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Abstract 

Recently, interest in integrated Assembly Sequence Planning (ASP) and Assembly Line Balancing 

(ALB) began to pick up because of its numerous benefits, such as the larger search space that leads to 

better solution quality, reduced error rate in planning and expedited product time-to-market. However, 

existing research is limited to simple assembly problem that only runs one homogenous product. This 

paper therefore model and optimise the integrated mixed-model ASP and ALB using Multi-objective 

Discrete Particle Swarm Optimisation (MODPSO) concurrently. This is a new variant of the integrated 

assembly problem. The integrated mixed-model ASP and ALB is modelled using task based joint 

precedence graph. In order to test the performance of MODPSO to optimise integrated mixed-model 

ASP and ALB, an experiment using a set of 51 test problems with different difficulty levels was 

conducted. Besides that, MODPSO coefficient tuning was also conducted to identify the best setting so 

as to optimise the problem. The results from this experiment indicated that the MODPSO algorithm 

presents significant improvement in term of solution quality towards Pareto optimal and demonstrates 

ability to explore the extreme solutions in the mixed-model assembly optimisation search space. The 

originality of this research is on the new variant of integrated ASP and ALB problem. This paper is the 

first published research to model and optimise the integrated ASP and ALB research for mixed-model 

assembly problem.  

 

Keywords 

Manufacturing systems, Assembly sequence planning, Line balancing, concurrent optimization, Particle 

swarm optimisation 
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1. Introduction  

Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) are classified as important 

activities in assembly optimisation although it occurs in different stages (Marian, 2003). Recently, there 

are efforts to integrate and optimise both activities concurrently because of benefits of reduced planning 

error and reduced costing in manufacturing (Tseng and Tang, 2006). The use of integrated scheme in 

engineering provide huge benefits (Penciuc et al., 2016). A recent study that compared the sequential 

and integrated optimisation approaches for ASP and ALB concluded the integrated approach is 

preferable for better solution quality because of larger search space (Ab. Rashid, Tiwari and Hutabarat, 

2017). Additionally, the integrated optimisation can also speed up time-to-market for a product (Lu and 

Yang, 2016).  

 

Assembly line problems are categorised into simple and generalised assembly line balancing problem 

(Becker and Scholl, 2006). The simple assembly line balancing problem (SALBP) only considers the 

production of one homogeneous product on serial line layout, while the generalised assembly line 

balancing problem (GALBP) includes all of the problems that are not SALBP, such as mixed-model, 

parallel, U-shaped and two-sided lines with stochastic dependent processing times (Tasan and Tunali, 

2008; Jusop and Ab Rashid, 2015).  

 

There are works on optimisation of integrated ASP and ALB problem focusing on SALBP. Chen 

proposed a hybrid Genetic Algorithm to optimise integrated ASP and ALB, where GA is combined with 

heuristic search (Chen, Lu and Yu, 2002). Tseng and Tang studied combining ASP together with ALB 

based on assembly “connectors” (i.e. the connector basis) by using Genetic Algorithm. However, when 

using this approach, whenever the number of connectors is increased, a few of the parameters that govern 

GA performance need to be reset (Tseng and Tang, 2006). Another work by Tseng et al. on integrated 

ASP and ALB was done in 2008. This work adopted Hybrid Evolutionary Multi-objective Algorithms 

(HEMOA) that was also based on GA (Tseng et al., 2008). In recent work of integrated ASP and ALB 

optimisation, GA-based algorithms performed well in optimising the problem with low and medium 
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difficulties. However, the performance of GA-based algorithms deteriorates when faced with high 

difficulty problems, especially for problems with large number of tasks (Ab Rashid, Hutabarat and 

Tiwari, 2012). Besides that, researcher was also implemented Ant Colony Optimisation (ACO) for 

integrated ASP and ALB (Lu and Yang, 2016). However, it was tested with only small tasks number.  

 

There has been, thus far, no work on integrated ASP and ALB optimisation beyond SALBP type. This 

work therefore aims to initiate the optimisation of integrated ASP and ALB for GALBP, more 

specifically, the class of mixed-model assembly problems. A mixed-model assembly line runs different 

product models in arbitrarily intermixed sequence on a single assembly line (Roshani and Nezami, 

2017). This type of assembly line is widely used in various industries to produce a wide variety of 

products (Zhu et al., 2012). The mixed-model assembly line is important in industry because of the 

significant cost savings made possible by sharing different model of products in the same assembly line. 

The mixed-model assembly line can also absorb significant fluctuation of demand of the different 

models using an assembly line (Hu et al., 2008). It is crucially important to set-up the assembly line for 

a long term period. Any changes on the existing the assembly line will incur a lot of cost to the 

manufacturer (Shankar, Summers and Phelan, 2017). Therefore, by integrating the ASP and ALB 

optimisation for mixed-model assembly, the benefits from integrated optimisation and mixed-model 

assembly can be obtained.  

 

The integrated mixed-model ASP and ALB problem is more challenging compared to mixed-model 

ALB and integrated simple ASP and ALB. Separate ASP and ALB problems are individually 

categorised as NP-hard combinatorial problems, where the solution space are excessively increased 

when the number of task increased (Lin et al., 2012). When the optimisation of both activities is 

performed together, the problem difficulties will be increased since all the related factors such as 

geometric information, assembly tool and time are concurrently considered in this stage (Tseng et al., 

2008). Furthermore, compared with simple assembly problem, it is more difficult to achieve optimum 

solution for all models in the mixed-model assembly problem (Becker and Scholl, 2006; Zhong, 2017). 

Therefore, a formulation of the integrated mixed-model ASP and ALB problem will be more challenging 
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to solve and to optimise, when compared with optimisation of mixed-model ALB and also integrated 

ASP and ALB for simple assembly.  

 

The main contribution of this work is a new model of integrated mixed-model ASP and ALB problem. 

Later, we implement Multi-Objective Discrete Particle Swarm Optimization (MODPSO) algorithm to 

optimise this problem. Section 2 presents the modelling of integrated mixed-model ASP and ALB, 

including the objective functions for this problem. Section 3 explains the mechanism of MODPSO 

algorithm. Section 4 presents the experimental design and performance indicators for optimisation 

algorithms. Section 5 presents the results of experiment and Section 6 discusses these results that analyse 

various algorithms to optimise integrated mixed-model ASP and ALB problems. Finally Section 7 

concludes the findings from this work.  

 

2. Integrated Mixed-model ASP and ALB 

An example of a mixed-model assembly line is found in vehicle production, where the assembly line 

runs one specific car type, but with different model variants, such as right or left hand drive and manual 

or automatic transmission. In addition, some of the cars require additional accessories to fulfil specific 

customer requirements. In this assembly line, there is only one product, that is, a specific car type, but 

the assembly process will vary due to differences between models. Assembly problems are commonly 

represented by assembly precedence graphs and assembly data table. The precedence graph consists of 

a set of nodes and arcs that represent assembly tasks and their precedence constraints. The outgoing arc 

from node i towards node j meaning the assembly task i must be completed before starting the assembly 

task j. Meanwhile the assembly data table represent the assembly information such as assembly 

direction, tool and time for particular assembly tasks.  

 

The most common approach to express the mixed-model assembly problem is by transforming the 

precedence graphs into a joint graph as used in many existing Mixed-model Assembly Line Balancing 
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works (Kara et al., 2011; Buyukozkan et al., 2016). The joint graph represents the precedence constraint 

for all models.  

 

When the precedence diagram of model y is represented by a graph Gy = (Vy,Cy), where Vy is the set of 

tasks of model y and Cy is the set of precedence relations, the combined graph is G = (V,C), where V = ׫y Vy and C = ׫y Cy. An arc (i, j) is redundant if there exists another path from i to j in G. The mixed-

model defines the number of units to be produced from each model during a shift of T time units. The 

processing time of y אV is equal to the total time required for the processing of this task in a given 

mixed-model. 

 

For example, an assembly line runs two model of product, Model A and Model B. The precedence 

graphs for both models are shown in Figure 1(a) and (b). To establish the joint graph, the follower for 

specific tasks in each models are bundled together in one graph. For example in Figure 1, the followers 

for task 1 in Model A are task 2 and 3, while task 3 and 4 in Model B. The combination of task 1 

followers from both model are task 2, 3 and 4 as shown in joint graph. The joint graph is updated by 

removing the shortest repetitive routes from the graph. In example below, the route connecting task 4 

and 7 in Model B is removed from the Joint Model because task 7 cannot be started although task 4 has 

been performed, because there is dependence on completion of task 6 in Model A. Once the joint graph 

has been established, similar representation scheme as in simple assembly line problem can be used, 

except for assembly data representation.  

 

[Figure 1: Precedence graph of (a) Model A, (b) Model B and (c) Joint Model] 

 

In mixed-model assembly line, the assembly data set should represent data for each model. In this case, 

the assembly data for similar tasks within different models might be different, depending on the actual 

processing task.  
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2.1 Objective Functions and Constraints 

There are known objective functions to evaluate single-model assembly problems. To evaluate the 

fitness in mixed-model assembly problem, the objective function is evaluated for every model, and the 

mean of these values is used as the fitness value. For mixed-model assembly problem with M model: 

Objective 1: Minimise the mean of the total direction changes  

݊ௗ௖ ൌ ଵெ σ σ ݀௦௠Ǣ           ݀௦௠ ൌ ൜ ͳ if direction ݏ ≠ direction ݏ ൅ ͳ for ݉th modelͲ if direction ݏ ൌ direction ݏ ൅ ͳ for ݉th model
௡ିଵ௦ୀଵெ௠ୀଵ      Eq. 1 

 

Objective 2: Minimise the mean of the total tool changes 

݊௧௖ ൌ ଵெ σ σ ௦௠Ǣݐ ௦௠ݐ                   ൌ ൜ ͳ if tool ݏ ≠ tool ݏ ൅ ͳ for ݉th modelͲ if tool ݏ ൌ tool ݏ ൅ ͳ for ݉th model
௡ିଵ௦ୀଵெ௠ୀଵ       Eq. 2 

 

 

Objective 3: Minimise the mean of cycle times 

ݐܿ ൌ ଵெ σ ௠Ǣݐܿ ௠ǣ Cycle time for ݉th modelெ௠ୀଵݐܿ                                  Eq. 3 

 

Objective 4: Minimise number of workstations 

Number of workstation (nws) is determined once the assembly tasks assignment completed. The number 

of workstation that generated for all models will be the same because similar tasks within different 

model are assigned into similar workstation. 

 

Objective 5: Minimise the mean of workload variations 

ݒ ൌ ଵெ σ σ ൫௖௧೘ି௣௧೔೘൯೙ೢೞ೔సభ ௡௪௦ெ௠ୀଵ Ǣ                    Eq. 4 

ݏݓ݊݉ ௜௠ǣ processing time in ݅thworkstation for modelݐ݌  ׷ total number of workstation
    

Subjected to: σ ௜௞ݔ ൌ ͳ௡௪௦௞ୀଵ                   ݅ ൌ ͳǡ ǥ ǡ ݊          Eq. 5 
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 σ ௔௞ݔ െ σ ௕௞ݔ ൑ Ͳ                ܽ א ݊ǡ ܾ א ௔௡௪௦௞ୀଵ௡௪௦௞ୀଵܨ          Eq. 6 

 σ ௜௞ݔ௜௠ݐ ൑ ௠                                          ௡௜ୀଵݐܿ ǡ݉׊  Eq. 7         ݇׊

 

The first constraint (Eq. 5) ensures that an assembly task is assigned into one workstation. This constraint 

also means that the same assembly task from different model will be assemble in similar workstation. 

Eq. 6 represents the precedence constraint that needs to be followed. The Fa refers to the set of successor 

for task i. In different word, this constraint ensures that the successor/s for task i will be assigned in 

similar or the following workstation. The constraint in Eq.7 ensures that the maximum cycle time for 

respective model (ctm) is obeyed. In the case of any ctm constraint is violated, the particular assembly 

task cannot be assigned into that workstation. 

 

 

3. Multi-objective Discrete Particle Swarm Optimisation 

Various algorithms have been developed to optimise combinatorial optimisation problem. For instance, 

Hu et al., (2014) implemented new discrete Particle Swarm Optimisation for a combinatorial problem, 

involving a machining scheme selection. Besides that, researcher also introduced probability increment 

based swarm algorithm to optimise combinatorial optimization problem in printed circuit board 

assembly (Zeng et al., 2014). Another popular algorithm to optimise combinatorial optimisation 

problem is genetic algorithm, as implemented for scheduling and vehicle routing problems (Mirabi, 

2015; Rahman, Sarker and Essam, 2017).  

 

In this work, we implement Multi-objective Discrete Particle Swarm Optimisation (MODPSO) to 

optimise the integrated mixed-model ASP and ALB (Ab. Rashid, 2013). The general procedure of 

MODPSO is presented in Figure 2. 

 

3.1 Initialisation 
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The initialisation stage start with defining the number of particle (npar), the maximum iteration (itermax), 

the inertia weight (c1) and learning coefficients (c2, c3). In this work, the default coefficient values for 

PSO are used (i.e. c1 = 0.4, c2 = c3 = 1.4). Next, the initial population is generated. The initial population 

consists of npar particles. Each of position/solution contains random integer permutation, Xi
t = xi,1

t, xi,2
t, 

… xi,n
t. Since the solution is randomly generated, the solution most probably will violate the precedence 

constraint. Therefore, the sorting procedure based on the earliest position in position X is applied. The 

example of this procedure is presented in Figure 3. 

 

[Figure 2: Flowchart of MODPSO algorithm] 

 

3.2 Evaluation 

The evaluation is conducted using five objective functions as explain in section 2.1. Since we use Pareto 

approach, the objective functions are calculated independently. Next, we conduct non-dominated sorting 

to identify the non-dominated solutions. The detail of non-dominated sorting procedure is available in 

Deb (Deb, 2002).  

 

[Figure 3: Example of decoding procedure] 

 

3.3 Update Pbest and Gbest 

The Pbest represent the best solution over the iterations within the similar particle. Meanwhile the Gbest 

is the best solution among all the particles. In original PSO, the Pbest and Gbest are simply determined 

based on the fitness of solution. However, in multi-objective with Pareto based approach, we cannot 

determine the Pbest and Gbest using the fitness value. Therefore, we calculate the Crowding Distance 

to decide the Pbest and Gbest. The detail of Crowding Distance procedure is adopted from (Deb, 2002).  

 

For Pbest, the Crowding Distance is calculated among the solution within a local particle from different 

iterations (CDp). Meanwhile to determine Gbest, the Crowing Distance is measured among the non-
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dominated solutions (CDND). The higher Crowding Distance solution is preferable since it will lead to 

explore the solution in the less crowded region.  

 

 

3.4 Update Position and Velocity 

In PSO, the particle reproduction process is performed using two formulas: 

௜ܸ௧ାଵ ൌ ܿଵ ௜ܸ௧ ൅ ܿଶ൫ܾܲ݁ݐݏ௜௧ െ ௜ܺ௧൯ ൅ ܿଷ൫ݐݏܾ݁ܩ௧ െ ௜ܺ௧൯                  Eq. 8 

௜ܺ௧ାଵ ൌ ௜ܺ௧ ൅ ௜ܸ௧ାଵ                       Eq. 9 

 

Eq. 8, calculate the velocity for (t+1)th iteration. This formula takes into account the current velocity and 

distance between Pbest and Gbest with the current position, Xi
t. Meanwhile, Eq. 9 updates the position 

for (t+1)th iteration, Xi
t+1. For the discrete representation, the following procedures are applied 

(Rameshkumar, Suresh and Mohanasundaram, 2005).  

 

Subtraction operator (position – position): (X1 – X2).  

If the jth element of X1, x1,j= x2,j then v1,j= 0, else v1,j = x1,j 

Multiplication operator (coefficient x velocity): (V2= c.V1). 

If rand<c, v2 = v1, else, v2 = 0 

c[0,1]ג 

Addition operator (velocity + velocity): (V = V1 + V2)  

The jth element of V can be derived as follows: 

௝ݒ ൌ ቐ ଵǡ௝ݒ ଵǡ௝ ifݒ ് Ͳǡ ଶǡ௝ݒ ൌ Ͳݒଵǡ௝ if ݒଵǡ௝ ് Ͳǡ ଶǡ௝ݒ ് Ͳǡ ݎ ൏ ଶǡ௝ otherwiseݒ݌ܿ                                     Eq. 10 

r is a random number between 0 and 1, while cp [1 ,0] ג. 

Addition operator (position +  velocity): (X1
t+V1). 

If the jth element of V1, v1,j= 0 then x1,j
t+1 = x1,j

t , else x1,j
t+1 = v1,j 
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4. Experiment Design  

In previous work, a tuneable test problem generator to provide sufficient test problem for integrated 

ASP and ALB has been developed (Ab Rashid, Hutabarat and Tiwari, 2012). The results indicate that 

the ASP and ALB problem difficulties can be increased using larger number of tasks (n), lower Order 

Strength (OS), lower Time Variability Ratio (TV) and higher Frequency Ratio (FR). For the testing of 

integrated mixed-model ASP and ALB, we proceed as follows:  

1. The tuneable test problem generator creates a precedence graph that is assumed as the joint 

model.  

2. The original tuneable test problem generator creates one assembly data set that corresponds to 

the precedence graph. This is modified, such that three sets of assembly data, representing 

different product models, are generated instead. 

For the purpose of this experiment, every input variable is divided into five levels from low to high 

difficulty values as shown in Table 1. Then a reference variable setting (datum) is selected as a baseline, 

while the rest of the problem variable setting are generated by changing only one variable value at a 

time. In total, there are 17 test problems (including the reference setting) generated from one reference 

variable setting. In order to confirm algorithm performance, three different reference variable setting 

will be used (Level 1, 3 and 5). Therefore, the complete number of test problem in this experiment is 51 

problems as shown in Table 2. The bolded problem setting (Problem 1, 18 and 35) represent the 

reference variable setting for Level 1, 3 and 5 respectively. The detail of the test problem is accessible 

at the following link.  

(https://drive.google.com/file/d/0B1FocUClXEMUSmFNdDN2ZFV4QTA/view?usp=sharing )  
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Table 1: Level of tuneable input setting 

Level n OS TV FR 

1 15 0.6 8 0.2 

2 20 0.5 6 0.3 

3 40 0.4 4 0.4 

4 60 0.3 3 0.6 

5 80 0.2 2 0.8 

 

Table 2: Experimental design for mixed-model ASP and ALB 

Test Problem Variable for 
Reference Setting at Level 1 

Test Problem Variable for 
Reference Setting at Level 3 

Test Problem Variable for 
Reference Setting at Level 5 

Problem n OS TV FR Problem n OS TV FR Problem n OS TV FR 

1 15 0.6 8 0.2 18 40 0.4 4 0.4 35 80 0.2 2 0.8 

2 20 0.6 8 0.2 19 15 0.4 4 0.4 36 15 0.2 2 0.8 

3 40 0.6 8 0.2 20 20 0.4 4 0.4 37 20 0.2 2 0.8 

4 60 0.6 8 0.2 21 60 0.4 4 0.4 38 40 0.2 2 0.8 

5 80 0.6 8 0.2 22 80 0.4 4 0.4 39 60 0.2 2 0.8 

6 15 0.5 8 0.2 23 40 0.6 4 0.4 40 80 0.6 2 0.8 

7 15 0.4 8 0.2 24 40 0.5 4 0.4 41 80 0.5 2 0.8 

8 15 0.3 8 0.2 25 40 0.3 4 0.4 42 80 0.4 2 0.8 

9 15 0.2 8 0.2 26 40 0.2 4 0.4 43 80 0.3 2 0.8 

10 15 0.6 6 0.2 27 40 0.4 8 0.4 44 80 0.2 8 0.8 

11 15 0.6 4 0.2 28 40 0.4 6 0.4 45 80 0.2 6 0.8 

12 15 0.6 3 0.2 29 40 0.4 3 0.4 46 80 0.2 4 0.8 

13 15 0.6 2 0.2 30 40 0.4 2 0.4 47 80 0.2 3 0.8 

14 15 0.6 8 0.3 31 40 0.4 4 0.2 48 80 0.2 2 0.2 

15 15 0.6 8 0.4 32 40 0.4 4 0.3 49 80 0.2 2 0.3 

16 15 0.6 8 0.6 33 40 0.4 4 0.6 50 80 0.2 2 0.4 

17 15 0.6 8 0.8 34 40 0.4 4 0.8 51 80 0.2 2 0.6 
 

 

In general, the integrated ASP and ALB for single model employed three types of algorithms; 

Evolutionary algorithms (including the hybridised version), Ant colony optimization (ACO) and 

Discrete PSO algorithms. This work therefore will compare the MODPSO with the following algorithms 

for optimization purpose:  

i. Multi-Objective Genetic Algorithm (MOGA): This algorithm is one of the most frequently used 

algorithms to optimise independent ASP and ALB problem, according to the survey (Rashid, 

Hutabarat and Tiwari, 2011). 
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ii. Ant Colony Optimisation (ACO): The ACO algorithm has been implemented for single model 

integrated ASP and ALB optimisation (Yang, Lu and Zhao, 2013; Lu and Yang, 2016).  

iii. Hybrid Genetic Algorithm (HGA):  The HGA that proposed by Chen is the most cited published 

work on integrated ASP and ALB optimisation for single model (Chen, Lu and Yu, 2002). This 

algorithm combined the heuristic approach in line balancing with Genetic Algorithm. The output 

solution from the heuristic approaches will be inserted into the initial population for Genetic 

Algorithm.  

iv. Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II): NSGA-II was introduced by (Deb, 

2002). This algorithm is selected because of its popularity in solving multi-objective optimisation.  

v. Multi-Objective Particle Swarm Optimisation (MOPSO): The MOPSO algorithm introduced to 

extend the PSO application for multi-objective optimisation (Coello Coello and Lechuga, 2002).  

vi. Discrete Particle Swarm Optimisation (DPSO): DPSO present the discrete updating procedure to 

update position and velocity (Rameshkumar, Suresh and Mohanasundaram, 2005). The discrete 

representation is suitable to be used for ASP and ALB problem. 

 

In addition to this experiment, another set of computational experiment was conducted to identify the 

best coefficient values for MODPSO. There are three coefficients that influence the MODPSO 

performance: inertia weight (c1), cognitive coefficient, (c2) and social coefficient (c3). In MODPSO, c1 

coefficient influences the particle velocity, while c2 and c3 influence the exploring and exploiting of the 

search space, respectively. The limit for these coefficients is suggested as follows: c1 [0, 1], c2 and c3 [0, 

3]. In this study, a Taguchi approach with L9 orthogonal array is used. The three levels of coefficient 

values are as follows:: 

c1 = {0.2, 0.5, 0.8}, c2 = {0.5, 1.5, 2.5} and c3 = {0.5, 1.5, 2.5} 

In this experiment, 15 test problems from Table 2 are selected, which consist of 5 problems in each 

reference setting. The selected problems are problems 1 – 5, 18 – 22 and 35 – 39. 
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In this work, the population or swarm size is set at 20 with 500 iterations. For each problem, 30 runs 

with different random seeds are performed and the output from each run are collected and filtered to 

find the non-dominated solution set.  

 

4.1 Performance indicators 

To evaluate the performance of each algorithm when dealing with different complexity problems, the 

following performance indicators adopted from (Deb, 2002) and (Yoosefelahi et al., 2012) are used.   

i. Number of non-dominated solution in Pareto optimal, ߱: Shows the number of non-dominated 

solutions generated by each algorithm in the Pareto solution set. The higher ߱ indicates better 

algorithm performance. 

ii. Error Ratio, ER: ER counts the number of solutions which are not members of the Pareto optimal 

set, divided by the number of solutions generated by algorithm. Smaller ER indicates better 

algorithm performance.   

iii. Generational Distance, GD: GD calculation yields an average distance of solution with the 

nearest Pareto optimal solution. Smaller GD value indicates better algorithm performance.  

iv. Spacing: This indicator measures the relative distances between each solution. Smaller Spacing 

index indicates better solution set, having better spacing between each solution.  

v. Maximum Spread, Spreadmax: Measures the spread of solutions found by each algorithm. Larger 

maximum spread is the better.  

 

5. Results of Computational Experiment 

Due to the large size data from the optimization, the results were simplified the data by using standard 

competition rank approach. The best algorithm for a particular indicator and test problem was assigned 

rank 1 while the worst was assigned as rank 7. When the algorithm performance is a tie, an equal rank 

will be assigned and the next rank will be left empty. Table 3 present the frequency of the rank obtained 

by each algorithm for different indicator and test problem. For the non-dominated solution in Pareto 
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optimal (߱) indicator, the MODPSO comes out with better solution sets in 96% of test problems, while 

the remaining 4% belong to NSGA-II. The Error Ratio (ER) indicator also shows that the leading 

algorithms are MODPSO and NSGA-II. The MODPSO and NSGA-II show better performance in 41.5% 

and 58.5% respectively. Both algorithms also dominate the best performance for Generational Distance 

(GD) indicator with 43% of better performance for MODPSO and 53% for NSGA-II. Meanwhile, the 

Spacing indicator shows different pattern, where the largest percentages of better performance are 

MOPSO (22), followed by HGA (20%), ACO (19%), DPSO (17%), MOGA (14%), MODPSO (6%) 

and NSGA-II (2%). On the other hand, the Spreadmax indicator that measure the extent of solution 

distribution presents that the MODPSO algorithm produce better solution in 70%  of the problem. The 

MOPSO perform better in 18%, while the remaining balances are shared among DPSO (6%), MOGA 

(4%) and HGA (2%).  

Table 3: Frequency of the rank obtained by each algorithm 

Indicator Rank MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO 

߱ 

1 0 0 0 5 0 0 47 
2 0 1 8 37 1 0 4 
3 11 2 22 5 12 8 0 
4 15 10 8 3 18 11 0 
5 12 5 8 1 11 14 0 
6 8 8 4 0 6 18 0 
7 5 25 1 0 3 0 0 

ER 

1 0 0 0 31 0 0 23 
2 0 0 5 17 1 0 26 
3 10 6 20 3 4 5 2 
4 19 8 11 0 18 7 0 
5 8 5 11 0 13 16 0 
6 10 9 4 0 11 19 0 
7 4 23 0 0 4 4 0 

GD 

1 0 0 0 30 0 0 24 
2 2 0 6 17 1 0 22 
3 17 3 23 2 2 1 3 
4 20 6 10 1 7 6 1 
5 8 7 8 0 17 10 1 
6 3 5 3 1 19 21 0 
7 1 30 1 0 5 13 0 

Spacing 

1 7 8 7 8 13 5 3 
2 10 2 4 10 10 6 9 
3 11 7 6 7 13 5 2 
4 1 3 4 5 4 14 20 
5 10 13 10 6 7 3 2 
6 9 11 13 10 2 4 2 
7 3 8 6 5 3 13 13 
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Spreadmax 

1 2 1 1 0 10 4 33 
2 3 1 8 2 16 15 7 
3 5 2 14 4 11 12 2 
4 7 3 12 7 8 12 2 
5 13 6 11 6 5 5 5 
6 13 15 3 16 1 2 1 
7 8 23 2 16 0 1 1 

Table 4 presents the mean of performance indicators for all test problems. Based on the mean values, 

the best performance of ߱ indicator is observed in MODPSO and the followed by NSGA-II algorithms. 

Meanwhile, the best mean performance for ER and GD indicators is achieved by NSGA-II, while the 

MODPSO in second place. In the meantime, two PSO-based algorithms, MOPSO and DPSO are leading 

the mean of Spacing indicator. Furthermore, the PSO-based algorithms also show better performance 

compared with other algorithms in Spreadmax indicator.  

 

Table 4: Mean of performance indicators 

Indicator 
Algorithm 

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO 

߱1 4.7843 1.9020 8.0588 27.2353 5.2745 3.4902 41.0196 

ER2 0.9037 0.9632 0.8592 0.1952 0.9230 0.9444 0.2046 

GD2 1.9951 2.4650 2.0017 0.1753 2.3219 2.3682 0.2696 

Spacing2 1.0281 1.1410 0.9819 1.2898 0.9479 0.9537 1.2318 

Spreadmax
1 15.7278 14.6364 16.5250 14.9729 17.1868 16.8720 18.4656 

 1 Larger the better indicator 2 Smaller the better indicator 
 

Table 5: Average CPU time for different problem size 

Problem Size 
Average CPU Time (s) 

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO 

15 42.34 35.86 45.14 93.55 43.97 49.83 51.34 

20 76.58 53.87 80.04 165.08 35.61 86.72 88.09 

40 376.34 225.76 376.88 753.36 202.48 388.28 401.82 

60 1067.18 672.30 1057.98 2230.19 629.33 1077.80 1101.58 

80 2295.72 1694.14 2394.84 4902.50 1611.51 2386.95 2419.80 

 

Table 5 shows the average CPU time for different problem size. In general, the ACO and MOPSO were 

among the fastest algorithm to complete the iteration. Meanwhile, the MODPSO was roughly in the 

second last position, in front of NSGA-II in term of CPU time. For comparison, the MODPSO was just 

2 – 3% behind the DPSO. In DPSO and MODPSO, a longer time is taken to conduct discrete updating 



17 
 

procedures compared with regular updating procedures in MOPSO. However, the NSGA-II required 

mostly double CPU time compared with MODPSO. This is because the NSGA-II combined the existing 

population and new offspring for the non-dominated sorting procedure. Therefore, the time taken to 

complete the iteration was increased compared with other algorithms. 

 

5.1 MODPSO Coefficient Tuning 

Table 6 shows the results of the MODPSO coefficient experiment. The experimental table was designed 

using Taguchi L9 orthogonal array. Based on the general observation, experiment number 4 led in term 

of the best solution of cardinality, which was represented by ߱ and ER. The same experiment also came 

out with the best accuracy (i.e. GD indicator). 

 

 Table 6: MODPSO coefficient experiment results 

Experiment  
Number 

Coefficients  Mean of performance indicators 

c1 c2 c3  ߱ ER GD Spacing Spreadmax 

1 0.2 0.5 0.5  34.1264 0.2178 0.3102 1.4178 18.2750 

2 0.2 1.5 1.5  38.7028 0.1786 0.2156 1.3328 17.2138 

3 0.2 2.5 2.5  39.9842 0.1755 0.1881 1.3925 16.0811 

4 0.5 0.5 1.5  45.8421 0.1141 0.1070 1.5397 18.4845 

5 0.5 1.5 2.5  41.8148 0.1712 0.2046 1.3979 17.9512 

6 0.5 2.5 0.5  35.5908 0.1991 0.2662 1.5330 16.5959 

7 0.8 0.5 2.5  40.3503 0.1763 0.1784 1.2381 16.6047 

8 0.8 1.5 0.5  35.7739 0.2115 0.2770 1.4051 18.4490 

9 0.8 2.5 1.5  37.0553 0.1961 0.2683 1.2402 18.2447 

 

Meanwhile, Figure 4 presents the main effect plots of c1, c2 and c3 for different performance indicators. 

Based on the main effect plots, medium c1, low c2 and medium c3 coefficients were preferable as 

observed in ߱  and ER plots to produce a solution with good cardinality. Similar coefficients’ levels were 

also required to generate accurate solutions as represented by the GD indicator. On the other hand, the 

main effect plots by Spacing and Spreadmax indicated that high c1, medium c2 and medium c3 

coefficients’ respective levels contributed to better solution distribution. 

 



18 
 

 

 
[Figure 4: Effect of w, c1 and c2 on Performance Indicators: (a) ߱, (b) ER, (c) GD, (d) Spacing, and (e) 

Spreadmax] 

 

6. Discussion of Results 

In general, the result from experiment shows that the performance of algorithms in optimising integrated 

mixed-model ASP and ALB appear to be dominated by NSGA-II and proposed MODPSO algorithms, 

especially in four performance indicators (i.e. ߱, ER, GD and Spreadmax). However further analyses are 

required to quantify the results. Therefore, a statistical test is conducted to measure the significance of 

the improvements achieved by the MODPSO in optimising integrated mixed-model ASP and ALB.  

 

The Analysis of Variance (ANOVA) test was then carried out to evaluate any significant improvement 

between the results obtained by different algorithms. The ‘null hypothesis’ stated that there is no 

significant improvement among the means of all algorithm results. The alternative hypothesis state that 

there is significant improvement among means in the result of at least one algorithm. The null hypothesis 

will be accepted when the calculated f-value is smaller than critical f-value (f*) as suggested in the f-

distribution table (Coolidge, 2000). The result of ANOVA test is presented in Table 7. 

 

Table 7: Summary of ANOVA test 

 
߱ ER GD Spacing Spreadmax 

f* 3.69 3.69 3.69 3.69 3.69 

f 186.081 262.1808 45.8928 12.8327 17.4301 

f*: critical f-value  f: calculated f-value 

 

The result shows that the calculated f-value for all performance indicators are consistently larger than f* 

at 0.05 confidence interval. Therefore, the null hypothesis is rejected and the alternative is accepted for 

all indicators, which bring the meaning that there are significant improvements achieved for all 



19 
 

indicators in at least one algorithm. However, the ANOVA test cannot differentiate the exact 

improvement of one algorithm in comparison with another algorithm.  

 

Therefore a posteriori test known as Tukey’s Honestly Significant Difference (HSD) is performed.  This 

test is performed by calculating the absolute mean difference between the results of one algorithm over 

another algorithm, which is then compared with the critical HSD (HSD*) value. The HSD* value for 

algorithm i is calculated as follows. 

HSD௜כ ൌ Ǥݍ ට୑ୗ୛೔௡        Eq. 11 

The q value is acquired from Tukey’s table, MSW is the mean squares within groups from ANOVA 

test, and n is the number of data in each group. When the absolute mean difference is larger than HSD*, 

a significant improvement has been identified in one algorithm over another algorithm. At this point, 

we are interested to know the performance of MODPSO over the other algorithms. Table 8 presents the 

HSD* and absolute mean difference between MODPSO and the other algorithms.  

 

Table 8: Summary of Tukey’s HSD test for MODPSO algorithm 

 Absolute Mean Difference Between MODPSO and Comparison 
Algorithm 

Indicator 

(HSD*) 

߱ 

(4.5902) 

ER 

(0.0906) 

GD 

(0.6131) 

Spacing 

(0.1621) 

Spreadmax
 

(1.3337) 

Comparison 
Algorithm 

MOGA 36.23531 0.69911 1.72551 0.20372 2.73791 

ACO 39.11761 0.75861 2.19541 0.09082 3.82921 

HGA 32.96081 0.65471 1.73211 0.24992 1.94061 

NSGA-II 13.78431 0.00942 0.09442 0.05801 3.49281 

MOPSO 35.74511 0.71841 2.05231 0.28392 1.27891 

DPSO 37.52941 0.73991 2.09851 0.27812 1.59361 

1Better absolute mean difference for MODPSO 
2Better absolute mean difference for comparison algorithm 

 

In Table 8, the values that are labelled ‘1’ show the MODPSO has a better mean difference over the 

comparison algorithm, while the values labelled ‘2’ mean that the comparison algorithm has a better 

mean difference over MODPSO. On the other hand, the bold values in Table 8 indicate the significant 
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improvements achieved by MODPSO over other algorithms, since the absolute mean difference is larger 

than HSD*. Based on Table 8, the MODPSO algorithm shows better performance and significant 

improvement when compared with the set of algorithms for ߱ indicator. The MODPSO also show 

significant improvements for ER and GD indicators compared with other algorithms, with the exception 

of NSGA-II. In both indicators, the NSGA-II algorithm shows better mean difference compare with 

MODPSO, however, the difference is not significant because the absolute mean difference are smaller 

than HSD*.  

 

Meanwhile, the Spacing indicator did not show any significant improvement of MODPSO although it 

has a better mean difference when compared with NSGA-II. Except for NSGA-II, all other algorithms 

show better performance over MODPSO, where significant improvements are presented by four 

algorithms (MOGA, HGA, MOPSO and DPSO). For Spreadmax indicator, the MODPSO algorithm 

shows significant improvement compared with other algorithms, except MOPSO. In comparison with 

MOPSO, although no significant improvement is achieved, the MODPSO algorithm still produces better 

solution.  

 

In this work, the solution quality towards Pareto optimal are measured using three performance 

indicators i.e. ߱, ER and GD. The Spacing indicator measures the uniformity of the found solutions and 

Spreadmax measures the ability of algorithm to explore the extreme solutions within the solution space. 

The results from statistical test explain that, the MODPSO algorithm shows significant improvement in 

term of finding better solution towards Pareto optimal over comparison algorithms, with the exception 

of NSGA-II at 0.05 confidence intervals.  

 

Furthermore, the Spreadmax result means that the MODPSO algorithm is significantly able to explore 

better extreme solutions when compared with MOGA, ACO, HGA, DPSO and NSGA-II. Meanwhile, 

in term of uniformity of solution spread, the MODPSO algorithm did not perform significantly better 

than other algorithms. The Spacing indicator considers all non-dominated solutions that was found by a 

particular algorithm, regardless of Pareto or non-Pareto optimal solutions. In general, for similar search 
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space, the algorithm that generated more non-dominated solutions has greater chances to produce better 

Spacing. From the experiment, the mean number of non-dominated solutions generated by the 

algorithms (regardless of Pareto or non-Pareto optimal), in ascending order, are: NSGA-II (33.84), ACO 

(46.9), MODPSO (55.37), MOGA (56.14), HGA (68.91), DPSO (80.47) and MOPSO (85.02). These 

numbers clearly present the algorithms that show significant improvement over MODSPO for Spacing 

indicator are the algorithms with larger mean of generated solutions.  

 

The result from experiments and statistical tests summarise that the MODPSO has shown significant 

improvement over the majority of compared algorithms in ߱, ER, GD and Spreadmax indicators. In 

comparison with all other algorithms, the performance of MODPSO is closely followed by NSGA-II, 

where the MODPSO only show significant improvement over NSGA-II in ߱ and Spreadmax indicators. 

In order to compare performance of NSGA-II, the mean difference between NSGA-II and other 

algorithms are calculated and presented in Table 9. 

 

Table 9: Summary of Tukey’s HSD test for NSGA-II 
 

 Absolute Mean Difference Between NSGA-II and Comparison 
Algorithm 

Indicator 

(HSD*) 

߱ 

(4.5902) 

ER 

(0.0906) 

GD 

(0.6131) 

Spacing 

(0.1621) 

Spreadmax
 

(1.3337) 

Comparison 
Algorithm 

MOGA 22.45101 0.70851 1.81991 0.26182 0.75492 

ACO 25.33331 0.76801 2.28971 0.14892 0.33651 

HGA 19.17651 0.66401 1.82641 0.30792 1.55222 

MOPSO 21.96081 0.72781 2.14661 0.34192 2.21392 

DPSO 23.74511 0.74921 2.19291 0.33612 1.89912 

MODPSO 13.78432 0.00941 0.09441 0.05802 3.49282 

1Better absolute mean difference for NSGA-II 
2Better absolute mean difference for comparison algorithm 

 

Table 9 indicates that the NSGA-II has significant improvement for solution quality leading to Pareto 

optimal compared with other algorithms except the MODPSO. Besides that, the NSGA-II did not show 

any significant improvement for solution uniformity (Spacing) and extreme solution exploration 

(Spreadmax). Based on the significant improvement achieved by MODPSO (Table 8) and NSGA-II 
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(Table 9) over other algorithms, the MODPSO is found to perform better than NSGA-II. This is because 

the MODPSO have shown significant improvement over NSGA-II in two of indicators (i.e. ߱ and 

Spreadmax), while there is no significant improvement of NSGA-II over MODPSO algorithm. 

Furthermore, for Spreadmax indicator, the NSGA-II did not show any significant improvement as 

MODPSO shows when compared with all other algorithms. In addition, the NSGA-II required double 

CPU time to complete the iteration compared with MODPSO as presented in Table 5. These facts give 

more advantages to MODPSO in term of solution quality and also algorithm effort. 

 

The result from Tukey’s HSD test for integrated mixed-model ASP and ALB clearly shows that the 

MODPSO performed better than other algorithms for all test problems. Another question that arises is 

the problem category that the MODPSO algorithm performed best and worst. Therefore, the Tukey’s 

HSD test based on different problem reference setting is conducted. The result of Tukey’s HSD test for 

different problem setting is presented in Table 10. Based on Table 10, the MODPSO shows significant 

improvement in ߱ indicator over all algorithms for all reference setting. For ER indicator, the MODPSO 

consistently demonstrates significant improvement over other algorithms except NSGA-II. Meanwhile 

for GD indicator in low level reference setting (Level 1), significant improvements for MODPSO are 

only found over ACO, MOPSO and DPSO algorithms. However, when the reference setting is changed 

to medium (Level 3) and high (Level 5) levels, significant improvements are also observed in 

comparison with MOGA and NSGA-II.  

 

On the other hand, the MODPSO consistently did not show any significant improvement over any 

algorithm for Spacing indicator. For Spreadmax indicator, the proposed algorithm also did not show 

significant improvements in low level reference setting. However, when the reference setting is moved 

to medium level, the MODPSO shows significant improvement over MOGA, ACO and NSGA-II. 

Finally, in the problem with high level reference setting, significant improvements are achieved by 

MODPSO over all other algorithms. From this result, the best performance of MODPSO is found in the 

problem with high reference setting. Meanwhile, the weakest performance is in the problem with low 
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level reference setting, even though the overall performance in this problem category is still better than 

other algorithms.  

 

 

 

Table 10: Summary of Tukey’s HSD test for MODPSO by reference setting level 

Reference 
Setting 

Algorithm 
Absolute Mean Difference Between MODPSO and Algorithm 

߱ ER GD Spacing Spreadmax
 

Level 1 

HSD* 9.3491 0.1684 0.9264 0.3109 2.3693 

MOGA 32.35291 0.50091 0.76181 0.01162 0.80801 

ACO 37.82351 0.64121 1.27781 0.11521 2.10791 

HGA 25.88241 0.41421 0.68121 0.03222 0.83761 

NSGA 20.82351 0.09661 0.09031 0.19241 2.28121 

MOPSO 31.94121 0.53731 0.99171 0.09242 0.15762 

DPSO 35.70591 0.59271 1.10621 0.08392 0.01221 

Level 3 

HSD* 7.2889 0.1436 0.8001 0.2325 1.9374 

MOGA 40.58821 0.78501 2.02281 0.27492 2.77491 

ACO 43.29411 0.82921 2.57201 0.26162 3.76241 

HGA 38.88241 0.77471 2.01961 0.34622 1.54311 

NSGA 13.05881 0.04482 0.22362 0.00361 3.31761 

MOPSO 40.00001 0.79751 2.34011 0.39132 0.89241 

DPSO 41.70591 0.81421 2.34611 0.35762 1.26061 

Level 5 

HSD* 5.4125 0.1002 0.9376 0.2957 2.6973 

MOGA 35.76471 0.81151 2.39201 0.32472 4.63061 

ACO 36.23531 0.80541 2.73641 0.12612 5.61731 

HGA 34.11761 0.77511 2.49551 0.37122 3.44121 

NSGA 7.47061 0.07992 0.14972 0.02192 4.87951 

MOPSO 35.29411 0.82041 2.82491 0.36792 3.10181 

DPSO 35.17651 0.81271 2.84331 0.39272 3.50811 

1Better absolute mean difference for MODPSO 
2Better absolute mean difference for comparison algorithm 

 

The performance of MODPSO in optimising integrated mixed-model ASP and ALB because this 

algorithm was specifically developed for discrete multi-objective optimisation problem. This algorithm 

use similar procedure for Initialisation, Evaluation and Selection strategies as in NSGA-II. The NSGA-

II is another algorithm that specifically developed for multi-objective optimisation problems that also 
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performed well in this application. However, it does not have the fine tuning feature. The fine tuning 

feature means ability of algorithm to make small adjustments to solution in order to achieve the best or 

a desired performance. This is an important feature for ASP and ALB, where small changes may lead 

to sudden improvement in results. 

 

The discrete updating procedure in MODPSO is designed to enable fine tuning towards the end of 

iterations. According to discrete updating procedure (Subtraction operator (Xi-Xj)) in Section 3.4, zero 

velocity is given when similar element in Xi and Xj is found (this is the case when all particles move 

towards the best solution at the end of iterations). When majority of velocity elements are zero, only 

small changes occur in assembly sequence as presented by Addition operator (Xi+Vi) in Section 3.4. This 

feature allows fine tuning of the assembly sequences in MODPSO. 

 

 

7. Conclusions 

This paper formulates and studies the optimisation of integrated mixed-model Assembly Sequence 

Planning (ASP) and Assembly Line Balancing (ALB) problem using Multi-objective Discrete Particle 

Swarm Optimisation (MODPSO). A set of test problems with different range of difficulties has been 

used to test the performance of MODPSO in optimising integrated mixed-model ASP and ALB. In 

addition, MODPSO coefficient tuning has been conducted to identify the best settings for optimisation. 

 

The experimental results indicate that, in general, the MODPSO algorithms performed better than other 

comparison algorithms. Statistical test concluded that the MODPSO has shown significant improvement 

in converging to Pareto optimal solution and exploring the extreme solutions in search space. The 

statistical test also concluded that the MODPSO performed best in the problem with high level of 

difficulty. Meanwhile the weakest performance is in the problem at low difficulty level, although it still 

performed better than comparison algorithms. The MODPSO coefficient tuning suggested that the 
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optimum performance for solution cardinality and accuracy was achieved when the inertia weight and 

social coefficient were at the medium level, while cognitive coefficient was at the low level. 

 

The work in this paper has initiates the study on integrated mixed-model ASP and ALB optimisation. 

At the same time, it also indicates that the MODPSO algorithm is able to optimise this problem better 

than comparison algorithms. One of the MODPSO’s downside is incapability of generating uniformly 

spaced solutions as presented by Spacing indicator. In future, an effort to improve the algorithm 

performance, especially in solution uniformity is proposed to improve overall solution quality.  The first 

suggestions to improve solution uniformity is to consider the historical data in the crowding distance. 

This will make the unselected solutions because of mating pool capacity, will be taken into account 

when calculating the crowding distance. Besides that, the solution quality also could be improved by 

including the extreme solutions as a part of MODPSO updating procedure. It will influence the 

MODPSO convergence direction towards the extreme solution, besides the Gbest. Therefore, the search 

direction become more diverse. 
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