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Abstract

Neural systems are inherently noisy, and this noise can affect our perception frommoment

to moment. This is particularly apparent in binocular rivalry, where perception of competing

stimuli shown to the left and right eyes alternates over time. We modulated rivalling stimuli

using dynamic sequences of external noise of various rates and amplitudes. We repeated

each external noise sequence twice, and assessed the consistency of percepts across repe-

titions. External noise modulations of sufficiently high contrast increased consistency scores

above baseline, and were most effective at 1/8Hz. A computational model of rivalry in which

internal noise has a 1/f (pink) temporal amplitude spectrum, and a standard deviation of

16% contrast, provided the best account of our data. Our novel technique provides detailed

estimates of the dynamic properties of internal noise during binocular rivalry, and by exten-

sion the stochastic processes that drive our perception and other types of spontaneous

brain activity.

Author summary

Although our perception of the world appears constant, sensory representations are vari-

able because of the ‘noisy’ nature of biological neurons. Here we used a binocular rivalry

paradigm, in which conflicting images are shown to the two eyes, to probe the properties

of this internal variability. Using a novel paradigm in which the contrasts of rivalling sti-

muli are modulated by two independent external noise streams, we infer the amplitude

and character of this internal noise. The temporal amplitude spectrum of the noise has a

1/f spectrum, similar to that of natural visual input, and consistent with the idea that the

visual system evolved to match its environment.

Introduction

Despite appearing constant, our sensory perception fluctuates from moment to moment

because of the non-deterministic nature of biological neurons. This ‘internal noise’ operates at

multiple timescales, and affects our decisions about sensory information. Internal noise is
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particularly apparent in bistable phenomena such as binocular rivalry, in which our perception

of conflicting images shown to the two eyes fluctuates over time in a stochastic fashion.

Because phenomena like rivalry make otherwise invisible processes available to conscious per-

ception, they provide a useful tool for probing the properties of internal noise.

In a typical rivalry experiment, participants view sine wave grating patterns with orthogonal

orientations in the left and right eyes (see Fig 1A). They are asked to report which stimulus

they perceive at each moment in time by continuously pressing a response button that corre-

sponds to the perceived orientation. Histograms of the durations for which each image

remains dominant typically have positive skew, approximating a gamma distribution (or a

normal distribution on logarithmic axes). Computational models of rivalry (e.g. [1–4]) have

successfully explained the statistical pattern of percepts reported by assuming the presence of

three key processes: inhibition between neurons representing the two stimuli, adaptation to

the dominant stimulus, and noise. Inhibitory processes have been investigated using dichoptic

masking paradigms [5–7] and by varying the properties of rivalling stimuli [8–11], and there is

direct evidence of adaptation during a period of dominance [12]. However, comparatively little

is known about the precise properties of the noise, as there have been few attempts to investi-

gate it directly, despite recognition of its importance [13–16].

One exception is a study that randomly manipulated the coherence of rivalling dot motion

stimuli throughout a trial in order to influence alternations [17]. By reverse-correlating coher-

ence with the observers’ percepts, a biphasic profile was apparent, in which coherence was

stronger in the suppressed eye and weaker in the dominant eye during the ~1s preceding a

flip. This pattern was reversed at longer pre-flip durations, and overall the results were pre-

dicted by a simple rivalry model featuring adaptation and mutual inhibition. Although the

results demonstrate that external noise can influence rivalry alternations, the parameters of the

external noise were not manipulated, and so the results can reveal little about the characteris-

tics of internal noise.

Other work has aimed to influence rivalry alternations by periodically changing the contrast

of the rivalling stimuli. In a study by O’Shea and Crassini [18], the contrasts of rivalling grat-

ings were periodically reduced to 0, either in phase or in antiphase across the eyes. At modula-

tion frequencies above 20Hz (and sometimes as low as 3Hz), rivalry alternations still occurred

as normal regardless of phase, suggesting a persistance in the underlying mechanism (see also

[19,20]). In a related study, Kim, Grabowecky and Suzuki [1] used a square wave temporal

modulation to alter the contrast of rivalling stimuli in antiphase (i.e. one stimulus increased in

contrast and the other decreased at the same time) at a range of temporal frequencies from

0.28Hz to 2.48Hz. This manipulation caused a peak in the histogram of dominance durations

at the half period of the modulation frequency. The increase was greatest when the half period

was 600ms, a duration corresponding to the peak of the histogram for unmodulated rivalry

using the same stimuli. Furthermore, there were additional peaks at odd integer harmonics of

the modulation frequency. The authors consider this to be evidence of a stochastic resonance

effect, and support this with a computational model of rivalry alternations.

Here we extend these approaches by modulating the contrast of rivalling stimuli using two

independent dynamic noise sequences instead of square wave modulations (see Fig 1B and

1C). As well as measuring the effect on dominance durations, this design allows us to cross-

correlate the participant’s reported percept with the timecourse of the external noise. In addi-

tion, we can use the same noise sequences multiple times, and measure the consistency of the

participants’ percepts in a dynamic version of the ‘double pass’ paradigm [21,22]. If the exter-

nal noise sequences were entirely determining perception, responses should be identical across

the two repetitions. On the other hand, if the external noise sequences have no influence on

perception then the similarity of responses will be determined by internal noise, and response

Internal noise and binocular rivalry
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Fig 1. Methodological details. Panel (a) shows example stimuli with conflicting orientations, surrounded by a Voronoi texture to aid binocular fusion. Panel
(b) shows example waveforms used to modulate stimulus contrasts at the five temporal frequencies used in the experiment. Panel (c) shows example trial
timecourses for two repetitions of an unmodulated condition (left) and a modulated condition (right) in which the two external noise sequences were
independent. Red (green) regions in the lower two plots indicate periods of time when the left (right) eye’s stimulus was perceived. Note that in the example on
the right, percepts closely followed the physical contrast with a slight lag.

https://doi.org/10.1371/journal.pcbi.1007071.g001

Internal noise and binocular rivalry
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consistency will be that expected by chance. The empirically measured consistency scores will

therefore give an index of the relative influences of internal and external noise on perception.

By manipulating the variance and temporal frequency content of the noise sequences, we can

investigate properties of the internal noise that influence rivalry alternations. We interpret the

results with reference to an established computational model of rivalry proposed byWilson

[3,4] (see Fig 2), to which we add different types of internal noise.

Results

External noise strongly modulates binocular rivalry alternations

In the absence of any noise modulations, binocular rivalry produced a typical histogram of

dominance durations with a positive skew (see grey curve in Fig 3Ai), and a mean of 2.7 sec-

onds. A 5x5 repeated measures ANOVA indicated that the mean dominance duration

depended on both temporal frequency (F(4,16) = 34.43, p<0.001, ηp
2 = 0.90) and modulation

contrast (F(4,16) = 8.15, p<0.01, ηp
2 = 0.67), and also showed that the two variables interacted

(F(16,64) = 18.01, p<0.001, ηp
2 = 0.82). The histograms in Fig 3A show that at lower temporal

frequencies (panels on the left), strong contrast modulation resulted in slightly more long-

duration percepts (an increase in positive skew), whereas at higher temporal frequencies (pan-

els on the right) the peak of the histogram shifted leftwards (compare lower vs upper traces in

Fig 3Av). These patterns were reflected in both the change in means (Fig 3B) and also the shift

in the autocorrelation functions (Fig 3C), such that high temporal frequencies (e.g. the purple

curve) had a shorter lag than long ones (e.g. the red curve). The functions in Fig 3B begin to

diverge at a standard deviation of around 4% contrast, and data from individual participants

showed a similar pattern (see S1 Fig).

We also cross-correlated the noise time course (difference between left and right eye con-

trasts for the 16% contrast modulation conditions pooled across all temporal frequencies) with

the participants’ continuous percept reports. In the traces shown in Fig 3D, a lag of 0s (given

by the vertical dashed line) would indicate that participants responded to a stimulus-driven

alternation immediately. However, the peak response lag was 583ms, somewhat faster than

estimates from previous studies [8]. The mean cross-correlation coefficient at the peak was

0.35, indicating that a substantial proportion of the variance in participant percepts was pre-

dictable from the changes in stimulus contrast. Functions for individual participants are

shown by the thin traces in Fig 3D, and are similar to the mean. The fact that the cross-correla-

tion function remains slightly above zero at positive lag times might appear to indicate (some-

what counterintutively) that percepts were driven by the future state of the stimulus. However

this is simply a consequence of the bandpass filtering of the external noise sequences, which

means that stimulus contrasts at one instant are predictive of contrasts shortly afterwards.

Note that the auto- and cross-correlation functions shown here differ from the switch-trig-

gered-average reverse correlation measure reported by Lankheet [17], and the serial correla-

tion measures used by Lehky [14], van Ee [23] and others (where ‘lag’ on the x-axis refers to

dominance epoch rather than time). These measures assess different aspects of rivalry data

that are not the focus of the current work.

Next, we calculated the consistency of responses across pairs of presentations of identical

noise streams. In the absence of any noise modulation, the mean consistency was slightly

above the expected baseline of 0.5, having a value of 0.53 (horizontal grey lines in Fig 4). One

possible explanation for this is that slight eye dominances or biases towards one or other stim-

ulus will increase the consistency across repetitions, however the effect was very small and was

not statistically significant (t = 1.2, df = 4, p = 0.1). For conditions where the stimulus contrast

was modulated, a 5x5 repeated measures ANOVA indicated that the response consistency

Internal noise and binocular rivalry
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depended on both temporal frequency (F(4,16) = 9.90, p<0.001, ηp
2 = 0.71) and modulation

contrast (F(4,16) = 28.81, p<0.001, ηp
2 = 0.88), as well as the interaction between the two vari-

ables (F(16,64) = 3.55, p<0.001, ηp
2 = 0.47). These effects are shown in Fig 4, which plots the

same data twice as a function of either modulation contrast (Fig 4A) or temporal frequency

(Fig 4B). The general trends are that consistency increases with contrast, and at each contrast

is strongest for the 1/8Hz temporal frequency (shown in green). The maximum consistency

was 0.72, for the 1/8Hz, 16% contrast condition, which is particularly noteworthy given that

this temporal frequency had the weakest influence on dominance durations (see green points

Fig 2. Model details. (a) Model diagram of the two competing units. Each receives as input an independent white noise stream, bandpass filtered at one of five
different temporal frequencies (see Methods). The minimum rivalry model [4] defines the oscillatory behaviour of rivalry between two units with self-
adaptation and mutual inhibition. We include additive internal independent monocular noise in our model, marked by the (+) symbols. (b) Examples of the
five different internal noise spectral slopes (α = 0–2.0) of the model for the left (green) and right (red) responding units. Noise streams with steeper slopes have
an increased relative amplitude of low temporal frequencies relative to high, which leads to slower changes in the noise amplitude. (c) Example oscillatory
behaviour of the model for a given trial (60s). The colours represent the responses of the left (green) and right (red) responding units.

https://doi.org/10.1371/journal.pcbi.1007071.g002

Internal noise and binocular rivalry
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in Fig 3B). This suggests that frequencies closest to the natural period of rivalry oscillations are

able to entrain perception most strongly (see Kim et al., 2006). Consistency exceeded baseline

for the 1/8Hz condition at around 4% modulation contrast (green diamonds in Fig 4). These

main findings were also clear in the data of individual participants, shown in S1 Fig.

A computational model with pink internal noise describes the human
results

We first investigated how the amplitude of internal noise, and its spectral slope (α), affected
model behaviour. We selected a single stimulus condition (stimulus noise frequency of 1/8Hz

and standard deviation of 16% contrast) and ran the model with a range of internal noise vari-

ances (SD = 1–64% contrast) at five different spectral slopes (α = 0–2). The results of our simu-

lations on dominance duration and response consistency are shown in Fig 5A(i-v), with the

equivalent human data plotted in green for comparison. For all spectral slopes, as internal

noise contrast increased it more strongly affected rivalry alternations. This is shown by the

change in dominance duration (Fig 5B; increases for steep slopes and decreases for shallow

slopes), and response consistency (Fig 5C), which decreased as responses became increasingly

dominated by internal noise.

Fig 3. Traditional rivalry measures for all conditions, averaged (or pooled) across all participants (N = 5). Panel (a) shows histograms of pooled
dominance durations at five temporal frequencies (i-v) and a range of contrast levels (standard deviations of 0–16% contrast, increasing down each plot). The
grey histogram, duplicated in each plot, shows the baseline condition with no contrast modulation. For low temporal frequency, high contrast modulations,
there were more very long dominance periods (the positive skew of the red histogram increases). For high temporal frequency, high contrast modulations there
were more short dominance periods, and the histograms shifted left. Panel (b) shows mean dominance durations for all conditions, plotted as a function of
modulation contrast. The grey horizontal line shows the baseline (no modulation) condition. Error bars (and dotted lines) show ±1SE across participants.
Panel (c) shows autocorrelation functions (e.g. the correlation between a participant’s percept at a given moment, as in Fig 1C, with their percept at subsequent
moments) averaged across participants for the baseline condition (grey curve) and the highest contrast modulation at each temporal frequency (curves, see
panels a,b for colour legends). Panel (d) shows the cross correlation between the participants’ responses and the difference in noise modulations at the highest
modulation contrast, averaged across all modulation frequencies. The thin grey lines denote individual participants and the thick black line is the average.

https://doi.org/10.1371/journal.pcbi.1007071.g003

Internal noise and binocular rivalry

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1007071 June 6, 2019 6 / 18

https://doi.org/10.1371/journal.pcbi.1007071.g003
https://doi.org/10.1371/journal.pcbi.1007071


We can use the joint dominance durations and consistency scores to rule out several types

of internal noise. White internal noise (α = 0) is not viable because there is no internal noise

level for which both durations and consistency are close to human levels. Internal noise with

steep amplitude slopes (α> 1) produces sensible consistency scores, but dominance durations

become too long. This leaves slopes of α = 0.5 and α = 1, for which an internal noise contrast

of around 16% gives a good approximation to the human data. We performed full simulations

for all noise spectral slopes with this contrast. A slope of α = 1 was the best predictor of the

human data, so these simulations are discussed in the main text, with simulations of other

spectral slopes presented in S2 Fig and S3 Fig.

The histograms of dominance durations, mean dominance duration and response consis-

tency of the model simulations for all 26 stimulus conditions are shown in Fig 6. The model

replicated the pattern of human data shown in Figs 3 & 4 remarkably well. The histograms of

dominance durations of the model (Fig 6A i-v) show similar trends to those of human observ-

ers (Fig 3A). Slow modulation frequencies (1/16Hz and 1/8Hz) increased positive skew at high

modulation contrasts (Fig 6A i-ii), while higher modulation frequencies shifted the peak of the

dominance duration histograms leftwards as modulation contrast increased.

The shifts in the histograms are reflected in the mean dominance durations of the model

(Fig 6B), just as with human observers. Similarly, response consistency (Fig 6C and 6D)

increased when stimulus noise contrast reached and SD of 4% and was highest for each con-

trast at a temporal frequency of 1/8Hz. Whereas human response consistency was quite band-

pass (peaking at 1/8Hz and dropping quickly for faster frequencies), the model exhibited

slightly broader tuning at high stimulus noise contrast. This may be due to the other

Fig 4. Response consistency across two passes through the experiment. The same data are plotted in both panels, as a function of modulation contrast (a) or
temporal frequency (b). In each panel, the thick grey line represents the baseline (no modulation) condition, colours represent different temporal frequencies,
and symbol types represent different contrasts. All data points are averaged across participants, with error bars indicating ±1SE of the mean. The dashed
horizontal line at y = 0.5 indicates a theoretical baseline in the absence of any response bias or eye dominance effects.

https://doi.org/10.1371/journal.pcbi.1007071.g004

Internal noise and binocular rivalry
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parameters of the model that were fixed prior to our simulations, or it could imply additional

physiological constraints such as bandpass temporal filters on the input, or variable response

lag.

The model predicts consistency with antiphase noise sequences

We next explored whether the model could predict performance in novel conditions. Inspired

by Kim et al. [1], we designed a further condition in which the noise modulations were in anti-

phase across the eyes (i.e. a contrast increase in one eye matched with an equal contrast

decrease in the other). We chose a temporal frequency of 1/8Hz, and tested four of our original

participants. With no additional parameters, the model described above made a clear quantita-

tive prediction about performance in this condition (see Fig 7A), namely that response consis-

tency should be reliably increased for the antiphase noise (brown squares in Fig 7A),

compared to the equivalent condition from the main experiment with two independent

streams of external noise (green circles in Fig 7A). This prediction was borne out empirically,

as shown in Fig 7B. We note that dominance duration histograms from our human partici-

pants (and therefore mean dominance durations) remained relatively unaffected by this

manipulation (see Fig 7C), consistent with performance with independent noise streams (Fig

3Aii).

Fig 5. Summary of model behaviour for internal noise amplitude and spectral slope estimation. (a) The histograms of dominance durations for each
spectral slope (α = 0.0–2.0) and level of internal noise (SD = 1%– 64%). Within each subplot, the uppermost (green shaded) histogram shows the equivalent
human data for a stimulus temporal frequency of 1/8Hz and a contrast modulation of SD = 16%. The solid vertical green line marks the average dominance
duration for human observers. Histograms below showmodel dominance duration distributions for each internal noise level. (b) Average dominance
durations of the model for each spectral slope (coloured lines). The green line and shaded area mark human average dominance duration and ±1SE of the
mean, respectively. Average dominance duration was affected by internal noise once its standard deviation was equivalent to 4% contrast. Noise with steeper
slopes (α = 1.5–2.0) increased mean dominance duration as a function of noise contrast, while noise with shallower slopes decreased mean dominance
duration. (c) Response consistency decreased as a function of internal noise contrast for all spectral slopes. The green line and shaded area mark human
observer average consistency and ±1SE of the mean, respectively. For all α>0, response consistency reached human levels at an internal noise contrast of 16%.

https://doi.org/10.1371/journal.pcbi.1007071.g005

Internal noise and binocular rivalry
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We also tested a condition in which we presented both stimuli to both eyes as a plaid, and

modulated the contrast of the components. Just as in the main experiment, we asked partici-

pants to report which component appeared higher in contrast at each moment in time, though

there was no binocular rivalry. This ‘monocular rivalry’ condition also produced greater con-

sistency scores than the equivalent condition from the main experiment (see Fig 7E), and dem-

onstrates that the technique can be used to dynamically monitor perception even in the

absence of interocular competition. The distributions of dominance durations were rather

broader than for binocular rivalry (see grey curve) at low contrast modulations, but narrowed

at higher contrasts (see Fig 7F).

One explanation of monocular rivalry alternations is that they are largely driven by the

interaction between afterimages and eye movements, and could occur in the absence of any

neural suppressive alternation process (e.g. [24]). We reasoned that one way to test this

account might be to remove the rivalry mechanism from the model, leaving only the combina-

tion of internal and external noise to determine dominance at each moment. The predictions

for this arrangement are shown by the cyan symbols in Fig 7D, and involve markedly lower

consistency scores than both the model and empirical binocular rivalry conditions (green cir-

cles in Fig 7D and 7E), and also the monocular rivalry data itself (cyan diamonds in Fig 7E).

Fig 6. Summary of modelling results. (a) Histograms of dominance durations of the model with pink (α = 1) internal noise of with a standard deviation of
16% for each stimulus temporal frequency (i-v) and contrast SD. The solid line colour serves as a legend for the stimulus noise temporal frequency (red = 1/
16Hz, green = 1/8Hz, blue = 1/4Hz, yellow = 1/2Hz, purple = 1Hz). The histogrammarked in grey represents baseline dominance durations with no contrast
modulation. (b) The mean dominance durations of the histograms in (a). Marker colour represents the modulation temporal frequency, while the x-axis gives
the modulation contrast. The grey line marks the baseline dominance duration of the model (3.18s), slightly slower than that of the human data. (c-d) Model
response consistency plotted in the same manner as Fig 4. In (c), marker colour indicates the modulation temporal frequency while the x-axis indicates the
modulation contrast. For all stimulus frequencies, response consistency increased according to modulation contrast, and was greatest when the stimulus
temporal frequency was 1/8Hz. (d) Identical data but plotted with modulation temporal frequency on the x-axis. The grey line (c,d) marks response consistency
at baseline with no external noise fed to the model (0.49).

https://doi.org/10.1371/journal.pcbi.1007071.g006

Internal noise and binocular rivalry
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Clearly then, monocular rivalry still involves some sort of alternation process (e.g. [25]), but

the increased empirical consistency scores in this condition suggest that the alternating mecha-

nism is more strongly driven by the external noise modulations than during binocular rivalry.

In principle, this could imply that internal noise is more highly correlated (and therefore effec-

tively weaker) between monocular units representing the same eye, compared with monocular

units representing different eyes.

Discussion

Using a combination of psychophysical experiments and computational modelling, we infer

that the source of internal noise relevant to perceptual alternations during binocular rivalry

has an amplitude spectrum of 1/f, and a standard deviation equivalent to 16% stimulus con-

trast. Our method facilitates these inferences because it uses a double pass design, in which an

external noise sequence is repeated twice, under the assumption that internal noise will be

Fig 7. Summary of further conditions testing antiphase modulation andmonocular rivalry. Panel (a) shows response consistency predictions of the model
for independent (green circles) and antiphase (brown squares) external noise (modulation temporal frequency = 1/8Hz). Panel (b) shows the human response
consistency for the same conditions as (a). Panel (c) shows histograms of human dominance durations in the same format as Fig 3A, with the unmodulated
rivalry condition shown at the top in grey. Panel (d) shows the response consistency of the model when the oscillatory mechanism is removed and modulations
are driven by internal and external noise only (cyan diamonds) versus the response consistency for the main model (green circles). Panel (e) shows human
response consistency to the monocular rivalry condition (cyan diamonds) compared with that of the main experiment (green circles). Panel (f) shows human
dominance duration histograms for the monocular rivalry condition. Error bars and dotted lines show ±1SE across participants (N = 4; for the conditions from
the main experiment, we omitted results from the participant who did not complete the additional conditions when constructing this figure).

https://doi.org/10.1371/journal.pcbi.1007071.g007

Internal noise and binocular rivalry
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different on each pass. Although the double pass method has been used previously for briefly

presented stimuli [21,26], this is the first time (to our knowledge) it has been used in a dynamic

paradigm. We now discuss details of the rivalry model, relevance to other work on noise in

binocular vision, and broader implications for our understanding of internal noise in the

brain.

Model variants and alternative models of rivalry

In the course of developing the model, we also considered several variants using same architec-

ture that were either less successful or less plausible. One variant was a model in which a single

source of internal noise was added to both channels. In this arrangement, the internal noise

was less effective, because it increased or decreased the response in both channels by the same

amount, and so did not materially influence the competition between channels. Another vari-

ant placed the internal noise sources outside of the gain control equation (i.e. added after Eq 1

rather than appearing on the numerator and denominator). Although moving internal noise

later is consistent with the assumptions of a family of popular computational models of early

binocular vision ([27,28] see next section), this was less successful than our main model

because internal noise levels sufficient to influence consistency had too large an effect on dom-

inance durations. This rendered the dynamic properties of the model moot, with rivalry per-

cepts being largely determined by the internal noise streams.

We also tested alternative values of the main parameters in the rivalry model. These altered

model behaviour in the unmodulated baseline condition much as described in previous work

[4], but had relatively minimal effects on dominance durations and consistency scores with

strongly noise-modulated stimuli, where rivalry alternations depend more on the interplay of

internal and external noise than on adaptation and inhibition. We anticipate that other rivalry

models with architectures related to that of Wilson [3,4] could be modified in a similar way as

described here to achieve comparable effects, but have not tested this assumption.

Related work on rivalry

As mentioned above, Kim et al. [1] modulated the contrast of rivalling stimuli periodically in

antiphase at a range of temporal frequencies (building on earlier work by O’Shea and Crassini

[18] in which rivalling stimuli were entirely removed at different frequencies and phases).

They implement three computational models to account for their results, each of which has

random walk (i.e. brown) noise with a spectral slope of 1/f2, but report obtaining similar results

with white noise for their experimental conditions. Furthermore, one of the models they

implement is a version of the Wilson [3] model considered here, but they report the best per-

formance when the internal noise is added to the adaptation differential equation (see Meth-

ods), rather than the rivalling units (see also [23]). In additional simulations, we found similar

effects on the dominance duration distributions for internal noise placed either in the main

equation or adaptation equation. However, placing internal noise in the adaptation differential

equation resulted in response consistency that was not tuned to modulation frequency (i.e.,

flat). We suspect that Kim et al.’s paradigm did not afford sufficient constraints to distinguish

between the two very different internal noise types or the locus of internal noise.

Other models that have incorporated a stochastic component include the model of Lehky

[2] which also used random walk (brown) noise, Kalarickal and Marshall [29] who used addi-

tive uniformly distributed (effectively white) noise, and Stollenwerk and Bode [30] who used

temporally white noise that was correlated across space. A further model developed by Rubin

and colleagues [15,16] uses exponentially filtered white noise which progressively attenuates

higher frequencies. However none of these studies report testing other types of internal noise,
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nor were their experimental conditions sufficient to offer meaningful constraints on the inter-

nal noise properties. As far as we are aware, this is the first study that has modelled internal

noise of different amplitudes and spectral properties and compared the predictions to empiri-

cal results.

Baker & Graf [8] explored binocular rivalry using broadband pink noise stimuli that also

varied dynamically in time. By testing factorial combinations of temporal amplitude spectra

across the two eyes, they showed that stimuli with 1/f temporal amplitude spectra tended to

dominate over stimuli with different spectral slopes (the same was also true of static stimuli

with a 1/f spatial amplitude spectrum). Whilst these results do not directly imply anything

about the properties of internal noise, they are consistent with the idea that the visual system is

optimised for stimuli encountered in the natural world, which are typically 1/f in both space

and time (e.g. [31–35]). Our findings here imply that as well as having a preference for external

stimuli with naturalistic properties, the internal structure of the visual system might itself have

evolved to emulate these temporal constraints [32,36–38].

Internal noise in binocular vision and throughout the brain

Early models of binocular signal combination attributed the
p
2 improvement in contrast sen-

sitivity for fusible stimuli viewed binocularly vs monocularly to the pooling of independent

monocular noise sources [39]. However this model assumes that during monocular presenta-

tion, the noise in the unstimulated eye can be ignored, which is unlikely in the absence of

experimental confounds [27]. Contemporary binocular models of contrast detection and dis-

crimination assume noise that is late and additive, occurring at a point beyond binocular signal

combination [28]. It is generally assumed that this late source of noise is the combination of

multiple noise generators at successive stages of processing, though relatively little is known

about their precise characteristics. However a small number of studies have investigated this

issue, as we now summarise.

Pardhan & Rose [40] added binocular external noise during a monocular or binocular

detection task and found that binocular summation decreased at high levels of external noise,

and that equivalent input noise (the minimum external noise level required to influence

thresholds) was higher for monocular than binocular targets. One interpretation of these

results is that the effective internal noise is greater for monocularly presented stimuli (see also

[41]). However, the type of external noise that they used was broadband white pixel noise,

which can also cause substantial gain control suppression (see [26]), potentially confounding

the effects of increased variance. These results are therefore relatively inconclusive regarding

sources of internal noise in binocular vision.

Recently, Ding & Levi [42] have demonstrated that the inclusion of early (monocular) mul-

tiplicative noise in gain control models can account for some subtle features of binocular con-

trast discrimination performance. It has also been suggested that monocular noise might be

increased in the affected eye of individuals with amblyopia [43]. Finally, we have recently

shown [44] using a contrast discrimination paradigm that EEG and MEG data are consistent

with both an early (~100ms post stimulus onset) noise source in low level visual areas, and a

later noise source in more frontal and parietal brain areas, both of which affect perceptual deci-

sions. All of these results are therefore consistent with an early monocular source of internal

noise, as included in our model, but do not preclude the addition of later sources of noise

which we do not consider here.

Regarding noise more generally, surprisingly few studies have addressed the spectral and

distribution properties of internal noise using psychophysical methods. The default assump-

tion is typically that internal noise is Gaussian (owing to Central Limit Theorem) and white.

Internal noise and binocular rivalry
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However, Neri [45] concluded that internal noise had a Laplacian distribution, and other psy-

chophysical work has assumed Poisson processes for internal noise [46], based on single cell

recordings [47]. Noise with a pink amplitude spectrum typically retains a Gaussian distribu-

tion, though in principle non-Gaussian distributions (such as Laplacian or Poisson distribu-

tions) could also be altered to have a pink spectrum. Although we are unaware of any other

psychophysical studies attempting to estimate the spectral characteristics of internal noise, we

note that measurements of spontaneous neural activity using ECoG and fMRI also have fractal

properties, and a slope of approximately 1/f in visual areas [48]. We anticipate that extending

the dynamic double pass approach to tasks and paradigms beyond rivalry has the potential to

reveal the generality of our findings.

Conclusions

Using a novel dynamic double pass paradigm with binocular rivalry, we measured how alter-

nation rates and response consistency were affected by different types and amounts of external

noise. The results were consistent with a computational model of rivalry in which internal

noise was independent in each monocular channel. We conclude that internal noise relevant

to rivalry has an amplitude spectrum of 1/f, and a standard deviation equivalent to a stimulus

contrast around 16%. We anticipate that future studies might use temporally sensitive neuro-

imaging techniques such as EEG and MEG to further investigate these sources of internal

noise.

Materials andmethods

Ethics statement

Procedures were approved by the Ethics Committee of the Department of Psychology at the

University of York (approval number 113). The main experiment was completed by five psy-

chophysically experienced observers (2 male), who provided written informed consent.

Participants

Two of the participants were the authors, the remainder were unaware of the aims or design of

the study. A control experiment was completed by four of the same observers. All observers

had no known abnormalities of binocular vision, and wore their standard optical correction if

required.

Apparatus and stimuli

Stimuli were sinusoidal grating patches with a spatial frequency of 1c/deg, subtending two

degrees of visual angle, and ramped in contrast by a cosine function over a further¼ degree.

The gratings shown to the left and right eyes had orthogonal orientations (±45 degrees) which

were assigned randomly on each trial (see Fig 1A for examples). The mean Michelson contrast

(defined as 100�(Lmax-Lmin)/(Lmax+Lmin)) of the gratings was 50%, but this was modulated by

dynamic noise streams of various centre frequencies (1/16 Hz to 1Hz) and standard deviations

(1% to 16%Michelson contrast). The noise streams were constructed by bandpass filtering

white noise at the required frequency using a one octave bandpass filter (see Fig 1B). In the

main experiment, the noise streams used to modulate the contrast of each eye were

independent.

Stimuli were displayed on a ViewPixx 3D display (VPixx Ltd., Canada), driven by an Apple

Macintosh computer. The monitor operated with 16 bits of greyscale luminance resolution

(M16 mode) and was gamma corrected using a Minolta LS110 photometer. Independent
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stimulation of the left and right eyes was achieved using stereo shutter glasses (NVidia 3D

Vision), synchronised with the monitor refresh rate of 120Hz via an infra-red signal. To pro-

mote good vergence and binocular alignment, each stimulus was surrounded by a static high

contrast greyscale Voronoi texture (squares of 14 x 14 degrees, with a 7 degree diameter disc in

the centre set to mean luminance) that was identical in both eyes (see Fig 1A). A different tex-

ture was presented on each trial, selected at random from a set of 99 pre-generated textures.

Procedure

Participants sat in a darkened room and viewed the display from a distance of 57cm. Stimuli

were presented for 60 seconds per trial, with condition order determined at random. Partici-

pants were instructed to indicate using a two-button mouse which of the two grating stimuli

they perceived at each moment in time by holding down one or other button. If both stimuli

were perceived, they were instructed to choose the stimulus that was most visible (i.e. that took

up the largest part of the image), or to hold down both buttons if they were equally salient

(these mixed percepts accounted for an average of 3.2% of all percepts, so we did not analyse

them further). At the end of each trial, there was a minimum blank interval of three seconds,

with the following trial initiated by the participant.

Each of the 26 conditions (5 contrasts � 5 temporal frequencies + 1 baseline) was repeated 5

times by each observer using unique noise sequences in each repetition, and then a further 5

times using the same noise sequences as in the first pass. This resulted in 260 trials (4.3 hours

of rivalry data) per participant, which were completed across multiple sessions (each typically

lasting 20–30 minutes) over several days. Raw data are available online at: http://dx.doi.org/10.

6084/m9.figshare.7262201

Modelling

There are multiple models that have been successful at capturing the oscillatory behaviour of

dominant percepts in binocular rivalry [1–4, 49]. While they vary in complexity, all include

two key characteristics: inhibition between units responding to the left and right monocular

stimuli, and self-adaptation. These guarantee that only one unit will be active at a given

moment, and that over time, the active unit will decrease its firing rate sufficiently to allow the

suppressed unit to be released from inhibition. Apart from a few exceptions [1, 2, 13, 15, 16,

29, 30, 49], most computational investigations of binocular rivalry have focused on determin-

istic implementations of their models to investigate how suppression and self-adaptation con-

tribute to oscillations in perceptual dominance. It is, however, fairly straightforward to adapt

these models of rivalry to include an internal noise term and directly probe the properties (i.e.,

amplitude and spectral qualities) of internal noise. Here, we investigate the properties of inter-

nal noise with the minimum rivalry model of Wilson [3,4].

The minimum rivalry model defines the response of a single unit by two differential equa-

tions (Eq 1 and Eq 2), which incorporate stimulus excitation (L/R), self-excitation (ε = 0.2),

competitive inhibition (ω = 3.5), self-adaptation (H), and here, an additive internal noise term

(N). For the unit responding to stimuli presented to the left eye (EL), the response term is:

t

dEL

dt
¼ �EL þ

M½L� oER þ �EL þ gHL þ NL�þ
1þ ½L� oER þ �EL þ gHL þ NL�

0:8

þ
ð1Þ

and self-adaptation is:

t

dHL

dt
¼ �HL þ EL ð2Þ
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which is identical for activity in the right eye (ER), but with the subscripts switched. The model

output is then half wave rectified, such that negative values are set to 0. The constantsM and g

serve to scale the response gain and adaptation strength and were set to values of 1.0 and 3.0,

respectively, based on values fromWilson (2007). The excitatory (τ) and hyperpolarizing (τh)

time constants of Eq 1 and Eq 2 were set to 15ms and 4000ms respectively, with the former

value taken fromWilson (2007), and the latter value being set to reproduce the average domi-

nance duration of our observers. All model parameters were fixed in our simulations. Internal

noise was additive and independently generated for each eye. Because the internal noise (NL)

and external drive (EL) sum linearly on the numerator of Eq 1, the units of internal noise are %

Michelson contrast. As previous studies have already investigated the locus of internal noise

with this particular model [1], we chose here to only conduct model simulations with noise

added to the unit response equation (Eq 1). Note that as the stimulus input to the model is

identical to that of the psychophysical experiment (see Fig 2A), we use a contrast gain control

variant of the Minimum rivalry model [4] to account for any differences in contrast between

eyes. This also means that the noise term is added to both the numerator and denominator of

Eq 1.

We probed the spectral characteristics of internal noise by injecting the model with broad-

band noise patterns (1/fα) generated at one of five different spectral slopes1, where α = [0, 0.5,

1.0, 1.5, 2.0] (see Fig 2B). Noise patterns were generated in the Fourier domain by first creating

a flat (α = 0) amplitude spectrum and then multiplying the amplitude coefficient at each fre-

quency by f-α. The phase of each frequency component was assigned a random value between

-π and π. Two different phase spectra were generated in order to create two independent noise

streams (NL and NR) with the same amplitude spectrum. These were rendered in the temporal

domain by taking the inverse Fourier transform and adding them to the left and right units

separately. Although the noise stream added to some versions of the model was white (i.e., had

a flat amplitude spectrum), the output of the model is not a white noise process because it was

integrated in the same manner as all other noise sources. This means that the variance of

model responses increases with time when the internal noise has a white spectrum. This does

not occur for steeper noise spectra (α> 0). To estimate the amplitude of internal noise, we

selected a single stimulus condition (1/8Hz, SD = 16% external noise contrast) and ran the

model with a range of internal noise levels. Internal noise was set to 1%, 2%, 4%, 8%, 16%, 32%

and 64% (%SD). The results of this analysis demonstrated that internal noise set to 16% was

best at matching the human data and was the value used to simulate the full range of stimulus

conditions. We also conducted simulations with bandpass filtered internal noise streams with

the same frequencies as that of the stimulus sequences, in addition to the broadband internal

noise simulations. Response consistency was high for all stimulus conditions, which suggests

that this type of internal noise is incapable of modulating model responses beyond that of the

external noise sequences. As these results do not offer any additional insight to the characteris-

tics of internal noise, we do not show them here.

Perceptual switches were implemented as a winner-take-all rule: the dominance of a per-

cept was defined by the magnitude of EL/R at any given moment in time (if EL> ER, EL is dom-

inant; see Fig 2C) Finally, all model simulations were conducted in MATLAB (version

R2017a) using ODE45 to solve the 4 differential equations that define the response of each

unit and their self-adaptation over 60 seconds (i.e. the duration of a trial in the psychophysical

experiment). We simulated binocular rivalry twice–with different internal noise samples but

the same external noise sequences–for each stimulus noise condition in order to calculate the

response consistency of the model. This was repeated 1000 times, and the model outputs

(dominance duration and response consistency) were averaged across repetitions.
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Supporting information

S1 Fig. Data for individual participants (P1-5). See the captions to Figs 3 and 4 for format-

ting details.

(TIF)

S2 Fig. (a) Model dominance duration histograms for each of the five noise αs and stimulus

condition as in Fig 6A. The solid line colour indicates the stimulus temporal frequency while

the fill colour marks the noise α. The grey vertical line marks the mean dominance duration of

the 0% modulation contrast condition. For very steep slopes (α = 2) the mean exceeds the x

axis limit (~10s). (b) The average dominance duration for each model noise α as in Fig 6B.

Note the different scale for the y axis with internal noise αs of 1.5 and 2.0.
(TIF)

S3 Fig. Response consistency for all five internal noise α values investigated here. The left

column charts response consistency for each modulation contrast while the right column

shows the same data replotted according to modulation frequency as in Fig 6C and 6D.

(TIF)
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