a4j−4}. Now a4j−3 is, by construction, the smallest element in {a1, . . . , al} \

{a1, . . . , a4j−4} and so can be identified under the conditioning, and a4j−2 is uniform on

{a1, . . . , al} \ {a1, . . . , a4j−4, a4j−3}. Since a4j−1 is the smallest element in {a1, . . . , al} \

{a1, . . . , a4j−2}, we see that, under this conditioning, the event that a4j−1 > a4j−2 is

the same as the event that a4j−2 is chosen to be the smallest element in {a1, . . . , al} \

{a1, . . . , a4j−3}. Under the conditioning, this event has probability at most 1/3 which is

achieved when l = 4 (and so j = 1). We deduce that

P [B4] ≤
1

3
P [|eta | ≥ 3, |cta | = 2, ∃j ∈ {1, . . . , ⌊l/4⌋} : a ∈ {a4j−3, a4j−2, a4j−1, a4j}] .

For the final event we have

P [B5] ≤
3

7
P [|cta | ≥ 4] ,
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since the worst possible case is when |cta | = 7 (and so d′ = 1). Combining these gives

P [Fa = ∗|φa 6= ∞]

≤ P [|cta | = 1]

+
2

3

(
P [|eta | ≥ 3, l = 2] + P [|eta | ≥ 3, |cta | = 2, l 6= 2, l /∈ 4N]

+ P [|eta | ≥ 3, |cta | = 2, ∃j ∈ {1, . . . , ⌊l/4⌋} : a ∈ {a4j−3, a4j−2, a4j−1, a4j}]

+ P [|cta | ≥ 4]
)

≤ P [|cta | = 1] +
2

3

(
1− P [|cta | = 1]

)
≤

11

15
,

by part 3 of Assumption 1.1.

Proof of Proposition 7.8. We prove just the third statement, as the other two are similar.

Let AEX
t be a realisation of EX(4, f,G) with AEX

0 = {a, b, c, d}. Then

P [|{a, b, c, d} ∩ I(R)| = 1, |{a, b, c, d} ∩ I(W )| = 3]

= P
[
|AEX

T ∩R| = 1, |AEX
T ∩W | = 3

]

≥ (1− 2−9)2
|R|
(
|W |
3

)
(
|V |
4

) ,

where the inequality follows from Propositions 2.2 and 2.4, since T = 20TEX(4,f,G).
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