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Highlights

• We study the universal bounds of our densifier through

new bounds for CTs estimation

• We explain how works our method where constrain the

spectral gap cannot fully explain

• We show the deep implications of graph densification in

commute times estimation
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ABSTRACT

In this paper, we characterize the universal bounds of our recently reported Dirichlet Densifier. In

particular we aim to study the impact of densification on the bounding of intra-class node similarities.

To this end we derive a new bound for commute time estimation. This bound does not rely on the

spectral gap, but on graph densification (or graph rewiring). Firstly, we explain how our densifier

works and we motivate the bound by showing that implicitly constraining the spectral gap through

graph densification cannot fully explain the cluster structure in real-world datasets. Then, we pose

our hypothesis about densification: a graph densifier can only deal with a moderate degradation of

the spectral gap if the inter-cluster commute distances are significantly shrunk. This points to a more

detailed bound which explicitly accounts for the shrinking effect of densification. Finally, we formally

develop this bound, thus revealing the deeper implications of graph densification in commute time

estimation.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs have been used in a variety of different problems

pattern recognition fields (31)(16)(4)(30)(28). However, some

graph analysis problems pose significant problems due to their

excessive sparsity, i.e. low edge density. One way to overcome

these problems is to apply edge densification as precondition-

ing operation before subsequent pattern recognition tasks are

attempted.

Graph Densification is a technique from extremal graph the-

ory which was originally formalized by Hardt and cowork-

ers (17) as a means of ruling out non-trivial graph embeddings.

Here the problem was posed as a constrained optimization prob-

lem driven by cut preservation. They proved that a graph can

be densified if and only if it cannot be embedded under a weak

notion of embeddability. This formally poses densification as

the principled study of how to significantly increase the num-

ber of edges of a given input graph G = (V, E) by generating

a new graph H = (V, E′), where E ⊂ E′, which approximates

G with respect to a given test function. One concrete example

is whether there exists a given cut within the two graphs, and

∗∗Corresponding author: Tel.: +34 653164473;

e-mail: manuel.curado@ucavila.es (Manuel Curado)

the cuts in G are preserved (or bounded) to some extent in H.

Thus it is possible to generate an input graph so that the subse-

quent pattern recognition task is better conditioned. Moreover,

the problem is also of interest in graph-based manifold learning

where the input graphs (typically kNN or Gaussian) are very

sparse.

Originally, this characterization was motivated by the need

to understand structural differences between sparse graphs and

dense graphs in order to reduce the complexity of certain com-

binatorial problems. The aim here is to take advantage of the

fact that certain NP-hard problems have a Polynomial Time Ap-

proximation Scheme when their associated graphs are dense.

This is the case for the MAX-CUT problem (3). Frieze and Kan-

nan (15) raise the question of whether this computational ”easi-

ness” can be explained by the Szemerédi Regularity Lemma,

which states that very large dense graphs have many of the

properties of random graphs (18). Moreover, any sufficiently

large (dense) graph can almost entirely be partitioned into a

bounded number of random-like graphs, which are bipartite.

In this case, there are procedures (algorithms) that can be used

to test whether a graph can be partitioned (2). However, they

are usually conditioned by a tower-exponential condition. This

method represents a link between extremal graph theory and

structural pattern recognition. Extremal graph theory concerns
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the existence of particular graphs satisfying certain test func-

tions or properties (5). Despite the fact that extremal graph the-

ory contains many interesting combinatorial tools, such as the

Ramsey Theory, it is typically axiomatic, i.e. non-procedural.

Existing graph densification procedures such as the construc-

tion of anchor graphs (19), rely on semi-definite programming

(SDP) and they can only deal with very small graphs in prac-

tice (17). Their formulation is thus too simple to preserve global

information in realistic situations, and SDP solvers are polyno-

mial in the number of unknowns (21).

However, the link between densification and Commute

Times was firstly explored in (12), where we highlighted the

fact that densification leads to a shrinkage of the inter-cluster

distances, thus making Commute Times meaningful in large

graphs. Later on, in (13), we further highlighted the fact that

state-of-the-art densifiers rely on semi-definite programming

and motivate a novel algorithm, which is more scalable and

robust. The core of this algorithm is harmonic analysis. To

develop the mathematical machinery for this study, we com-

mence by exploring the link between the Cheeger constant (7),

the spectral gap (9), the heat kernel trace on the Laplacian ma-

trix (29), and the commute distances (27). The solution is to

introduce the concept of graph densification, and specifically

its formulation as a constrained optimization problem in which

cuts are to some extent preserved in the densified graph. This

exploits the fact that densification often requires cut preserva-

tion, in order to conjecture that densified graphs can be better

conditioned for spectral clustering than their un-densified coun-

terparts. In (12) we highlighted the fact that densification leads

to a shrinkage of the inter-cluster distances, thus making Com-

mute Times meaningful in large graphs. Later on, in (13), we

highlighted the fact that state-of-the-art densifiers rely on semi-

definite programming and motivate a novel algorithm, which

is more scalable and robust. The core of this algorithm is har-

monic analysis. Moreover, in (14) we applied the resulting den-

sification technique to preprocessing large graphs so that they

become better conditioned and more tractable for compression

and decompression.

More recently, and guided by the insights provided by this

initial work, we developed a densifier which minimises the

combinatorial Dirichlet integral (8). The so-called Dirichlet

densifier further exploits the link between densification and

Commute Times, and highlights the fact that densification leads

to a shrinkage of the inter-cluster distances, thus making Com-

mute Times meaningful in large graphs. This method increases

the edge density in undirected graphs, which are more suit-

able for estimating meaningful commute times by minimizing

the Cheeger constant (and thus the spectral gap). It is both a

more scalable and a more effective method than that based on

semidefinite programming (22), and it is completely unsuper-

vised. However, the relationship between densification and the

spectral gap constraint is not thoroughly explored.

To develop the mathematical machinery to study the relation-

ship in more depth, in this paper we commence by exploring

the link between: a) the Cheeger constant (6), b) the spectral

gap (10) and c) commute distances (26). In this regard, it is

well known that commute times suffer from the problem of

global information loss. More precisely, von Luxburg et al. (24)

showed that commute times are diffused through a graph in such

a way that the local part of the diffusion (in the neighbourhood

of both the origin and destination nodes) dominates the global

one (inside the graph). Since this behaviour is consistent with

the preservation of bottlenecks, we establish a link with the

minimization of graph conductance Φ (or Cheeger constant).

Minimizing or constraining the graph conductance leads us to

constrain the spectral gap λ2, since λ2 ≤ 2Φ.

Based on our prior work, our working hypothesis in this pa-

per is that densification provides an effective way to obtain

more clustered subgraphs so that the commute times can be

shrunk for inter-cluster nodes. This allows a more effective esti-

mation of the intra-cluster distances, so that they cannot be con-

fused with larger inter-cluster distances. However to achieve

this goal in a controlled manner, we need tighter bounds for

commute time estimation than that which relies on the usual

bound which is based on constraining the Cheeger constant and

thus the spectral gap.

The outline of this paper is as follows. We commence by

reviewing our earlier Dirichlet densification algorithm, which

typically doubles the number of edges with respect to the origi-

nal graphs. We then analyze von Luxburg et al.’s bound, which

relies on the spectral gap (and Cheeger constant) and presents

some practical limitations. This observation motivates a more

detailed analysis, and this allows us to introduce a novel bound

for commute time estimations which we refer to as scaled ef-

fective resistance estimation which we study in depth.

2. Contributions

In this paper, we characterize the universal bounds of our

Dirichlet Densifiers (upper and lower bounds), studying the im-

pact of the densification in the bounding of intra-class node

similarities. To commence in Section 3 we review our up-

dated Dirichlet Densifier algorithm. In Section 4, we derive

a new bound for commute time estimation. This bound does

not rely on the spectral gap but on graph densification (or graph

rewiring). Firstly, we explain how our densifier works and we

motivate the bound by showing that implicitly constraining the

spectral gap through graph densification cannot fully explain

some estimation effects in real-world datasets. We present dif-

ferent experiments which compare the densifications their cor-

responding spectral gaps for several datasets. Then, we present

and analyse our hypothesis concerning densification: if our

densifier can deal with a moderate degradation of the spectral

gap, then this is due to the fact that the inter-cluster commute

distances are significantly shrunk. This points to a more de-

tailed bound which explicitly accounts for the shrinking effect

of densification. Finally, we formally develop this bound, thus

uncovering the deeper implications of graph densification in

commute time estimation, and to lead to a change of concept

in densification. We present our conclusions in Section 5.

3. Dirichlet Densifiers

In (13) we develop a novel densifier, which infers new intra-

class edges while minimizing the number of new inter-class
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edges. To this end, we proceed to design a structural filter, using

Return Random Walks (RRW), and then we build the line graph

and run a Dirichlet process on it. Our algorithm is updated,

showing that the RRWs implement a weighted diffusion pro-

cess, and this process minimizes the probability that a random

walk starting and ending at a given node traverses the inter-

class links. The resulting weighting matrix W ′ is denser and

more clustered than that associated with the input graph. The

so called Dirichlet approach consists of the following steps:

1. Generate a Knn-graph: Given a data set χ =

{~x1, ..., ~xn} ⊂ R
d, we map the ~xi to the vertices V of

an undirected weighted graph G(V, E,W) with Wi j =

e−||~xi−~x j ||
2/σ2

and (i, j) ∈ E if Wi j > 0 and j ∈ Nk(i).

2. Apply Return Random Walk algorithm: Given G =

(V, E,W) reformulate W in terms of W ′ so that

W ′i j = max
k

max
∀l,k
{pvk

(v j|vi)pvl
(vi|v j)} , (1)

where pvk
(v j|vi) =

WikWk j

d(vi)d(v j)
, pvl

(vi|v j) =
W jlWli

d(v j)d(vi)
(go and re-

turn probabilities, respectively) and d(.) is the degree func-

tion. Therefore, W ′
i j

relies on maximizing the probability

that a random walk goes from i to j through l and then re-

turns through a different vertex k. This strategy minimizes

the weight of spurious inter-class links. Our strategy in-

cludes a filtering of W ′ to reduce inter-class noise, con-

sidering the relationship between the shortest path and the

sum of different weights of the algorithm.

3. High-level Edge Selection: Given G′ = (V, E,W ′), select

the highest weighted edges E′′ ⊂ E, with |E”| ≪ |E| as

follows:

a) S = sort(E,W ′e, descend).

b) S′ = S ∼ {e ∈ S : W ′e < δ1} where δ1 is set so that

|S′| = α|S|.

4. Construct the Line Graph Given G′′ = (V,S′,W ′) gen-

erate the corresponding graph as follows:

Line = (S′, LineE , LineW )

where

a) The nodes of ei ∈ Line are the edges in S′.

b) The weight function LineW is defined as follows:

LineW (ea, eb) =

|E”|∑

k=1

pek
(eb|ea)pek

(ea|eb) , (2)

i.e. we use go and return probabilities.

c) LineE = {(ea, eb) : LineW (ea, eb) > 0}

5. Dirichlet Densification Process: Given the Line graph,

we proceed as follows:

a) SB = sort(S′, LineW , descend).

b) SB′ = SB ∼ {e ∈ LineE : LineW < δ2} where δ2 is

set so that |SB′| = β|SB|.
c) Consider SB′ as the boundary B (known labels) of

a Dirichlet process driven by the Laplacian LineL =

LineD − LineW . Then, finding an harmonic function,

i.e. a function u(.) satisfying ∇2u = 0 consists of

minimizing:

DLine[u] =
1

2
uT LineLu (3)

where u = [uB, uI] and LineL are re-ordered so that

the boundary nodes (edges in Line) come first. Then,

minimizing DLine[u] with respect to uI leads to the

labels of the unknown nodes (edges in Line) uI as

the solutions to the following linear system:

LIuI = −KT uB , (4)

where the uB are all set to the unit, LI is the sub-

Laplacian of LineL for the nodes uI , and K is a

|SB
′
| × |SB

′
| block of the re-ordered Laplacian.

6. Relabelling: We relabel the edges in the original graph

with the information coming from the Dirichlet process in

the line graph, since there is a bijection between the nodes

in the line graph and the edges in the original graph.

4. Understanding Dirichlet Densifiers Bounds

After reviewing the Dirichlet densification algorithm, which

typically doubles the number of edges with respect to the orig-

inal graph, we want to determinate a new bound for Commute

Time estimation. This bound does not rely on the spectral gap

but on Graph Densification (or graph rewiring). Firstly, we

motivate the bound by showing that implicitly constraining the

spectral gap through Graph Densification cannot fully explain

some estimations in real datasets, where graphs with an impor-

tant degradation of the spectral gap are better densified. Then,

we set our working hypothesis: if densification can deal with

a small/moderate degradation of the spectral gap, this is due to

the fact that inter-cluster commute distances are considerably

shrunk (these values are in a shrinking range). This suggests a

more detailed bound which explicitly accounts for the shrinking

effect of densification. Finally, we formally develop this bound,

thus uncovering the deep implications of Graph Densification

in Commute Times estimation.

Moreover, we can interpret the graph G = (V, E,W) as a resistor

networks, where the resistance of an edge e = (i, j) is defined

as re = 1/Wi j, i.e. the weights Wi j define the conductance of

the edges. To define the Commute Times estimation, we need

the concept of effective resistance Ri j (24) (23). In general, we

have Ri j , ri j even if i and j are linked by an edge. Concep-

tually, the effective resistance is more global and encodes the

resistance of the graph as a whole if we inject a unit current into

i and it diffuses until reaching j. We can see effective resistance

as current or electrical flow, which can be seen as a scaled Com-

mute Times since CTi j = vol(G)Ri j. This link characterizes the

diffusive nature of Commute Times, however CTs are globally

meaningless, unless we re-scale or re-define them (1) (25).

4.1. The von Luxburg et al. bound and Cheeger constant

Given a connected graph G = (V, E) that is not bipartite, we

can define the following bound derived by the approach of von

Luxburg et al. (24):
∣
∣
∣
∣
∣
∣

1

vol(G)
CTst −

(

1

ds

+
1

dt

)∣
∣
∣
∣
∣
∣
≤ 2

(

1

λ2

+ 2

)

wmax

d2
min

(5)

where CTst = Rstvol(G) is the commute time between the nodes

s and t, Rst is the effective resistance, vol(G) is the volume of

the graph, λ2 is the spectral gap and dmin is the minimum node
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degree in G. The spectral gap λ2 is the second eigenvalue of

the normalized graph Laplacian L = I − D−1W where D =

diag(d1, . . . , dn) is the degree matrix and W is the (symmetric)

weighted adjacency matrix, with wi j > 0 if (i, j) ∈ E. Then

wmax is the maximal affinity.

The above equation explains why commute times are mean-

ingless in large graphs. These graphs tend to have large spectral

gaps due to the existence of inter-cluster links (noise). As a re-

sult, we have Rst ≈
1
ds
+ 1

dt
, i.e. commute times only depend

on their local degrees and not the path between them. Conse-

quently they are meaningless for measuring distances between

nodes in large graphs.

Conversely, a way of making Rst ≈
1
ds
+ 1

dt
diverge (and

thus make commute times meaningful) is to reweight/rewire

the edges in E so that λ2 → 0. This task is partially due to

graph densification, which implicitly constrains the spectral gap

as much as possible.

The existence of a small bottleneck is also compatible with

the minimization of the graph conductance or Cheeger constant

Φ (6):

Φ , min
S⊆V

cut(S )

min(vol(S ), vol(S̄ ))
, (6)

then, we have the following upper bound for λ2:

λ2 ≤ 2Φ, (7)

where Φ is the Cheeger constant. This bound suggests that the

spectral gap λ2 is minimized when: a) the cut is minimized,

and b) min(vol(S ), vol(S )) is as large as possible. It is well

known that for two cliques of size n linked by r edges, we have

Φ = r
n(n−1)

, i.e. limn→∞Φ = 0. However, if r = n we need

larger cliques for constraining the spectral gap. This rationale

opens the door to modify the set of edges E, by adding and/or

reweighting edges so that min(vol(S ), vol(S )) is maximized for

all S ⊂ V . However, we must take into account the fact that the

Cheeger constant relies on the worst case.

Our preliminary experiments show that Dirichlet densifiers

(algorithm described in Section 2) lead to improve the Ad-

justed Rand Index (ARI) obtained from commute times after

densification in a variety of datasets (NIST1, COIL-202 and

FlickrLOGOs-32 3.

To motivate our discussion, in Tables 1, 2 and 3 we show the

ARIs obtained for the NIST, COIL and LOGO datasets in sev-

eral scenarios. Each scenario is characterized by: (i) a value k

for building the k-NN, (ii) the fraction |E”| of dominating edges

chosen for building the line graph, and (iii) the fraction of dom-

inating |EB| edges chosen as seeds for the harmonic analysis

(Dirichlet process). In all scenarios, the ARIs before densify-

ing the datasets is below 70%, 90% and 62% in NIST, COIL

and LOGO datasets respectively (decreases as k increases). The

question addressed by densification is whether this performance

can be improved by rewiring/densifying the similarity graphs.

Our analysis shows that for a small fraction of |E”| (typically

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
3http://www.multimedia-computing.de/flickrlogos/

0.35 in all of our datasets) and a tiny fraction of |EB| (around

0.05), densification significantly improves the commute times

of the input graphs (best result in NIST, COIL and LOGO are

74.4%, 95.44% and 62.96%, respectively).

A detailed interpretation of the above ARIs leads us to eval-

uate the bound in Eq. 5 from the perspective of the spectral

gap λ2. In other words, we want to quantify the real effect of

constraining the spectral gap on improving the commute time

estimates. In Tables 4, 5 and 6, we show the spectral gaps

for each of the scenarios, corresponding to the previous tables.

As expected, the larger the spectral gap the poorer the per-

formance. We remove from the analysis disconnected graphs

(λ2 = 0) arising when k = 15 since they are not accommo-

dated by the bound. However, as k increases (k = 25, k = 35),

we find some anomalies. In some densified graphs with larger

spectral gaps we get better ARI’s than for the corresponding

un-densified graph (especially for optimal configurations).

Table 1. NIST: Adjusted Rand Index for different thresholds and number

of k

kNN 15 kNN 25 kNN 35

EB

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

E
′′

0.05 37.3 41.88 40.62 57.23 54.33 52.26 27.12 30.88 43.49

0.15 66.9 63.52 61.64 70.87 70.84 57.65 69.51 68.54 67.42

0.25 71.78 69.15 65.01 71.05 70.4 70.21 69.95 71.6 70.51

0.35 74.4 71.06 70.08 71.02 71.51 70.42 70.55 71.23 70.49

No dense 69.25 65.62 63.74

Table 2. COIL: Adjusted Rand Index for different thresholds and number

of k

kNN 15 kNN 25 kNN 35

EB

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

E
′′

0.05 55.17 57.99 33.51 54.31 51.03 30.94 72.66 71.68 67.85

0.15 73.16 72.04 72.69 63.33 64.26 74.11 90.96 84.57 71.13

0.25 93.69 83.68 82.98 92.09 91.09 64.32 91.01 91.99 90.27

0.35 95.44 94.54 83.01 92.41 92.81 90.55 90.53 91.01 92.11

No dense 89.75 89.65 85.42

The above results suggest that von Luxburg et al.’s bound

(Eq. 5) does not fully characterize the real effect of densifica-

tion. Our working hypothesis is that constraining the spectral

gap (and Cheeger constant) is only part of the process of re-

estimating commute times for mid-size/large-size graphs. Of

course, the spectral gap has to be kept as small as possible for a

reliable estimation of commute times. However, this becomes

more and more difficult as k grows due to the appearance of

inter-cluster links. Thus, if densification can deal with a small

to moderate degradation of the spectral gap, and this is due to

the fact that inter-cluster commute distances are exhibited sig-
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Table 3. LOGO dataset: Adjusted Rand Index for different thresholds and

number of k

kNN 15 kNN 25 kNN 35

EB

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

E
′′

0.05 20.21 18.11 22.56 45.59 42.99 40.2 19.94 14.01 16.69

0.15 60.55 58.81 56.03 57.68 47.21 48.71 52.77 14.43 51.54

0.25 61.77 60.58 59.81 59.24 59.21 47.56 54.65 53.33 53.29

0.35 62.96 61.75 61.39 60.65 59.7 58.73 57.23 55.11 53.71

No dense 61.92 59.82 54.11

nificant shrinkage. This suggests that a more detailed bound is

needed which can explicitly account for the effect of densifica-

tion.

4.2. The proposed bound

Given a graph G = (V, E) and two nodes s, t ∈ V , the com-

mute times CTst is the expected time it takes a random walk to

travel from s to t and back (11)(20)(27). The diffusive nature

of commute times is characterized by the link with resistance

distance Rst =
1

vol(G)
CTst, for which the effective resistance is

Rst , arg min
f

∑

e∈E

re|fe|
p , (8)

with p = 2, and f , {fe}e∈E is the unit flow from s to t. In

other words, we inject a unit current at s, extract it at t and

observe the flow traced across the edges e ∈ E. Unit flows have

two interesting properties: a) they are quite scattered along the

edges (even in moderate size graphs), and b) the bulk of their

magnitude is confined to the neighbourhood of both s and t.

Effective resistances also satisfy the Rayleigh monotonicity

principle: given G with adjacency/similarity matrix W, let G′

with adjacency/similarity W ′ which is identical to W except for

the increase in the weight of one arbitrary edge (i, j), so that

W ′
i j
= Wi j + δ. Then, for arbitrary vertices s and t, we have

RG(s, t) ≥ RG′ (s, t) , (9)

i.e. introducing new edges (or reweighting them incrementally)

does not increase the effective resistance between any pair of

nodes s and t in the graph. Thus, in order to quantify the effect

of densification in bounding the effective resistance, we will

exploit this principle as follows.

4.3. Upper bound

Let G = (V, E) be an undirected and unweighted graph (re =

1 for e ∈ E), with n = |V | and average degree τ = Θ(d). Given

any pair of nodes, s and t, let f , {fe}e∈E be any unit flow

between these nodes, and f∗ , {f∗e }e∈E the minimal flow that

represents the effective resistance RG(s, t) =
∑

e∈E |f
∗
e |

2. As a

result: RG(s, t) ≤
∑

e∈E |fe|
2. Consequently, we will obtain a

compacted upper bound for RG(s, t) (as in (1)) and then we will

show that when G is densified, leading to the new graph H =

(V, E′) with E ⊂ E′, the bound connected with RH(s, t) is even

tighter.

The flow f , {fe}e∈E is constructed as follows:

1) Start at s by injecting a unit flow. The local flow trans-

mitted to any of the N1 neighbours of s is 1/ds. Their

contribution to f is 1/ds.

2) The flow must be unitary (input flow equal to output flow

for each node, until arriving to destination t). Thus, any

of the N2 neighbours of N1 must diffuse a flow 1/(N2ds).

Then, let S be the number of layers with successive neigh-

bours N1,N2, . . . ,NS . Since Nk = τk, we have that, if any

neighbour diffuses 1/Nk then

RG(s, t) ≤
1

ds

+
1

τ2

S∑

k=1

1

k
. (10)

The value of S depends on the graph and it is not constant

but for balanced trees (see Figure 1 for more clarity). Thus,

the bound in Eq. 10 is an upper bound derived from setting

S as the maximum reachable neighbourhood according to

unitary diffusion. This indicates that there exists a sym-

metric process starting from the destination node t. With-

out loss of generality (for the definition of a bound), we

can assume that this symmetric process has also S layers.

Then:

RG(s, t) ≤
1

ds

+
1

dt

+ 2
1

τ2

S∑

k=1

1

k
. (11)

3) Finally, to have a unit flow, we must link the two last layers

(the one coming from s and that coming from t) through

some of the existing edges between the nodes of these fi-

nals layers so that only a flow of 1/NS per node is trans-

ferred in order to ensure unitarity. Then:

RG(s, t) ≤
1

ds

+
1

dt

+ 2
1

τ2

S∑

k=1

1

k
+

1

τ2
·

1

S
(12)

At this point, it is unclear what happens after densification.

To resolve this question, we can characterise it as a process that

modifies the average degree, τ to give a revised value qτ. In

particular, Dirichlet densifiers operate with q = 2 (two transitive

edges are linked by an additional one). For a densified graph

H obtained using a Dirichlet process, the bound in 12 can be

reformulated as

RH(s, t) ≤
1

ds

+
1

dt

+
1

2τ2

S∑

k=1

1

k
+

1

4τ2
·

1

S
, (13)

which reduces the bound for G by a factor of at least 1/4 of the

flow propagated through the S layers in one direction (either

from s to t or viceversa).
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Table 4. NIST: Spectral gaps for different thresholds and number of k

kNN 15 kNN 25 kNN 35

EB

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

E
′′

0.05 0.0 0.0 0.0 0.0209 0.0251 1.9561 0.0498 0.0478 0.0395

0.15 0.0049 0.0 0.0 0.0310 0.0275 0.0233 0.0778 0.0714 0.0630

0.25 0.0097 0.0 0.0 0.0446 0.0356 0.0290 0.1043 0.0899 0.0732

0.35 0.0176 0.0130 0.0073 0.0632 0.0478 0.0323 0.1337 0.1120 0.0865

No dense 0.0192 0.0481 0.0775

Table 5. COIL: Spectral gaps for different thresholds and number of k

kNN 15 kNN 25 kNN 35

EB

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

E
′′

0.05 0.0 0.0 0.0 0 0 0 0 0 1.974

0.15 0 0 0 0.0383 0.0006 0.0009 0.0085 0.0001 1.8446

0.25 0.0738 0.0575 0.0342 0.0033 0.0017 0.0076 0.0184 0.0136 0.0069

0.35 0.0962 0.0706 0.0542 0.0022 0.0007 0.0054 0.0004 0.0065 0.0043

No dense 0.0029 0.0022 0.0004

4.4. Lower bound

We now turn our attention to the lower bound, RG(s, t), mak-

ing use of the Rayleigh principle to construct a graph G′ as

follows (see also (1)(11)).

Graph G′ is a linear contracted graph following the line con-

necting any pair of nodes s and t. We start with node s and

add different edges of resistance 0 between all the neighbours

of s and merge all these nodes in a single node N1, and these

edges form a slice as we can see in Fig 1 (top-left, in orange).

We iterate this process for nodes N2, . . . ,NS where E j are the

edges associated with the slice between N j and N j+1 (top-right

and bottom-left). To end we add a final slice between NS and t.

This construction is useful because it is ideal for a lower bound

since removing edges in the original graph increases the effec-

tive resistance, and the flow between N j and N j+1 is always uni-

tary (bottom-right). Moreover, the edges E j lead to an inverse

parallel resistance according to the law 1/r = 1/r1 + 1/r2.

More precisely, we can formulate the lower bound as follows:

RG′ (s, t) =
∑

e∈E

i2e =
1

ds

+

S∑

j=0

E j∑

k=1

i2k +
1

dt

, (14)

According to the generalized mean inequality we have:

E j∑

k=1

i2k ≥

S∑

j=0

1

E j





E j∑

k=1

ik





︸  ︷︷  ︸

1

=

S∑

j=0

1

E j

,

For this reason, since G′ has fewer edges than G, then

RG′ (s, t) ≥ RG′ (s, t) and we have the following bound for a un-

densified graph:

RG(s, t) ≥
1

ds

+
1

dt

+

S∑

j=0

1

E j

≥
1

ds

+
1

dt

+
S − 1

Emax

, (15)

where Emax the maximal number of edges in a slice.

4.5. The proposed bound

With the above obtained bounds, for a densified graph H we

have the following bounds (lower and upper) for any effective

resistance:

Rapp+
1

2
·
S − 1

Emax

≤ RH(s, t) ≤ Rapp+
1

2
·

1

τ2

S∑

k=1

1

k
+

1

4τ2
·
1

S
,(16)

where Rapp = 1/ds + 1/dt with respect to the same bound for

the not-densified graph G:

Rapp +
S − 1

Emax

≤ RG(s, t) ≤ Rapp + 2
1

τ2

S∑

k=1

1

k
+

1

τ2
·

1

S
,(17)

Summarizing, we have shown that the Dirichlet densification

significantly reduces (by a half, 1/2) the lower bound and also

reduces by a quarter (1/4) the upper bound associated with un-

densified graphs. This is because of q = 2 for Dirichlet den-

sifiers. Moreover, since the Dirichlet process minimizes inter-

cluster links, we have that the commute time shrinkage is con-

fined to intra-cluster nodes. This leads to the best values of

the Adjusted Rand Index after commute times are estimated in

densified graphs.
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Table 6. LOGO: Spectral gaps for different thresholds and number of k

kNN 15 kNN 25 kNN 35

EB

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

E
′′

0.05 0 0 0 0 0 0 0 0 0

0.15 0.0091 0.009 2 1.9054 1.9054 1.9054 0.0535 0.0501 0.04

0.25 0.013 0.0095 0.0085 0.039 0.039 0.039 0.1099 0.0974 0.0749

0.35 0.014 0.0133 0.0089 0.0574 0.05 0.0356 0.1497 0.1356 0.1018

No dense 0.011 0.0481 0.0311

s t
1/2

1/2

1

N1

1/2

1/2

s t
1/2

1/2

1

N1

1/2

1/2

N2

1/4

1/4

1/4

1/4

1/2

1/4

1/4

s
t1/2

1/2

1

N1

1/2

1/2

N2

1/4

1/4

1/4

1/4

1/2

1/4

1/4

N3

1/4

1/4

1/8

1/8

1/8

1/8

1/4

1/4

3/8

3/8

s t
1/2

1/2

1

N1

1/2

1/2

N2

1/4

1/4

1/4

1/4

1/2

1/4

1/4

N3

1/4

1/4

1/8

1/8

1/8

1/8

1/4

1/4

3/8

3/8

1/8

1/8

3/16

3/16

3/16

3/16

5/16

5/16

3/8

N4

5/16

5/16

3/16

3/16
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1
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Fig. 1. Toy example of sub-optimal unit flows for bounding. From Top to

bottom and left to right, we show the unit flow between nodes s and t with

the layers (upper bound) in orange. Inter-layer links are in black. In this

example there are S = 3 + 2 layers.

4.6. Results in densification

Once we have studied the limitations or bounds before and

after Dirichlet densification, we resume the link between gap

spectral and Cheeger constant (see Equation 7) with respect to

the constraining of the spectral gap through two ways: i) reduc-

ing the number of inter-class edges, and ii) adding intra-class

edges. This hypothesis is confirmed by our preliminary ex-

periments and the defined bounds indicate that the inter-class

commute distances are affected more by shrinkage after densi-

fication. We can be also improve the results by increasing the

number of intra-class edges. We test the bounds as follows: we

randomly add a few new intra-class edges for one class of the

NIST dataset. We obtain a better result (74.92%) with respect

to the original densification (72.52%), by only increasing the

global density of the input graph by 0.03%.

5. Discussion and Conclusion

In this paper we have defined new theoretical bounds for

the effective resistance in densified graphs, experimentally an-

alyzing the impact of graph densification in bounding effective

resistances (in other words, scaled commute times). We con-

tribute a novel bound, which is more detailed in its predictions

than simply relying on the spectral gap λ2. Although the spec-

tral gap is linked with the edge density of the graph (it is up-

per bounded by the Cheeger constant), the analysis based on λ2

only addresses the ratio between the smallest cut and the graph

density. However, the re-formulation of von Luxburg et al.’s

bound requires us to estimate the impact of densification on the

shrinkage of the inter-cluster commute distances, thus leading

to better estimates than those provided by the original graph.

As a result, we prove that for our Dirichlet densification, the

lower bound for CTs reduces significantly (1/2) the CTs bound

compared to that for un-densified graphs, while the upper bound

gives a reduction of 1/4 of the CTs bound for un-densified

graphs. This means that we can better discriminate between

the distributions of intra-class and inter-class commute times

in densified graphs. Moreover, since the Dirichlet procedure

minimizes the number of inter-cluster links, we have that the

shrinkage of commute distances is confined to the intra-cluster

nodes. This leads to the best ARIs (Adjusted Rand Indices)

after commute times are estimated in densified graphs. This

fully explains our experiments with real-world datasets. These

bounds have not changed with respect to our previous works,

but through this paper we can demonstrate that they are a useful

tool to understand the benefits of our Dirichlet Densification.

Our formal development of this bound reveals important im-

plications for graph densification in commute times estimation.

In particular the bounds open the possibility of densification be-

yond simply increasing the volume of the graph. It thus allows

to achieve less dense graphs with better estimates of the com-

mute time due to the fact that the Dirichlet principle leads to

an intelligent (minimum energy) diffusion, whereas the spec-

tral gap is kept close to zero.

Densification is a different way of link prediction, and the

optimization criterion must be included in networks (e.g. im-

provement of the quality of different graphs through learning).

In future work, we are going to study these bounds in CNNs,

which have to filter structural noise as in image denoising.
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