
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

A lattice-based approach for navigating design configuration spaces
Alison McKaya,⁎, Hau Hing Chaua, Christopher F. Earlb, Amar Kumar Beherac,1,
Alan de Penningtona, David C. Hogga
aUniversity of Leeds, Leeds LS2 9JT, UK
bOpen University, Walton Hall, Milton Keynes MK7 6AA, UK
cQueen’s University Belfast, University Road, Belfast BT7 1NN, UK

A R T I C L E I N F O

Keywords:
Design description
Design representation
Design structure
Design language
Bill of materials
Hypercube lattice

A B S T R A C T

Design configurations, such as Bills of Materials (BoMs), are indispensable parts of any product development
process and integral to the design descriptions stored in proprietary Computer Aided Design and Product
Lifecycle Management systems. Engineers use BoMs and other design configurations as lenses to repurpose
design descriptions for specific purposes. For this reason, multiple BoMs typically occur in any given product
development process. For example, an engineering BoM may be used to define a configuration that best supports
a design activity whereas a manufacturing BoM may be used to define the configuration of parts that best
supports a manufacturing process. Current practice for the definition of BoMs involves the use of indented parts
lists and dendograms that are prone to error because it is easy to create discrepancies across BoMs that, in
essence, are defined through collections of part identifiers such as names and part numbers. Such errors have a
significant detrimental effect on the performance of product development processes by creating the need for
rework, adding costs and increasing time to market.
This paper introduces a design description capability that ensures consistency across BoMs for a given design.

A boolean hypercube lattice is used to define a design configuration space that includes all possible config-
urations for a given design description. Valid operations within the space are governed by the mathematics of
hypercube lattices. The design description capability is demonstrated through an early engineering design
configuration software tool that offers significant benefits by ensuring consistency across the BoMs for a given
design. The software uses and generates design descriptions that are exported from and imported to commer-
cially available design systems through a standard (ISO 10303-214) interface format. In this way, potential for
early impact on industry practice is high.

1. Introduction

The success of today's global supply networks depends on the effi-
cient and effective communication of design descriptions (including
design intent and shape definitions) that suit the requirements and
capabilities of the wide range of engineering functions, processes and
suppliers involved in the delivery of products to markets. Technical
product data packages are used to provide these design descriptions. At
a recent industry summit [1], a representative of Boeing noted that
some 40% of the technical data needed to create a product resides
outside the shape definitions in the technical product data package.
This non-shape data includes design requirements, functional descrip-
tions of the product, design configurations, manufacturing information

and process-related information such as change histories and design
approvals. The focus of this paper is on the design configurations, de-
fined using Bills of Materials (BoMs), that are integral parts of both
shape definitions and the 40% of non-shape related product data. A
BoM is a hierarchical structure that defines a configuration of parts for a
given product. They are fundamental to engineering design and de-
velopment processes because they act as integrators: adapting detailed
design descriptions to suit the needs of particular engineering pro-
cesses. A given design can have multiple BoMs, each of which provides
a different configuration of parts to suit a different purpose, such as,
assembly, manufacturing, and service. The ability to reconfigure BoMs
while maintaining internal consistency of the technical data package
(where all BoM configurations are complete and compatible with each

https://doi.org/10.1016/j.aei.2019.100928
Received 1 October 2018; Received in revised form 17 April 2019; Accepted 19 May 2019

⁎ Corresponding author.
E-mail addresses: a.mckay@leeds.ac.uk (A. McKay), h.h.chau@leeds.ac.uk (H.H. Chau), c.f.earl@open.ac.uk (C.F. Earl), a.behera@qub.ac.uk (A.K. Behera),

a.depennington@leeds.ac.uk (A. de Pennington), d.c.hogg@leeds.ac.uk (D.C. Hogg).
1 Work completed at University of Leeds.

Advanced Engineering Informatics 42 (2019) 100928

Available online 07 June 2019
1474-0346/ © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2019.100928
https://doi.org/10.1016/j.aei.2019.100928
mailto:a.mckay@leeds.ac.uk
mailto:h.h.chau@leeds.ac.uk
mailto:c.f.earl@open.ac.uk
mailto:a.behera@qub.ac.uk
mailto:a.depennington@leeds.ac.uk
mailto:d.c.hogg@leeds.ac.uk
https://doi.org/10.1016/j.aei.2019.100928
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2019.100928&domain=pdf

other and underlying design descriptions) is a major challenge [2,3]. If
solved, the ability to reconfigure BoMs will lead to new ways of
managing and designing product development systems.

It is widely acknowledged that improving the management of en-
gineering knowledge and information is critical to delivering better
quality products to markets at less cost and more quickly. Literature
describing approaches to the management of design descriptions is re-
viewed in Section 2 and the potential applicability of embedding
(currently used in shape computation applications) to describe alter-
native BoMs is introduced. Embedding is a general mathematical con-
struct that allows one mathematical structure to be a consistent sub-
structure of another [‘holding’ structure]; the substructures have the
same mathematical properties as their holding structure. In this way,
embedding has the potential to ensure the internal consistency of
multiple structures, such as multiple BoMs in a technical data package.
However, general purpose methods for the implementation of embed-
ding are not yet available. In Section 3 we introduce lattice theory as
such a mechanism and in Section 4 we outline the prototype-based
approach that we used to generate the results presented in Section 6.
The paper reports a feasibility study which used a simplified robot case
study (in Section 5) to illustrate an exploration of whether embedding
can be used to allow multiple BoMs to be superimposed on each other.
If successful this has the potential to reduce data duplication in design
descriptions, provide improvement opportunities for the management
of change and allow new BoMs to be defined as and when needed
through the entire product lifecycle. In this way, the research is paving
the way for a new generation of design tools that support the config-
uration of BoMs. These success criteria are used in Section 7 to evaluate
the results presented in Section 6, followed by a summary of key
findings and areas for future work in Section 8.

2. Current approaches to the management of design descriptions

This paper proposes a novel approach to ensuring the referential
integrity of BoMs in technical data packages. Technical data packages
are core aspects of what is widely referred to as “model based en-
gineering” [4,5]. Frechette et al. [6] describe a technical data package
in the following way.

“A technical data package (TDP) contains a technical description of an
item adequate for supporting an acquisition strategy, production, en-
gineering, and logistics support. The description defines the required
design configuration or performance requirements, and procedures re-
quired to ensure adequacy of item performance. It consists of applicable
technical data such as models, drawings, associated lists, specifications,
standards, and performance requirements. Lastly, … a Technical Data
Package (TDP) should provide not only sufficient data to procure “up
front” but re-procure later in the product lifecycle.”

Current approaches to the integration of engineering information
seek a common underlying meta-model to support, ultimately, model-
based solutions. Many meta-models and design ontologies, and asso-
ciated data models, for specific application domains are available in the
literature. McMahon [7] acknowledges the role of ontologies in design
informatics and example research cases do exist. However, the in-
dustrial uptake of research ontologies is limited, primarily because the
cost of change would be prohibitive and the ontologies are validated

only in limited application areas. In NIST’s 2017 “Model-Based En-
terprise Summit” [1], and in line with other presentations, Kassel [8]
challenges the notion of a single source (the “model”, which would be
underpinned by an ontology). Kassel describes a digital thread that
includes design structures and a need for effective configuration man-
agement, amongst other things, to string together heterogeneous col-
lections of design descriptions, each of which might be underpinned by
its own domain specific ontology. The use of a digital thread removes
the need for the integrated meta-model, and its underlying ontology,
that are prerequisites for the creation of a single design model.

The details of specific meta-models and associated design ontologies
created to deliver such improvements are beyond the scope of this
paper. A common weakness in such solutions lies in their high emphasis
on technological aspects of the problem and limited or no emphasis on
organisational dimensions that are critical to delivering improvements
in product development process performance [9]. However, there is a
more general literature on approaches to the integration of engineering
information with a view to implementing model-based solutions. The
goal for the research presented in this paper was to enable the defini-
tion of design structures that are consistent with the design technical
data package, as and when needed through the life of the product.
Although company design processes can define the types of design
structures and descriptions that will be required for passage through the
process in a stage gated manner, there are also circumstances where
design structures need to be created without prior knowledge of what
the structure would be because it is not always possible to predict re-
liably future needs. Liu et al. and Yin & Ma [10,11] propose feature-
based approaches but these depend on a knowledge of the downstream
design structures and are, therefore, only applicable to specific cases.
The annotation of lightweight shape models overcomes this problem
[12] but the annotations are text-based so limited when new structures
are required and models become cluttered as the volume of annotations
increases through the life of the product [13].

More recently, there has been a renewed focus on design config-
urations. A number of authors, such as Kashkoush and El Maraghy [14],
identify BoMs as being critical elements of technical communication
and highlight limitations in current IT support for the configuration of
BoMs. Zhou et al. [3] propose a method for transforming an as-built
BoM into a service BoM which includes general purpose operations that
could be applicable to the transformation of other types of BoM.
However, as a transformation process, the information content of the
resulting BoM is inevitably limited by that of the source BoM. BoMs
typically exist in multiple systems and formats, such as PLM systems for
design data, ERP systems for manufacturing and asset management
systems when products are in use. Although each system has bespoke
functionalities, the maintenance of consistency across multiple systems
and data formats is critical in reducing rework and improving product
development process performance. The research reported in this paper
addresses this issue by ensuring the referential integrity of technical
data packages. This is achieved by exploiting the capabilities of boolean
hypercube lattices to provide the grammatical rules for design config-
uration (these are common across all data packages) and coupling them
with a vocabulary for design configuration that is generated auto-
matically from a source BoM and specific to a given data package. In
this way we have created a tool for design configuration where new
configurations can be defined within a conceptual space, the design

Nomenclature

BoM bill of materials
CAD computer aided design
CSG constructive solid geometry
EBoM engineering bill of materials
ERP enterprise resource planning

IT information technology
MRP material requirements planning
PLM product lifecycle management
SBoM shipping bill of materials
SME small to medium sized enterprise
TDP technical data package

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

2

configuration space, which includes only valid configurations of the
design. Because the design configuration space includes all possible
valid configurations, specific configurations can be defined as needed,
throughout the product lifecycle. This paper contributes to the litera-
ture on design descriptions by providing a means of computing design
ontologies, in the form of hypercube lattices, from a single BoM that is
an integral part of a given design description. The lattice representing
each design ontology forms a space for the configuration of structu-
rally2 valid BoMs for the design. For this reason, in contrast to Zhou
et al., rather than transforming BoMs into other BoMs, we create a
design configuration space that includes all possible BoMs and from
which appropriate BoMs can be selected. In this way, the limitations of
BoM transformation processes are avoided.

The approach introduced in this paper was inspired by work on
computational design synthesis where the provision of computational
support requires the manipulation of emergent shapes in design de-
scriptions. An example of such a shape is the middle square formed
from the two larger squares in Fig. 1 which sees this shape as composed
of two large squares. The smaller square is not explicitly defined in the
shape description but the requirement is that such shapes can be ma-
nipulated in the same way as explicitly defined parts of the description.
In essence, we regard unarticulated BoMs as equivalent to the emergent
smaller square in Fig. 1. The process used in shape computation to make
the smaller square available in the design process is called “embedding”
[15,16]. An important prerequisite to the implementation of embed-
ding is a common representation scheme for all (explicitly defined and
emergent) shapes in the design description. Similarly, the im-
plementation of this functionality for design configuration requires a
suitable representation scheme for all (explicitly defined and un-
articulated) design configurations. Here, lattices are used as this re-
presentation scheme.

The realisation of shape grammar-based design synthesis requires a
means of implementing the embedding of shapes into each other; Krstic
and Chau et al. outline hypercube lattice-based solutions to this pro-
blem [17,18]. March [19] used lattices to describe geometric shapes,
Stiny [16] used a lattice of parts to describe continuity in a sequence of
shape rule applications and Krstic [17] used lattices in shape decom-
positions. In this example, the edges of the small square in Fig. 1(a) and
(b) can be described as parts of edges of the bigger squares or as edges
of the smaller, emergent, square. Using the latter description results in a
description of the whole shape that includes the smaller square, which
can then be manipulated to form the shape in Fig. 1(c). The definition of
the whole shape is a network structure because each edge of the smaller
square has two parents: the smaller square and one of the larger
squares. The same idea is exploited in this paper for the reconfiguration
of BoMs. The examples used in this paper are simpler than the shape
example because the BoM definitions are tree structures where each
element (parts of the product in this case) has only one parent. I.e., in a
given BoM, each part can be a part of only one sub-assembly. However,
in general, this is not the case and the use of hypercube lattices provides
scope for future developments to cover BoMs that are network struc-
tures and to explore other kinds of design structure, such as function
structures, and their relationships with BoMs.

3. Lattice theory

Lattices are widely used to represent concept classification struc-
tures in knowledge management applications [20]. An example of such
a structure is shown in Fig. 2(a) which can be read as the concept of
mammals includes (i.e., is an aggregation of) dogs and cats which
themselves are an aggregation of wild cats and pet cats. Its representa-
tion as a lattice visualised using a Hasse diagram is shown in Fig. 2(b)

where relationships across tiers in the structure support classifications
that span more than one tier, e.g., wild cats as mammals. A knowledge
management application could use this lattice to support the classifi-
cation of data. In such an application, users could be offered a choice to
classify a mammal as either a cat or dog and, if cat was chosen, a further
choice of wild cat or pet cat. In addition, wild and pet cats could be
classified directly as mammals. An important point to note is that re-
lationships in the lattice represent aggregation relationships; the se-
mantics of classification are added in the knowledge management ap-
plication.

The lattice structure [21] is a mathematical formalism and provides
precision in the representation of structure. We exploit these benefits
and associate a different meaning with the aggregation relationships in
the lattice, namely how parts aggregate into composite parts rather
than how concepts aggregate. An example BoM, that is structurally the
same as the concept structure in Fig. 2(a), is shown in Fig. 2(c). This can
be read as, “Part A is an aggregation of Parts B and C which itself is an
aggregation of Parts D and E.” The representation of this structure as a
hypercube lattice is shown in Fig. 2(f) where, for clarity, the dashed
lines show cross tier relationships that exist as pathways through the
lattice (e.g., the relationship AB can be realised through the paths BDE-
BD-B or BDE-BE-B) but are not an explicit part of the lattice. Like the
concept structure, this can be read from the top down or the bottom up.
That is, as the BoM structure itself or in the following way, “All parts in
the lattice [including the null part represented by the infimum] are
parts of Part A.” Similarly, “The infimum and Parts D and E are parts of
Part C.” In essence, the hypercube lattice of all subsets of the parts of
Part A captures all possible BoMs (i.e., parts and aggregation relation-
ships) that could be used as configurations of Part A. The approach
introduced in this paper shows how properties of lattice structures can
be exploited to ensure the referential integrity of all BoMs in a given
technical data package. We do this by using the lattice to provide the
valid operations for design reconfiguration (the operation to transform
one BoM to another), and the part names in the source BoM to provide
the vocabulary for use in the reconfiguration of a specific design. The
reconfiguration capability ensures that each part is only used once in a
given configuration. The mathematical formalism that sits behind hy-
percube lattices facilitates this by enabling the calculation of lattice
complements where each part is only used once.

A lattice [21,22] L is a partially ordered set L (poset) with re-
lationship denoted as such that each pair of elements x y, has a un-
ique least upper bound x y (join) and a unique greatest lower bound
x y (meet). Further the whole lattice has a global upper bound or
supremum. A global lower bound or infimum is also defined. The lattice
is denoted

= L;L

Thus for the structure in Fig. 2(c), the lattice set is
=L A B C D E{ , , , , } with leaf nodes B D E, , (which are the BoM nodes

without subparts).
Let us confine attention to lattices whose elements are subsets of a

set which is partially ordered by set inclusion. The underlying set for
the part structure in 2(c) is B D E{ , , } with subsets D E{ , }, B{ }, D{ }, E{ },
and B D E{ , , }. The whole set B D E{ , , } is the supremum of the corre-
sponding lattice and the empty set {} is the infimum.

(a) (b) (c)
Fig. 1. Emergent shapes in a shape defined by two overlapping squares.

2 Some configurations may not be feasible for other reasons but the structural
integrity of BoMs in a given technical data package is assured.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

3

We demonstrate how to generate this lattice from its parts em-
bedded in the lattice of all possible subsets. First the lattice of all subsets
is generated from the component parts in the set B D E{ , , }. We create an
intermediate structure, a meet-semi-lattice [21, p8]. A meet-semi-lat-
tice has a greatest lower bound for each pair of elements but not ne-
cessarily a least upper bound. A particular meet-semi-lattice is used to
generate the whole lattice. This meet-semi-lattice is

=S B D E{ , , , {}}L

created from the component parts of the BoM (i.e., all nodes in the
BoM that are not decomposed into other parts, i.e., the leaf nodes of the
BoM) which results in the structure shown in Fig. 2(d). In this semi-

lattice, each part is connected to the same infimum but there is no
supremum.

To build a full lattice of all subsets, we use a generator algorithm
[21,p p29-31] which, from the part nodes in SL , generates the full
hypercube lattice shown in Fig. 2(e) on the set B D E{ , , } with all its
eight subsets BDE B D B E D E B D E{{ }, { , }, { , }, { , }, , , , {}} in Fig. 2(e). In
essence, the full lattice creates a temporary design configuration space
that contains all possible BoMs for a given collection of parts. As a re-
sult, for any pair of parts (represented as nodes) in the lattice, there
exists a unique least upper bound and a unique greatest lower bound.
This property is exploited in the detail of the implementation when
calculating, for a given part, its parents, children and siblings. To create

mammals

dogs cats

wild cats
pet cats

mammals

dogs

cats

infimum

pet catswild cats

Part A

Part B Part C

Part D Part E

(a) Example concept
classification structure

(b) Lattice representation of
concept structure

 (c) Example BoM product
structure

B

infimum

ED

BDE

B

DE

infimum

E

BEBD

D

BDE

B

DE

infimum

ED

BD BE

(d) The meet-semi-lattice for
the BoM structure in (c)

(e) The full lattice for the BoM
structure in (c), generated from
the semi-lattice in (d)

(f) Lattice representation of
BoM product structure

DE

infimum

ED

BDE

B

DE

infimum

ED

BDE

B

infimum

ED

(g) , the smallest lattice
representing the sub-assembly
of Parts D and E

(h) Lattice, , that represents
the BoM for Part A in (c)

(i) Lattice, , that
represents a flat BoM for
Part A in (c)

BE

Fig. 2. Example structures and lattices. NOTE: Nodes BDE and DE in the lattices correspond to Parts A and C respectively in the BoM.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

4

a BoM, users navigate this space and select parts (both sub-assemblies
and base parts) for the new BoM. For example, to define the lattice
associated with the BoM structure shown in Fig. 2(c), a user might
select nodes D and E from the full lattice in Fig. 2(e) which would then
be used in a join operator to determine the smallest lattice representing
the sub-assembly of the two parts, CL (Fig. 2(g)). This could then be
combined with node B to give a lattice, A1L , (Fig. 2(h)) that represents
Part A in the BoM.

= D E B D{ , }, , , {}}CL

= B D E D E B D E{{ , , }, { , }, , , , {}}A1L

Similarly, a second, flat BoM for Part A, with associated lattice, A2L ,
(Fig. 2(i)) could also be defined with respect to the same underlying
lattice.

= B D E B D E{{ , , }, , , , {}}A2L

In the context of the lattice structure, the number of possible re-
maining sub-lattices reduces as parts are added to the sub-lattice be-
cause each part can only be used once in a given BoM. As a result, the
remaining available configuration options can be calculated using the
lattice complement operation on sub-lattices in a universe that is the
whole underlying lattice.

The hypercube lattices representing all subsets of a set (or equiva-
lently all possible aggregations of parts in a product) are complemented
distributive lattices. When a Hasse diagram is used to represent a par-
tially ordered set (poset), the ordering relation is represented by a line
adjoining two nodes that have different vertical positions, where the
lower node is a part of the upper one. Their horizontal positions are
immaterial. Other calculations can use the lattices that represent the
different BoMs. For example, A1L and A2L could be compared with each
other to identify their set of common parts or sub-assemblies.

The example used here is simple for reasons of clarity and assumes
that each part in the BoM is represented once in the BoM. We do not yet
support shared parts (where, for a given collection of shared parts, each
part would be replicated in the lattice) or part-whole relationships
where the parent contains multiple parts. Again, these would be

implemented by replicating each occurrence of the part in the lattice. In
both of these cases, if the parts needed to be grouped then this could be
achieved using a join operation. A benefit of this, however, is that our
part-whole relationships do not have any attributes so can be re-
presented as parent–child relationships in the lattice.

4. Research approach

A design prototyping approach was used to produce a series of five
prototypes (one physical model and four software prototypes) that
enabled the reconfiguration of design descriptions. The first prototype
was a physical model that was used to illustrate and build insights on
the problem of design reconfiguration using a 3D shape with different
coats (see Fig. 3). The shape, a block with two pockets, is one where ribs
are used in design and pockets in manufacture. In addition, when
constructing the prototype, we found a third useful design description:
one that related the pattern pieces of the coat to the design of the block.
The coats were made from felt purchased in squares. At design time the
availability of felt was unknown and in the future, if more coats were
required, it is plausible that the felt would be purchased from a roll
which would allow the outside piece to be made from one strip of felt.
This is a simple example of where the design structure needed for
manufacturing is not known during design, because it depends of the
availability of materials, and so cannot be predicted at design time:
hence the need to be able to create design structures as and when
needed through the entire product lifecycle. In parallel, we illustrated
embedding of these relationships in 2D using acetate film overlaid onto
design descriptions for an industry case study [23]. Learning from the
physical model was important in both improving detailed under-
standing of the problem and articulating possible benefits of the re-
search to prospective end users.

A series of four software prototypes were then built. The first two
demonstrated the technical feasibility of exporting BoMs from a CAD
system (Solidworks) using a neutral format (ISO10303-214) to generate
hypercube lattices (visualised as Hasse diagrams using the LatDraw
software) and reading lattices back into the neutral format and the CAD

(a) block with pockets; (b) & (c) coats with design (ribs) and manufacturing (pockets) features

(d) pattern pieces for the coats

Fig. 3. The block, its coats and the pattern pieces for the coats & shape grammar example.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

5

system. The second prototype also demonstrated the feasibility of em-
bedding alternative BoMs into a given lattice but with a very slow speed
of computation as the lattice size increased (e.g., 30min to generate a
lattice for a 15 part BoM). A hundred-fold improvement was achieved
in the third prototype by optimising the implementation of the code but
a size limitation in LatDraw led to the development of an alternative
interface for viewing the lattice. Finally, the fourth prototype,
StrEmbed-43, incorporates a purpose built lattice visualisation routine
and a command line interface for reconfiguring BoMs. The remainder of
this paper relates to the fourth software prototype.

5. Case study: A robotic arm

A robotic arm case study was used to demonstrate the engineering
application of StrEmbed-4. Two alternative configurations are shown in
Fig. 4. The configuration shown in Fig. 4(a) is used when a model that
can simulate the functionality of the product is needed; its corre-
sponding BoM, the engineering BoM (E-BoM) for the robotic arm, is
shown in Fig. 4(c). A second configuration, the one used for shipping
the robotic arm, is shown in Fig. 4(b) with its corresponding shipping
BoM (S-BoM) in Fig. 4(d).

The data was produced by a researcher who created two SolidWorks
models, one for each configuration, to represent the wider problem of
design configuration. In practice, these models would be constructed
from shared models of the component parts. However, this becomes less
feasible when configurations, and associated models, are created across
longer timescales and by different people. In addition, the feasibility of
creating all product configurations in CAD or an associated PLM system
becomes even less feasible when the people creating new configurations
are located in different organisations and at different stages the product
lifecycle, often without access to the design definition. For this reason,
research on issues in the wider implementation of design configuration
tools would need richer case study data. However, this data is sufficient
here because the research is considering the theoretical foundations of
future design tools to support the configuration of BoMs rather than
their wider application.

6. A Software tool for design configuration

Either of the case study BoMs, or any other BoM that includes all of
the component parts of the robot, can be used to generate the hy-
percube lattice shown using grey fine lines in Fig. 5. This lattice, gen-
erated using the approach described in Section 3, provides a design
configuration space that includes all possible BoMs for the design from
which it was generated. The two case study BoMs, along with any other
valid BoM, can then be embedded in the lattice. In Fig. 5, the case study
SBoM is shown in heavy grey solid lines and the EBoM is shown in grey
dashed lines. In this section, we demonstrate how StrEmbed-4 can be
used to navigate the design configuration space and define any valid
BoM as a sub-lattice within this space.

The lattice generation process begins with a shape model which is
translated into an ISO10303-214 file for input to StrEmbed. For the case
study, the EBoM was used to generate this lattice. A screenshot of the
EBoM embedded in the underlying lattice is shown in Fig. 6(a). The
window includes two panels: the assembly tree on the left-hand side
and the Hasse diagram on the right-hand side. The Hasse diagram al-
lows users to visualise the BoM they are working with in the context of
the underlying lattice and parts (nodes in the lattice) can be selected
using mouse clicks and edited using the editor window shown in
Fig. 6(b). The editing options in the editor window are based on lattice
algebra and allow sub-lattices, each representing a specific BoM, to be
defined and manipulated. This capability provides editing operations
that are sufficient to transform between any pair of valid BoMs.

The following operations on the sub-lattice that represents the BoM
being edited are supported.

- Insert before & Insert after: reorders siblings under a given node.
This does not change the structure of the sub-lattice but allows users
to adjust how they visualise it.
- Adopt: moves a selected node to a [new] parent node in the sub-
lattice.
- Assemble: creates a new sub-assembly in the sub-lattice by selecting
the node that is parent to the two selected nodes in the underlying
lattice.
- Collapse: removes a sub-assembly node from the sub-lattice. The
parts of this node are re-parented to their original grandparents.

In the case study, the reconfiguration of the SBoM from the EBoM
requires five steps: collapse the arm assembly in the EBoM, assemble
the upper arm and grasper assembly to form ASSY_1, assemble ASSY_1
with the composite base, collapse ASSY_1, and collapse the composite
base. The results of these steps are shown in Fig. 7. In this way, we have
demonstrated the feasibility of using embedded lattice structures for the
reconfiguration of BoMs within a design configuration space. There are
two key limitations in the software. Firstly, typical BoMs often have in
excess of 100 parts but, beyond seven component parts which results in
27 lattices, it is not possible to see the lattice using StrEmbed-4 because
the underlying lattice is too large. Secondly, regardless of the speed of
computation, the lattice generation process is not scalable because the
size of the lattices grows exponentially with the number of parts in the
BoM. To address these issues, in future developments, we propose
calculating the relevant parts of the underlying lattice on the fly, as
needed, which will avoid the need to generate or visualise entire un-
derlying lattices.

7. Discussion

60% of a typical technical data package is related to shape. An
important benefit of today’s geometry-based shape design systems is
that any shape definition created by a user is guaranteed to be a valid
solid. This is because theories such as the constructive solid geometry
formalism that underpins many such systems [24] provides a theore-
tical foundation for the description of design shapes that combine pri-
mitive shape elements (half-spaces) and relationships that are allowable
operations based in Boolean algebras between shapes. As a result, the
behaviour of such shape descriptions is predictable and, although it is
possible to describe shapes that are not the ones intended by the user,
all defined shapes are created through valid operations on valid solids.
The aspiration of the research reported in this paper is to create a
comparable capability for the definition of design configurations such
as BoMs. To this end, we have shown that a boolean hypercube lattice
containing all possible BoMs for a given design can be calculated from a
single description that includes any valid aggregation of the design’s
parts. This lattice, in turn, can be used as a mathematically defined
space within which new BoMs can be configured. Table 1 highlights key
functionality of today’s constructive solid geometry-based 3D CAD
systems and the design configuration editors we envisage. Rudimentary
implementations of each feature have been demonstrated in the soft-
ware prototype presented earlier.

The nearest academic work on design configuration in this area is
that of Zhou et al. [3] who describe operations needed to transform an
as-built BoM into one to support through-life support operations. The
work reported in this paper relates to product design and development,
where parts are identified by design-related identifiers such as part
and/or drawing number. On the other hand, the transformation process
in [3] begins with an as-built BoM (where parts are identified by de-
sign- and production- related identifiers) and translates it into one
where individual physical parts are identified, for example, by serial
number and physical location. In addition, engineering change is within3 StrEmbed-4 is available from https://doi.org/10.5518/227

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

6

https://doi.org/10.5518/227

the scope of Zhou et al. but not here. For these reasons, Zhou et al.’s
‘replace node’ operation does not have an equivalent in the approach
presented here. However, their other three node operations (node ad-
dition and deletion, and the creation of intermediate nodes) could be
supported using lattices. Further work would be needed to deal with the
different part (and so node) identifiers but one approach could be to
generate (from a design description) an as-built lattice (with parts
identified by serial numbers) into which different service BoMs could be
embedded. For both approaches, however, although it is possible to
define different configurations for a given product there is no way, over
and above the use of human expertise, to determine whether a given
BoM, e.g., a shipping BoM, is the best BoM to support the shipping
process. Our current thinking is that creating ways to select the optimal
BoM for a given process would require the integration of alternative
BoMs with simulations of the target process. Early work on this is re-
ported in [25].

With respect to the success criteria introduced earlier (reduce data
duplication in design descriptions, provide improvement opportunities
for the management of change and allow new BoMs to be defined as
and when needed through the entire product lifecycle), we have de-
monstrated steps towards satisfying each criterion. In contrast to den-
dograms, where a user re-enters part identifiers (such as part names or
numbers), users select parts from the underlying lattice. In this way,
part identifiers are not duplicated and scope for the introduction of
errors is reduced. The lattices and BoMs that users can work with are
currently small in size but this research is paving the way to a new
generation of design tools that support users in navigating design

configuration spaces and selecting BoM structures rather than creating
new ones. With respect to the management of change, this removes
duplication of data. In this way, if parts were added to or removed from
an underlying lattice then discrepancies between sub-lattices embedded
in the original host lattice would be straight forward to detect by using
lattice algebra to compare the original sub-lattices with the new host.
We have not yet carried out experiments in this area, and new software
prototypes would be needed to enable them, but lattice theory provides
the mathematical formalism that would be needed to realise such
prototypes. Finally, we have demonstrated that the approach allows
new BoMs to be defined as and when needed against an underlying
lattice into which other BoMs have already been embedded. There are
no restrictions on the number of sub-lattices that can be embedded into
a given host lattice.

However, significant further work is needed to deliver design con-
figuration editors, possibly as core parts of future PLM systems [26],
before the internal consistency of technical data packages can be as-
sured. The future functionality of such an editor, using the re-
configuration example given in Fig. 8, is illustrated in Table 2 where
key steps in the reconfiguration process are shown along with current
capabilities in Str-Embed-4 and research challenges that would need to
be addressed to deliver the full functionality. Early, paper-based ex-
periments on how lattice algebras can be used to calculate valid options
for a reconfigured BoM indicate that being able to apply the comple-
ment operation to lattices will be critical to achieving this. Further
development of the software also needs consideration of engineering
practice. For example, configuration engineers (as opposed to CAD

Grasper
assembly

Arm
assembly

Composite
base

Upper
arm

Lower
arm

Upper
base

Lower
base

Grasper
assembly

Upper
arm

Lower
arm

Upper
base

Lower
base

(a) Designed configuration (b) Shipping configuration

Composite
base

Robotic
arm

EBOM

Upper
base

Lower
base

Arm
assembly

Grasper
assembly

Upper
arm

Lower
arm

Grasper
assembly

Upper
base

Upper
arm

Robotic
arm

SBOM

Base
assembly

Lower
base

Lower
arm

(c) Engineering BoM (E-BoM) (d) Shipping BoM (S-BoM)

Fig. 4. Two configurations of the robotic arm case study.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

7

users) tend not to work with BoMs of entire products which are too big.
They typically work across two or three layers in the system archi-
tecture, e.g., components in a subsystem, and this could be exploited in
developing industry strength tools that do not require the entire un-
derlying lattice.

There are also broader research challenges to be addressed in both
software development and support for configuration engineers. The
software prototype introduced in this paper operates on lattices that
have been generated from shape models but the connections to these
design descriptions are not maintained. How such relationships might

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDEABCD

ABCDE

A
Grasper

assembly

D
Upper
base

B
Upper

arm

C
Lower
arm

E
Lower
base

Robotic
arm

SBoM

Robotic
arm

EBoM

Fig. 5. Robotic arm case study showing two different BoMs embedded into a common underlying lattice.

(a) La and su e represen ng the EBoM (b) Editor window

Fig. 6. Screenshots of the EBoM and underlying lattice generated using StrEmbed-4.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

8

be maintained or re-established has not been considered but this would
be needed in an industry strength solution. Relationships with shape
models could also be important in supporting the visualisation cap-
abilities that engineers might prefer to use when interacting with BoMs
and other design configurations. The current software prototype has
enabled initial explorations of how configuration engineers might in-
teract with lattices. Our conclusion, however, is that they should not be
interacting with the lattice. Instead, the lattice should remain hidden
and be used to guide the engineer who would see the BoM and available

configuration options but not the entire lattice which is too large to see,
let alone work with.

In supporting configuration engineers, this paper provides insights
on the kinds of design configuration tools that are becoming feasible.
However, further work is needed to better understand the requirements
for such tools. For example, a fuller version of the case study used in
this paper is likely to include additional items, such as packaging ma-
terials, in the underlying lattice for the shipping BoM. In sectors where
specialist equipment (such as ground support equipment and tooling in

(a) Sub-lattice after collapsing the arm assembly
in the EBoM

(b) Sub-lattice after assembling the upper arm
and grasper assembly to form ASSY_1

(c) Sub-lattice after assembling ASSY_1 with the
composite base to form ASSY_2

(d) Sub-lattice after collapsing ASSY_1 and the
composite base to form the SBoM

Fig. 7. Operations to reconfigure the EBoM to the SBoM.

Table 1
Comparison of current 3D CAD system architectures and envisaged BoM editors.

Feature 3D [CSG-based] CAD BoM editor

Mathematically defined workspace The 3D space within which shapes are defined A lattice space: composed of nodes and arcs from a lattice generated from a
CAD model that includes a part hierarchy

Mathematically defined objects to work
with
(nouns in a design language)

Half-spaces or geometric primitives defined using
them, e.g., block, cylinder, cone

Parts and part-whole relationships in the lattice. Names of parts for a given
design will come from the source CAD model.

Permissible operations
(verbs in a design language)

Boolean operations from Constructive Solid Geometry Operations drawn from lattice algebra

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

9

the aerospace industry) is needed for manufacturing, this could be a
requirement through the life of the product. In addition, further work is
needed to understand the consequences and opportunities of this re-
search in the context of engineering change [27] and the configuration
of other kinds of design structure including bills of processes and
function structures, and the range of design structures needed to sup-
port the design of product families and their variants [28]. This paper
relates to the different configurations needed by a single product
(comparable to an individual member of a product family) to support
different engineering activities through its life [29]. Different issues
occur in the configuration of BoMs and other architectures when de-
signing and using product families [30]. We are confident that the
lattice-based approach introduced in this paper has the potential to
contribute to the design of product families but further work is needed
to verify this. For example, it appears feasible to generate a lattice from
a generic BoM and associated configuration options into which BoMs
for specific variants could be embedded.

8. Conclusions & future work

There is a latent industry need to be able to associate multiple BoMs
with one of more descriptions of a given design. This need has remained
hidden because current design technologies tend to subsume BoMs
within proprietary data representations. However, engineers use BoMs
and other design structures as lenses to repurpose design descriptions
for specific purposes. For this reason, new design technologies are
needed that make BoMs and other design structures available for en-
gineers to work with directly but without compromising the function-
alities of existing design tools and technologies. Decisions on this are
likely to need to take into account factors including the perspectives
and preferences of users, organisational and regulatory drivers, and
technical feasibility. These issues are likely to become more difficult
when such design configuration tools are used in supply networks and
other contexts where a full design definition is unlikely to be available.
For example, will customers provide suppliers with reconfigured BoMs
and, if so, how will they share an embedded BoM without sharing the
underlying design description? And, from a business perspective, how
might such a capability change engineering practice and improve pro-
duct development system performance?

In this paper we have demonstrated how embedding, implemented
using lattice theory, might be used to underpin such a technology using
a simplified robotic arm assembly as a case study. The simplification
process reduced the number of parts by aggregating assemblies into
components and removed details of the joint assemblies. This was ap-
propriate because the purpose of the case study was to demonstrate an
outline architecture for a potential new design technology, whose ma-
turity would position it at the lowest Technology Readiness Levels (1 or

2). The case study included a CAD model that allowed the design shape
to be visualised and two BoMs: one, an engineering BoM, and a second,
a shipping BoM, for use in transportation of the final product. Typical
current practice is that one of these BoMs, probably the engineering
BoM, would be an integral part of the CAD model and other BoMs
would be developed separately as and when needed. A problem with
this approach is that the secondary BoM is not connected to the original
one. Discussions with practitioners indicated that this leads to errors in
secondary BoMs and makes the management of change challenging
leading to errors and rework that have a detrimental impact on the
performance of the design process. The approach introduced in this
paper overcomes these problems. By providing a language, in the form
of a design configuration space, where the grammar is derived from
lattice theory and the vocabulary from the source design description,
scope for errors in secondary BoMs is dramatically reduced because it is
not possible to incorrectly name parts or create configurations of parts
that are inconsistent with the source. In the future, if lattices can be
related to underlying design descriptions then opportunities for new
ways of managing engineering change are likely to emerge. The design
structures considered in this paper, BoMs, are simple tree structures of
discrete parts. Support for more complex design structures is also
needed if product development processes are to be supported and im-
proved. Examples of such structures include function structures (where
the elements are functions rather than parts), more network-like
structures (such as the physical manifestation of a given function which
may be part of a number of discrete parts) and process structures
(which in this research have been referred to by industry partners as
“Bills of Processes”). A key benefit of using lattices is that they provide a
simple representation scheme that can be used to support machine
learning and other applications where large data sets with simple meta-
structures are required. We are currently exploring the use of artificial
intelligence technologies to reason with design structures represented
as lattices which, if successful, could create opportunities for new forms
of design automation.

A new generation of computer aided design tools that allow de-
signers to navigate and explore design spaces is being realised. For
example, Chen et al. [31] report work that uses an embedding opera-
tion to support the exploration of spaces populated with design shapes;
a key challenge identified by Chen et al. lies in ensuring that the po-
pulation of shapes captures the full range of possible geometric varia-
bility. Here we have introduced a theoretical foundation that enables
the exploration of a different kind of design space: one that is populated
with possible configurations of a given design. The lattice-based ap-
proach ensures that all possible configurations are members of this
population. Both Chen et al. and this paper refer to an embedding
process. Chen et al.’s process involves mapping between higher and
lower dimensionality design [shape] spaces whereas our embedding

ABCDE

AB CDE

A B C

D

E

ABCDE

ABC DE

A

B

C D E

(i) (ii)

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDE

ABCDE

ABCD

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDE

ABCDE

ABCD

(a) (i) initial BoM and (ii) reconfigured
BoM

(b) initial BoM embedded into
a lattice

(c) reconfigured BoM embedded
into a lattice

Fig. 8. Example of a BoM reconfiguration problem (changing from (AB, CDE), to (ABC, DE)). Both initial and reconfigured BoMs are embedded into a common
lattice. The lattice forms a design configuration space of all possible valid BoMs and provides a structure within which such BoMs can be defined.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

10

Table 2
Potential future functionality of a lattice-based design configuration editor.

Target capability Lattice illustration Current software Research challenges

The initial BoM, is imported from CAD (using
a neutral format such as ISO 10303) and
made visible on an underlying lattice
which has been generated from the
initial BoM.
To reconfigure the initial BoM, ABCDE
(AB, CDE), to ABCDE (ABC, DE), the
user starts by disconnecting C from CDE.

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDE

ABCDE

ABCD

StrEmbed-4 can generate a lattice for 15
parts in < 1 s but the time taken still
grows exponentially with the number of
parts, affecting scalability and so is not
workable for an interactive editor. The
lattice and embedded BoM can be
displayed, but not in a way that a user
could easily interact with.

For large products, such as an aero engine
with over 30,000 parts, how can engineers
be supported to

(a) bound the depth & breadth of the BoM
from which the lattice is generated?

(b) express BoMs for analytical/ reporting
purposes, e.g., generate textual formats
from the editor?

The editor highlights alternative
configurations given this break in the
structure.
The user selects Part DE, including its
substructure and arc to the supremum
(dashed lines in the illustration).
This leaves Part C as a floating part with
no link to the supremum (see centre
bottom of the illustration) which means
that the current BoM is not a valid BoM
for the design.

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDE

ABCDE

ABCD

StrEmbed-4 has a rudimentary interface
for reconfiguring BoMs. Alternative
structures are not visible to users. Invalid
BoMs cannot be defined because they
would be invalid w.r.t. lattice which is not
linked to geometry.

(a) What support will let users see
allowable BoMs and shape models of
individual parts for a given design?

(b) Is there potential for learning from other
sectors where support for the
visualisation of large structures is
provided [24,26]?

(c) How might users wish to adjust the
underlying lattice? E.g., add new parts,
aggregate parts (to simplify the BoM or
lattice), disaggregate a part so that its
parts can be manipulated

(d) How will such lattice changes affect
geometric definitions of the product?

The editor provides options to resolve the
discrepancy with C. Options, based on the
underlying lattice, could include
- omit C from the new BoM
- highlight and let the user select other
options that include C and DE, possibly
with other configurations of ABC. These
options (shown by dashed and dotted
lines in the illustration) can be calculated
using the underlying lattice and the
defined part of the embedded lattice.

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDE

ABCDE

ABCD

We can calculate all possible alternative
BoMs, because the lattice space makes the
problem bounded and all options exist in
the underlying lattice. However, an
implementation has not yet been built.
This space would be dynamic in that each
design would have its own space,
generated from a CAD hierarchy view, and
changeable, e.g., if parts were aggregated
or disaggregated.

Is it possible to build a sufficiently
efficient implementation to compute all
options from a given node and excluding
identified parts?
If this is feasible, what opportunities does
this create for engineering practice?

The editor allows the user to select a valid
option and a valid BoM is formed.
The options are illustrated here using
different line styles.

A B C D E

AB AC AD AE BC BD BE CD CE DE

ABC ABD ABE ACD ACE ADE BCD BCE CDEBDE

ABCE ABDE ACDE BCDE

ABCDE

ABCD

This functionality is not yet implemented.
However, given the presence of the
underlying lattice and a partially defined
BoM represented as a sub-lattice, it is
feasible to calculate all remaining options
using lattice operations such as the
complement operator.

For realistically sized BoMs, a significant
challenge would lie in building interfaces
that engineers can interact with
effectively.
In practice, BoMs are often linked to shape
descriptions of the product and
reconfiguring a product can substantially
alter the geometric layout of the product.
For example, the case study used in this
paper had two geometric layouts for the
same parts. Linkages to geometry were
beyond the scope of this research but
would need to considered in the
deployment of lattice-based solutions for
design configuration.
Arcs in the lattice represent the inclusion
of one part in a design configuration.
Further work is needed to consider how
groups of parts might be represented using
lattice structures.

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

11

process is a general mathematical operation that allows one mathe-
matical structure [a lattice] to be a consistent substructure of another.
Further work is needed to understand how these embedding operations
relate to each other.

The theoretical contribution of this paper is an application of boo-
lean hypercube lattices that provides a representation scheme for part-
whole structures [32] and the grammatical rules for design configura-
tion where part-whole relationships are manipulated. When re-
configuring a design using this approach, new configurations are de-
fined in terms of a common underlying lattice which is generated from
a design BoM but can be used through the life of a product without
changing, or needing access to, an original design description. This has
the potential to provide a well-founded underpinning for BoM config-
uration management tools4 that could sit at the heart of future gen-
erations of design system with the potential to transform the perfor-
mance of product development systems. However, there are also shorter
term opportunities. The software tool introduced in this paper uses a
design description that is imported from a commercially available CAD
system through a standard (ISO 10303-214) interface format. For this
reason, there are also opportunities to deliver shorter term impact on
industry practice, for example, by developing a BoM editor that can
import from and export to a range of specialist design tools, preserving
consistency of all other data (e.g. shape information), or initialising
new BoM structures that are consistent with an existing design structure
produced by a different design tool. In this way, there is a viable route
to market that does not involve adaptation of existing design tools.

Design information is critical to the effective and efficient manu-
facture, production and through-life support of engineered products.
Engineering design informatics has delivered significant advances in
support for shape-based design information since the 1960s [7]. Pro-
gress for non-shape-based information, such as the BoMs that engineers
use to adapt design information for specific activities, has made less
progress, resulting in sub-optimal experience-based solutions that lack
the systemic foundations needed for the development of robust com-
putational methods and tools. In this paper we have demonstrated that
hypercube lattices can act as computational spaces within which BoMs
can be configured. For the future, the lattices should remain in the
background, as a part of the technical apparatus. The focus of future
work will be on the assurance of consistency within technical data
packages; this requires product description operations (such as deleting,
dividing and fusing parts) that allow users to change product structures
and the compositions of design descriptions.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgement

The models of the robot arm presented in this paper were developed
with support from Peter Hayward (University of Leeds) and based on
files from a Zortrax online library. The University of Leeds Advanced
Computing Team analysed early versions of the StrEmbed code that
contributed to the significant speed improvements referred to in this
paper.

Funding

This research was funded by the UK Engineering & Physical Sciences
Research Council (EPSRC) under Grant Number EP/N005694/1,
“Embedding design structures in engineering information”.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.aei.2019.100928.

References

[1] NIST, 2017, Model-Based Enterprise Summit 2017, Available from https://www.nist.
gov/news-events/events/2017/04/model-based-enterprise-summit-2017 (accessed on
31st May 2019).

[2] A.K. Behera, A. McKay, H.H. Chau, A. de Pennington, M.A. Robinson, Embedding design
descriptions using lattice structures: Technical requirements, user perspectives and im-
plementation, Smart Innovation Syst. Technologies. pp 557–566 (2017) 557–566.

[3] C. Zhou, X. Liu, F. Xue, H. Bo, K. Li, Research on static service BOM transformation for
complex products, Adv. Eng. Inf. 36 (2018) 146–162.

[4] R. Helmer, A. Yassine, C. Meier, Systematic module and interface definition using com-
ponent design structure matrix, J. Eng. Des. 21 (6) (2010) 647–675.

[5] S. Kubler, K. Framling, W. Derigent, P2P Data synchronization for product lifecycle
management, Comput. Ind. 66 (2015) 82–98.

[6] S. Frechette, P. Huang, M. Carlisle, Model Based Enterprise Technical Data Package
Requirements, National Institute of Standards and Technology, US Department of
Commerce, NIST, Maryland, USA, 2011.

[7] C. McMahon, Design informatics: Supporting engineering design processes with in-
formation technology, J. Indian Inst. Sci. 95 (4) (2016) 365–377.

[8] B. Kassel, The myth of the single authoritative source: Overlap and evolution of product
data through the total lifecycle, 2017. https://www.nist.gov/file/361516 (slide pre-
sentation accessed on 31st May 2019).

[9] E. Brynjolfsson, L.M. Hitt, Beyond the Productivity Paradox: Computers are the Catalyst
for Bigger Changes, Communications of the ACM, August, 1998.

[10] M. Liu, J. Lai, W. Shen, A method for transformation of engineering bill of materials to
maintenance bill of materials, Rob. Comput. Integr. Manuf. 30 (2) (2014) 142–149.

[11] C.G. Yin, Y.S. Ma, Parametric feature constraint modeling and mapping in product de-
velopment, Adv. Eng. Inf. 26 (3) (2012) 539–552.

[12] C. Li, C. McMahon, L. Newnes, Annotation in product lifecycle management: A review of
approaches, in: International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, ASME, 2010, pp. 797–806.

[13] L. Ding, A. Ball, J. Matthews, C. McMahon, M. Patel, Annotation of lightweight formats
for long-term product representations, Int. J. Comput. Integr. Manuf. 22 (11) (2009)
1037–1053.

[14] M. Kashkoush, H. El Maraghy, Product design retrieval by matching bills of materials, J.
Mech. Des. 136 (1) (2014) 011002–011010.

[15] G. Stiny, The algebras of design, Res. Eng. Des. 2 (1991) 171–181.
[16] G. Stiny, Shape: Talking about seeing and doing, The MIT Press. (2006) 167–169.
[17] D. Krstic, From shape computations to shape decompositions, in: J.S. Gero (Ed.), Design

Computing and Cognition '16, Springer, Switzerland, 2016, pp. 249–266.
[18] H.H. Chau, A. McKay, C.F. Earl, A.K. Behera, A. de Pennington, Exploiting lattice struc-

tures in shape grammar implementations, AIEDAM 32 (2) (2018) 147–161, https://doi.
org/10.1017/S0890060417000282.

[19] L. March, The smallest interesting world? Environ. Plan. B: Plan. Des. 23 (1996) 133–142.
[20] B. Ganter, R. Wille, Formal Concept Analysis, Springer, 1996.
[21] G. Grätzer, Lattice Theory: First Concepts and Distributive Lattices, San Francisco, 1971.
[22] G. Szász, Introduction to Lattice Theory, The Publishing House of the Hungarian Academy

of Sciences, Budapest, 1963.
[23] A. McKay, G. Sammonds, S. Ahmed-Kristensen, A. Irnazarow, M.A. Robinson, Using

embedded design structures to unravel a complex decision in a product development
system, International Conference on Engineering Design, ICEDVancouver, Canada, 2017,
pp. 149–158.

[24] A.A.G. Requicha, H.B. Voelcker, Solid modelling: Current status and research directions,
IEEE Comput. Graphics Appl. 3 (7) (1983) 25–37.

[25] A. McKay, R. Baker, R. Chittenden, A. de Pennington, A framework for students to vi-
sualize the implications of design decisions in global supply networks, in: Engineering and
Product Design Education, 6 & 7 September 2018, Dyson School of Design Engineering,
Imperial College, London, 2018.

[26] A. Bouras, B. Eynard, S. Foufou, K.D. Thoben, Product Lifecycle Management in the Era of
Internet of Things: 12th IFIP WG 5.1 International Conference, PLM 2015, Doha, Qatar,
October 19-21, 2015, Revised Selected Papers, Springer International Publishing, 2016.

[27] E. Subrahmanian, C. Lee, H. Granger, N.D. Grp, Managing and supporting product life
cycle through engineering change management for a complex product, Res. Eng. Des. 26
(3) (2015) 189–217.

[28] N.H. Mortensen, C.L. Hansen, L. Hvam, M.M. Andreasen, Proactive modelling of market,
product and production architectures, in: International Conference on Engineering
Design, ICED 2011Technical University of Denmark, 2011. pp. 133–144.

[29] D.J.L. Siedlak, O.J. Pinon, P.R. Schlais, T.M. Schmidt, D.N. Mavris, A digital thread ap-
proach to support manufacturing-influenced conceptual aircraft design, Res. Eng. Des. 29
(2) (2018) 285–308.

[30] S.J. Jung, T.W. Simpson, An integrated approach to product family redesign using
commonality and variety metrics, Res. Eng. Des. 27 (4) (2016) 391–412.

[31] W. Chen, M. Fuge, J. Chazan, Design manifolds capture the intrinsic complexity and di-
mension of design spaces, J. Mech. Des. 139 (5) (2017) 051102–051110.

[32] P. Simons, Parts: A study in ontology, Clarendon Press, 2000.
[33] Atos Origin, Product Lifecycle Management white paper, Available from https://www.

aras.com/papers/white-paper-atos-origin-enterprise-product-lifecycle-management.pdf
(accessed on 31st May 2019).

4 Configuration management is identified as one of the eight core elements of
a PLM system [33].

A. McKay, et al. Advanced Engineering Informatics 42 (2019) 100928

12

https://doi.org/10.1016/j.aei.2019.100928
https://doi.org/10.1016/j.aei.2019.100928
https://www.nist.gov/news-events/events/2017/04/model-based-enterprise-summit-2017
https://www.nist.gov/news-events/events/2017/04/model-based-enterprise-summit-2017
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0010
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0010
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0010
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0015
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0015
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0020
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0020
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0025
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0025
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0035
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0035
https://www.nist.gov/file/361516
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0050
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0050
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0055
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0055
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0065
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0065
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0065
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0070
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0070
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0075
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0080
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0085
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0085
https://doi.org/10.1017/S0890060417000282
https://doi.org/10.1017/S0890060417000282
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0095
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0100
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0110
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0110
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0115
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0115
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0115
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0115
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0120
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0120
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0135
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0135
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0135
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0145
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0145
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0145
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0150
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0150
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0155
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0155
http://refhub.elsevier.com/S1474-0346(18)30504-4/h0160
https://www.aras.com/papers/white-paper-atos-origin-enterprise-product-lifecycle-management.pdf
https://www.aras.com/papers/white-paper-atos-origin-enterprise-product-lifecycle-management.pdf

	A lattice-based approach for navigating design configuration spaces
	Introduction
	Current approaches to the management of design descriptions
	Lattice theory
	Research approach
	Case study: A robotic arm
	A Software tool for design configuration
	Discussion
	Conclusions ​&​ future work
	mk:H1_9
	Acknowledgement
	mk:H1_12
	Funding
	mk:H1_14
	Supplementary material
	References

