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Abstract 

Seasonal forecasts of winter North Atlantic atmospheric variability have until recently shown 
little skill. Here we present a new technique for developing both linear and non-linear statistical 
forecasts of the winter North Atlantic Oscillation (NAO) based on complex systems modelling, 
which has been widely used in a range of fields, but generally not in climate research. Our 
polynomial NARMAX models demonstrate considerable skill in out-of-sample forecasts and 
their performance is superior to that of multiple linear regression models, albeit with small 
sample sizes. Predictors can be readily identified and this has the potential to inform the next 
generation of dynamical models and models allow for the incorporation of non-linearities in 
interactions between predictors and atmospheric variability. In general there is more skill in 
forecasts developed over a shorter training period from 1980 compared with an equivalent 
forecast using training data from 1956. This latter point may relate to decreased inherent 
predictability in the period 1955-1980, a wider range of available predictors since 1980 and/or 
reduced data quality in the earlier period and is consistent with previously identified decadal 
variability of the NAO. A number of predictors such as sea-level pressure over the Barents Sea, 
and a clear tropical signal are commonly selected by both  linear and  polynomial NARMAX 
models. Both approaches can be extended to developing probabilistic forecasts and to other 
seasons and indices of atmospheric variability such as the East Atlantic pattern and jet stream 
metrics. 
 

 

Key Words: NAO, seasonal forecast, NARMAX, predictability, jet stream, North Atlantic, 
winter 
 

 

 

1. Introduction 

 
Winter North Atlantic (NA) atmospheric variability is dominated by the North Atlantic 
Oscillation (NAO; Hurrell and Deser, 2009; Hanna and Cropper, 2017). The NAO index gives 
a measure of the pressure difference between semi-permanent high pressure over the Azores 
and a semi-permanent low pressure over Iceland. There is a see-saw of atmospheric mass 
between these two nodes. The greater (smaller) the pressure difference, the more positive 
(negative) the NAO index. A positive NAO is associated with mild, wet and often stormy 
winters over northwestern Europe while a negative NAO is linked with cold, dry conditions in 
this region, but with wetter weather in the Mediterranean (Xoplaki et al., 2004).  
 
The NAO can be regarded as arising from storm-track and jet-stream variability (Vallis and 
Gerber, 2008; Stendel et al., 2016), and is an indicator of the zonality of the atmospheric flow. 
A positive winter NAO tends to arise when the tropospheric jet and storm track are shifted 
further northwards, driving storms towards western Europe, with a more zonal jet stream, 
whereas a negative NAO indicates a southerly displacement with an increased meridonal jet-
stream component (Stendel et al., 2016) which can steer storms towards the Mediterranean and 
enable cold air outbreaks from the Arctic to lower latitudes. The NAO is more closely 
associated with shifts in jet latitude than it is with jet speed variability (Woollings et al., 2010a). 
 
The NAO is a mode of internal atmospheric variability in idealised modelling experiments (e.g. 
James and James, 1989) and until recently it was considered that NAO variability on 
intraseasonal and interannual timescales was a result of internal atmospheric variability, or 
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climate noise (e.g. Feldstein 2000) and largely unpredictable (e.g. Johansson, 2007; Kim et al., 
2012). However, there is recent evidence that the storm track and jet stream are subject to 
forcing from slowly varying boundary conditions such as ocean temperatures and sea-ice 
changes, together with solar variability and influences from the winter stratosphere (for a 
review see Hall et al., 2015). 
 
A number of recent studies indicates significant potential for winter seasonal forecasting in the 
NA region based on the influence of slowly-varying boundary conditions (Scaife et al., 2014; 
Riddle et al., 2013; Kang et al., 2014; Dunstone et al., 2016; Stockdale et al., 2015). There are 
also a number of older studies which identify significant skill in seasonal forecasting of the 
winter NAO using climate models (Palmer et al., 2004; Müller et al., 2005; Derome et al., 
2005) and empirical approaches (Fletcher and Saunders, 2006). Scaife et al. (2014) report a 
correlation skill of 0.62 for hindcasts of the winter NAO over the period 1993-2012, based on 
the UK Met Office GloSea5 seasonal forecasting system (MacLachlan et al., 2015). Statistical 
forecasts are quick and cheap to implement (e.g. Cohen et al., 2018) and therefore complement 
the dynamical forecasts. They allow for identification of sources of potential predictability and 
may help to explain particular instances of poor forecasts in dynamical NWP models and 
inform their future development. Recent studies (Dunstone et al., 2016; Wang et al. 2017, Hall 
et al., 2017) have shown promising skill in predicting the winter NAO using a linear statistical 
framework and Folland et al. (2012) produced skillful forecasts of winter European 
temperatures based on a number of these factors. However, these studies only use linear 
combinations of predictors, not considering non-linear, cross-product and interaction terms. 
Often statistical models can be constructed for a training period with a very good fit, 
subsequently failing when making out-of-sample forecasting, due to non-stationary 
relationships, internal variability and overfitting in the training period. 
 
The slowly varying boundary conditions may act to reinforce or oppose one another and 
numerous studies examine remote causes of NA atmospheric variability, mostly in a linear 
framework. However, the interaction of the atmosphere with boundary forcing can be non-
linear (Petoukhov and Semenov, 2010), so a purely linear approach may only capture a limited 
portion of the variability.  Here we further develop statistical seasonal forecasting by using a 
novel application of NARMAX (Non-linear Auto-Regressive Moving Average with 
eXogenous inputs) methodology (e.g. Billings, 2013), comparing linear and polynomial 
regression-based forecasting models. We aim to investigate whether the inclusion of non-linear 
interactions help to explain changes in the NAO. NARMAX modelling can reveal and 
characterize non-linear dynamic relationships among signals from recorded data, and produces 
transparent models which demonstrate how a response variable (system output signal) is linked 
to a number of candidate explanatory variables (system input signals) and their combined 
interactions. The NARMAX approach will construct the simplest model to explain the system: 
therefore if a linear model provides a good representation of the system, the NARMAX method 
will go no further (Billings, 2013, p9). NARMAX modelling was first introduced to solve non-
linear dynamical system identification and modelling problems in engineering, and it has been 
successful in revealing linear and non-linear relationships at a wide range of scales within the 
engineering, biological, ecological, medical, geophysical, and environmental sciences (e.g. 
Billings, 2013; Bigg et al., 2014; Ayala-Solares et al., 2018).     
 
Here we review some of the drivers of North Atlantic climate variability identified in previous 
research. A number of studies identify a sea-ice influence, particularly from the Barents-Kara 
Sea (BK) region (e.g. Koenigk et al., 2016; Garcia-Serrano et al., 2017). A likely pathway of 
influence is due to constructive interference of the atmospheric warming related to autumn sea-
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ice loss with climatological planetary wave patterns (Screen et al., 2018, Wu and Smith, 2016). 
The location of the BK region is close to the climatological ridge of the zonal wave-1 and 
wave-2 planetary waves,  with localised warming  acting to reinforce this pattern (Zhang et al., 
2018) which enhances vertical wave propagation. This then can weaken the stratospheric polar 
vortex with a subsequent downward propagation of this signal over a number of weeks 
(Baldwin and Dunkerton, 2001). A stronger (weaker) vortex is associated with a positive 
(negative) NAO, as a strengthened (weakened) circumpolar stratospheric jet induces a 
poleward (equatorward) shift in the tropospheric jet and storm tracks (Kidston et al., 2015). A 
cryospheric influence has also been detected from Siberian snow anomalies, which may 
enhance the Siberian high-pressure region, resulting in vertical wave propagation into the 
stratosphere and a weakening of the stratospheric vortex (Cohen et al., 2007). This effect has 
been observed in models, but can be weak, and may require modulation by the Quasi-biennial 
Oscillation (QBO) to be more effective (e.g. Tyrrell et al. 2018). The strength of the vortex can 
also be perturbed by factors such as the QBO phase (Boer and Hamilton 2008), the solar cycle 
(Ineson et al., 2011) and tropical volcanic eruptions (Robock and Mao,1995; Driscoll et al., 
2012).  
 
Sea-surface temperatures (SST) are an important element of boundary layer forcing.  The 
interaction between atmosphere and ocean is complex, with the atmospheric variability 
characterised by the NAO forcing SST variability in the NA, to produce the distinctive tripole 
pattern of SSTs (Deser et al., 2010). However, there is evidence for feedback of this SST 
pattern to the atmosphere at time lags of a few months, as the spring tripole anomalies are 
preserved beneath the summer mixed layer, re-emerging in winter as the mixed layer deepens 
(Rodwell et al., 1999, Deser et al., 2003; Czaja and Frankignoul, 1999). A complementary SST 
pattern is the North Atlantic Horseshoe (NAH; Czaja and Frankignoul, 2002), which may 
evolve from the tripole anomalies and where SST anomalies may lead the NAO by up to six 
months. These patterns fluctuate on a decadal scale, but Atlantic SSTs also experience 
multidecadal variability known as the Atlantic Multidecadal Oscillation (AMO, e.g. Enfield et 
al., 2001) with warm and cool phases and a period of 65-80 years. 
 
Other recently identified associations involve SSTs in the BK and Greenland-Norwegian (GIN) 
Seas (Kolstad and Årthun, 2018). In addition, sea-level pressure (SLP) in the BK region can 
precondition autumn sea-ice extent, and so itself may be a potential predictor of European 
winter weather variability (King and Garcia-Serrano, 2016). Furthermore, the temperature 
variability of the NA subpolar gyre (SPG) has been associated with changes in jet speed. A 
weakened gyre circulation can lead to increased poleward transport of warmer subtropical 
waters, and a decrease in meridional temperature gradient (Häkkinen et al., 2011; Woollings 
et al., 2018). 
 
The role of solar fluctuations in North Atlantic climate variability is a subject of considerable 
debate. A solar cycle signal has been detected in European winters (Lockwood et al., 2010; 
Woollings et al., 2010b), with lower solar activity associated with colder European winters . 
Recent studies suggest that there is a lag of 3-5 years between the solar signal and its impact 
on the atmosphere, measured by the NAO (Scaife et al., 2013; Gray et al., 2013; 2016; Andrews 
et al., 2015), possibly as a result of integration of the solar signal over time by SSTs.  
 
The influence of tropical teleconnections is also evident.  The El-Niño-Southern Oscillation 
(ENSO) signal can propagate via troposphere and stratosphere (Toniazzo and Scaife, 2006; 
Bell et al., 2009) and there is evidence of non-linearity, with stronger El Niño events not having 
the NAO-like impact of moderate events (Folland et al., 2012; Rao and Ren, 2016a; 2016b). 
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This may be a consequence of a more eastward centre of action for stronger events (Takahashi 
and Dewitte, 2015)  with a different pathway of propagation. In addition, links between Indian 
Ocean SST anomalies and the NAO, (Hoerling et al., 2004; Li et al., 2010) with the NAO 
lagging SST anomalies by a month or more and between the NAO and the Madden-Julian 
Oscillation (Garfinkel et al., 2014 Tseng et al., 2018) have also been identified. Yu and Lin 
(2016) find an NAO response to tropical heating anomalies in the Indian and Atlantic regions, 
although not necessarily to SSTs. 
 
Influences from these boundary conditions at a range of lead times means there could be a 
significant component of predictability within the winter NA atmospheric circulation (Smith 
et al., 2016).  As the NAO is such a significant factor in determining the winter weather around 
the Atlantic basin, skillful seasonal forecasts of the NAO will have considerable economic and 
societal benefits. The NAO is related to hydrological outlooks and flood risk (e.g. Svensson et 
al., 2015; Bell et al., 2017) and is significantly related to energy demand (Thornton et al., 2017; 
Clark et al., 2017). 
 
Section 2 presents the data used, and section 3 explains the methods, including how the 
NARMAX methodology is applied. Results are presented in section 4 and interpreted in section 
5. This is followed by some concluding remarks in section 6. 
 
2. Data 

Data used are summarised in Table I with additional information in Table S1. HadISST1 
(Rayner et al., 2003) is used for SST-based and sea-ice variables. We select monthly predictor 
variables taken at lead times of one month up to a maximum of seven months (the preceding 
May) preceding the winter in question. For this study it is assumed that there is no prediction 
skill derived from the previous year’s NAO, although November values are available for 
selection. The sea-ice regions are taken from Screen (2017), where nine distinct sectors are 
identified with limited covariability suggesting a large degree of regional independence. The 
NA SST tripole index is constructed following Fan and Schneider (2012). Similarly, the NAH 
and SST gradient indices are derived by calculating mean SSTs over two regions and 
subtracting them. See Table S1 for details. Blanca Ayarzaguena provided the T100 index which 
is a measure of the strength of the stratospheric polar vortex (SPV). This is an index of daily 
temperature anomalies at 100hPa, averaged over 65-90N, derived from JRA-55 reanalysis data 
(Kobayashi et al., 2015).  Monthly mean values are constructed from an average of daily means. 
Tropical rainfall anomalies provide an indication of convective activity and divergence aloft, 
which can generate Rossby waves which propagate away from the source and are capable of 
influencing extratropical atmospheric circulation (Hoskins and Karoly, 1981). Data are 
obtained from the Global Precipitation Climatology Project (GPCPv2.3, Adler et al., 2003). 
However, such data are not available prior to 1979 so tropical SSTs for similar regions are used 
in the 1956 models, although there is not always a causal link between SSTs and tropical 
rainfall, depending on the region under consideration. The MJO is another index which can 
provide a tropical signal and is obtained from the Climate Prediction Center (CPC). Here ten 
phases are used rather than the more common eight, and a negative value indicates the active 
convective state (Baxter et al., 2014). QBO data (Naujokat, 1986, updated) use the 30hPa level 
following Hamilton (1984). All data are normalised to the period 1981-2010. 
 
To capture the non-linear relationship between the NAO and the ENSO signal, we use the 
discontinuous N3.4 index of Folland et al. (2012) alongside the conventional index, where 
values are set to zero for normalised values between 1. More negative values are set to -1, 
values in the range 1-1.75 are set to one, while values greater than 1.75 are set to zero. The 
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volcanic index used by Folland et al. (2012) is also applied. Here, for two years following a 
volcanic eruption, values are set to one, and are zero for all other years, as Robock and Mao 
(1995) identify the effects of eruptions in the first and second winters after the eruption. This 
simulates the persistence of volcanic aerosols in the stratosphere after a major eruption. Major 
tropical eruptions are as identified by Stenchikov et al. (2006).  
 
Two versions of the NAO are used: the PC-based NAO (HPC; Hurrell et al., 2003) and a 
station-based index derived from SLP data from Reykjavik and Ponta Delgada, Azores (station 
NAO). This is taken as the difference between SLP at the two stations, which is then 
normalised. This is the approach followed by Scaife et al. (2014), although other indices are 
typically constructed by normalising the pressure at each station before subtracting (e.g. 
Hurrell, 1995; Cropper et al., 2015).  The correlation between these two indices for winter is 
0.90 (1956-2017); however, this does vary slightly over time (13-year running correlations 
between the two reach a low of 0.82 for a period in the early 1990s). The PC-based NAO better 
captures the spatial patterns of the NAO, although is dependent on the area selected for 
analysis, whereas due to shifts in the NAO centres of action a fixed-point index will not always 
represent this optimally. A disadvantage of the PC-based approach is that the whole index time 
series needs recalculating every time a new value is incorporated, and being a mathematical 
construct, does not necessarily represent climate physics (Dommenget and Latif, 2002) 
 
Data are not detrended as we aim to forecast as closely as possible to the real world. In order 
to address any trends present in the data, indices of atmospheric carbon dioxide and global 
temperature are available for incorporation in the models. The winter season is defined as 
December-January-February (DJF), where the winters refer to the year of the January. 
 
3. Methods 

Models are constructed for training periods from 1956-2010 and 1980-2010. The year 2010 is 
used as the cutoff, as in that year there are extreme values of the NAO and these are included 
in the training dataset, as simulation experiments show that models trained without extreme 
values perform poorly when used for prediction. Such extreme values are particularly 
important in view of the relatively small sample sizes available. This leaves 2011-2018 for use 
as a validation period (2011-2017 for the station-based NAO due to data availability). We 
predict values for this period without adapting the model. An alternative, retroactive 
verification approach (Mason and Baddour, 2008) constructs a model over the training period, 
then forecasts the next year only based on that model. Forecasts for subsequent years are based 
on models which incorporate the previous year’s observation, and the models are allowed to 
evolve, both in terms of coefficients and predictors selected. This approach was tested for linear 
models and produced almost identical forecasts with only slight changes in coefficients, but 
the same predictors, with no appreciable improvement in forecast quality. 
 

3.1 The NARMAX Method 

One of the most attractive features of the NARMAX model, distinguishing it from other non-
linear data-driven modelling techniques, is its power to build transparent and interpretable 
models where the mathematical significance of each model term is meaningful (e.g. Billings, 
2013, p10) and in most real applications the selected model terms are physically interpretable 
(e.g. Billings, 2013, Chapter 14 Case Studies). Essentially, this approach treats each of the 
candidate predictors as a possible underlying cause of change in the response variable of 
interest and uses a set of model detection algorithms to automatically identify and pick out the 
most important predictors, based on which it then establishes a quantitative relationship that 
best relates the possible forcing variables to the response variable.  Note that the dependence 
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relation of response on potential predictors can be either linear or non-linear. While traditional 
linear modelling approaches such as ARMA and ARMAX might be able to capture main linear 
relationships, they fail to reveal or capture any non-linear dynamics that are inherent in weather 
and climate (e.g. Easterling et al., 2000; Hoerling et al.,2001; Dell et al., 2013; Burke et al., 
2015). 
 
Taking the case of a one input (u) and one output (y) problem as an example, the NARMAX 
model for y is written as (Billings, 2013): 

( ) ( ( 1), ( 2), , ( ),

                ( ), ( 1), , ( ),

                ( 1), ( 2), , ( )) ( )

y

u

e

y k F y k y k y k n

u k d u k d u k d n

e k e k e k n e k

   

    

   

 (2) 

where y(k) and u(k) are the measured system output (response) and input (explanatory), 
respectively, at time k; e(k) is a noise sequence which is not measurable but can be estimated 
once a model is built; yn , un , and en  are the maximum lags for the system output, input, and 

noise; F(•) is some non-linear function to be determined; and d is a time delay (typically d=0 or 
d=1). For an identified model, the noise ( )e k  can be estimated as the prediction errors: 

ˆ( ) ( ) ( )e k y k y k  , where ˆ( )y k  is the predicted value at time instant k generated by an 
estimated model. The noise terms are included to accommodate the effects of measurement 
noise, modelling errors, and/or unmeasured disturbances. For the purposes of this study, we 
consider the predictability that can be obtained from the input (predictor) variables of preceding 
months, and so do not consider past outputs (previous winter NAO values) further.   
There are many model subset selection methods such as the traditional forward selection 
(Faraway, 2002; Wilks, 2011).  NARMAX uses an orthogonal forward selection algorithm, 
called Forward Regression Orthogonal Least Squares (FROLS) algorithm (Billings, 2013), to 
select the important terms. The efficiency of FROLS can be attributed to its use of mutual 
information (in addition to the correlation function), to measure not only linear but also 
potential nonlinear dependent correlation of the target signal and the candidate explanatory 
signals. Furthermore, unlike traditional stepwise selection which uses hypothesis-tests and p-
values to measure the significance of variables (terms), FROLS uses an effective index called 
the error reduction ratio (ERR) to measure the contribution made by each of the individual 
terms to explaining the change in the response variable, based on which the most significant 
term will be selected in each search step. The number of model terms can be determined using 
either the APRESS (Billings and Wei, 2008) statistics or the penalized error-to-signal ratio 
(PESR, a variant of APRESS) proposed in Wei et al. (2010). This is similar in principle to the 
AIC and BIC but is developed specifically for non-linear systems. A leave-K out cross-
validation is normally used with NARMAX, where K is around 10% of the training sample. A 
common model is identified from subsets of the training period, and common model parameters 
are then estimated using all the training data. In this study, a leave-one-out approach is 
employed due to the small size sample in the training data. We consider both linear and 
polynomial NARMAX models, which belong to the family of multiple regression models. 
3.1.1. Linear models 

NARMAX includes several linear model structures, e.g. autoregressive with exogenous inputs 
(ARX) and autoregressive moving average with exogenous inputs (ARMAX) as a special case. 
A general linear model structure of NARMAX is as follows: 

1 0 1

1

( ) ( 1) ... ( ) ( ) ( 1)... ( ),

        ( ) ( 1) ... ( )
y u

e

n y n u

n e

y k a y k a y k n b u k d b u k d b u k n

e k c e k c e k n

           

     
        (2) 
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where 1 2, ,...,
yn

a a a , 0 1, ...,
un

b b b , and 1 2, ,...,
en

c c c are model parameters. The above single input 

single output (SISO) case model (2) can be extended to multiple input single output (MISO) 
or multiple input multiple output (MIMO) cases. A special case of the MISO linear model is 
the commonly used multiple linear regression. For example, for a case where there are r 
inputs, u1, u2,…, ur, by setting d=0, 0

y
n  , 0

u
n  , and 0

e
n  , yields: 

1 1 2 2( ) ( ) ( ) ... ( ) ( )r ry k a u k a u k a u k e k      (3) 
 

3.1.2. Polynomial NARMAX models 

 In practice, many types of model structures are available to approximate the unknown function 
F(•) in (1), including power-form polynomial models and rational models (Chen and Billings, 
1989), radial basis function networks (Wei et al., 2007), and wavelet neural networks (Billings 
and Wei, 2005; Wei et al., 2010). Power-form polynomial models are the most commonly used 
representation because such models have a number of unique, attractive properties (Billings 
2013, pp35-37): for example for most applications the resulting models are transparent, 
physically interpretable and simple (parsimonious). This is the model form used in this study. 
 

In practical applications, it is usual to consider many input signals (or explanatory variables) 
and investigate how the explanatory variables (e.g. u1, u2,…, ur) influence the response variable 
of interest. A case of many inputs can be represented by a special form of the NARMAX model 
as follows: 

1 1 1 2 2 2( ) ( ( ), ( 1), , ( ), , ( ), ( 1), , ( ), ,

                ( ), ( 1), , ( )) ( )
u u

r r r u

y k f u k u k u k n u k u k u k n

u k u k u k n e k

    

  
 (4) 

where nu ≥ 0. In this study, nu = 0, for which the model reduces to a polynomial model which 
belong to the family of multiple linear regression models:                                 𝑦(𝑘) = 𝑓(𝑢1(𝑘), 𝑢2(𝑘), … 𝑢𝑟(𝑘) + 𝑒(𝑘)                                                   (5) 
For example, with two inputs u1 and u2, the initial full model of degree 2 is  𝑦(𝑘) = 𝑎0 + 𝑎1𝑢1(𝑘) + 𝑎2𝑢2(𝑘) + 𝑎3𝑢12(𝑘) +  𝑎4𝑢1(𝑘)𝑢2(𝑘) + 𝑎5𝑢22(𝑘) + 𝑒(𝑘)    (6)   
Note that in practice it may not be necessary for all the six model terms in (5) to be included in 
a final predictive model, and only those that are important for explaining the variation of the 
response should be included in the final model.  
 
3.2.   Small Sample Size Problem and Model Averaging 

The NARMAX method has been successfully applied to solve a wide range of real-world 
problems, and in most cases the method produces a robust reliable model that can be used for 
system analysis and prediction (simulation). For small sample-size problems where the number 
of observations is small and much smaller than the number of regressors (explanatory variables 
and their cross-product interactions), the identified model can be sensitive to adding or 
removing a variable or cross-product term. In order to reduce the risk of using a single model 
and mitigate the uncertainty in the prediction of a single model, this study proposes a simple 
model-averaging approach to deal with the small sample-size problem. Models used in model 
averaging only differ from each other in the number of terms used, thus all contain a common 
core of predictors, with only minor differences in the coefficients. 
 
Assume the training dataset S contains a total of N data points. Rather than using only a single 
model to calculate predictions, we use a weighted average of multiple models (in this case 
three) to carry out predictions. The model averaging scheme is described below. 
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Let 1 2, ,...,
s

M M M be the s best models identified by the PESR from the training dataset S, and 
assume the values of the mean squared errors (MSE) of the s models over the training dataset 
are 1 2 s

mse ,mse ,...,mse , respectively. Define           

1 1 2 21/ , 1/ ,..., 1/
s s

c mse c mse c mse                                 (7a) 

1 2 ...
s

c c c c                                                   (7b) 

1 1 2 2/ , / ,..., /
s s

w c c w c c w c c                                     (7c) 

Let 1 2ˆ ˆ ˆ, ,...,
s

y y y  be the predicted output values by the s models, the model averaging 
prediction is defined as:  1 1 2 2ˆ ˆ ˆ ˆ...

s s
y w y w y w y                                             (8) 

       
3.3. Forecast Verification 

Correlation, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used to 
give an indication of forecast skill, for both training and testing periods. A further measure is 
used, based on the mean squared error (MSE), the Mean Square Error Skill Score (MSESS, 
e.g. Wilks, 2011, p328). This compares the skill of the forecast with a reference forecast, in 
this case a forecast based on climatology. There is generally lower skill in seasonal forecasting 
compared with shorter term forecasts and an out-of-sample forecast of 8 years is not large 
enough to allow robust statistical conclusions to be drawn about the quality of the forecast. A 
generalized discrimination score, D, (Mason, 2012; Mason and Weigel, 2009) indicates 
whether the forecasts are potentially useful, despite bias and poor calibration in a low-skill 
situation (Mason, 2012), based on whether forecast values increase (decrease) with an increase 
(decrease) in observation values, regardless of the magnitude of the change. For a pair of 
observations, D gives the probability that a forecaster can discriminate the observations based 
on the corresponding forecasts. D is related to Kendall’s correlation coefficient  by: 

                                                         =2D-1                                                                     (9) 
 is effectively scaled from 0 to 1, a value of 0.5 means there is no skill in the forecast as the 
probability of correctly discriminating between the size of two observations is 50%. Values 
greater than 0.5 suggest that the forecast is potentially useful. 
 
Comparing the forecast methods objectively and determining whether there is a significant 
difference is difficult with a small out-of-sample testing set (N=8; seven for station NAO). To 
address this, the longer time series is split into even and odd years for the station NAO data. 
Models are trained on the even years (N=32), the odd years forming the testing period (N=31). 
The differences between linear and polynomial NARMAX model correlations for the testing 
period are assessed for significance with the “cocor” package for R (Diedenhofen and Musch, 
2015), using tests for overlapping dependent samples (the correlations both concern the NAO 
and the compared coefficients have a shared variable, the observed NAO).  The package runs 
six different tests and their variations, for assessing the significance of the difference between 
the correlations, together with a confidence interval test. For details see Diedenhofen and 
Musch (2015).  
 
A further test is performed to examine whether the results obtained in the testing period for 
NARMAX models are likely to have occurred by chance. For the HPC80LIN model, 100 
surrogate datasets (Kugiumtzis, 2000; Schrieber and Schmitz, 2000) are created for each of the 
predictors selected, allowing 100 surrogate NAO timeseries to be constructed for each of the 
models with different numbers of terms (models with five to nine terms were examined).  
Further details of this approach are given in the online supplementary information. 
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4. Results 

In this section, NAO models are designated by type (station-based NAO: stat; Hurrell principal-
component NAO: HPC), by year, and whether linear (LIN) or polynomial (POLY) NARMAX 
models. Thus stat80POLY is the polynomial NARMAX model for the station-based NAO, 
using 1980-2010 as the training dataset.  
 
4.1 Linear Models 

The predictors used in the linear models, and their coefficients are summarised in Table II and 
verification statistics for the averaged models are shown in Table III. It is the averaged models 
that are subsequently discussed, unless otherwise stated. An example of the model fit is shown 
for the station-based NAO in Figure 1, with other models shown in Figure S2. There is some 
consistency among the predictors selected for the different NAO indices, both within and 
between the different training periods (Table II).  October Barents Sea SLP and October 
Barents-Kara Sea ice are selected for all models. Bering Sea and East Siberian-Laptev Sea ice 
in November are selected for three of the four models; both 1980 linear models, and HPC56LIN 
(Bering Sea ice only) and stat56LIN(East Siberian-Laptev Sea ice only). There is some 
discrepancy in the cryospheric terms, with Greenland Sea ice being selected only for the 1956 
models. While Greenland Sea ice is chosen in the 1956 NAO models, October Bering Sea ice 
is selected for HPC80LIN as an additional term. Tropical influences are identified in both 1980 
models, and for stat56LIN, however these show considerable variation, as variables selected 
for the 1980 models such as the MJO and tropical rainfall, are not available for the 1956 
models. Consequently the greater availability of tropical predictors post-1980 is reflected in 
these models: November MJO (phase 8, HPC80LIN and phase9, stat80LIN) and tropical 
Atlantic rainfall (July; stat80LIN) and August (HPC80LIN) are present in both. Despite being 
previously identified as an important predictor of winter extratropical atmospheric variability, 
N3.4 is not particularly prominent, only being selected for both station-based NAO models 
(July N3.4I). Extratropical oceanic SST-related terms are selected for all except stat80LIN; 
October GIN SST for HPC80LIN and NAH (September-stat56LIN, October-HPC56LIN). The 
only model to detect a stratospheric influence is HPC56LIN, where the stratospheric polar 
vortex indices for October and November are selected, although interestingly these are of 
opposite signs and are only weakly correlated (r=0.21).  
 
Correlations of the 1980 models for the 2011-2018 testing period (Table IIIa) are 0.90 
(HPC80LIN) and 0.82 (stat80LIN). However, correlations can mask a systematic negative bias 
in the forecasts, particularly in the linear model forecasts (with the exception of HPC80LIN), 
which becomes evident when MAE and RMSE are examined. For example, although 
stat80LIN correlates very well in the testing period (r=0.82), MAE and RMSE are 1.11 and 
1.26 respectively, considerably higher than the training period values. MSESS scores are 
negative, the forecasts having less skill than a climatological forecast. The correlations indicate 
that the two NAO models are able to capture aspects of the local maxima and minima of the 
observed NAO during the testing period, but with a large negative bias (Figure 1), which 
reduces skill according to MSESS and inflates the MAE and RMSE. However, D-scores 
suggest that the models for the NAO have considerable potential usefulness (0.80, stat80LIN; 
0.75, HPC80LIN, Table IIIa).  
 
For the 1956 linear models, over the testing period the correlation is weaker for both 
(HPC56LIN, 0.46; stat56LIN, 0.69; Table III) compared with the 1980 models although no 
significant difference can be determined due to small sample size.  Test data MAE and RMSE 
scores are similar to the 1980 linear model for the station NAO, but greater for the HPC NAO,  
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but are always larger than those for the training period, reflecting  the negative bias of forecasts 
in the testing period. MSESS are negative, but D-scores indicate potential usefulness (0.80, 
stat56LIN; 0.68, HPC56LIN). 
 
Many of the terms used in construction of the linear models, for example sea-ice, SST and 
tropical rainfall terms contain significant trends, which are likely to contribute to the negative 
bias of  the forecasts. It is notable that the station NAO forecasts from 1980 training data appear 
to have overall negative trends (Figure 1), probably due to the influence of the sea-ice inputs 
to the models, as found in Hall et al. (2017).  
 
4.2 Polynomial Models 

The polynomial models are presented in detail in Table IV and compared with linear models 
in Figures 1 and S2. The comparisons use the averaged linear and polynomial models and an 
example of model averaging for the stat80POLY model is shown in Figure S3. Verification 
statistics are in Table III. For the HPC80 forecast the NARMAX algorithm produces a linear 
model only, as the inclusion of interaction terms does not significantly improve prediction 
performance.  
 
There is less consistency amongst the predictor variables selected (Table IV) compared with 
the linear models, as terms are more complex and often based on interactions between 
variables, and with short datasets the models are very sensitive to slight differences in 
predictors. Equally, different predictors selected may be trying to capture the same variability 
or acting as proxies for some hidden variable.  Some predictors are selected for both linear and 
polynomial models, but may differ by a month or two.  
 
Forecasting verification statistics for the polynomial model averages are shown in Table III. In 
almost all cases, MAE, RMSE, MSESS and correlation are superior to the linear models in 
both training and testing periods, for both time periods. The D-score is consistently above  0.7 
indicating considerable potential usefulness of the forecasts and MSESS are always positive. 
Verification statistics are mostly poorer for the 1956 models. Initially this may appear to be 
surprising as the models are constructed over a longer training set, although data from the 
earlier part of the time series prior to the satellite era are of poorer quality, and some variables 
are not available for the earlier period. See also section 5 on variable inherent predictability 
over the time period. The 1956 polynomial models show considerable improvements in all 
verification metrics compared with linear models on the longer time-scale, although results 
from linear models are broadly comparable to results obtained using the shorter training set. 
Due to the small sample size, the statistical significance of any improvements achieved by 
polynomial over linear models cannot always be satisfactorily determined. As would be 
expected for such a small sample size, when correlations in the testing period are compared 
using the suite of tests in the “cocor” package,  differences are not significant.  
 
In order to create a longer testing period and provide greater confidence in the performance of 
the models in out-of-sample prediction, the 1956-2017 period was split into even years for the 
training dataset and odd years for the testing dataset, using the station-based NAO index. The 
predictive skill of NARMAX polynomial and linear models when even years only are used as 
the training period is shown in Figure S4 and verification statistics are presented in Table S2. 
Correlations for the testing period (odd years) are 0.45 (linear) and 0.60 (polynomial). While 
both are significant (p<0.05), the polynomial correlation coefficient is appreciably higher, 
consistent with results from the shorter testing datasets, yet still not deemed significantly so by 
the  range of comparison tests in “cocor”. However, this does not tell the whole story. For the 
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earlier part of the testing period (1957-1979), correlations for the linear and polynomial models 
are very similar (0.6, linear; 0.66, polynomial), however in the later period (1981-2017), the 
correlations are significantly different using “cocor” (0.04, linear; 0.44 polynomial, p<0.1, one-
tailed test). In addition both MAE and RMSE for 1981-2017 are around two thirds of the values 
for 1957-1979. This is suggestive of some change in the NAO in the later period, which is 
better captured by the polynomial models. 
 
Verification statistics taken over the 100 surrogate models for HPC80LIN show that model 
performance is much poorer for the surrogates in the testing period (Table S3), with significant 
differences between model performance and the surrogate data for all verification metrics. This 
indicates that the good prediction performance obtained with NARMAX is not a result of 
chance but is due to the efficacy of the algorithm. 
 
Figure 2 allows closer inspection of model performance in the testing period.  Both linear and 
polynomial 1980 models capture the local maxima and minima of both versions of the NAO 
for the first three years (Figure 2a,b), although the amplitude of the response is much reduced 
in the stat80LIN model (Figure 2b), which also display a negative bias, as discussed above, 
while any bias in stat80POLY is minimal and non-systematic. Similarly1956 linear models for 
both NAO indices reproduce the interannual change from 2011-2014, after which the response 
is damped.  In general, polynomial models better match the local maxima and minima, with 
the exception of HPC56POLY which forecasts a negative rather than positive NAO in 2014 
(Figure 2c).  
 
Figures 3 and 4 give a visual representation of the selected predictors for the different NAO 
models, for both training periods, in order to highlight common predictor variables, although 
some of these are used in interaction terms in the NARMAX models.  For 1980 (Figure 3), 
Barents Sea SLP and Bering Sea ice  are used in all three models, Barents-Kara Sea ice, East 
Siberian-Laptev Sea ice and tropical Atlantic rainfall are selected by both linear models while 
MJO phase 8 occurs for both linear and polynomial HPC models. For the 1956 models (Figure 
4), some predictors (Greenland Sea ice, NAH, Barents Sea SLP) are included in all four models, 
while October Barents-Kara Sea ice and the N3.4I index are selected in three. A  number of 
predictors occur in only one model, due to them occurring as interaction terms, and the 
sensitivity of the model to slight changes in variables given the short time series.  For the 1956 
training data, linear and polynomial models will select predictors that were suboptimal in the 
1980 models, as the best predictors are not always available for the longer time series. Thus 
NARMAX selects N3.4I for the 1956 models, whereas for the 1980 models the optimal tropical 
influences seems to come from the MJO and tropical rainfall. While models are capturing 
essentially the same signals, there is high sensitivity to small variations in input data due to 
small sample size: hence different predictors are selected, which represent slightly different 
aspects of a common signal.  
 
From the results, it is remarkable that while linear models show more limited skill, particularly 
over the longer training dataset, polynomial model forecasts, whether linear or non-linear, 
particularly those based on the 1980 training set, are able to replicate local maxima and minima, 
the amplitude of the observation and have minimal bias for the testing dataset.  
 
5. Discussion 

5.1 Differences when using longer and shorter training periods 

Based on the verification statistics (Table III), polynomial models generally outperform the 
equivalent linear model (lower MAE and RMSE; higher correlation, MSESS and D-score), 
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although the significance of this is hard to assess on a small sample size. 1956 models  generally 
perform less well than the equivalent from 1980. There is evidence from other studies to 
suggest that from the 1950s to 1960s there is less skill in dynamical forecasting hindcasts, with 
the possibility that during this period the atmospheric circulation was inherently less 
predictable (e.g. Weisheimer et al., 2016), associated with a more prevalent negative NAO. 
However, dynamical models appear to be skillful in predicting strongly negative NAO events, 
but less skillful regarding weaker negative NAO events. O’Reilly et al. (2017) concur that in 
the mid 20th century, forecast skill for the NAO is reduced, and attribute this to weaker forcing 
from tropical Pacific SSTs during this period. An alternative perspective is presented by 
Woollings et al. (2015). Decadal variability of the NAO is identified, which is associated with 
changes in strength of the jet and different dynamical behaviour (eddy-mean flow interaction, 
Rossby wavebreaking and blocking), the period from 1980 being associated with relatively 
higher jet speeds. Therefore when statistical models are trained on a longer period, with the 
assumption of stationarity, these decadal variations are averaged out and predictors that are 
selected are likely to be sub-optimal. Furthermore, if there is a return to relatively weak forcing 
from Pacific SSTs, or a period of reduced jet speeds, forecasts trained on the recent period may 
perform less well (O’Reilly et al., 2017). Weisheimer et al. (2016) report that forecast skill 
actually increases further back in the 20th century, in the 1930s and 1940s, suggesting the issue 
may not be attributed to reduced data quality. This corresponds to the decadal fluctuations 
identified by Woollings et al. (2015), suggesting that periods of lower jet speed may contribute 
to the reduced predictability. In this study, a longer training dataset does not equate to a better 
forecasting model, in agreement with the studies above. It is also notable that when tested on 
all the odd years, a polynomial model significantly outperforms a linear model for the period 
1981-2017, better capturing the NAO for both early and late periods.   
 

Greenland Sea ice is a predictor in all 1956 models (Figure 4) but is not selected for models 
based on the shorter training period. The months selected (May-July) represent the time of 
maximum decrease in the regional annual sea-ice cycle (October is selected as the 8th and final 
term in stat56LIN, Table IIc, and makes a minimal contribution). Interannual variability and 
mean values of Greenland Sea ice are notably larger prior to 1980; consequently contributions 
of the predictor terms to the models are greatest prior to 1980. Given the relatively small 
coefficients used in the models, contributions between 1980 and 2010 are negligible, also 
indicating why this variable is not selected for the 1980 models.  Figure S5 shows that the four 
Greenland Sea ice terms used in the models essentially make similar contributions to each 
model, and can be regarded as different, somewhat imperfect representations of some unknown 
predictor variable. It is possible that the association in the 1960s and 1970s is related to the 
Great Salinity Anomaly (e.g. Dickson et al., 1988), which circulated in the North Atlantic at 
this time and had its origins in increased ice export and freshwater release through the 
Greenland Sea region. The association between the Greenland Sea ice and NAO is physically 
plausible at this time, particularly as the predictors capture the transition from a more negative 
to a positive NAO over the period.  
 
5.2. Tropical forcing and interaction terms 

Evidence for forcing of the winter NAO from the tropics is evident in all models; the 1980 
training data favours the selection of the MJO and tropical rainfall, whereas these are not 
available for the 1956 training data, so the N3.4 Index becomes more prominent, along with 
West Indian Ocean SST in stat56LIN and HPC56POLY. It is also notable that HPC56LIN 
includes no tropical forcing, although the use of stratospheric polar vortex terms here could 
incorporate aspects of tropical forcing, such as the ENSO-stratospheric-mid-latitude 
teleconnection (e.g. Bell et al., 2009). Tropical variables selected are somewhat inconsistent, 
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in terms of both month and predictor, which is likely to be a result of model sensitivity to slight 
variations due to the short time series used. However, the evidence for tropical signals is clear.  
 
There are multiple interaction terms identified in the polynomial models, which can be very 
difficult to explain effectively without subsequent further analysis. N3.4I terms are selected in 
both 1956 polynomial models, possibly due to the unavailability of MJO indices as discussed 
above. However, in each case it occurs as an interaction term with a high latitude predictor 
(terms 9 and 10, stat56POLY; terms 4 and 8, HPC56POLY, Table IVb,c). A closer inspection 
of the interaction terms’ time series reveals that the main input parameter is N3.4I, with the 
high latitude term modulating the signal in terms of amplitude and sometimes polarity (not 
shown). This, along with term 1 in stat56POLY (Table IVb), is suggestive of a tropical signal, 
propagated by Rossby waves, which is then modulated by slowly-varying boundary conditions 
at higher latitudes (e.g. Ding et al., 2014). Term 5 in HPC56POLY (June Hudson Bay ice x 
volcanic index; Table IVc) operates in a similar way, the magnitude of the tropical volcanic 
signal being the dominant input, modulated by the sea-ice term.  
 
A composite plot of low minus high years for MJO phase 8 in October shows a wave train 
emanating from the central Pacific, over North America and to the Atlantic (Figure S6). 
Poleward propagating Rossby waves emanate from only a few source regions, whose activity 
varies with tropical rainfall variability from year to year (Scaife et al., 2017). Of note in this 
wavetrain is a node boundary over the Labrador Sea. An interaction term between September 
Labrador Sea ice and the October MJO8 is identified for stat80POLY (Figure 3, Table IVa). It 
is possible that in years with high sea-ice in this region, there is an interaction with the MJO 
signal, and the effect of this interaction is sustained into winter. As the interaction term is 
multiplicative, then it is the sign of each index which is particularly important. Both high (low) 
sea-ice and high (low) MJO8 will combine to make the NAO prediction more positive. If 
however, one input is positive and the other negative, that will combine towards a more 
negative NAO forecast.  
 
5.3. Higher latitude forcing and interaction terms. 

Both cryospheric and extratropical forcings are included in all models, often as interaction 
terms with tropical forcing as discussed above. Key sea-ice predictors are October Barents-
Kara Sea (five out of seven models), November East Siberian -Laptev Sea (four out of seven), 
Bering Sea (five out of seven). The Greenland Sea has been discussed in Section 5.1 above. 
Sea-ice in the Barents-Kara Seas has frequently been identified as a key source of potential 
winter NAO predictability (Scaife et al., 2014; Garcia-Serrano et al., 2015; Wang et al., 2017; 
Hall et al., 2017). The importance of Bering Sea ice is more surprising, but could well be a 
proxy for atmospheric variability in the region, such as the Pacific-North American pattern 
(PNA), with associations with North Atlantic atmospheric variability (e.g. O’Reilly et al., 
2017), which in turn is linked to tropical Pacific SST variability.  
 
Another input variable worthy of more detailed discussion is Barents SLP. This is selected by 
all NAO models (Figures 3, 4). The most commonly selected month is October (four times). 
In polynomial models Barents Sea SLP occurs as an interaction term with tropical signals 
(stat80POLY, Table Iva, HPC56POLY, Table IVc), as a single term (stat56POLY, Table IVb), 
an interaction term with SSTs (stat56POLY, Table IVb) and the QBO (HPC56POLY, Table 
IVd). A cyclonic (anticyclonic) anomaly in the BK region in October can lead to positive 
(negative) sea-ice anomalies there in November (King and Garcia-Serrano, 2016). In other 
words, the preceding pressure/geopotential height anomaly is a precursor of the Barents-Kara 
Sea ice ice which has been frequently identified as a predictor in other studies (e.g. Garcia-



 15 

Serrano et al., 2015; Hall et al., 2017). However, it also has the advantage that it is not subject 
to the same long-term dramatic trends as autumn sea-ice. The interaction terms support the 
concept of geopotential height anomalies over the BK Seas in autumn modulating signals from 
the tropics, stratosphere and cryosphere in a non-linear way (e.g. Vihma et al., in review, 
International Journal of Climatology). There are a number of input terms from these high 
latitude regions that are combined in polynomial models: [November east Siberian Sea ice x 
November GIN seas SST], [October Barents SLP x November GIN seas SST] (stat56POLY); 
[September GIN seas SST x October Atlantic SST gradient] (HPC56POLY). It seems likely 
that these terms are capturing different aspects of autumn variability in the northern seas, that 
would merit further investigation as important predictors of the winter NAO. 
 
Labrador Sea ice is only selected as a predictor in polynomial models, as an interaction term 
with tropical (see section 5.2 above) or extratropical forcings. An interaction term selected in 
both HPC56POLY and stat80POLY is [October Labrador Sea ice x October NAH SST 
pattern]. The NAH pattern of SSTs is associated with forcing of the winter NAO by persistent 
SST anomalies at up to six months lead time (Czaja and Frankignoul, 2002). The separate input 
terms and the resulting multiplicative term are shown in Figure S7a. An examination of the 13-
year running correlation between the October NAH and winter NAO reveals a consistent 
negative correlation, except for the period from 1995 to 2005 when the correlation coefficient 
increases sharply, becoming positive, before a rapid return to negative values (Figure S7b). 
This positive excursion coincides with large positive Labrador Sea ice anomalies in October, 
these being negative for the rest of the time series. The regions for both these variables have a 
partial overlap. Therefore when there is a negative ice anomaly in the Labrador Sea, the 
inverted NAH index provides a predictor of the winter NAO interannual variability; however 
for the brief period with positive ice anomalies, there is a positive relationship between the 
NAH and NAO interannual variability (Figure S7a). The sea-ice in the Labrador Sea modulates 
the NAH/NAO interaction, or there is a hidden North Atlantic variable for which Labrador Sea 
ice is a proxy. 
 
6. Summary 

 The NARMAX approach shows appreciable potential skill in out-of-sample forecasting, albeit 
with small testing datasets, for both linear and polynomial models which both outperform a 
more conventional ordinary least squares approach to multiple regression (e.g. Hall et al., 
2017). There are strong correlations with observations, reproducing local maxima and minima 
of the observations, and the amplitude of the observed signal. Model fits are improved when 
based on a shorter training dataset from 1980-2010. This may partly relate to a wider range of 
potential predictors being available for this period, but is also because of reduced inherent 
predictability of circulation indices during the 1950s and 1960s. The skill of polynomial models 
is greater than that of equivalent linear models, and error statistics are reduced, but small 
sample size means that further work is needed to establish the significance of this result. 
However, an analysis based on using odd years for the testing data is strongly suggestive of a 
better performance by a polynomial model over that of a linear model, particularly in that it 
better represents the transition from the early more negative NAO period to the end of the 
1970s to the more positive phase post-1980. NARMAX can identify important predictors of 
winter North Atlantic atmospheric variability. Discrepancies between predictor selection in 
models is likely to arise through increased sensitivity to small fluctuations in input, due to the 
small sample sizes available. This means that the models  capture the same signals, but select 
them in slightly different ways.  
An important result of the study is that polynomial NARMAX models are capable of revealing 
the potential modulation of tropical forcing by higher latitude boundary conditions. Barents 
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Sea SLP can also play a crucial role in modulating cryospheric and extratropical signals in 
addition to those from the tropics. This could be significant in developing the next generation 
of NWP models. 
Our NARMAX approach can be extended to other circulation indices such as the East Atlantic 
and Scandinavian Patterns and jet latitude and speed, and to other seasons. This may be 
especially beneficial for summer seasonal forecasts, where there is currently relatively little 
predictability from dynamical models (e.g. Ossó et al., 2018; Dunstone et al., 2018). It is also 
possible to extend the approach to probabilistic forecasting and - by utilising links between 
North Atlantic circulation patterns and, for example, UK regional temperature and precipitation 
patterns (Hall and Hanna, 2018) - provide enhanced seasonal forecasts that should be useful 
for a wide range of stakeholders. NARMAX can also be used to assess how contributions from 
different atmospheric circulation predictors vary over time using a moving window approach. 
Future work will use Coupled Model Intercomparison Project (CMIP) 5/6 output to construct 
models using a longer timeseries, enabling the use of a longer testing dataset, to confirm 
whether polynomial forecasts are significantly improved compared to linear versions.  The 
models can be further extended to include previous years’ predictor values, and by increasing 
the lead-time at which forecasts are issued for a given season.  
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dataset Obtained from Variable used 

Hurrell PC_NAO https://climatedataguide.ucar.edu/climate-

data/hurrell-north-atlantic-oscillation-nao-index-pc-

based  

DJF NAO index 

Station-based NAO https://rda.ucar.edu/datasets/ds570.0  MSLP, Azores and 
Iceland 

AMO www.climexp.knmi.nl  
 

HadSST3.1.1 SST 

HadISST1 www.climexp.knmi.nl  SST, SIC 
 
GPCPv2.3 

 
www.climex.knmi.nl 
 
 

 
Tropical precipitation 

Carbon dioxide www.esrl.noaa.gov/gmd/ccgg/trends/data.html  Annual CO2 level 

QBO www.geo.fu-

berlin.de/en/met/ag/strat/produkte/qbo/index.html  
Mean zonal wind, 
30hPa 

sunspots http://sidc.oma.be  Sunspot number 
JRA-55 SPV_T100 Blanca Ayarzaguena, University of Exeter Temperature 100hPa 

NCEP/NCAR SLP www.climexp.knmi.nl 
   
 

Sea level pressure 

Rutgers Global Snow 
Lab snow cover 
extent 

https://climate.rutgers.edu/snowcover/docs.php?tar

get=datareq  
Snow cover extent 

HadCRUT4.6 https://www.metoffice.gov.uk/hadobs/hadcrut4/ 
 

2m temperature 
anomaly 

MJO Indices www.cpc.ncep.noaa.gov/products/precip/CWlink/dai

ly_mjo_index/pentad.html    
200hPa velocity 
potential anomalies 

 

Table I. Summary of datasets used. For more detailed information, see Table S1.  
 
 
 
 
 
 
 
 
 
 
 
 

https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://rda.ucar.edu/datasets/ds570.0
http://www.climexp.knmi.nl/
http://www.climexp.knmi.nl/
http://www.climex.knmi.nl/
http://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
http://sidc.oma.be/
http://www.climexp.knmi.nl/
https://climate.rutgers.edu/snowcover/docs.php?target=datareq
https://climate.rutgers.edu/snowcover/docs.php?target=datareq
https://www.metoffice.gov.uk/hadobs/hadcrut4/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/pentad.html
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/pentad.html
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a) stat80LIN  
Model Term 

Model Parameter 

7-term 8-term 9-term 

1  July N3.4I -0.77 -0.39 -0.23 
2  July tropical Atlantic rainfall -0.10 -0.16 -0.22 
3  November Bering Sea ice 0.40 0.46 0.55 
4  October Barents-Kara Sea ice 0.53     0.67 0.73 
5  October Barents Sea SLP -0.30    -0.38    -0.37 
6  November East Siberian-Laptev Sea ice -0.32 -0.29 -0.34 
7  November MJO phase 9 -0.38 -0.53 -0.63 
8 July tropical East Indian Ocean rainfall  0.29 0.30 
9 lead 4 year sunspot cycle   -0.18 
Individual Model Performance    
Training 
data 

MAE 0.29 0.27 0.22 
RMSE 0.37 0.31 0.27 
correlation 0.92 0.94 0.95 

Testing data MAE 1.02 1.25 1.07 
RMSE 1.14 1.38 1.26 
correlation 0.77 0.83 0.81 

 

 

 

b)HPC80LIN  
Model Term 

Model Parameter 

7-term 8-term 9-term 

1  October Barents Kara Sea ice 
2  October Barents Sea SLP 
3  November Bering Sea ice 
4  November East Siberian-Laptev Sea ice 
5  constant 
6  October GIN SST 
7  November MJO phase 8 

0.91 0.94 0.85 
-0.42 -0.47 -0.48 
0.57 0.35 0.32 
-0.44 -0.47 -0.44 
0.28 0.27 0.28 
0.33 0.42 0.39 
-0.46 -0.62 -0.57 

8 October Bering Sea ice  0.35 0.37 
9 August tropical Atlantic rainfall   0.23 
Individual Model Performance    
Training 
data 

MAE 0.33 0.29 0.23 
RMSE 0.41 0.35 0.28 
correlation 0.93 0.95 0.97 

Testing data MAE 0.33 0.30 0.36 
RMSE 0.49 0.47 0.48 
correlation 0.92 0.88 0.88 
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c) stat56LIN  
Model Term 

Model Parameter 

6-term 7-term 8-term 

1  May Greenland Sea ice 
2  September NAH 
3  July N3.4I 
4  October Barents-Kara Sea ice 
5  October Barents Sea SLP 
6  November tropical West Indian Ocean SST 

-0.15 -0.16 -0.14 
-0.27 -0.27 -0.27 
-0.61 -0.65 -0.61 
0.37 0.41 0.44 
-0.23 -0.22 -0.25 
0.14 0.16 0.14 

7 November East Siberian-Laptev Sea ice  -0.16 -0.15 
8 October Greenland Sea ice   -0.08 
Individual Model Performance    
Training 
data 

MAE 0.52 0.51 0.51 
RMSE 0.66 0.65 0.64 
correlation 0.65 0.67 0.69 

Testing data MAE 1.27 0.95 1.03 
RMSE 1.38 1.07 1.14 
correlation 0.56 0.74 0.73 

 

 

d) HPC56LIN  
Model Term 

Model Parameter 

5-term 6-term 7-term 

1  October NAH 
2  November SPV 
3  October SPV 
4  July Greenland Sea ice 
5  October Barents Sea SLP 
6  October Barents-Kara Sea ice 
7  November Bering Sea ice 

-0.36 -0.33 -0.28 
-0.38 -0.29 -0.28 
0.41 0.34 0.36 
-0.12 -0.22 -0.27 
-0.31 -0.41 -0.41 

 0.44 0.44 
  0.18 

Individual Model Performance    
Training 
data 

MAE 0.68 0.61 0.58 
RMSE 0.79 0.72 0.69 
correlation 0.75 0.80 0.81 

Testing data MAE 0.83 1.22 1.29 
RMSE 0.99 1.44 1.56 
correlation 0.41 0.49 0.42 

 

Table II(a)-(d) Selected predictors, model coefficients and verification statistics for linear 
NARMAX models.  
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a) models MAE RMSE correlation MSESS D 

1980 linear training testing training testing training testing   

stat80LIN 0.25 1.11 0.29 1.26 0.95 0.82 -0.96 0.80 
HPC80LIN  0.27 0.29 0.31 0.48 0.96 0.90 0.82 0.75 
1980 polynomial         
stat80POLY 0.35 0.43 0.41 0.52 0.89 0.92 0.68 0.89 

 

b) models MAE RMSE correlation MSESS D 
1956 linear training testing training testing training testing   
stat56LIN 0.51 1.08 0.64 1.19 0.76 0.69 -0.44 0.80 
HPC56LIN 0.61 1.10 0.71 1.31 0.81 0.46 -0.28 0.68 
1956 NARMAX         
stat56POLY 0.40 0.68 0.50 0.81 0.87 0.77 0.34 0.79 
HPC56POLY 0.40 0.59 0.52 0.70 0.90 0.73 0.68 0.79 

 

Table III. Verification statistics for averaged linear and polynomial NARMAX models, for 
a) periods 1980-2018 and b) 1956-2018. Bold figures show if polynomial outperforms the 
linear model. 
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a) 

stat80POLY 

 
Model Term 

Model Parameter 

4-term 5-term 6-term 

1  Jul tropical West Pacific Rainfall* Nov Barents Sea SLP 
2  Oct Labrador Sea ice LAB * Oct NAH 
3  Sep snow * Nov_SST gradient 
4  Oct Bering Sea ice  * Nov NAH 
5  Sep Labrador Sea ice  * Oct MJO phase 8 
6  Jul tropical West Pacific Rainfall * Sep snow 

-0.34 -0.31 -0.33 
0.63 0.64 0.58 
0.48 0.55 0.56 
0.22 0.22 0.27 

 0.51 0.51 
  0.33 

Individual Model Performance    
Training 
data 

MAE 0.40 0.36 0.33 
RMSE 0.48 0.43 0.38 
correlation 0.84 0.88 0.91 

Testing data MAE 0.43 0.53 0.48 
RMSE 0.50 0.58 0.62 
correlation 0.90 0.88 0.95 

 

 

b) 

stat56POLY 

 
Model Term 

Parameter 

8-term 9-term 10-term 

  1  Jul tropical West Indian Ocean SST * Sep GIN SST 
  2  Nov Bering Sea ice              
  3  Sep NAH           
  4  Nov East Siberian-Laptev Sea ice  * Nov GIN SST  
  5  Jul Greenland Sea ice  * Jul Greenland Sea ice 
  6  Oct Barents-Kara Sea ice          
  7  Oct Barents Sea SLP * Nov GIN SST  
  8  Oct Barents Sea SLP              
  9  Jul N3.4I * Sep Canadian Archipelago-Baffin  sea ice 
10  Jul N3.4I * Sep NAH 

   -0.06   -0.05    -0.07 

   -0.33    -0.67    -0.49 

   -0.28    -0.28    -0.27 

   -0.25    -0.19    -0.18 

   -0.03    -0.03    -0.03 

    0.37     0.33     0.32 

   -0.21    -0.22    -0.24 

   -0.22    -0.20    -0.21 

     0.19     0.18 

      0.46 
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Individual Model Performance    
Training 
data 

RMSE 0.53 0.51 0.49 
MAE 0.43 0.40 0.40 
Correlation 0.85 0.86 0.87 

Testing 
data 

RMSE 0.74 0.85 0.85 
MAE 0.67 0.68 0.69 
Correlation 0.70 0.63 0.82 

 

 

c) 

HPC56POLY 

 
Model Term 

Parameter 

6-term 7-term 8-term 

1  Oct Labrador Sea ice  * Oct NAH 
2  Aug N3.4 * lead 3 year sunspot cycle  
3   atmospheric CO2 * Jun Greenland Sea ice 
4  Nov N3.4I * Sep Barents Sea SLP 
5  Jun Hudson Bay sea ice  * volcanic index 
6  Sep GIN SST * Oct SST gradient 
7  Sep QBO * Nov Barents Sea SLP 
8  Sep N3.4I * Nov GIN SST 

0.45 0.41 0.43 
0.63 0.69 0.73 
0.04 0.04 0.03 
0.82 0.97 1.19 
1.00 1.00 0.99 
0.25 0.29 0.32 

 0.26 0.28 
  -0.56 

Individual Model Performance    
Training 
data 

RMSE 0.59 0.55 0.49 
MAE 0.45 0.42 0.37 
Correlation 0.86 0.89 0.91 

Testing 
data 

RMSE 0.60 0.68 0.75 
MAE 0.52 0.53 0.57 
Correlation 0.79 0.73 0.68 

 

Table IV(a)-(c). As for Table II, but for polynomial models.  
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Figure Captions. 
Figure 1. Example of hindcasts (solid) and forecasts (dashed) using linear (LIN) and polynomial (POLY)  NARMAX models, derived from the 
1980 training period for the station-based NAO.  
 
Figure 2. Out-of-sample forecasts compared with observations for linear (LIN) and polynomial (POLY) NARMAX models. Note there is no 
polynomial model for HPC80 and the observed station NAO is missing in (b) and (d).  
 
Figure 3. Predictors selected for the NAO models based on the 1980 training period.  N3.4I =El Niño 3.4 discontinuous index; EIR=tropical East 
Indian Ocean rainfall, NAH=North Atlantic Horseshoe SST pattern; snow=Eurasian snowcover; BK ice=Barents-Kara Sea ice; GIN SST= 
Greenland-Iceland Norwegian SST; ES/L= East Siberian/Laptev Sea ice; TAR= tropical Atlantic rainfall; Bering ice=Bering Sea ice; 
MJO8/9=Phase 8/9 Madden-Julian Oscillation; Barents SLP=Barents Sea regional SLP; WPR=tropical West Pacific Ocean rainfall; SST 
gradient=North Atlantic SST gradient; LAB ice= Labrador Sea ice; lead 4 SS = sunspot cycle leading by 4 years. Where predictor month is not 
specified, it is indicated by a white hexagon linked to the variable. This is used where different models select different months of a common 
predictor. 
 

Figure 4. As for Figure 3 but using the 1956 training period. Additional variables: volc= volcanic index; SPV=Stratospheric polar vortex index;  
HUD ice=Hudson Bay sea-ice; lead 3 SS=sunspot cycle leading by 3 years; N3.4=standard N3.4 index; CO2=atmospheric carbon dioxide; 
QBO=Quasi-biennial oscillation; GRE ice =Greenland Sea ice; WISST=tropical West Indian Ocean SST; ARB=Canadian Archipelago/Baffin 
Bay sea-ice. 
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Supplementary Material 
 

dataset Obtained from Variable 

used 

Region selected dates reference 

Hurrell 
PC_NAO 

https://climatedataguide.ucar.edu/climate-
data/hurrell-north-atlantic-oscillation-nao-
index-pc-based  

DJF NAO 
index 

90W-40E, 20-80N 1955-
2018 

Hurrell, 
1995; 
Hurrell et 
al., 2003 

Station-
based NAO 

https://rda.ucar.edu/datasets/ds570.0  MSLP Reykjavik, Ponta Delgada 1955-
2017 

 

AMO www.climexp.knmi.nl  
 

HadSST3.1.1 
SST 

7-75W, 25-60N, minus regression on global mean 
temperature 

1955-
2017 

van 
Oldenborgh 
et al., 2009. 

HadISST1 www.climexp.knmi.nl  SST 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SIC 

N3.4: 170-120W, 5S-5N 
Tropical Atlantic (TASST): 50-0E,5S-5N 
W.Indian Ocean (WISST): 50-85W, 5S-5N 
E. Indian Ocean (EISST): 85-120E,5S-5N 
W. Pacific (WPSST):120-170E,5S-5N 
E. Pacific (EPSST): 140-90W, 5S-5N 
N. Atlantic Horseshoe (NAH): 40-15W, 15-30N 
                                       minus 60-40W,30-45N 
N. Atlantic tripole:        60-40W, 40-55N 
                                      minus 80-60W, 25-35N  
sub-polar gyre (SPG_SST): 60-10W, 50-65N 
Barents Sea (Bar_SST): 25-70W, 75-80N 
Greenland/Iceland Norwegian Seas (GIN_SST):           
20W-20E, 65-80N 
N. Atlantic SST gradient (SST_grad):                           
                                        60-30W, 20-40N 
                                        minus 60-10W, 50-65N 
 
Barents-Kara Seas(BK): 10-100E,65-85N 
E. Siberian/Laptev Seas (ESL): 100-180E, 68-85N 
Beaufort/Chukchi Seas (BC): 180-120W, 68-85N 

1955-
2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955-
2017 
 

Rayner et 
al., 20003 

https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based
https://rda.ucar.edu/datasets/ds570.0
http://www.climexp.knmi.nl/
http://www.climexp.knmi.nl/
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Canadian Archipelago/Baffin Bay (ArB): 120-
45W, 63-80N 
Greenland Sea (GRE): 45-0W, 63-85N 
Bering Sea (BER): 195-155W, 55-68N 
Hudson Bay (HUD): 100-70W, 50:63N 
Labrador Sea (LAB): 70-45W, 40-63N 

GPCPv2.3 www.climex.knmi.nl 
 
 

Tropical 
precipitation 

Tropical Atlantic Rainfall (TAR): 50-0E,5S-5N 
W. Indian Ocean Rainfall (WIR): 50-85W, 5S-5N 
E. Indian Ocean Rainfall (EIR): 85-120E,5S-5N 
W.Pacific Rainfall (WPR):120-170E,5S-5N 
E. Pacific Rainfall (EPR): 140-90W, 5S-5N 

1979-
2017 

Adler et al., 
2003 

Carbon 
dioxide 

www.esrl.noaa.gov/gmd/ccgg/trends/data.html  Annual CO2 
level 

NA 1959-
2017 

Tans, P. 
NOAA 
ESRL, 
Keeling, R 
Scripps 
IOO. 

QBO www.geo.fu-
berlin.de/en/met/ag/strat/produkte/qbo/index.ht
ml  

Mean zonal 
wind, 30hPa 

NA 1955-
2017 

Naujokat et 
al. 1986* 
 

sunspots http://sidc.oma.be  Sunspot no.  NA 1955-
2017 

WDC-
SILSO, 
Royal 
Observatory 
of Belgium, 
Brussels 

JRA-55 
SPV_T100 

Blanca Ayarzaguena, University of Exeter Temperature 
100hPa 

65-90N 1958-
2015 

 

NCEP/NC
AR SLP 

www.climexp.knmi.nl 
   
 

 Barents SLP: 60-120E, 67.5-90N 1955-
2017 

Kalnay et 
al. 1996 

Rutgers 
Global 
Snow Lab 

https://climate.rutgers.edu/snowcover/docs.php
?target=datareq  

Snow cover 
extent 

Eurasian snow: 55-150E, 45-80N 1979-
2017 

Robinson et 
al., 2012 

http://www.climex.knmi.nl/
http://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo/index.html
http://sidc.oma.be/
http://www.climexp.knmi.nl/
https://climate.rutgers.edu/snowcover/docs.php?target=datareq
https://climate.rutgers.edu/snowcover/docs.php?target=datareq
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snow cover 
extent 
HadCRUT
4.6 

https://www.metoffice.gov.uk/hadobs/hadcrut4
/ 
 

2m 
Temperature 
anomaly 

90W-90E, 20-80N 1955-
2017 

Morice et 
al., 2012 

MJO 
Indices 

www.cpc.ncep.noaa.gov/products/precip/CWli
nk/daily_mjo_index/pentad.html    

200hPa 
velocity 
potential 
anomalies 

 1979-
2017 

Xue et al., 
2012 

 

Table S1. Datasets used in the study.  
 

https://www.metoffice.gov.uk/hadobs/hadcrut4/
https://www.metoffice.gov.uk/hadobs/hadcrut4/
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/pentad.html
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_mjo_index/pentad.html
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Model MAE RMSE correlation 

training testing training testing training testing 

linear 0.64 1.15 0.79 1.31 0.70 0.24 
polynomial 0.55 0.85 0.67 1.00 0.79 0.66 

 

Table S2. Verification statistics for station NAO models using an even-odd years split. 
 
 
 RMSE MAE correlation coefficient 

training testing training testing training testing 

7-term 
model 

0.976±0.065 
Q=0.41, Z=-8.71 

1.235±0.279 
Q=0.40, Z=-2.99 

0.781±0.062 
Q=0.33, Z=-7.27 

1.068±0.268 
Q=0.33, Z=-2.75 

0.484±0.102 
Q=0.93, Z=4.37 

-0.044±0.441 
Q=0.92, Z=2.19 

8-term 
model 

0.960±0.077 
Q=0.35, Z=-7.92 

1.228±0.243 
Q=0.47, Z=-3.12 

0.777±0.074 
Q=0.29, Z=-6.58 

1.036±0.223 
Q=0.30, Z=-3.3 

0.501±0.110 
Q=0.95, Z=4.08 

-0.024±0.368 
Q=0.88, Z=2.46 

9-term 
model 

0.947±0094 
Q=0.28, Z=-7.10 

1.229±0.284 
Q=0.48, Z=-2.64 

0.760±0.090 
Q=0.23, Z=-5.89 

1.045±0.254 
Q=0.36, Z=-2.70 

0.497±0.127 
Q=0.97, Z=3.72 

-0.016±0.452 
Q=0.88, Z=1.98 

Note: 1) A constant term is included in each of these models; 2) The statistic Q is calculated 
from the model for the original data; 3) The statistic Z is for the test value calculated from 
equation (S1). ± indicates the standard deviation.  
 
Table S3. The averaged RMSE, MAE, and Correlation Coefficient of 100 models estimated 
using the 100 surrogate datasets for HPC80LIN using the 8 variables:  octBK, oct_barSLP, 
novBER, novESL, oct_GIN_SST, nov_MJO8, octBER, and augAR.    

 
 
A surrogate method is used to test whether the models obtained by the proposed model 

identification algorithm (FROLS) are not achieved by chance, but are due to the efficacy of the 

algorithm. The null-hypothesis is that the models are achieved by chance through the FROLS 

algorithm. A set of surrogate data is generated from the original data. If the statistical metrics 

(e.g. mean squared error and mean absolute error) calculated for models estimated from the 

original data significantly differ from those for surrogate data, the null-hypothesis should be 

rejected. We use the following z-test to measure the significance of the difference between the 

model performances (MSE, MAE, Correlation Coefficient) with respect to the original data 

and the surrogate data, respectively, 

 
( ) ( )

( )

( )
( )

O S

S

Q mean Q
Z

std Q


                                                                                     (S1) 

 
where ( )O

Q  represents one of the three metrics: RMSE, MAE, Correlation Coefficient, 

calculated from the model that is estimated from the original data, and ( )S
Q represents  values 

of the corresponding metric calculated from the models associated with the surrogate data. 
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Under the null hypothesis, if | Z| >1.96 for a two-tailed test, the null hypothesis should be 

rejected. 

 

We used an amplitude-adjusted Fourier-transformed surrogate algorithm (Schrieber and 

Schmitz, 2000; Kugiumtzis, 2000), which generates data from the original time series using a 

Fourier transform. The method retains some of the most important time and frequency domain 

properties of the time series (e.g. autocorrelation function and power spectrum).     

 
We generated 100 surrogate datasets from the original raw data (1980-2017) for the 8 variables:  

octBK, oct_barSLP, novBER, novESL, oct_GIN_SST, nov_MJO8, octBER, and augAR.  For 

each of the surrogate datasets, a linear model consisting of 7, 8, and 9 model terms was 

estimated for training periods 1980-2010 using the FROLS algorithm, leaving 2011-2018 for 

use as the testing period. For an illustration, the distribution of the 100 values of RMSE, MAE, 

and Correlation Coefficient, calculated from the 100 9-term models estimated from surrogate 

data are shown in Figures S1a, S1b, S1c. Due to space limitations, graphs for the other two 

cases are not presented. 

 

The average performance of the 100 models for each of three cases (i.e. with 7-9 model terms) 

is shown in Table S3.  All the models estimated from the surrogate data show far worse 

performance than the models estimated from the original data of the 8 variables; in all cases 

Z>1.96 and the null hypothesis is rejected. These models show no predictive skill for HPC 

NAO. In addition, adding further model terms does not help to increase the model performance 

on either the training or test data.  

 

Therefore, it can be concluded that the three models presented in Table II were not obtained by 

chance. The 9-term model reported in Table II works well for predicting the HPC NAO on the 

test data.  
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Figure S1. Distribution of the a) RMSE b) MAE and c) correlation coefficient for the 100 9-
term models estimated from the surrogate data. 
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Figure S2. Hindcasts (solid) and forecasts (dashed) of station and HPC NAO using linear and 
polynomial NARMAX models, derived from the 1980 and 1956 training periods. Note there 
is no polynomial model selected for HPC80. 
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Figure S3.  An example of the model-averaging procedure for the station NAO from 1980.  
 

 
Figure S4. Plots for a) the training period, and b) the testing period, when the training period 
consists of even years and the testing period of odd years.  

2

1

0

-1

-2

-3

2

1

0

-1

-2

-3
1957 1967 1977 1987 1997 2007 2017

1956 1966 1976 1986 1996 2006 2016

year

N
A

O
 I
n
d

e
x

(a) training period

(b) testing period

observation linear polynomial



 40 

 
Figure S5. The two observed NAO time series from 1956, with the contributions made to the 
models by terms including Greenland Sea ice. 
 

 
Figure S6 October 500GPH composite plots for October MJO_8 low minus high years. 
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Figure S7. A) October Labrador Sea ice (octLAB) and October NAH SST pattern (octNAH), 
and the product of the two input terms. B) 13-year running correlation between October NAH 
and HPC NAO, year is the centre of the moving window. Horizontal dashed line id the 95% 
significance level 
 
 

 


