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ABSTRACT 23 

Background 24 

Exercise-induced weight loss is often less than expected and highly variable in men and 25 

women. Behavioural compensation for the exercise-induced energy deficit could be through 26 

energy intake (EI), non-exercise physical activity (NEPA) or sedentary behaviour (SB). We 27 

investigated this issue in women. 28 

Methods 29 

Twenty-four overweight [body mass index (BMI) M=27.9 kg/m2, SD=2.7] women [age 30 

M=33.1 years, SD=11.7] completed 12-weeks of supervised exercise (5x500kcal per week) in 31 

a non-randomised pre-post intervention study. Body mass (BM), waist circumference (WC), 32 

body composition, resting metabolic rate (RMR), total daily EI, individual meals, appetite 33 

sensations and appetite-related peptides were measured at baseline (week 0) and post-34 

intervention (week 12). Free-living physical activity (PA) and SB were measured (SenseWear) 35 

at baseline, week 1 and 10 of the exercise intervention, and at post-intervention (week 13).  36 

Results 37 

Following the 12-week exercise intervention BM [p=.04], BMI [p=.035], WC [p<.001] and fat 38 

mass (FM) [p=.003] were significantly reduced, and fat-free mass (FFM) significantly 39 

increased [p=.003]. Total [p=.028], ad libitum [p=.03] and snack box EI [p=.048] were 40 

significantly increased and this was accompanied by an increase in hunger [p=.01] and a 41 

decrease in fullness [p=.03] before meals. The peptides did not explain changes in appetite 42 
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[p>.05]. There was no compensatory reduction in NEPA [p>.05] and no increase in SB, rather 43 

there was a decrease in SB during the exercise intervention [p=.03].  44 

Conclusions 45 

Twelve-weeks of supervised aerobic exercise resulted in a significant reduction in FM and an 46 

increase in FFM. Exercise increased hunger and EI which only partially compensated for the 47 

increase in energy expenditure. There was no evidence for a compensatory reduction in NEPA 48 

or an increase in SB. Dietary intervention, as an adjunct to exercise, may offset the 49 

compensatory increase in EI and result in a greater reduction in BM. 50 

Trial registration 51 

Our trial was retrospectively registered on the International Standard Randomised Controlled 52 

Trials Registry (ISRCTN78021668, 27th September 2016) and can be found here: 53 

https://doi.org/10.1186/ISRCTN78021668 54 

KEY WORDS 55 

Exercise, appetite control, weight loss, compensation, non-exercise physical activity, sedentary 56 

behaviour 57 

 58 
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BACKGROUND 60 

There is much discussion about the role of physical activity (PA) and/or exercise for reducing 61 

obesity and promoting weight maintenance. The scepticism surrounding the efficacy of PA for 62 

weight management arises from the observation that weight loss as a result of exercise 63 

interventions is often less than expected (1) and the belief that increased exercise-induced 64 

energy expenditure (EE) is automatically countered by an increase in energy intake (EI) (2). 65 

Despite this, observational studies demonstrate that habitual PA is associated with lower body 66 

mass (BM) and fat mass (FM) (3, 4). Furthermore, experimental studies have shown that 67 

structured exercise results in reduced BM and FM, often with an increase or preservation of 68 

fat-free mass (FFM) (5-7). Exercise and/or PA is also a strong predictor of weight loss 69 

maintenance (8). The evidence demonstrates that exercise is an integral component of weight 70 

management interventions (5). 71 

Despite significant reductions in average BM and FM with exercise, weight loss is often less 72 

than the theoretically predicted reduction based on the exercise-induced EE, even when 73 

adherence to the exercise intervention is strictly supervised and monitored and compliance is 74 

high (1, 7). This less than theoretically predicted weight loss could, in part, be due to the use 75 

of overly simplistic and static predictive equations that do not account for dynamic 76 

physiological adaptations to weight loss and therefore overestimate the weight loss resulting 77 

from a particular exercise-induced energy deficit (9). Additionally, compensation in response 78 

to the energy deficit generated by the exercise regime would attenuate weight loss. This 79 

compensation could arise through an increase in EI (7, 10), or compensation that acts to reduce 80 

total daily EE such as a decrease in non-exercise physical activity (NEPA) or an increase in 81 

sedentary behaviour (SB) (or subtle combinations of all these components of energy balance) 82 

(11, 12). The literature regarding changes in EI, NEPA and SB in response to structured 83 
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exercise is conflicting and many studies lack accurate and reliable measures of EI, EE, NEPA 84 

and SB (13, 14). 85 

This study applied objective methodology to assess the influence of an exercise regime on EI 86 

(food intake, appetite sensations and appetite-related peptides) and EE (PA and SB outside of 87 

the structured exercise) in women.  The specific objective was to examine whether a 12-week 88 

supervised, structured aerobic exercise regime generated compensation through appetite, 89 

NEPA or SB. 90 

METHODS 91 

Participants 92 

Thirty-two overweight or obese inactive women were recruited to take part in the study. Only 93 

women were recruited to reduce unwanted variability in the design. Of those 32 participants, 94 

24 women aged 33.1 years (SD = 11.7) with a body mass index (BMI) of 27.9 kg/m2 (SD = 95 

2.7) completed the study. The following reasons were given for participant dropouts: did not 96 

like exercise (week 1; n=1); exercise related injury (week 4; n=1); did not comply with 97 

procedures (week 4; n=1); personal reasons (week 6; n=1); no reason provided (week 7; n=1); 98 

time commitment of exercise too much (week 10; n=2); illness (week 12; n=1). Participants 99 

were recruited from the University of Leeds, UK, and surrounding area using posters and email 100 

mailing lists. An online screening survey was completed to assess the eligibility of potential 101 

participants based on the following criteria: women aged 18-55 years, BMI between 25.0 and 102 

34.9 kg/m2, not currently dieting to lose weight, inactive (less than 150 min/week of moderate-103 

to-vigorous PA (MVPA) assessed by questionnaire), no increase in PA in previous four weeks, 104 

weight stable (no significant weight loss (≥5%) in the previous 6 months), non-smokers, not 105 
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taking any medication or have any medical condition known to affect metabolism or appetite, 106 

and acceptance of the study foods (≥3 liking of study foods on 7-point Likert scale). All 107 

participants provided written informed consent before taking part in the study. The study 108 

procedures and all study materials were reviewed and approved by the National Research 109 

Ethics Service Committee Yorkshire & the Humber (ref: 09/H1307/7). 110 

Design 111 

This study was a non-randomised pre-post study with a 12-week supervised aerobic exercise 112 

intervention. Anthropometrics, body composition and resting metabolic rate (RMR) were 113 

taken before (week 0) and at the end of the exercise intervention (week 12). Participants also 114 

completed two probe days prior to the exercise intervention (week 0) commencing and two in 115 

the final week (week 12) of the exercise intervention to assess eating behaviour and 116 

subjective appetite sensations. On both measures and probe days, the participants arrived at 117 

the research unit between 07:00 and 09:00 following a 10 hour fast (no food or drink except 118 

water). Free-living PA and SB were measured before (week -1), during (week 1 and week 10) 119 

and after (week 13) the intervention. 120 

Measures days 121 

A range of measurements were performed at week 0 (baseline) and week 12. Participants 122 

arrived at the laboratory following an overnight fast. RMR was measured (GEM, NutrEn 123 

Technology Ltd, Cheshire, UK) with participants laying supine for 40 min during which 124 

expired air was collected using a ventilated hood system. VO2 and VCO2 values were 125 

sampled every 30 seconds. The average of the final 30 min values was deemed to be the 126 

RMR expressed as kcal/d. BM and body composition (fat mass (FM) and fat-free mass 127 
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(FFM)) were measured using the BODPOD (Body Composition Tracking System, Life 128 

Measurement, Inc., Concord, USA) which uses air displacement plethysmography. 129 

Participants wore tight clothing and a swim cap to allow for an accurate measure of body 130 

volume. Height was measured using a stadiometer (Seca Ltd., Birmingham, UK) and waist 131 

circumference (WC) was measured horizontally in line with the umbilicus. 132 

Probe days 133 

Twenty-four hour EI and subjective appetite sensations were measured during the probe day 134 

visits. Participants were provided with an individually fixed energy breakfast (25% of 135 

measured RMR) of muesli and milk and a choice of tea, coffee or water and were instructed 136 

to consume all food and drink within 10 min. The macronutrient composition of the breakfast 137 

was fixed at 55%, 30% and 15% for carbohydrate, fat and protein, respectively. Participants 138 

remained in the laboratory between breakfast and lunch and were able to use a desktop 139 

computer/laptop, listen to music or read.  140 

Four hours after breakfast, an ad libitum lunch consisting of chilli with rice, and strawberry 141 

yoghurt with double cream was provided with water. Participant were then free to leave the 142 

laboratory between lunch and dinner but were not allowed to consume any food or drink 143 

except the bottle of water provided. 144 

Participants returned to the laboratory four hours later for the ad libitum dinner of tomato and 145 

herb risotto, garlic bread, salad items, chocolate brownies and water. An ad libitum snack box 146 

containing an apple, two mandarins, roast ham, cheese, bread, margarine, crisps, chocolate 147 

buttons and a vanilla yoghurt was given to participants to take home in the evening. 148 

Participants could eat any food items from the snack box but were instructed not to share the 149 
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foods. Participants returned the snack box containing any uneaten foods and food packaging 150 

the following day. All of the ad libitum meals were presented in excess of expected 151 

consumption and participants were instructed to eat until they reached a comfortable level of 152 

fullness. EI was calculated by weighing foods to the nearest 0.1 g before and after 153 

consumption and using energy equivalents for protein, fat and carbohydrate of 4, 9 and 3.75 154 

kcal/g, respectively, and nutritional information from the manufacturers’ food labels. 155 

During probe days visual analogue scales (VAS) were completed immediately before and 156 

after meals and periodically between meals to assess subjective appetite sensations using a 157 

validated electronic appetite rating system (15). Area under the curve (AUC) was calculated 158 

using the trapezoid method for subjective feelings of hunger, fullness, desire to eat and 159 

prospective foods consumption throughout the whole day (post-breakfast (0 min), +15 min, 160 

+30 min, +60 min, +90 min, +120 min, +180 min, +230 min, pre-lunch (+235 min), post-161 

lunch (+260 min), +300 min, +360 min, +420 min, pre-dinner (+480 min), post-dinner (+500 162 

min), +540 min, +600 min). 163 

EI and subjective appetite sensations were averaged across the two baseline probe days and 164 

the two post-intervention probe days to provide a single measure of EI and subjective appetite 165 

sensations at both time points. Data were averaged in this way because, as part of a wider 166 

project, the two probe days involved the consumption of a novel yoghurt or a calorie and 167 

energy matched control yoghurt immediately after breakfast. As the two different yoghurts 168 

had no effect on any of the outcome measures in this study, we included it as part of the total 169 

breakfast intake and averaged the probe days at baseline and post intervention to give a more 170 

robust pre and post intervention measure.  171 

Free-living physical activity, sedentary behaviour and energy expenditure 172 
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Free-living PA, SB and EE were measured using the SenseWear Armband mini (SWA; 173 

BodyMedia, Inc., Pittsburgh, PA), as has previously been described (3). Measures were 174 

completed before the exercise intervention (week -1), week 1 and week 10 of the exercise 175 

intervention and post-intervention (after the exercise intervention was complete; week 13). 176 

Participants wore the SWA at all times apart from when showering, bathing or swimming, this 177 

included wearing the SWA during structured exercise sessions. Participants wore the SWA on 178 

the posterior surface of their upper non-dominant arm for a minimum of 22 hours/d for 7-8 179 

days. The SWA measures motion (triaxial accelerometer), galvanic skin response, skin 180 

temperature and heat flux. Proprietary algorithms available in the accompanying software 181 

(SenseWear Professional software version 8.0, algorithm v5.2) calculate EE and classify the 182 

intensity of activity. SB was classified as <1.5 METs, light 1.5-2.9 METs, moderate 3-5.9 183 

METs and vigorous >6 METs (16). Moderate and vigorous PA was grouped together to form 184 

one MVPA category to correspond with the guidelines for PA. Activity EE was calculated by 185 

summing the energy expended in activities >1.5 METs. PA and SB variables were expressed 186 

as average min/d and activity EE was expressed as average kcal/d by dividing the total min/d 187 

or kcal/d recorded during the whole wear period by the number of days participants wore the 188 

SWA. For a wear period to be valid there had to be ≥5 days of valid data (≥22 hours/d) 189 

including ≥1 weekend day (17). The SWA has been shown to accurately estimate time spent 190 

in sedentary, light and moderate activities, total EE, EE at rest and EE during free-living light 191 

and moderate intensity PA (18-21). 192 

Non-exercise physical activity 193 

The duration of weekly prescribed exercise was averaged over 7 days for week 1 (M = 47.30 194 

min/d, SD = 6.96) and week 10 (M = 40.16 min/d, SD = 5.83) of the exercise intervention. 195 

Average structured exercise minutes per day was then subtracted from time spent in MVPA 196 
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per day measured using the SWA during week 1 and week 10 of the exercise intervention to 197 

determine NEPA MVPA. Similarly, the five day exercise-induced EE (2500 kcal) was 198 

averaged over 7 days (357.14 kcal/d) and subtracted from activity EE measured using the SWA 199 

during week 1 and week 10 of the exercise intervention to determine NEPA activity EE. 200 

Exercise intervention 201 

Participants were required to exercise at the laboratory exercise facility five times per week for 202 

12-weeks. Each exercise session was individually tailored to expend 500 kcal at 70% of their 203 

HR maximum (2500 kcal/wk). Participants completed a maximal treadmill fitness test and 204 

expired air was collected and analysed using indirect calorimetry (SensorMedics Vmax29, 205 

California, USA) to calculate EE during exercise. Standard stoichiometric equations were used 206 

with respiratory data (VO2/VCO2) to calculate the energy expended at 70% HR maximum (22). 207 

To account for changes in fitness and BM, a further VO2 max test was performed during week 208 

six of the intervention to recalculate the exercise duration required to expend 500 kcal at 70% 209 

HR maximum. Compliance with the exercise intervention was monitored and tracked daily 210 

using HR monitors (S610, POLAR, Finland) to ensure the correct intensity and duration of 211 

exercise was achieved. Participants could choose from a selection of exercise equipment: 212 

bicycle ergometers, cross-trainers, rowing ergometers and treadmills. Participants could attend 213 

the laboratory exercise facility between 7 am and 7 pm Monday – Friday. The facility could 214 

accommodate up to 6 participants exercising at any one time. The target total EE over the 12-215 

week exercise intervention was 29,000 kcal for each participant. If participants missed an 216 

exercise session for any reason they were required to make up the time they had missed by 217 

exercising for longer on other days or exercising away from the laboratory over the weekend 218 

providing they recorded their exercise session with the HR monitor. Participants were excluded 219 
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from the study on a case by case basis if they repeatedly missed exercise sessions and it was 220 

deemed unrealistic to make up the exercise they had missed. 221 

Blood parameters 222 

Venous blood samples were collected into 10ml syringes and then transferred to EDTA-223 

containing Monovette tubes. These tubes contained a mixture of inhibitors (dipeptidyl 224 

peptidase IV (DPP4) inhibitor (10µl/ml blood), aprotinin (50µl/ml blood) and pefabloc SC 225 

(50µl/ml blood)) to prevent degradation of the peptides to be measured. Samples were drawn 226 

at eight time points during the morning of the probe day at 0 min and after breakfast at +15 227 

min, +30 min; +60 min; +90 min; +120 min; +180 min and +230 min for the measurement of 228 

metabolic and appetite peptide levels. After collection, samples were centrifuged for 10 229 

minutes at 4°C and 4000 rpm. Samples were immediately pipetted into Eppendorf tubes and 230 

stored at -80°C awaiting analysis. Insulin, acylated ghrelin, peptide YY (PYY) and glucagon-231 

like peptide 1 (GLP-1) were analysed in this study. Total PYY was measured due to feasibility. 232 

Because the overwhelming composition of circulating total PYY is known to be PYY3–36, the 233 

present PYY (total) assay effectively measured PYY3–36. A previous study showed an 234 

essentially perfect correlation between this PYY (total) assay and a PYY3–36 selective 235 

radioimunoassay. The relevant antibodies for PYY (total) used in the present study (originally 236 

from Linco, St. Charles, Missouri), have been used by others to demonstrate the effects of 237 

PYY3–36 (23). The inter- and intra- assay coefficients of variations were 6.35% and 6.2% for 238 

insulin, 3.81% and 5.3% for leptin, 4.24% and 4.05% for GLP-1, 4.91% and 5.9% for PYY 239 

(total) and 5.12% and 4.45% for acylated ghrelin, respectively. 240 

Only a subset of participants completed the postprandial blood samples. Reasons for missing 241 

peptide data included unsuccessful cannulation, and participants’ unwillingness to take part in 242 
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this part of the study. All samples that were drawn, were analysed and have been included in 243 

the manuscript. 244 

Statistical analysis 245 

Data are reported as mean ± SD throughout, unless otherwise stated. Statistical analysis was 246 

performed using IBM SPSS for Windows (Chicago, Illinois, Version 21) and significance was 247 

set at p < .05. All variables were checked for outliers and normality was assessed using the 248 

Shapiro-Wilk test. Changes in anthropometrics, body composition and RMR from baseline to 249 

post-intervention were assessed using paired sample t-tests. To examine changes in EI, free-250 

living PA, SB, NEPA and activity EE in response to structured aerobic exercise, one-way 251 

repeated measures ANCOVA were performed with baseline BMI entered as a covariate and 252 

reported where significant. Change in subjective appetite sensations and appetite hormones 253 

from baseline to post-intervention were assessed using two-way ANCOVA (Week*Time) with 254 

effects of baseline BMI reported where significant. Where appropriate Greenhouse-Geisser 255 

probability levels were used to adjust for sphericity. Post hoc comparisons using Bonferroni 256 

adjustments were used if statistical significance was detected. Because of the large individual 257 

variations in fasting levels of metabolic and appetite hormones, the change from baseline was 258 

computed at each time point for each individual for all of the variables. Simple linear regression 259 

was also performed to identify whether differences in exercise-induced EE or change in total 260 

EI explained the variation in body composition change between participants. The last 261 

observation carried forward (LOCF) method was used to account for missing data for the eight 262 

participants who dropped out of the study. The analyses that were conducted on the completer 263 

dataset were repeated on the LOCF dataset. Results were reported only when LOCF analyses 264 

differed from completer analyses. 265 
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RESULTS 266 

The prescribed total EE over the 12-week exercise intervention was 29,000 kcal for each 267 

participant. The mean total measured exercise-induced EE was 28,792.3 kcal (SD = 872.96), 268 

which was 99.3% of the prescribed EE. 269 

Change in body composition, anthropometrics and resting metabolism 270 

Paired sample t-tests revealed there was a significant reduction in BM [t(23) = 2.18, p = .04], 271 

BMI [t(23) = 2.25, p = .035], WC [t(23) = 4.60, p < .001] and FM [t(23) = 3.36, p = .003] and 272 

a significant increase in FFM [t(23) = 3.35, p = .003], see Table 1. 273 

Assuming 1 kg of BM (70:30 fat/lean tissue) is equivalent to 7,700 kcal (24), the predicted 274 

sample average weight loss resulting from the total exercise-induced energy deficit (28,792.29 275 

kcal) was 3.74 kg. The observed weight loss was less than the predicted weight loss (22.19% 276 

of predicted) indicating compensation for the exercise-induced energy deficit occurred. There 277 

was no significant change in RMR from baseline to week 12 [p = .304], see Table 1. 278 

**Table 1 around here** 279 

There was considerable variability in weight loss and body composition change between 280 

participants. Seventeen participants lost weight, one participant remained the same and six 281 

participants gained weight following the 12-week supervised aerobic exercise intervention. 282 

Changes in BM ranged from -4.3 kg to +3.1 kg (see figure 1). Of the 24 participants, 20 reduced 283 

their FM, one remained the same and three gained FM with changes ranging from -4.4 kg to 284 

+4.9 kg. Two participants had unfavourable changes in both FM (increased) and FFM 285 
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(decreased). Total exercise-induced EE did not explain the variation in BM change [F(1, 22) = 286 

1.259, p = .274, R2 = .054], FM change [F(1, 22) = 2.418, p = .134, R2 =.099] or FFM change 287 

[F(1, 22) = 1.475, p = .237, R2 = .063]. 288 

Energy intake 289 

Paired sample t-tests revealed participants total EI during week 12 probe days was significantly 290 

higher compared with total EI during baseline probe days [t(23) = 2.35, p = 0.028]. 291 

Furthermore, ad libitum EI (lunch, dinner and snack box EI combined) [t(23) = 2.31, p = .03] 292 

and snack box EI [t(23) = 2.09, p = .048] were also higher at week 12. However, there was no 293 

significant difference in lunch [p = .998] or dinner [p = .194] EI, see Table 2. When these 294 

analyses were adjusted for baseline BMI (ANCOVA), there was no effect of BMI and no 295 

interaction between BMI and the intervention. 296 

**Table 2 around here** 297 

As with body composition change, there was considerable variability in total EI change from 298 

baseline to week 12 between participants. Ten participants decreased their EI, whereas 14 299 

participants increased their EI. Change in total EI ranged from -581.5 kcal/d to +763.9 kcal/d. 300 

Change in total EI did not explain the variation in BM change [F(1, 22) = 0.583, p = .453, R2 301 

= .026], FM change [F(1, 22) = 1.336, p = .260, R2 =.057] or FFM change [F(1, 22) = 1.065, p 302 

= .313, R2 = .046]. 303 

Subjective appetite sensations 304 
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There was no significant difference between baseline and week 12 fasting hunger ratings [t(23) 305 

= 1.64, p = .12]. There was a main effect of week [F(1, 23) = 7.82, p = .01] with hunger being 306 

higher (when measured over the whole day) at week 12 (M = 25.58 mm, SD = 16.49) compared 307 

with baseline (M = 21.68 mm, SD = 17.11). Pairwise comparisons with Bonferroni adjustments 308 

revealed VAS hunger ratings were significantly higher during the post-intervention probe days 309 

compared with baseline immediately post-breakfast [t(23) = 2.08, p = .049], 15 min [t(23) = 310 

2.65, p = .014], 30 min [t(23) = 2.63, p = .015], 90 min [t(23) = 2.20, p = .038], immediately 311 

post-lunch [t(23) = 2.33, p = .029], immediately post-dinner [t(23) = 2.63, p = .015] and 600 312 

min [t(23) = 3.01, p = .006]. There was also a main effect of time [F(2.69, 61.95) = 66.99, p < 313 

.001) but no week*time interaction [F(6.12, 140.70) = 0.73, p = .63], see Figure 2a. Paired 314 

sample t-tests revealed there was a significant increase in AUC for hunger [t(23) = 2.61, p = 315 

.016] throughout the whole day from baseline to week 12. 316 

There was no significant difference between baseline and week 12 fasting fullness ratings [t(23) 317 

= 1.03, p = .32]. There was a main effect of week [F(1, 23) = 5.55, p = .03], with fullness being 318 

lower (when measured over the whole day) at week 12 [M = 56.12 mm, SD = 19.54] compared 319 

with baseline [M = 60.06 mm, SD = 19.71]. Pairwise comparisons with Bonferroni adjustments 320 

revealed VAS fullness ratings were significantly lower during the week 12 probe days 321 

compared with baseline at 30 min [t(23) = 2.17, p = .040], 180 min [t(23) = 2.65, p = .014], 322 

immediately post-lunch [t(23) = 2. 78, p = .011], immediately post-dinner [t(23) = 2.49, p = 323 

.021] and at 600 min [t(23) = 2.41, p = .024]. There was also a main effect of time [F(4.26, 324 

97.99) = 75.28, p < .001) but no week*time interaction [F(7.54, 173.32) = 0.58, p = .78], see 325 

Figure 2b. Paired sample t-tests revealed there was a significant decrease in AUC for fullness 326 

[t(23) = 2.18, p = .04] throughout the whole day from baseline to week 12. The results of these 327 

analyses did not change when controlling for baseline BMI (ANCOVA). 328 
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Change in free-living physical activity, sedentary behaviour and non-exercise physical 329 

activity 330 

When the structured exercise sessions were included in the SWA data during the week 1 and 331 

10 measurement period, the amount of time spent in MVPA was significantly different between 332 

the four different time points [F(3, 66) = 18.57, p < .001]. Post hoc tests revealed MVPA was 333 

significantly higher during the first and tenth week of the exercise intervention compared to 334 

baseline and post-intervention [p < .05], see Figure 3a. Similarly, activity EE differed 335 

significantly between the different time points [F(3, 66) = 17.16, p < .001]. Post hoc tests 336 

revealed activity EE was also significantly higher during the first and tenth week of the exercise 337 

intervention compared with baseline and post-intervention [p < .05], see Figure 3a. 338 

A repeated measures ANCOVA revealed that there was a significant difference in mean 339 

sedentary time between the different time points [F(3, 66) = 3.32, p = .03]. Post hoc tests 340 

revealed that there was a significant increase in sedentary time between the first week of 341 

exercise and the week following the completion of the exercise intervention [p = .02]. When 342 

the repeated measures ANCOVA was conducted on the LOCF dataset [F(3, 93) = 5.11, p = 343 

.002], there was a significant decrease in SB from baseline to week 1 [p = .043] and baseline 344 

to week 10 [p = .047] of the exercise intervention. The increase in sedentary time between the 345 

first week of exercise and the week following the completion of the exercise intervention 346 

remained significant [p = .02]. There was no covariate effect of baseline BMI and no interaction 347 

between BMI and the intervention. 348 

Sleep, sedentary time, light PA and MVPA are collinear which means an increase in one 349 

category of activity would lead to a decrease in at least one other. The sum of the change in 350 

sleep, sedentary time and light PA (all categories excluding MVPA) between baseline and 351 
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week 1 and baseline and week 10 was calculated to identify whether the increase in structured 352 

MVPA displaced these activities rather than displacing MVPA that participants already 353 

performed as part of their daily routines. The sum of all the activity categories other than 354 

MVPA between baseline and week 1 was -59.61 min/d (SD = 43.89) and between baseline and 355 

week 10 was -41.19 min/d (SD = 51.70). Change in MVPA from baseline to week 1 was +50.20 356 

min/d (SD = 37.96) and from baseline to week 10 was +42.63 min/d (SD = 49.87). Structured 357 

MVPA appears to displace sleep, SB and light PA but not NEPA MVPA. 358 

When the structured exercise was removed from the SWA data during week 1 and week 10 of 359 

the exercise intervention there was no significant difference between baseline, week 1, week 360 

10 and post-intervention NEPA MVPA [F(3, 66) = 0.05, p = .99] or NEPA activity EE [F(3, 361 

66) = 0.87, p = .46], see Figure 3b. NEPA MVPA ranged from 85.8 min/d to 88.7 min/d and 362 

NEPA activity EE ranged from 864.4 kcal/d to 760.1 kcal/d.  363 

Change in fasting and postprandial appetite-related peptide response 364 

There was a significant decrease in fasting insulin levels from baseline to post-intervention, as 365 

shown in Table 3. There was no significant difference in fasting acylated ghrelin, PYY or GLP-366 

1 between baseline and post-intervention [p > .05].  367 

**Table 3 around here** 368 

Postprandial profiles for insulin, acylated ghrelin, PYY, and GLP-1 at baseline and post-369 

intervention are displayed in Figure 4. There was a main effect of week for PYY [F(1, 17) = 370 

9.14, p = .008] which was higher post-intervention (M = 51.19 ng/L, SD = 21.93) compared 371 

with baseline (M = 35.96 ng/L, SD = 16.36). Post hoc tests using the Bonferroni correction 372 
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revealed that PYY was significantly higher during the post-intervention probe day at +30 min 373 

[p = .002], +60 min [p = .003], and +90 min [p = .041]. There was a main effect of time [F(2.01, 374 

34.23) = 17.24, p < .001] and a significant week*time interaction [F(3.00, 51.06) = 3.17, p = 375 

.032]. 376 

There was no main effect of week for insulin [F(1, 17) = 1.29, p = .272], acylated ghrelin [F(1, 377 

16) = 0.21, p = .651] or GLP-1 [F(1, 17) = 0.23, p = .642]. There was a significant main effect 378 

of time for insulin [F(1.31, 22.24) = 67.35, p < .001], acylated ghrelin [F(1.98, 31.65) = 64.34, 379 

p < .001] and GLP-1 [F(2.01, 34.19) = 34.50, p < .001], however there was no week*time 380 

interaction for insulin [F(2.81, 47.68) = 0.96, p = .417], acylated ghrelin [F(3.23, 51.72) = 1.16, 381 

p = .335] or GLP-1 [F(2.80, 47.67) = 1.36, p = .268]. 382 

DISCUSSION 383 

The 12-week exercise intervention resulted in a significant reduction in BM and FM, refuting 384 

claims from some academics that exercise/PA does not promote weight loss (25). However, 385 

weight loss was less than predicted and there was considerable variability in weight change 386 

between individuals ranging from -4.3 kg to +3.1 kg. Less than predicted weight loss and large 387 

individual variability in weight change have previously been reported in response to increased 388 

exercise (1, 7). Total exercise-induced EE throughout the intervention (99.3% of prescribed on 389 

average) did not contribute to the variability in weight change, thus ruling out the possibility 390 

that the variability was due to adherence to the exercise intervention. 391 

It has been suggested that exercise-induced EE will be compensated for through increased EI 392 

or decreased NEPA to offset the negative energy balance, rendering exercise futile for weight 393 

loss (26, 27). The exercise-induced energy deficit in the current study was not fully 394 
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compensated for as participants did in fact lose weight on average. However, partial 395 

compensation was evident as participants lost less weight than predicted when calculated based 396 

on the exercise-induced energy deficit. When calculated the increase in EI between baseline 397 

and post-intervention probe days was repeated every day for 12-weeks the accumulated 398 

increase in EI would be approximately 15,000 kcal. This is approximately half of the EE due 399 

to exercise; thereby effectively reducing the exercise potency by 50%. It is also worth noting 400 

that the static Wishnofsky predictive equation (24) for estimating weight loss is simplistic and 401 

does not account for adaptations in other components of energy balance as a result of an energy 402 

deficit (for example, increased EI, physiological reductions in RMR, an increase in FFM or a 403 

decrease in NEPA) and could lead to overestimation of predicted weight loss (28). 404 

Furthermore, the 1 kg of BM is equivalent to 7700 kcal rule (1 kg of BM consists of 70% fat 405 

and 30% FFM) is based on short-term low-calorie diets and is not directly applicable to the 406 

change in body composition induced by exercise. Indeed, in the current study, and others (29), 407 

there was in fact a significant increase in FFM. 408 

It was hypothesised that EI would increase post-intervention in response to increased exercise 409 

as has previously been demonstrated (7, 10). Indeed, there was a significant increase in total, 410 

ad libitum and snack box EI at week 12. While some studies show no change in EI, these are 411 

often unsupervised and rely on self-report measures of EI (30). When calculated as a 412 

proportion of the energy expended per exercise session, the increase in EI represented 413 

compensation of 36%, which is similar to the 30% compensation observed by Whybrow et al. 414 

(10). The participants in the Whybrow study were lean men and women and would be 415 

expected to compensate for a negative energy balance more readily as they have less of a 416 

‘buffer’ (FM) than overweight or obese individuals. That could explain why the degree of 417 

compensation is similar in both studies despite the present study being considerably longer. 418 
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Participants had more FM in the current study and therefore compensation may not occur as 419 

quickly as would be expected in lean individuals. It has previously been noted that BM 420 

regulation is asymmetrical; a positive energy balance (and weight gain) is well tolerated 421 

whereas a negative energy balance (and weight loss) is strongly defended against (31). This 422 

study, together with previous research (32), provides further support for the asymmetry of 423 

BM regulation evidenced by the compensatory increase in EI to defend against weight loss in 424 

response to a prolonged period of increased exercise-induced EE. A strength of this study is 425 

the objective measurement of 24 hour EI, however, it is acknowledged that using episodic 426 

test meal intake to infer changes in habitual intake has limitations (33). Rather, probe day 427 

measures of EI can be viewed as assays for eating behaviour and give an indication of 428 

compensatory appetite responses to perturbations in energy balance that are free from 429 

external influences (34). Similar test meals and probe day procedures to those reported in the 430 

current study have previously been shown to detect exercise-induced compensation in eating 431 

behaviour (7). 432 

The increase in EI was accompanied by an increase in hunger throughout the day (mainly 433 

during the morning) and decreased fullness reflected in AUC for hunger and fullness. The 434 

results of the current study are similar to those observed in ‘non-responders’ in the study by 435 

King et al. (6) with respect to change in BM (-0.9 kg), FM (-1.2 kg), EI (+164 kcal) and AUC 436 

for hunger and fullness. A possible explanation is that the majority of the participants in the 437 

current study are ‘non-responders’; they do not achieve the predicted change in body 438 

composition calculated from their exercise-induced EE. When the current sample are 439 

categorised as ‘responders’ and ‘non-responders’ using the method described by King et al. 440 

(6), two thirds are classified as ‘non-responders’. Participants in the current study had a lower 441 

BMI at the start of the study (27.94 kg/m2 vs. 31.80 kg/m2) which could explain why their 442 
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weight loss response was less pronounced than that observed in a previous study (6). 443 

Furthermore, the study by King et al. (6) included men and men have been shown to exhibit a 444 

greater weight loss in response to exercise than women (35, 36). However, this is not a 445 

universal finding (37). The current findings in women should not be assumed to generalise to 446 

men and further research is required to verify this. 447 

Greater compensation in NEPA, rather than changes in EI, have previously been reported in 448 

response to increased exercise (38). In the current study, SWA data was initially analysed 449 

with structured exercise included in the data collected during week 1 and 10 of the exercise 450 

intervention. When MVPA and activity EE were compared across the four time points 451 

(baseline, week 1, week 10 and post-intervention) participants spent significantly more time 452 

in MVPA and had significantly higher activity EE during week 1 and week 10 compared with 453 

baseline and post-intervention. Total compensation in NEPA would be apparent if, for 454 

example, MVPA and activity EE did not increase during the exercise intervention. MVPA 455 

and activity EE returned to baseline values when PA was measured post-intervention. This 456 

demonstrates that participants did not maintain their increased PA levels once the 457 

intervention ended. Post-interventions PA levels similar to baseline have previously been 458 

highlighted (39-42). 459 

There was no evidence for a compensatory increase in SB. In fact, SB was lower in the weeks 460 

during the exercise intervention, but only the difference between week 1 of the exercise 461 

intervention and post-intervention reached statistical significance. This suggests that the 462 

structured exercise displaced some sedentary time. This is in contrast with previous research 463 

that suggests that interventions need to specifically target reductions in SB to change 464 

sedentary time (12). Indeed, the magnitude of the reduction in SB may have been greater with 465 

a specific component of the intervention to target reduced SB in the current study. Further 466 
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examination of activity monitor data suggests structured exercise also displaces some sleep 467 

time and light PA, but the difference in sleep and light PA at the different time points 468 

throughout the intervention were not significant. The sum of the difference in sleep, SB and 469 

light PA between baseline and week 1 and baseline and week 10 was greater than the change 470 

in MVPA (in the opposite direction) at the same time points. Furthermore, when the 471 

prescribed exercise was removed from SWA data during week 1 and 10, the remaining 472 

NEPA MVPA was remarkably similar to baseline and post-intervention values (<3 minutes 473 

difference between all four time points) and there was no significant difference in NEPA 474 

activity EE across the four time points. Taken together, these findings suggest that increasing 475 

MVPA through a structure exercise intervention displaces time spent sleeping, sedentary and 476 

in light PA but not NEPA MVPA. This is in agreement with previous studies (40, 42) and a 477 

recent systematic review that concluded no statistically or clinically significant mean change 478 

in NEPA occurs during exercise training (11). 479 

Appetite-related peptides were measured in this study in order to determine if any exercise-480 

induced changes could be related to adjustments in fasting or postprandial gastrointestinal 481 

signalling. However, the peptides did not account for changes in subjective appetite 482 

sensations or in EI. PYY was higher on average during post-intervention probe days, 483 

however this was not coupled with a decrease in hunger or an increase in fullness as might be 484 

expected. In fact, there was a significant increase in hunger and decrease in fullness post-485 

intervention. There was no change in postprandial profiles for insulin, acylated ghrelin or 486 

GLP-1 in the present study. Acute studies suggest an exercise intensity of at least 65% ሶܸO2 is 487 

required to induce changes in appetite related peptides (43, 44). However, the present 488 

findings are not comparable due to the assessment of longer-term exercise training. There 489 

was a significant decrease in fasting insulin from baseline to post-intervention. As insulin 490 
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levels are proportional to FM it is likely the reduction in insulin was driven by the reduction 491 

in FM following the exercise intervention. However, some studies have demonstrated 492 

improved insulin sensitivity following exercise interventions independent of weight loss/body 493 

composition changes whilst others have demonstrated improvements only occur with weight 494 

loss (45). The relative importance of exercise and weight loss remains unclear and it is 495 

possible both contributed to the reduction in fasting insulin levels in the present study. These 496 

findings, while novel in this context, suggest that the changes in appetite are more likely due 497 

to changes in body composition rather than changes in appetite peptides, as has previously 498 

been proposed (46). It is possible that a greater change in body composition would be 499 

required to see concomitant changes in appetite peptides.  500 

 501 

The quasi-experimental design used in the present study allows certain inferences to be made 502 

from the presence or lack of changes in compensatory EI and EE behaviours before and after 503 

medium-term exercise training. However due to the single non-randomised sample it is not 504 

possible to rule out that the effects reported here would not have been seen after 12 weeks of 505 

rest (with the two conditions randomised). Future confirmation of these findings using a 506 

randomised controlled trial design would be valuable. 507 

On average there was a significant increase in EI from baseline to post-intervention providing 508 

a plausible explanation for the less than predicted weight loss. However, change in total EI 509 

did not explain the variation in BM change. Laboratory measures of EI do not reflect the 510 

turbulence of the free-living environment in which eating behaviour is more haphazard and 511 

cannot be captured. Indeed, it is possible that the measure of EI obtained from the probe days 512 

may not reflect participants eating habits in the free-living environment. 513 

It must also be acknowledged that participants’ menstrual cycle was not recorded and 514 

therefore could not be included as a covariate in analyses. Since there does not seem to be 515 
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any discernible differences between sexes in the appetite and eating behaviour response to 516 

acute and longer-term exercise interventions (37, 47), the authors think it is unlikely that the 517 

menstrual cycle had a major impact on the study outcomes. 518 

Finally, it is worth emphasising that exercise alone is clearly not the most effective way to 519 

lose weight, particularly when compared to standard behavioural interventions in which 520 

participants may lose 5-10% of weight. The present study demonstrates that exercise can 521 

produce modest fat loss without additional dietary assistance. However, the compensatory 522 

increase in energy intake observed suggests that an additional dietary intervention would 523 

support an even greater weight (fat) loss. 524 

CONCLUSIONS 525 

Overweight women took part in an exercise intervention which comprised five mandatory 526 

sessions of aerobic exercise per week for 12-weeks. No constraint was placed on other free-527 

living behaviour (activity or eating) during the 12-weeks. Therefore, participants were able to 528 

demonstrate compensation for the energy expended in exercise by an adjustment of their food 529 

intake or the amount of SB or free-living PA. At the end of 12-weeks there was a significant 530 

decrease in FM and an increase in FFM indicating that the exercise regime had been effective 531 

and had generated a significant impact on body composition. However, there was considerable 532 

individual variability and the changes in body composition were smaller than could have been 533 

expected on the basis of the total energy expended through exercise (actual weight loss was 534 

22.19% of predicted). Compensation for the exercise induced EE was detected in a significant 535 

increase in EI but no increase in SB or decrease in free-living PA. In fact, the exercise actually 536 

displaced SB. The effect of exercise on FM could be amplified by the addition of a dietary 537 

strategy designed to prevent a compensatory increase in EI. 538 
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Despite finding a short-term increase in EI during laboratory probe days, the magnitude of this 539 

effect was not sufficient to fully explain the difference between predicted and observed weight 540 

loss. While food intake in the laboratory setting provides a plausible objective marker of 541 

changes in free-living intake, it may not reflect absolute levels of energy consumed during the 542 

intervention. Therefore it is not possible to decisively conclude from the present findings that 543 

compensation for the exercise was due to EI alone. Future studies using other comprehensive 544 

measures of EI and EE are needed to corroborate the present results.  Moreover, future studies 545 

should investigate how weight status (lean, overweight, obese), the amount of exercise applied 546 

(volume, intensity) and the periodicity of exercise (frequent small bouts or fewer large bouts) 547 

effect the relationship between exercise and behavioural consequences. Considering an effect 548 

on EI, it is known that this end point is influenced by body composition (FM and FFM). These 549 

variables are also influenced by exercise, therefore any effect of exercise may be mediated 550 

indirectly via changes in body composition or directly through some mechanism involved in 551 

cellular metabolism. 552 
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FIGURES, TABLES AND ADDITIONAL FILES 725 

Figure 1. Individual variability in BM change between participants. 726 



31 
 

Figure 2. VAS (a) hunger and (b) fullness ratings during baseline (BL) and post-intervention 727 

(PI) probe days (error bars are standard error). * = p < .05, indicates significant difference 728 

between baseline and post-intervention. 729 

Figure 3. Time spent in MVPA and activity EE before (baseline; BL), during the 12-week 730 

exercise intervention (week 1 and 10) and after the exercise intervention (post-intervention; PI) 731 

measured using the SWA with structured exercise included (a) and removed (b) from the data 732 

(n=23), ** = p < .01, *** = p < .001. 733 

Figure 4. Postprandial profiles for insulin (a), acylated ghrelin (b), PYY (c), and GLP-1 (d) at 734 

baseline (BL) and post-intervention (PI; n=18), * = p < .05, ** = p < .01. 735 


