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Abstract—Curriculum learning in reinforcement learning is
used to shape exploration by presenting the agent with in-
creasingly complex tasks. The idea of curriculum learning has
been largely applied in both animal training and pedagogy. In
reinforcement learning, all previous task sequencing methods
have shaped exploration with the objective of reducing the time
to reach a given performance level. We propose novel uses of
curriculum learning, which arise from choosing different objec-
tive functions. Furthermore, we define a general optimization
framework for task sequencing and evaluate the performance of
popular metaheuristic search methods on several tasks. We show
that curriculum learning can be successfully used to: improve
the initial performance, take fewer suboptimal actions during
exploration, and discover better policies.

Index Terms—Curriculum Learning, Transfer Learning, Re-
inforcement Learning

I. INTRODUCTION

Learning through a sequence of increasingly difficult tasks

is a technique employed by humans in order to approach

extremely complex domains. Examples range from learning

how to play musical instruments to sports, and encompass

human education from primary school to university. This

concept was proven to be extremely effective in biology

as well, where experiments resulted in animals manifesting

behaviors that members of their species had never shown

before. It is not the case that their ancestors were incapable

of such behaviors, but, as Skinner put it: “nature had simply

never arranged effective sequences of schedules” [1], [2].

Curriculum learning has been used in Reinforcement Learn-

ing (RL) in both software agents [3], [4] and robots [5], [6], to

let the agent progress more quickly towards better behaviors.

Initial attempts have been made in automating curriculum

generation, both in terms of generating appropriate tasks

for the curriculum [7], and sequencing them optimally [8]–

[10]. Experience sequencing is a central theme of curriculum

learning, as the learning paradigm can entirely been seen as

presenting the agent with the right task at the right time in its

development.

Task sequencing algorithms have been developed to create

an optimal curriculum in terms of training time [9]–[11], that

is, curriculum learning has been used as a technique to learn

faster. By learning through the curriculum, and transferring

knowledge from task to task, the agent achieves a given level

of performance more quickly then by learning the final, and

most difficult, task directly.

Figure 1 is an illustration of different possible learning

curves in a task of interest. The red and green line take

the same time to reach a given threshold, but the green one

accumulates more reward during learning. The yellow line

starts with a better initial performance than the others, and the

blue line finds a better policy by the end. Existing algorithms

have focused on shortening the time required by the red line

to reach the threshold.

Fig. 1: Illustration of different objectives for curriculum learn-

ing

In this paper, we define a more general formulation of the

sequencing problem, and introduce two novel uses of task

sequencing for curriculum learning: exploring more efficiently

in a critical task, and discovering better policies in extremely

complex tasks. We describe motivating scenarios for both

cases, in which the total training time is not the main concern.

As a consequence, we adopt different objective functions,

which focus the benefit of the curriculum on novel aspects

of the learning process. In our illustration, this corresponds to

using a curriculum to increase the initial jumpstart, like in the

yellow line; accumulating more reward during learning, like

the green line; or discover a higher-quality policy, like the blue

line. We show that curriculum learning can be successfully

leveraged with these novel objectives, obtaining significant

improvements over learning from scratch. Furthermore, we

identify the most suitable class of optimization algorithms



for the introduced general problem formulation, and carry

out an extensive experimental evaluation, in order to establish

the most appropriate one for task sequencing with different

objectives.

II. BACKGROUND

A. Reinforcement Learning

We model tasks as episodic Markov Decision Processes. An

MDP is a tuple 〈S,A, p, r, γ〉, where S is the set of states, A
is the set of actions, p : S × A × S → [0, 1] is the transition

function, r : S ×A→ R is the reward function and γ ∈ [0, 1]
is the discount factor. If a state is represented as a vector

s = 〈v1, . . . , vd〉 of d variables the representation of the state

space is said to be factored. Episodic tasks have absorbing

states, that are states that can never be left, and from which

the agent only receives a reward of 0.

For each time step t, the agent receives an observation

of the state and takes an action according to a policy π :
S × A → [0, 1]. The aim of the agent is to find the optimal

policy π∗ that maximizes the expected discounted return

G0 =
∑tM

t=0
γtr(St, At), where tM is the maximum length

of the episode.

Sarsa(λ) is a learning algorithm that takes advantage of

an estimate of the value function qπ(s, a) = Eπ[Gt | St =
s,At = a]. We represent the value function with a linear

function approximator, so that the learning algorithm com-

putes an estimate q̂(s, a) = θTφ(s, a) of qπ(s, a) as a liner

combination of features φ.

B. Transfer Learning

Curriculum learning leverages transfer learning to transfer

knowledge through the curriculum, in order to benefit a final

task. Transfer takes place between pairs of tasks, referred to

as the source and the target of the transfer. We use a transfer

learning method based on value function transfer [12], which

uses the learned source q-values, representing the knowledge

acquired in the source task, to initialize the value function of

the target task. Several metrics have been designed to evaluate

transfer learning [12], and we employ three of them for cur-

riculum learning: time-to-threshold, jumpstart, and asymptotic

performance.

C. Combinatorial Optimization

Combinatorial Optimization (CO) problems are character-

ized by the goal of finding the optimal configuration of a

set of discrete variables. The most popular approaches in this

field, called metaheuristics, are approximate algorithms, that

do not attempt to search the solution space completely, but

give up global optimality in favor of finding a good solution

more quickly. Metaheuristics are applicable to a large class of

optimization problems, and are the most appropriate methods

for black-box combinatorial optimization, when a particular

structure of the objective function (for instance, convexity)

cannot be exploited. Task sequencing is one such black-

box problem, therefore we selected four of the most popular

metaheuristics algorithms for comparison with our search

method: Beam Search [13], [14], Tabu Search [15], Genetic

Algorithm [16], and Ant Colony Search [17]. Beam Search and

Tabu Search are trajectory based algorithms, which starting

from a single instance, search through the neighborhood of the

current solution for an improvement. Genetic Algorithm and

Ant Colony Search are population based algorithms, that start

from a set of candidate solutions, and improve them iteratively

towards successive areas of interest.

III. RELATED WORK

Curriculum Learning in reinforcement learning is an in-

creasingly popular field, with successful examples of applica-

tions in first-person shooter games [4], [18], real-time strategy

games [3], and real-world robotics applications [5].

Curriculum Learning has initially been introduced in su-

pervised learning [19]. Closely related fields are multi-task

reinforcement learning [20], and lifelong learning [21], where

the agent attempts to maximize its performance over the entire

set of tasks, which may not all be related to one another.

Conversely, in curriculum learning, the intermediate tasks are

generated specifically to be part of the curriculum, and the

curriculum is optimized for a single final task.

Task Selection has been studied for general transfer learn-

ing, and presents common aspects with the task selection

that is part of sequencing in curriculum learning. Several

approaches consider learning a mapping from source tasks to

target tasks, and estimating the benefit of transferring between

the tasks [22]–[24]. Nonetheless, transfer learning is usually

performed between two tasks, a source and a target, and task

selection methods have never been leveraged to achieve longer

sequences.

Curriculum learning has been used to guide the exploration

by generating a sequence of goals or initial states within the

same environment [8], [25], [26] where all tasks have the

same dynamics. On the other hand, we consider the problem

of sequencing entirely different tasks, in general between

environments that differ in any of their MDP components.

The automatic generation of curricula [27] has been divided

into two sub-problems: task generation [7], [11], that is the

problem of creating a set of tasks such that transferring from

them is most likely beneficial for the final task; and task

sequencing [9]–[11], whereby previously generated tasks are

optimally selected and ordered.

Current methods for task sequencing attempt to determine

the optimal order of tasks either with [9], [28], [29] or without

[10], [11] executing the tasks. Task sequencing methods are the

closest to our work, so we discuss them here in further detail.

Svetlik et al. [10] propose a method to create a curriculum

graph without executing any task, therefore independently of

the agent. The method is based on a manually specified task

descriptor, and a heuristic measure of task similarity. Da Silva

and Costa [11] proposed an object-oriented extension of that

method, and introduced a task generation and transfer learning

procedure, also based on the object-oriented representation.

Both methods do not explore the space of curricula, but

directly build a single curriculum. As a consequence, they



are the most efficient in terms of training time to build the

curriculum, but also have no guarantee on the quality of the

solution. Narvekar et al. [9] frame the curriculum learning

problem as a higher-level MDP, where the state space is

formed by all the possible policies, and the actions select the

next task to learn. Such an MDP, however, is too complex to

be solved directly, and the authors propose a greedy algorithm,

guided by a measure of policy change. In its greedy selection,

the algorithm prefers tasks that modify the policy the most.

The methods described above aim at minimizing time-to-

threshold. Foglino et al. [29] consider the problem of task

sequencing for cumulative return maximization, which is a

special case of the regret metric introduced below, in which

the regret is taken with respect to the optimal policy. They

introduce a heuristic sequencing algorithm tailored for that

metric, and demonstrate its use in a real-world task of control

for micro grids. Differently from the works above, we consider

several objective functions for task sequencing, proposing a

more general framework. Furthermore, we cast the problem

as a black-box combinatorial optimization problem, which

allows us to benefit from long-established metaheuristic search

algorithms, with stronger quality guarantees.

IV. TASK SEQUENCING FRAMEWORK

A. Problem Definition

LetM be a set of MDPs, composed of T ⊂M, a finite set

of candidate tasks for the curriculum, and mf ∈M\T , a final

task. The final task is the task the designer wants the agent

to learn more efficiently through the curriculum. We define a

curriculum as a sequence of tasks in T without repetitions:

Definition. [Curriculum] Given a set of tasks T , a curriculum

over T of length l is a sequence of tasks c = 〈m1,m2, . . . ,
ml〉 where each mi ∈ T , and ∀i, j ∈ [1, l] i 6= j ⇒ mi 6= mj .

Let CTl be the set of all curricula over T of length l. In the

rest of this paper we will drop the superscript wherever the

set of candidate tasks is implicit in the context.

We define C≤L :=
⋃L

l=0
Cl as the set of all curricula of

length at most L. We represent with C0 the set containing the

empty curriculum of length 0, denoted with 〈〉. The empty

curriculum corresponds to learning the final task directly.

Given a performance metric P : C≤L × M → R, which

evaluates curricula for a specific final task, we consider the

problem of finding an optimal curriculum c∗, such that:

P(c∗,mf ) ≥ P(c,mf ) ∀c ∈ C≤L.

B. Performance Metrics

In this section we describe the objective functions we

propose to use in our framework, and later assign them to

new scenarios for novel uses of curriculum learning.

Regret (Reg) is one of the metrics used to optimally balance

exploration and exploitation in single-task learning, whereby

the agent minimizing regret attempts to converge to the opti-

mal policy while acting suboptimally as little as possible. The

regret metric, with respect to a given performance threshold g

(which can be the value of the optimal policy when known),

is defined as follows:

Pr(c,mf ) := −(Ng −
N
∑

i=1

Gi
f ),

where N is the number of episodes executed in the final task,

and Ng −
∑N

i=1
Gi

f is the difference between the return the

agent would achieve if it obtained a return g at each episode

and the return actually achieved. This difference is the regret

with respect to a policy achieving g, and we intend to minimize

it, therefore it is multiplied by −1 since Pr is maximized.

The following objective functions have been defined in the

context of single-task transfer learning [12], [30], and can be

imported into curriculum learning. Jumpstart (JS) evaluates the

average reward of the agent within the first D episodes:

Pj(c,mf ) :=
1

D

D
∑

i=1

Gi
f ,

where Gi
f is the return obtained during episode i in task

mf . Jumpstart can be used if it is crucial that the agent is

deployed in the final task with the highest possible initial

performance, and is a version of regret that focuses only a

few initial episodes.

Jumpstart and regret are objectives over the quality of the

exploration (how it starts, and how it proceeds respectively) in

the final task. Hence, they are evaluated on every episode. In

the following two metrics, we focus on the value of the learned

policy rather than on exploration. The value of the actions

taken during learning is not the objective of the optimization,

and the agent aims at either reaching a certain performance

level faster, or reach a higher level. For this reason, every K
learning episodes, we introduce an evaluation phase, in which

the current policy is executed Q times with no exploratory

actions, to estimate its expected return. During this phase, no

updates are performed to the value function (or the policy).

In the rest of this section, we denote with E the set of the

evaluation steps.

The objective max-return (MR) focuses on the value of the

policy learned within a given horizon:

Pm(c,mf ) := max
I∈E

GI
f ,

where GI
f = 1

Q

∑Q

i=1
Gi

f is the average return over the Q
episodes in the evaluation step I on the final task. This is

conceptually equivalent to asymptotic performance introduced

for transfer learning [12], whereby the agent maximizes its

performance by the end of learning. Max-return takes into

account the non-monotonic nature of learning with function

approximation, so that the best discovered behavior may not

be at the end of a trial, but anywhere during it.

Lastly, we consider what is currently the most used ob-

jective: time-to-threshold (TTT). It evaluates the number of

actions executed throughout the curriculum in order to achieve

a given threshold performance g during an evaluation step in

the final task. Let a(mi) be the number of actions the agent



executed in task mi before moving on to the next task in the

curriculum, and ag(mf ) be the number of actions the agent

executed in the final task until the evaluation step in which the

policy achieves an average return of g. The time-to-threshold

metric is defined as follows:

Pt(c,mf ) := −(ag(mf ) +
∑

mi∈c

a(mi)),

where, similarly to the regret, we intend to minimize the time

to threshold, therefore the total time is multiplied by −1. Time-

to-threshold is the only metric in which each task contributes

to the total performance explicitly. In the other metrics the

intermediate tasks affect the performance exclusively through

transfer learning, and its effect on the behavior in the final

task.

C. Scenarios

In MDPs, if the value function can be represented exactly,

and the exploration strategy guarantees that every action is

executed in every state enough many times, the value function

converges to the value of the optimal policy, regardless of

its initialization. In tasks of practical interest, however, both

the use of functions approximators, and the need for a more

limited exploration, determine convergence to a local optimum

at best, which depends on the initial value. The role of the

curriculum is to identify the optimal initial value, that is, to

prepare the agent to the final task as best as possible. In the

rest of this section we describe three scenarios with their

requirements, and in the rest of the paper we show how to

apply the curriculum learning framework to them.

The first scenario is provided by critical tasks, where

exploration is costly and suboptimal actions must be limited

as much as possible. Examples of this case are abundant

in robotics, where limiting exploration is one of the main

concerns. We assume the existence of a simulator, also a

common occurrence for such domains, since learning cannot

be performed in the real critical task directly. A final task

mf , modeling the real task, can be set up in simulation, and

the optimal curriculum computed without the need to act in

the real task. The objective functions used in this scenario

are jumpstart and regret. Either one can be chosen separately,

or in combination, to obtain that the agent starts with good

performance and explores as efficiently as possible thereafter.

At the time of deployment, the value function of the last task

of the curriculum is used to initialize the agent in the real task,

since, by construction, this is the best possible initialization to

the model of the real task used for training.

The second scenario corresponds to complex tasks. In tasks

complex enough, the optimal policy is unknown, and the agent

cannot be guaranteed to achieve it in any feasible amount of

time. One example of such a case is the game StarCraft [3]. In

this scenario, exploration is not a concern, as long as the agent

achieves a policy of high value. Furthermore, training time is

secondary, since the agent would take an enormous amount

of time if not learning through the curriculum anyway. In this

case, we are interested in the initial value function that can

make the agent discover the best possible policy in the final

task. The objective function for this case is max-return.

The third scenario is the one most previously considered

in the literature, and therefore we will only introduce it

briefly. A large task is broken down into smaller subproblems,

so that the agent can learn the optimal policy faster by

learning the subproblems in sequence. The objective function

for this scenario is time-to-threshold, the one commonly used

in curriculum learning.

V. ALGORITHMS FOR TASK SEQUENCING

The objective functions defined in Section IV-B do not

have an explicit closed-form definition, since the actual return

obtained by the agent can only be measured during learn-

ing. Therefore the resulting optimization problem is black-

box, and it is in general nonsmooth, nonconvex, and even

discontinuous. Furthermore, the optimization problem is con-

strained to a combinatorial feasible set. The most appropriate

class of optimization algorithms for this type of problem is

the class of metaheuristc algorithms, introduced in Section

II-C. We selected four popular and representative algorithms

from this class, two of which are trajectory-based, while the

other two are population-based. In this section we describe

the customization we performed to these otherwise general

algorithms, to apply them for task sequencing. We set out

to evaluate them experimentally, in order to determine which

ones are the most appropriate for curriculum learning.

As a simple baseline, we use a purely greedy algorithm.

This is meant to be an easy and fast solution which could

be the only available option for particularly complex envi-

ronments. The greedy search starts from a set of candidate

curricula composed by all the curricula of length 1. These

are then evaluated for selecting the best candidate. The best

candidate is then given as input to GenerateCandidates,

to obtain the next set of candidates. The algorithm termi-

nates when the best candidate does not improve on the

current best curriculum (hence its greedy nature). The func-

tion GenerateCandidates is shown in Algorithm 1. The

Algorithm 1 GenerateCandidates

Input: seeds, T
Output: candidate set C

1: C ← ∅
2: for c ∈ seeds do

3: E ← {mi ∈ T |mi /∈ c}
4: for m ∈ E do

5: append m to c
6: C ← C

⋃

c
7: end for

8: end for

9: return C

new set of candidates is computed by appending, to each

of the seed curricula, all tasks that do not already belong

to that curriculum. For example, if T = {m1,m2,m3},
and GenerateCandidates is invoked on {〈m1〉, 〈m2〉},



it returns {〈m1,m2〉, 〈m1,m3〉, 〈m2,m1〉〈m2,m3〉}. Greedy

search is the simplest deterministic local search algorithm, and

is therefore easily prone to stop at a local maximum. Next we

consider stochastic algorithms able to deal with more flexible

definitions of locality.

In Beam Search [13], [14] we start from an empty sequence

of source tasks. At each step we select the most promising

solutions based on their performance P and we further develop

them by using GenerateCandidates. In this way, at each

step, the algorithm evaluates solutions of the same length. The

number of solutions to be expanded at each step is the beam

width w, and the algorithm terminates once the maximum

allowed length is reached. In our experiment w = |T |.
For Tabu search (TS) [15], [31], we define the fitness

function Ft for a candidate curriculum to be equal to P .

We start the search by randomly selecting a curriculum in

C≤L. At each iteration we perform local changes to the current

best solution to generate the relative neighborhood. We first

generate a list of curricula R composed by all the curricula

obtained by adding or removing a task from/to the last task

in the current best curriculum. Then we generate all the

curricula resultant of any pairwise swap of any two tasks of

any curriculum in R. The size of our tabu list is T , and, when

full, we empty it following a FIFO strategy. If during the

search all the curricula in the neighborhood are in the tabu

list the new current best solution is randomly selected. The

algorithm terminates after a fixed number of iterations. In our

experiments T = 30.

In Genetic Algorithm (GA) [16], we set the initial popula-

tion as U randomly sampled curricula from C≤L and, similarly

to tabu search, we set the fitness function Fg for a candidate

curriculum to be equal to P . At each iteration of the genetic

algorithm we select two parents from the current popula-

tion Ng with a roulette wheel selection. Given a candidate

curriculum ci, its probability of being selected as a parent

is pi = Fg(ci)/
∑

c∈Ng
Fg(c). Given two parent curricula

we generate a new population of U candidate curricula by

applying a standard single point cross over at randomized

lengths along each parent gene (sequence of tasks). Each cross

over step produces two children curricula, and the process

is repeated until U children curricula are created. We also

included a form of elitism in order to improve the performance

of the algorithm by adding the parents to the population

they generated. Genetic algorithms also include the definition

of a mutation operator. In our implementation this acts on

each candidate curriculum in the newly generated population

with probability pm. The mutation can be of two equally

probable types: task-wise mutation, which given a candidate

curriculum of length l changes each of its intermediate tasks

with probability equal to 1/l; length-wise mutation, where

equal probability is given to either dropping or adding a new

task at a randomly selected position of a candidate curriculum.

In case of candidate curricula composed by one task only, the

dropping option for the length-wise mutation does not apply.

The algorithm terminates after a fixed number of iterations. In

our experiments U = 50 and pm = 0.5.

Ant Colony Optimization (ACO) [17] is a CO metaheuristic

which consists in deploying multiple agents (ants), in the given

search space for depositing artificial pheromone along the

most successful trails in that space, thus guiding the search

towards more and more successful solutions. Each agent starts

from an empty sequence of tasks. At each step an agent

moves towards the goal by adding a new task to the current

candidate curriculum c which represents the trail walked by

the ant. Given a task mi its probability of being selected is

P (mi) = [(τmi
+K)α+Iβmi

]/[
∑

E [(τmj
+K)α + Iβmj

]] with

E = {mj ∈ T |mj /∈ c}.The visibility Imi
is calculated as

the performance improvement obtained by adding task mi

to the current candidate curriculum when positive, and zero

otherwise. Parameters α and β control the influence of the

pheromone versus the improvement while K is a threshold

to control from what pheromone value the search starts to

take it into account. Once the maximum curriculum length

is reached, artificial pheromone is deposited on all curricula

explored in this way, from the first to the best along the

last trail, concluding in this way an iteration. The pheromone

evaporation rate is specified with the parameter ρ while the

maximum level of pheromone to be accumulated over a

candidate solution is set to fmax. The algorithm terminates

after a fixed number of iterations. In our experiments α =
1, β = 1.2,K = 5, fmax = 50, ρ = 0.2 and the number of

ants is 20. The parameters of all algorithms have been fine-

tuned manually across all experiments.

VI. EXPERIMENTAL EVALUATION

We performed a thorough experimental evaluation on two

domains, with two sets of experiments each. Our goal is

twofold. First, we intend to show that curriculum learning is

indeed a valid method to improve regret, jumpstart, and max-

return over learning from scratch, which makes it applicable

to the new scenarios we consider. Second, we evaluate the

algorithms introduced above, to establish which one is the

most appropriate for curriculum learning.

The two domains, BlockDude and Gridworld, were imple-

mented within the software library Burlap 1. We used the

implementation of Sarsa(λ) available in Burlap with λ = 0.9,

learning rate α = 0.1 and discount factor γ = 0.999. We

represented the action-value function through the Burlap Tile

Coding function approximator, initializing the Q-values to

q(s, a) = 0 for all state-action pairs. The agents explore with

an ǫ-greedy policy, with ǫ = 0.1 and decreasing linearly from

0.1 to 0 in the last 25% of the episodes.

A. GridWorld

GridWorld is an implementation of an episodic grid-world

domain used in the evaluation of existing curriculum learning

methods [10], [11]. Each cell can be free, or occupied by a

fire, pit, or treasure. The agent can move in the four cardinal

directions, and the actions are deterministic. The reward is

−2500 for entering a pit, −500 for entering a fire, −250 for

1http://burlap.cs.brown.edu



entering the cell next to a fire, and 200 for entering a cell with

the treasure. The reward is −1 in all other cases. The episodes

terminate under one of these three conditions: the agent falls

into a pit, reaches the treasure, or executes a maximum number

of actions (50). The variables fed to tile coding are the distance

from the treasure (which is global and fulfills the Markov

property), and distance from any pit or fire within a radius

of 2 cells from the agent (which are local variables, and allow

the agent to learn how to deal with these objects when they

are close, and transfer this knowledge).

B. BlockDude

BlockDude is another domain available in Burlap, which

has also been used for curriculum learning [10]. It is a puzzle

game where the agent has to stack boxes in order to climb over

walls and reach the exit. The available actions are moving left,

right, up, pick up a box and put down a box. The agent receives

a reward of −1 for each action taken. The variables used as

input to tile coding are distance from the exit, distance from

each box, distance from each edge of the map, direction of

the agent (binary) and whether or not it is holding a box (also

binary).

Fig. 2: Intermediate (in yellow) and final task (in blue) of

the second experiment in the BlockDude domain. The global

optimum is the curriculum 7-1-5.

C. Transfer Learning

We used an egocentric representation (using distances with

respect to the agent) and local variables to favor transfer, as de-

scribed separately for the two domains. We also normalized the

variables in [0, 1], so that the input is invariant to the scale of

the domain. Furthermore, we used a particular value-function

transfer [12] inspired by Concurrent Layered Learning [32].

In Concurrent Layered Learning, an agent learns a complex

behavior by incrementally learning sub-behaviors (layers). The

more complex behaviors (higher layers) directly depend on the

easier ones (lower layers), and during training all the layers

are updated simultaneously.

This concept was implemented by carrying over the features

of the source task into the target task, along with its parame-

ters. Let Vi be the set of variables defined for the source task,

and Vj the variables defined for the target task, in a source-

target pair along the curriculum. Let qi(s, a) = θT
i φi(s, a) be

the value function of the source task. The value function for

the target task, qj , is defined as:

qj(s, a) :=

{

θT
i φi(s, a) + θT

j φj(s, a), if Vi ⊆ Vj .

θT
j φj(s, a), otherwise.

where φj is the feature vector of the target task. Therefore, if

the variables of the target are compatible with the variables of

the source, so that the features of the source are defined in the

target, the features and their parameters are carried over. The

new parameters, introduced in the target, are set to 0 so that

the imported features initially dominate the behavior. In our

experiments we do not remove features, and the number of

features and parameters grows with every transfer. However,

it is possible to perform feature selection, and remove the

features that do not affect the value function significantly.

D. Results

We chose two relatively small domains so that we could

perform a thorough evaluation, by computing and analyzing

all curricula within the given maximum length.

In our experiments, we perform an evaluation phase each

K = 10 episodes in order to estimate the quality of the learned

policy. As the environments are deterministic, we can perform

each evaluation step Q = 1 times. Each curriculum has been

executed 10 times, and its value for each metric estimated as

the average over those trials.

We ran two sets of experiments per domain, one in which

the number of tasks is high and the maximum length is low,

and one in which, on the contrary, the number of tasks is low,

but the maximum length is high. For GridWorld, the first set

of experiments has parameters n := |T | = 12 and L = 4,

while the second n = 7, and L = 7. For BlockDude, the first

set of experiments has parameters n = 18 and L = 3, while

the second n = 9 and L = 5. These parameters were chosen

so that the total number of curricula does not exceed 20000.

For both domains, the intermediate tasks have been generated

manually, by varying the size of the environment, adding and

removing elements (pits and fires in GridWorld, and columns

and movable blocks in BlockDude). Figure 2 shows all the

intermediate tasks, and the final task (marked with F) for one

of the two BlockDude experiments. All experiments have a

different final task, and set of intermediate tasks. All tasks are

run for a number of episodes that ensures that the agent has

converged to the optimal policy, and were determined at the

time of task generation.

In Table I and II we show the results of the experiments on

GridWorld and BlockDude respectively. The header row shows

the number of candidate tasks, maximum length, and the total

number of curricula of each experiment. Each cell contains

the average number of curricula evaluated, the value of the

objective function, and the confidence interval of that value,

for the corresponding metric. We also included the optimal

curriculum (last column of each experiment) and learning with

no curriculum (denoted as C0). The regret is normalized in



n = 12; L = 4; tot = 13345 n = 7; L = 7; tot = 13700

GW C0 Greedy GA Tabu ACO Beam Opt C0 Greedy GA Tabu ACO Beam Opt

REG
- 24 378.58 364.54 378 373 - - 16 155.84 165.4 168 155 -

-0.36 -0.26 -0.23 -0.21 -0.24 -0.22 -0.19 -0.49 0.43 -0.41 -0.38 -0.3887 -0.39 -0.28
- - [-0.24:-0.23] [-0.21:-0.21] [-0.24:-0.24] - - - - [-0.42:-0.39] [-0.38:-0.37] [-0.40:-0.38] - -

JS
- 34 378.7 380.94 378 373 - - 16 156.22 169.9 154 155 -

-2283.8 -860.03 -1223.24 -842.68 -779.82 -738.29 -601.74 -2624 -827.68 -896.17 -855.99 -725.65 -773.71 -360.9
- - [-1309.87:-1136.61] [-900.18:-785.17] [-795.44:-764.21] - - - - [-966.24:-826.11] [-920.08:-791.97] [-759.65:-691.65] - -

TTT
- 24 380.3 381.86 39 373 - - 12 156.52 166.3 168 155 -

-1351.6 -315.6 -545.73 -315.6 -466.12 -315.6 -315.6 -2788.1 -1643.7 -2300.41 -19880.42 -1716.13 -1643.87 -1643.87
- - [-388.93:-702.53] [-315.6:-315.6] [-345.80:-586.44] - - - - [-1967.20:-2633.63] [-17369.97:-22390.87] [-1680.85:-1751.42] - -

MR
- 24 377.16 463.28 378 373 - - 19 155.98 165.92 168 155 -

-50 -26.6 -15.5 -5.716 -5.33 -3 19.9 -50 21.1 6.96 26.78 18.36 21.1 68.5
- - [-18.55:-12.45] [-9.87:1.56] [-6.90:-3.76] - - - - [0.95:12.98] [22.84:30.71] [14.52:22.21] - -

TABLE I: Results of all the algorithms on the GridWorld domain. Cells with a green background contain the result of the best

algorithm for that performance and experiment.

n = 9; L = 5; tot = 18730 n = 18; L = 3; tot = 5221

BD C0 Greedy GA Tabu ACO Beam Opt C0 Greedy GA Tabu ACO Beam Opt

REG
- 25 266.78 286.02 245 244 - - 52 622.66 750.5 663 613

-0.81 -0.45 -0.45 -0.45 -0.46 -0.40 -0.35 -0.80 -0.52 -0.50 -0.45 -0.53 -0.43 -0.42
- - [-0.47:-0.43] [-0.47:-0.43] [-0.49:-0.43] - - - - [-0.52:-0.49] [-0.45:-0.44] [-0.54:-0.51] - -

JS
- 25 267.44 315.34 245 244 - - 52 623.66 695.16 663 613

-49.9 -49.04 -49.08 -48.17 -48.42 -47.32 -47.77 -50 -49.4 -49.66 -49.36 -49.76 -49.38 -49
- [-49.18:-48.98] [-48.58:-47.77] [-48.75:-48.09] - - - - [-49.70:-49.62] [-49.41: -49.32] [-49.79:-49.73] - -

TTT
- 18 267.92 262.86 245 244 - - 36 625.28 665.2 663 613

-2981.7 -2749.3 -2879.87 -3086.52 -2793.00 -2749.3 -2749.3 -4986 -3828 -3868.10 -3828 -3834.80 --3828 -3828
- [-2825.41:-2934.32] [-2998.12:-3174.92] [-2768.23:-2817.78] - - - - [-3852.95:-3883.25] [-3828:-3828] [-3831.12:-3838.47] - -

MR
- 31 266.66 333.76 245 244 - - 67 621.34 752.1 663 613 -

-10 -10 -10 -10 -10 -10 -10 -14 -14 -14 -14 -14 -14 -14
- - [-10:-10] [-10:-10] [-10:-10] - - - - [-14:-14] [-14:-14] [-14:-14] - -

TABLE II: Results of all the algorithms on the BlockDude domain. Cells with a green background contain the result of the

best algorithm for that performance and experiment.

[−1, 0] with 0 being the value of the policy achieving no regret.

Since we are maximizing, for all metrics a larger value is

always better. Our implementation of Tabu Search, Genetic

Algorithm and Ant Colony are stochastic and non-terminating,

so that in the limit they always find the optimal solution. For

a fair comparison, and for the cases of practical interest, we

interrupted them at the first iteration (for instance, generation

in GA) in which they evaluated a number of curricula equal to

or greater than Beam Search at its optimal value, since Beam

Search is deterministic.

Curricula that scored well for one metric, often showed poor

performance in the other metrics, showing that the order of

tasks in a curriculum is indeed critical. As a consequence,

heuristics targeted at specific metrics may achieve significantly

better results than general metaheuristics. In our experiments,

Beam Search outperforms the other metaheuristics in almost

all cases, proving the best candidate for general task sequenc-

ing. Tabu Search, notably the other trajectory-based algorithm,

is better in some cases. However, since Beam Search is deter-

ministic, it may be preferable as there is no variation between

runs. It is also important to note that the performance of Beam

Search degrades faster as the maximum length increases, rather

than as the number of candidate tasks increases. Lastly, time-

to-threshold, the objective used the most in the literature, also

appears to be the easiest to optimize. On the other hand, regret

seems to be the most difficult metric.

BlockDude appears to be too simple for max-return to be a

viable objective, since all curricula, including no curriculum,

eventually learn the optimal policy. On the contrary, in Grid-

World, different curricula result in the discovery of different

policies, with a significant improvement over learning from

scratch.

VII. CONCLUSION

We introduced a framework for task sequencing in cur-

riculum learning, proposing two scenarios which led to the

adoption of three metrics in addition to time-to-threshold, the

one mostly used in the literature. With the exception of regret

minimization, which has been used to explore efficiently in

single tasks, the other metrics are directly borrowed from

general transfer learning metrics. Since transfer learning is

a fundamental component of curriculum learning, this is a

reasonable first step. However, it is possible that metrics

specific to curriculum learning will be designed in future work.

We adapted four metaheuristc algorithms to the prob-

lem of task sequencing, and evaluated them on four ex-

periments. Trajectory-based methods outperformed population

based method, evaluating a small fraction of the total number

of curricula. We demonstrated that curriculum learning can be

used not only to learn faster, but also explore more efficiently

(by maximizing jumpstart and regret) and learn better policies

(by maximizing max-return) than learning from scratch. While

metaheuristc algorithms are fairly general, we expect that even

better results can be obtained by developing specific heuristic

algorithms tailored for a particular objective function.
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