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ABSTRACT

In this work first it is shown, in contradiction to the well-known claim in Cox

(1987), that the uncovered set in a multidimensional spatial voting situation

(under the usual regularity conditions) does not necessarily coincide with the

core even when the core is singleton: in particular, the posited coincidence

result, while true for an odd number of voters, may cease to be true when the

number of voters is even. Second we provide a characterisation result for the

case with an even number of voters: a singleton core is the uncovered set in

this case if and only if the unique element in the core is the Condorcet winner.
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2 The uncovered set and the core
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1. INTRODUCTION

I
n this work first it is shown, in contradiction to the well-known claim

in Cox (1987, 409) (repeated in a number of subsequent works), that

the uncovered set in a multidimensional spatial voting situation does not

necessarily coincide with the core even when the core is non-empty or even

singleton: in particular, the posited coincidence result may cease to be true

when the number of voters is even. Then we provide a characterisation result

for the case with an even number of voters: a singleton core is the uncovered

set in this case if and only if the unique element in the core is the Condorcet

winner.

In our framework, the set of outcomes or policies under consideration is

some compact and convex subset of some finite dimensional Euclidean space

and any majority coalition of voters can enforce any outcome over another.

For such an environment Cox (1987, 409) made the claim that if individual

preferences satisfy a very innocuous symmetry condition then the uncovered

set coincides with the core whenever the latter is non-empty. However, he

worked with an odd number of voters for expositional convenience (Cox, 1987,

409). But actually his proof used the assumption that the cardinality of the

voter set is odd in a non-trivial way. This claim has been repeated in subsequent

literature. For example, Austen-Smith & Banks (2005, 274) stated in their

much-used textbook that “the uncovered set coincides with the core when the

latter is nonempty and singleton” (the definition of the uncovered set they use,

in fact, gives a superset of the uncovered set with which we have worked here).

A similar remark appears in the relatively recent but well-known paper by Penn

(2009, 44).

However, in this paper we show that there is a voting situation for which

the number of voters is even, the core is a singleton, but the uncovered set does

not coincide with the core. Therefore, the message of this counter-example

is that this claim (Cox, 1987), which is a powerful result for majority rule

voting situations with an odd number of voters, should be invoked with some

degree of caution. The strength of this result in the case with an odd number

of voters (for which it is true) may lead to its somewhat careless generalised
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Bhattacharya, Brosi, Ciardiello 3

use. While we show this possibility of non-coincidence of the core and the

uncovered set for spatial voting, for majority voting situations with a finite set

of outcomes, this possibility was noted by Bordes (1983) several years ago.

Quite naturally, the question then arises whether an analogue of Cox (1987)’s

result is true when the number of voters is even. Addressing this issue we

provide the following characterization result: a singleton core is the uncovered

set in a majority spatial voting situation (with the usual regularity conditions)

with an even number of voters if and only if the unique element in the core is

the Condorcet winner of that situation.

The next section gives the preliminary definitions and notation. Section 3

gives the results and some discussions about the results.

2. PRELIMINARY DEFINITIONS AND NOTATION

Let Z ⊆ Rk be a compact convex subset of some finite (k-)dimensional Eu-

clidean space. This set, Z, is identified to be the feasible set of policies or

outcomes on which a voter votes. Let N = {1,2, . . . ,n} be the finite set of play-

ers or voters. Suppose that the preferences of a player i on Z is represented by

a real-valued continuous and strictly concave pay-off function ui ∈C0(Z,R).
The spatial voting situation we consider below is obtained by introducing the

method of majority rule voting.

Definition 2.1 (Domination by Majority Rule). Given x,y ∈ Z, the policy x

beats (or dominates) policy y via coalition S ⊆ N, if |S|> |N|/2 and ui(x)>
ui(y) for each i ∈ S. We denote this as x ≻S y. If there exists a majority coalition

S via which x dominates y, we denote that as x ≻ y.

The collection G= (Z,N,(ui)i∈N) is a spatial voting situation with majority

rule. For any x ∈ Z and i ∈ N, by Di(x) we denote the set {y ∈ Z : ui(y) >
ui(x)}. Further, D(x) = {y ∈ Z : y ≻ x}. For any set A ⊆ Z, by cl(A) we denote

the closure of A. Also, for any two points x,y ∈ Z, by ρ(x,y) we denote the

(Euclidean) distance between these two points. Recall the two well-known

solution concepts for such situations that we shall discuss: the core and the

uncovered set.

Definition 2.2 (The Core of a Voting Situation). The core of such a voting

situation is the subset K = {y ∈ Z : ∄z ∈ Z such that z ≻ y}.

Journal of Mechanism and Institution Design 3(1), 2018



4 The uncovered set and the core

Recall that a point x ∈ Z is said to be the Condorcet winner of the voting

situation if for any other outcome y 6= x, x ≻ y. Recall that if a voting situation

admits a Condorcet winner, then it is the unique element in the core.

Definition 2.3 (The (Gillies) Uncovered Set). Let x,y ∈ Z. We say that x covers

y, denoted as y ≺c x if the following hold:

x ≻ y;

z ∈ Z, z ≻ x =⇒ z ≻ y.

The uncovered set is given by UC = {y ∈ Z : ∄z such that y ≺c z}

As this work is primarily motivated by Cox (1987) we are using the defini-

tion he has used. Although the notion of covering (and that of uncovered sets)

was introduced explicitly first by Miller, the solution defined here is the set of

the maximal elements of the Gillies’ covering subrelation (following Gillies,

1959) rather than Miller’s subrelation (for clarification, we refer to Bordes et

al. 1992; see also Miller 2015). At the end we remark on the analogue of our

non-coincidence result for the (Miller) uncovered set. For any y ∈ Z, by C(y)
we denote the set of elements in Z, which cover y.

Next recall that the preferences are said to be Euclidean or circular if for

every voter i ∈ N, there exists x̄i ∈ Z such that for any policy x ∈ Z, ui(x) =
−(ρ(x, x̄i))

2. Cox (1987, 416) introduces a notion of limited asymmetry of

preferences. For completeness, we reproduce the definition here.

Definition 2.4 (Preferences that are limited in asymmetry). Preferences are

said to be limited in asymmetry by α if for every line L intersecting Z, every

i ∈ N, and every r ∈ R,

V i
L(r) 6= /0 =⇒ f (L, i.r)≤ α

where V i
L(r) = {x ∈ L : ui(x) = r}; f (L, i,r) =

max
x∈V i

L
(r)

ρ(x,bi
L)

min
x∈V i

L
(r)

ρ(x,bi
L)

; the induced

ideal point of i ∈ N on the line L being denoted by bi
L.

We merely note here that Euclidean preferences obviously satisfy this

condition with α = 1.

Journal of Mechanism and Institution Design 3(1), 2018
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3. THE RESULTS AND DISCUSSIONS

Cox’s result is as follows.

Proposition 3.1. Take a voting situation G. Suppose there exist a finite α such

that the condition of limited asymmetry of preferences by α holds for every

voter. Now suppose K 6= /0. Then K =UC.

As we mentioned in the introduction, one primary motivation behind this work

is that this result has been repeated in a number of subsequent works but not

with, in our view, sufficient care. However, we find the following.

Proposition 3.2. There is a voting situation G for which |N| is even, the core K

is singleton, the preference of each of the voters is Euclidean and the uncovered

set does not coincide with the core.

To prove this proposition we shall use an intermediate result. First recall the

definition of a von-Neumann-Morgenstern stable set for the voting situations

we consider here.

Definition 3.1 (von-Neumann-Morgenstern Stable Sets). A set V ⊆ Z is a

(von-Neumann-Morgenstern) stable set for G if it satisfies

- (internal stability:) there do not exist x,y ∈V such that x ≻ y;

- (external stability) if x ∈ Z \V it must be the case that there exists y ∈V

such that y ≻ x.

The following Proposition 3.3 is useful to prove Proposition 3.2. Although

variants of this result are well-known (see, e.g., McKelvey (1986)), for com-

pleteness we provide a short proof, within our framework, below.

Proposition 3.3. If a stable set V exists then K ⊆V ⊆UC.

Proof. If K 6⊆V then that violates the external stability of V.
Let V be a stable set and take, if possible, and x ∈V \UC. That is, there

exists y ∈ Z such that x ≺c y. This implies that y ≻ x. Since, y /∈V (otherwise,

the internal stability of V is violated), by external stability of V , there exists

z ∈ V such that z ≻ y. But, then, by the definition of the covering relation,

z ≻ x which again violates the internal stability of V .

Journal of Mechanism and Institution Design 3(1), 2018



6 The uncovered set and the core

Proof of the Proposition 3.2. Below we give an example of a situation where

the core is singleton, a stable set exists and the stable set does not coincide

with the core. Then, by Proposition 3.3 we are done. Let N = {1,2,3,4}. The

set of outcomes, Z = {x ∈ R2|x1 ∈ [−1,1];x2 ∈ [−1,1]}. Each player i has an

ideal point x̄i whose coordinates are given as follows. The point x̄1 (labelled

by A′)= (−1,−1); x̄2 (labelled by B′)= (1,−1); x̄3 (labelled by C′)= (1,1)
and x̄4 (labelled by D′)= (−1,1) (please see Figure 1 below). The players’

preferences are Euclidean, i.e., for any i ∈ N, and x ∈ Z, ui(x) =−(ρ(x, x̄i))
2.

We show below that the core of this situation is the singleton set containing the

point (0,0) (labelled as point O) while the set V = {x ∈ Z|x1 = 0 or x2 = 0} is

a stable set. For convenience later call the set {x ∈ Z|x1 = 0} as V1 and the set

{x ∈ Z|x2 = 0} as V2.

Figure 1: The voting situation for which the singleton core is not a stable set.

Journal of Mechanism and Institution Design 3(1), 2018
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We take the following steps.

Step 1 : Notice that the point O = (0,0) satisfies the Plott condition (Austen-

Smith & Banks, 1999, 142) and so, it is in the core of this voting situation

(see Schofield, 2008, 90), too.

Step 2 : Next we show that no point other than O is in the core. We start

with the subset ∆1 = {x ∈ Z \ {O}|x1 ≤ 0,x2 < 0,x1 ≥ x2}. Note that

this is a triangle (without the point O. Choose a point x ∈ ∆1 such that

x1 < 0,x2 < 0 and x1 > x2. Draw a line of slope 1, Lx, passing through

this x and let the line intersect the line V1 at the point y. It is obvious

that y dominates x via coalition {2,3,4}. Next, take a point x ∈ ∆1 such

that x1 = x2. Then it is obvious that (0,0) dominates such a point via

{2,3,4}. Finally, choose a point x ∈ ∆1 such that x1 = 0 and x2 < 0, i.e.,

the point is in V1. Again, draw a line of slope 1, Lx, passing through x

and let that intersect the line given by {x ∈ Z|x1 = −x2} at a point y.
Again, it is obvious that y dominates x via coalition {2,3,4}.
Thus, no point of ∆1 is in the core.

Note that Z \{(0,0)} is the union of 8 such triangles like ∆1. Therefore,

using the symmetry between these triangles we can show that no point

other than O is in the core.

Next we show that V is a stable set.

Step 3 (External stability of V ): From Step 2 itself we see that for any x ∈
Z \V, there exists an y ∈V such that y ≻ x.

Step 4 (Internal stability of V ): It is obvious that a point in V1 cannot be

dominated by another point in V1 and a point in V2 cannot be dominated

by another point in V2. Next we show that a point in V1 cannot dominate,

nor can be dominated by a point in V2. Let p be a point in V1 such that

p2 < 0. Let q be a point in V2 such that q1 > 0. Let Op, the length of

the line segment Op, be 0 < r ≤ 1 and let the angle Ôpq be θ . (Please

refer to Figure 1.) Let, without loss of generality, 0 < θ ≤ π/4. Call the

line passing through p and q, L. Let the perpendiculars from A′,B′,C′

and D′ on L (or, to put more rigorously, the orthogonal projections of

these points on L) be denoted respectively by A,B,C and D. Note that

if θ = π/4, then the points B and D coincide and then it is obvious

that, neither p can dominate q, nor q can dominate p. Now suppose

Journal of Mechanism and Institution Design 3(1), 2018



8 The uncovered set and the core

0 < θ < π/4. It is easy to see that qD < pD. Since Cq <Cp, p cannot

dominate q. Next we show that the line segment B′p ≤ B′q. Note that

this is true if and only if (1+ p2)≤ (1−q1). But this follows from the

fact that θ < π/4. Since A′p ≤ A′q, (obviously) q cannot dominate p.
From this, using the symmetry of this example, we can show that no

point in V1 can dominate another point in V2 and vice versa. �

One point of curiosity is to identify the uncovered set in the example we

used in proving Proposition 3.2. 1 Indeed, we find that for that example, the

uncovered set is a strict superset of the stable set we identified, a feature which

might be somewhat interesting. We summarize the finding as an additional

result below.

Result 3.1 Consider the set U specified as:

({z ∈ Z |ρ(A′,z)≤ ρ(A′,O)}∩{z ∈ Z |ρ(B′,z)≤ ρ(B′,O)})∪

({z ∈ Z |ρ(B′,z)≤ ρ(B′,O)}∩{z ∈ Z |ρ(C′,z)≤ ρ(C′,O)})∪

({z ∈ Z |ρ(C′,z)≤ ρ(C′,O)}∩{z ∈ Z |ρ(D′,z)≤ ρ(D′,O)})∪

({z ∈ Z |ρ(D′,z)≤ ρ(D′,O)}∩{z ∈ Z |ρ(A′,z)≤ ρ(A′,O)}).

The set U (shown as the shaded area in the Figure 2 below) is the uncovered

set in the example used in Proposition 3.2.

The proof of Result 3.1 involves repeated (and somewhat tedious) use of

similar arguments from elementary Euclidean geometry. We provide a sketch

proof below.

1 We are indebted to one of the referees for inducing us to explore this issue.

Journal of Mechanism and Institution Design 3(1), 2018



Bhattacharya, Brosi, Ciardiello 9

Figure 2: The uncovered set for the example used in Proposition 3.2.

Proof of Result 3.1. We start with defining the following subsets of Z :

∆1 = {x ∈ Z |x1 < 0,x2 < 0,x1 > x2},

∆2 = {x ∈ Z |x1 < 0,x2 < 0,x1 < x2},

∆3 = {x ∈ Z |x1 > 0,x2 > 0,x1 > x2},

∆4 = {x ∈ Z |x1 > 0,x2 > 0,x1 < x2},

∆5 = {x ∈ Z |x1 > 0,x2 < 0,x1 >−x2},

∆6 = {x ∈ Z |x1 > 0,x2 < 0,x1 <−x2},

∆7 = {x ∈ Z |x1 < 0,x2 > 0,−x1 < x2},

∆8 = {x ∈ Z |x1 < 0,x2 > 0,−x1 > x2}.

Then the proof proceeds along the following steps.

Step 1 First note the rather obvious fact that no point x ∈ Z is dominated by

another point y, via the grand coalition {1,2,3,4}. For completeness we

give a brief proof. Consider, without loss of generality, a point x in ∆1.
Again, without loss of generality, consider a point y in the ”north-east” of

x. Then u1(x)≥ u1(y). By using similar arguments, and by the symmetry

of the voting situation in this example, this fact can be verified.

Take a point X ∈ ∆1 ∩{y ∈ Z : ρ(y,B′) < ρ(O,B′)} (refer to Figure 3

Journal of Mechanism and Institution Design 3(1), 2018



10 The uncovered set and the core

below as well). Below, for y ∈ Z and a positive real number r, by L(y,r)
we denote the set {z ∈ Z : ρ(y,z)< r}.

Figure 3: The set of points dominating the point X .

Step 2 Step 1 implies that for any x,y ∈ Z, if y dominates x, then that must

be via a coalition of cardinality 3. Now take the point X without loss

of generality. Note that if some y ≻S X via some coalition S, then

{1,2} 6⊂ S. To see this, assume the contrary. Then, there exists y ∈
L(A′,ρ(A′,X)∩L(B′,ρ(B′,X) which dominates X via some coalition

S which contains voters 1 and 2. Let, without loss of generality, the

third member of S be 3. Consider the angles A′C′X = φ and A′C′y = φ ′.
It is easy to see that π/4 > φ ′ > φ . Then, from the fact that cosφ ′ <
cosφ , it is straightforward that ρ(C′,y)> ρ(C′,X). But this leads to a

contradiction.

Journal of Mechanism and Institution Design 3(1), 2018
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Step 3 It is easy to see that, then, D(X) = (D1(X) ∩ D3(X)) ∪ (D2(X) ∩
D4(X)) (this is depicted as the shaded area, without the boundaries,

in Firgure 3).

Step 4 Now consider, if possible, z ∈ Z, such that z can cover X . Suppose z ∈
D2(X)∩D4(X)∩∆1. Then D(z) must contain a point in ∆1 \ (D

1(X)∩
D3(X)). Suppose z ∈ D2(X)∩D4(X)∩∆6 such that ρ(A′,z)< ρ(A′,O).
Then, again, D(z) must contain a point in ∆1 \ (D

1(X)∩D3(X)). Sup-

pose z ∈ D2(X)∩D4(X)∩∆6 such that ρ(A′,z)> ρ(A′,O). Then, again,

D(z) must contain O, the unique point in the core, but O /∈ D(X). By

replicating the arguments above in this fashion, we can verify that X

cannot be covered.

Step 5 Steps like the above can be replicated for every point in the set U,
which would verify that U is indeed the uncovered set. Note that a point

of Z which is neither in the core and nor in U is covered by O, the single

point in the core.

Given Proposition 3.2 (and Result 3.1), the immediate question which

obviously arises is what might be the conditions under which an analogue of

Cox’s result–coincidence of the core and the uncovered set–holds when the

number of voters is even? We find the following.2

Proposition 3.4. Consider a voting situation G for which |N| is even and for

which the core K = {x0} is singleton. Then K is the uncovered set if and only

if x0 is the Condorcet winner for the voting situation.

The following elementary lemma would be useful for proving this proposi-

tion.

Lemma 3.1. Suppose x0 ∈ Z is a point in the core and that it does not dominate

a point y ∈ Z;y 6= x0. Then there exists a coalition T of exactly n/2 voters such

that for each i ∈ T, ui(x0)> ui(y).

Proof. Suppose not. Then there exists a coalition S containing at least n/2+1

voters such that for every i ∈ S, ui(x0) ≤ ui(y). Consider a point z 6= x0 6= y

such that z is a convex combination of x0 and y. But then, since ui is strictly

2 We are especially indebted to the Editor for encouraging us to explore a result like Proposition

3.4.
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12 The uncovered set and the core

concave for each i ∈ N, for each i ∈ S, ui(z) > ui(x0) which contradicts the

supposition that x0 is in the core. The proof is completed by noting the fact

that if x0 is strictly preferred to y by more than n/2 voters, then x0 dominates y

which, once again, leads to a contradiction.

Proof of Proposition 3.4. The proof of the “if” part is obvious. The proof of

the “only if” part proceeds along the following steps.

Step 1 Recall that the covering relation, ≺c, is transitive: i.e., z ≺c y and

y ≺c x implies that z ≺c x (see, e.g., Bordes et al. (1992)).

Step 2 Now pick, if possible, y ∈ Z \K, such that x0 does not dominate y.
Then, setting y0 = y, construct an infinite sequence of sets (Gq)∞

q=1 in

the following manner:

G1 =C(y0);3

then choose some member y1 ∈ G1, and

G2 =C(y1);
and proceeding in this manner, given Gk and choosing some yk ∈ Gk,
Gk+1 =C(yk).
By the transitivity of ≺c, for each k, Gk ⊂ Gk−1. Observe also, that for

each k, Gk ⊆ D(yk−1). Note that by the construction of the sequence, if

for any k, x0 ∈ Gk, then, by the transitivity of ≺c, x0 ≻ y and we reach

an immediate contradiction. Therefore, for every k, x0 /∈ Gk. Further, by

the same reasoning, by the construction of the sequence (Gq)∞

q=1,

∩∞

j=1G j = /0.

Step 3 Then, further consider the closure of each of these sets in the sequence.

Then the sequence of sets (cl(G j))∞

j=1 is a sequence of non-empty com-

pact subsets of Z such that for every j,

cl(G j+1)⊆ cl(G j).

Then, by the Cantor intersection lemma (see, if necessary, e.g. (Rudin,

1976, 38)),

∩∞

j=1cl(G j) 6= /0.

3 Recall from Section 2 that for any z ∈ Z, by C(z) we denote the set of points which cover z.
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Therefore, there exists an x ∈ Z, such that x is in the closure of every

G j. Recall, however, from Step 2 above that ∩∞

j=1G j = /0. Therefore, for

every j ≥ k (where k is some positive integer) there exists a sequence

(yr
j), with each element from the sequence in G j, which converges to x.

Step 4 Pick such a G j, i.e., for which j ≥ k. By the definition of G j, for

every element z ∈ G j, D(z) ⊂ D(y j−1). Therefore, by Lemma 7.2 in

Austen-Smith & Banks (2005, 272), D(x)⊆ D(y j−1).4 Therefore,

D(x)⊆ ∩∞

j=1D(y j−1).

Note that by the construction of the sequence in Step 2 above,

∩∞

j=1D(y j−1) = /0.

Therefore, D(x) = /0, i.e., x = x0.

Step 5 Therefore, x0 ∈ cl(G1). Since G1 ⊂ D(y0), x0 ∈ cl(D(y0)). If x0 ∈
D(y0) (i.e., D(y)), then again we get an immediate contradiction. So,

suppose otherwise.

Step 6 Then x0 ∈ cl(D(y)) \D(y). Therefore, there exists a sequence (yr),
with each element from the sequence in D(y), which converges to x0.
Further, since there are only finitely many coalitions, there exists a

fixed majority coalition S and a sequence (zl)∞

l=1 such that for each

element z of the sequence, z ∈ D(y), z dominates y via the coalition

S, and the sequence (zl) converges to x0. Since x0 does not dominate

y via S, there exists a voter i ∈ S such that for each z in the sequence,

ui(z)> ui(y)≥ ui(x0). Moreover, since zl converges to x0, by continuity

of ui, ui(y) = ui(x0).

Step 7 Recall that by Lemma 3.1, there exists a coalition T of exactly n/2

voters such that for each i ∈ T, ui(x0) > ui(y). Moreover, conversely,

for each voter j in the n/2-voter coalition N \T, u j(y) ≥ u j(x0). Then,

by strict concavity of the pay-off functions, for each w ∈ Z which is

a convex combination of x0 and y, (and different from either x0 or y)

u j(w) > u j(x0) for every j ∈ N \ T. But then, since x0 is in the core,

4 Recall that the lemma, in the present notation-style, states: let (z j) be an infinite sequence

converging to x ∈ Z such that for every j, D(z j)⊆ D(y) for some y ∈ Z. Then D(x)⊆ D(y).
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for each j ∈ T, u j(x0) > u j(w) for each such w on the linear segment

x0y (otherwise x0 gets dominated). In particular, none of the w’s on the

segment x0y is dominated by x0. Pick one such w. But then, replicating

the argument with respect to y above, given in Steps 2 to 6, there must

exist some voter k ∈ N for whom uk(x0) = uk(w). But this contradicts

the fact that for every i ∈ N, either ui(x0)> ui(w) or ui(x0)< ui(w).

4. CONCLUDING REMARKS

Here, at the end, we provide a few remarks related to our results. First, in

view of Proposition 3.4, notice that in the example used in Proposition 3.2, the

single point in the core is not the Condorcet winner. Next, the fact that this

non-coincidence is still true with, e.g., the Miller definition of the uncovered

set, follows in a straightforward manner from Proposition 30 in Duggan (2013).

And finally, there remain several open questions: e.g., how far a result like

Proposition 3.4 can be generalised, under what primitive conditions a singleton

core can never be a Condorcet winner, etc. These are topics of ongoing and

further research.
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