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Abstract

We propose viscoelastic smoothed particle hydrodynamics (SPH) with extended

boundary conditions as a new method to model the extracellular matrix (ECM)

in contact with a migrating cell. By drop out of the inertial terms in the SPH

equations of motion, the new SPH formulation allows to solve problems in a

low Reynolds environment with a timestep independent of the particle spacing,

permitting to model processes at the cellular scale (i.e. µm-scale). The contact

mechanics between a cell and ECM is modeled based on an existing boundary

method in SPH that corrects for the well-known missing kernel support problem

in Fluid Structure Interactions (FSI). This boundary method is here extended

to allow the modeling of moving boundaries in contact with a viscoelastic solid.

To validate the method, simulations are performed of tractions applied to a

viscoelastic solid, Stokes flow around an array of square pillars, and indentation

of a viscoelastic material with a circular indenter. The potential of the method to

capture cell-ECM interactions is demonstrated by simulation of a self propelling

object that locally degrades the ECM by fluidizing it to permit migration. This
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should enable us to model and understand realistic cell-matrix interactions in

the future.

Keywords: smoothed particle hydrodynamics, boundary conditions,

viscoelastic, extracellular matrix, degradation, cell migration
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1. Introduction

Cell mechanics plays an important role in the regulation of many biologi-

cal processes. In processes such as morphogenesis, wound healing, cancer cell

migration and angiogenesis, the ability of cells to sense their environment and

to migrate is vital. Cells are surrounded by extracellular matrix (ECM), which

is an organized network of molecules secreted by the cells that provides among

other the structural support for the tissue. During migration, cells adhere to the

ECM, generate protrusive and contractile forces and degrade the ECM. At the

same time, the forces generated between the cell and its environment affect the

behavior of a cell through mechanotransduction, the mechanism by which cells

transform a mechanical stimulus into a chemical response. Therefore, a good

understanding of the forces applied by cells to other cells and the surrounding

ECM is vital in the study of many biological processes and pathologies.

In order to improve our understanding, computational models are being de-

veloped. A computational model of the ECM surrounding a cell should be able

to capture the characteristics of cell-ECM interactions, i.e. large deformations,

ECM degradation and the movement of cells through the ECM. Continuum

methods like finite element (FE) methods offer a possibility to model the me-

chanics of the ECM ([1, 2, 3, 4]), but might run into problems when large defor-

mations or material degradation are present, requiring complicated remeshing

procedures. Meshless particle based methods can be a valuable alternative here

because they can deal with large deformations ([5]), while at the same time

allowing a natural and efficient coupling with other particle methods such as

the discrete element methods which can realistically model cells as individual
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objects ([6, 7, 8]).

In this paper, smoothed particle hydrodynamics (SPH) is proposed as a

model for the ECM, in particular for homogeneous non-fibrillar matrices that

can be used for cell encapsulation culturing, like polysaccharides and polyethy-

lene glycol (PEG) gels. SPH is a meshless Lagrangian numerical method devel-

oped initially for the modeling of gas dynamics in astrophysical problems and

later used mainly for modeling of fluids [9, 10]. In SPH, a material is divided

into a set of discrete elements, called particles, for which the material properties

(e.g. mass, density, velocity and hydrostatic pressure) are described. By using a

smoothing kernel to approximate these properties for the next time step based

on information of the surrounding particles, the continuum laws of fluid and

solid mechanics are implemented in a discrete manner.

Recently, a method has been introduced for flow problems at low Reynolds

numbers that allows the use of a timestep which is orders of magnitude higher

than that in SPH. This higher time step is required to model cellular processes at

the time scale of hours to days. In this method, called non-inertial SPH (NSPH),

the low Reynolds number system is assumed to be overdamped. This permits to

neglect the inertial term and thereby the reduction of the problem to a first order

system from which velocities can be calculated directly [11]. NSPH has been

shown to reproduce the results obtained with SPH for a number of standard

fluid dynamics problems and for more complex problems like the movement of

a red blood cell in plasma, thus demonstrating the capabilities of this method.

Since cell mechanics takes place in low Reynolds number environments because

of the small length scale (i.e. µm-scale) [12], NSPH could provide a suitable

method to model ECM mechanics and degradation. In this paper we introduce

for the first time NSPH for viscoelastic solid behavior and compare its accuracy

with viscoelastic SPH [13, 14].

One of the most challenging parts of SPH is to treat boundary conditions

correctly. This difficulty comes from the fact that the SPH formulation is based

on the assumption that the smoothing kernel applied is completely occupied by

neighboring particles. However, particles close to a rigid boundary miss a part of
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the kernel support and therefore the error in calculating hydrostatic pressure and

deviatoric stress is largest for these particles. Since the cell-ECM boundary is

an important regulator for cell adhesion and force generation and since the force

and displacement fields near the cell-ECM boundary are most interesting from

a cellular mechanics point of view, an adequate treatment of these boundary

conditions is necessary. As has been outlined by Ferrand et al., various methods

have been used to implement boundary conditions of which repulsive forces and

fictitious particles are used most often [15]. Repulsive forces such as forces

based on the Lennard-Jones potential are very easy to implement, but often

lead to spurious effects due to the larger error that is made in calculation of

hydrostatic pressure near the boundary. The use of fictitious particles behind

a predefined boundary prevents this spurious behavior, but it is challenging

to position these particles for a boundary with a complex geometry, and the

situation is made worse for a moving and deforming boundary such as that

of cell. A better method to implement boundary conditions is the method

introduced by Kulasegaram et al. and further improved by Ferrand et al. in

which a correction is applied to the SPH formulation based on the missing

kernel area support near the boundary [15, 16]. This method however was only

implemented for the contact between a fluid and a stationary wall. Here, this

method is extended by introducing for the first time proper boundary conditions

for contact between (N)SPH models of a viscous fluid and a viscoelastic solid

on the one hand, and a stationary or moving boundary on the other hand.

We demonstrate that errors are introduced by this method when the material

approaches a boundary and propose a contact criterion to reduce these errors.

This paper is organized as follows. First we introduce the formulations for

nearly incompressible viscous fluid and viscoelastic solid behavior in 2D SPH and

NSPH. Then we introduce the extended method to model boundary conditions

between a viscoelastic solid and a rigid moving wall. We perform simulations

of cellular tractions applied through focal adhesions to a viscoelastic solid ma-

terial and compare the accuracy and stability of the viscoelastic NSPH method

with SPH, as well as with FE simulations that serve as a reference. In order to
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demonstrate the boundary method for both viscous fluid and viscoelastic solids,

we show the accuracy of the boundary method with a simulation of Stokes flow

around an array of rigid square pillars and a simulation of indentation of a vis-

coelastic solid with a rigid, yet moving circular indenter. For the latter again

results are compared to FE simulations. Finally, to illustrate the future capabil-

ities of the method, we run simulations of a simplified cell-ECM interaction and

migration process, whereby a cell (modeled as a rigid, self propelling object)

locally degrades a viscoelastic ECM and applies forces to it in order to be able

to move through it.

2. Methods

2.1. Basic SPH formulation

In SPH a material is represented as a set of mass points called particles that

carry properties as density, pressure and velocity. The information of neighbor-

ing particles j is used to approximate function values Ai and their derivatives

∇iAi at a specific particle i by discretized convolution with a smoothing kernel

W :

〈Ai (r)〉 ≡
∑

j

mj

Aj

ρj
W (| rij |, h) (1)

and

〈∇iAi (r)〉 ≡
∑

j

mj

Aj

ρj
∇iW (| rij |, h) , (2)

with Aj , mj and ρj the function value, mass and density of the neighbor-

ing particle j within the kernel support. The value of the smoothing kernel

Wij = W (| rij |, h) for particle j depends on the distance between both par-

ticles rij and the smoothing length h. The notation rij = ri − rj will also

be used in the same manner for other vectors later on. The derivative of the

smoothing kernel ∇iWij = ∇iW (| rij |, h) is used to approximate the deriva-

tive of the function value, with ∇i the gradient with respect to the coordinates

of particle i. Several interpolation kernels have been used before, of which the
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cubic spline, quintic spline and Wendland kernel (which has the advantage that

it prevents particle clustering) have been used frequently [17, 18]. These kernels

all decrease monotonically, are continuous, have a continuous derivative and

they have a finite, compact support.

2.2. Nearly incompressible Newtonian fluid

Eq. (1) and Eq. (2) are used to discretize the continuum laws of fluid and

solid mechanics [17]. The conservation of mass is implemented as:

dρi
dt

=
∑

j

mjvij ·∇iWij , (3)

with v the particle velocity. The conservation of momentum for a nearly incom-

pressible fluid is modeled as:

mi

dvv
i

dt
= F

p
i + F

v
i + F

b
i , (4)

with F
p
i the pressure forces, F v

i the viscous forces and F
b
i body forces. The

pressure forces include the effect of volume changes due to internal pressure:

F
p
i = −mi

∑

j

mj

(

pi

ρ2i
+
pj

ρ2j

)

∇iWij , (5)

with p the hydrostatic pressure. For the viscous forces multiple formulations

have been proposed before [17, 19]. Here, the formulation of Morris et al. will

be used [19]:

F
v
i = mi

∑

j

mj

µi + µj

ρiρj

rij ·∇iWij

| rij |2 +η2
vij , (6)

with µ the dynamic viscosity of the fluid and η = 0.01h2 a correction factor

that prevents singularity when particles approach each other.
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The equation of state that defines the relationship between pressure and

density of the particles is:

pi = p0 +K

(

(

ρi

ρ0

)ξ

− 1

)

, (7)

where ρ0 and p0 are the initial density and pressure and K =
ρ0c

2

ξ
is the bulk

modulus that depends on the speed of sound c. ξ is a dimensionless constant

that is set at 7 for fluids to obtain a nearly incompressible fluid, and is set at 1

for compressible solids [20].

2.3. Viscoelastic solid

The stress tensor σ for an elastic solid consists of the hydrostatic and devi-

atoric stress:

σ
αβ
i = −piδ

αβ + S
αβ
i , (8)

written in Einstein notation with respect to the coordinate indices α and β,

with δ denoting the Kronecker delta and S the deviatoric stress. In order to

model a viscoelastic solid the deviatoric stress is added to the pressure term of

the conservation of momentum in Eq. (5), in order to yield [13, 14]:

Fσ α
i = mi

∑

j

mj

(

σ
αβ
i

ρ2i
+
σ
αβ
j

ρ2j

)

∇
β
i Wij . (9)

The deviatoric stress according to Hooke’s law reads:

Sαβ = 2G

(

ǫαβ −
1

3
δαβǫγγ

)

, (10)

with G the shear modulus and ǫ the strain tensor. The Jaumann rate of change

of the deviatoric stress is then calculated by:

dSαβ
i

dt
= 2G

(

ǫ̇
αβ
i −

1

3
δγγ ǫ̇

αβ
i

)

+ S
αβ
i Ωβγ

i +Ωαγ
i S

γβ
i , (11)
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with ǫ̇ the strain rate tensor:

ǫ̇αβ =
1

2

(

∂vα

∂xβ
+
∂vβ

∂xα

)

(12)

and Ω the spin tensor:

Ωαβ =
1

2

(

∂vα

∂xβ
−
∂vβ

∂xα

)

. (13)

2.4. Viscoelastic NSPH

Processes at the cellular scale (i.e. µm-scale) occur at a very low Reynolds

number, meaning that the viscous forces dominate over the inertial forces leading

to an overdamped system. Overdamped systems are generally assumed in agent

based models of cells [12]. This means that the inertial forces in the conservation

of momentum equation (4) can be omitted leading to the following equation for

NSPH:

−mi

∑

j

mj

µi + µj

ρiρj

rij ·∇iWij

| rij |2 +η2
vij = mi

∑

j

mj

(

σi

ρ2i
+

σj

ρ2j

)

·∇iWij + F
b
i .

(14)

As Van Liedekerke et al. showed, we can rewrite the left hand side of this

equation by introducing a friction matrix Γ and by assuming that mi = mj

[11]:

∑

j

Γijvij =
∑

j

(

σiV
2
i + σjV

2
j

)

·∇iWij + F
b
i , (15)

with Vi =
mi

ρi
the particle volume and with the friction matrix:

Γij = (µi + µj)ViVj
rij ·∇iWij

| rij |2 +η2
. (16)

By solving this equation with a Conjugate Gradient Method [21], the velocities

of the particles are obtained instead of accelerations. Van Liedekerke et al.

demonstrated that NSPH is able to solve creeping flow problems with a time

step of up to three orders of magnitude higher than SPH [11].

8



2.5. Boundary Conditions

Contact between different materials (e.g. cell and ECM) generates bound-

aries. Because the material properties of SPH are smoothed out, treating bound-

ary conditions is one of the most challenging parts. Rigid boundaries of a ma-

terial or a fixed wall are smoothed out and particles at the edge lack neighbors,

leading to relatively high errors in the calculation of the density and deviatoric

stress. Since accurate boundary conditions are important in many simulations,

it is important to use an approach that minimizes these errors and provides the

correct physical behavior. In a method proposed by Kulasegaram et al. [16]

and later extended by Ferrand et al. [15] for the contact of a fluid with rigid

boundaries, a boundary is represented by a single line of particles connected by

line segments and wall boundary conditions are applied by renormalizing the

conservation laws to correct for the missing part of the kernel volume behind

the boundary. Here, this method is extended to allow to model contact between

a moving rigid boundary and a viscous fluid or a viscoelastic solid modeled by

NSPH. A contact criterion is added to prevent overestimation of the hydrostatic

pressure and deviatoric stress at the interface when a material is approaching a

boundary.

2.5.1. Renormalization factor

For particles close to a rigid boundary which consists of a single line of parti-

cles, the assumption that the kernel support is completely filled with boundary

particles does not hold (see Fig. 1). This leads to an incorrect estimation of

property values for these particles. Kulasegaram et al. proposed to correct for

the missing kernel volume by renormalizing the equation for the approximation

of the density [16]:

ρi =
1

γi

∑

j∈M

mjWij , (17)
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with M the set of particles consisting of both the particles in the material as

well as on the boundary and with γi the renormalization factor:

γi =

∫

Ω
⋂

Ωi

W (r′ − ri) dV
′, (18)

with Ω the computational domain and Ωi the kernel support. This means that

γi will have a value of 1 for particles inside a material and a value between 0 and

1 for particles at the boundary. In SPH it is not the density that is calculated

in every time step, but the change in density with time. After introducing the

renormalization factor, the conservation of mass, calculated using the product

rule, becomes:

dρi
dt

=
1

γi

∑

j∈M

mjvij ·∇Wij −
ρi

γi
vi ·∇γi, (19)

assuming a static boundary and with the gradient of the renormalization factor:

∇γi =

∫

Ω
⋂

Ωi

∇iW (r′ − ri) dV
′ =

∫

∂Ω
⋂

Ωi

W (r′ − ri)ndS
′, (20)

where the surface integral is obtained using Gauss’s theorem and with ∂Ω the

boundary of Ω and n the inward normal at the boundary of the domain.

Figure 1: Illustration of the boundary situation in SPH. The boundary is represented by blue

particles and line segments. For a material particle i close to the boundary the kernel is not

completely filled and information from the hatched area is missing. The initial volume of the

boundary particles is calculated based on the angle θ between the connected line segments.
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As mentioned in [15], the initial volume of the boundary particles is defined

by the angle between the two line segments connected to the particle (see Fig.

1). This means that the initial volume is half the volume of particles in the

material for a boundary particle on a straight boundary and slightly larger for

particles on a circle as will be seen later on.

2.5.2. Calculating the renormalization factor and gradient of the renormaliza-

tion factor

Rigid boundaries are modeled as a single line of particles (called boundary

particles b), connected with lines which will be called segments z. For a material

particle, γ can now be obtained by summing over and calculating the kernel

volume behind these segments. An illustration of this process for one segment

is shown in Fig. 2. The renormalization factor is calculated as:

γi = 1−
∑

z∈Z

cos (α) lz

∫ 2h

rq

r

rq
W (r) dr. (21)

A quadrature rule is used to accurately calculate the kernel volume behind the

boundary. For each quadrature point q on line segment z (in the set Z contain-

ing all line segments) the integral is calculated analytically, with r the distance

to particle i, rq the distance between the quadrature point and the particle, lz

the length of the line segment and α the angle between the line from the particle

to the quadrature point and the normal vector to z (see Fig. 2).
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Figure 2: Renormalization factor calculation. Left: Top view. The kernel volume behind each

boundary segment z for a material particle i close to a boundary (dark dots and segments)

is calculated and summed to obtain the total missing kernel volume behind the boundary.

Right: Side view. Kernel value as function of the distance r to the particle. The missing

volume behind the boundary segment z is shown in orange.

The gradient of the renormalization factor is calculated as:

∇γi =
∑

z∈Z

∫

z

W (r)ndS, (22)

with the gradient of the renormalization factor for one specific segment as:

∇γiz =

(

∫ b2

b1

W (r) dl

)

nz, (23)

with b1 and b2 the boundary particles connected by the segment z and nz the

inward normal vector of segment z.

2.5.3. Renormalization of conservation laws

In Eq. 19, the adapted equation for the conservation of mass is shown in

the case of a rigid boundary. If the boundary is also allowed to move, the

conservation of mass becomes:

dρi
dt

=
1

γi

∑

j∈M

mjvij ·∇Wij −
ρi

γi

∑

z∈Z

viz ·∇γiz. (24)
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The equation of momentum is adapted in the same way as in [15], but now with

the full stress tensor σ instead of only the hydrostatic pressure:

F
σ
i =

mi

γi

∑

j∈M

mj

(

σi

ρ2i
+

σj

ρ2j

)

·∇Wij +
miρi

γi

∑

z∈Z

(

σi

ρ2i
+

σz

ρ2z

)

ρz.∇γiz (25)

The rate of change of the deviatoric stress is also renormalized and becomes:

dSαβ
i

dt
=

1

γi
2G

(

ǫ̇
αβ
i −

1

3
δγγ ǫ̇

αβ
i

)

+
1

γi
S
αβ
i Ωβγ

i +
1

γi
Ωαγ

i S
γβ
i −

S
αβ
i

γi

∑

z∈Z

viz ·∇γiz.

(26)

The term for the viscous forces according to Morris et al. [19] in the conser-

vation of momentum is adapted as in [22]:

F
v
i =

mi

γi

∑

j∈M

mj

µi + µj

ρiρj

rij ·∇iWij

| rij |2 +η2
vij −

mi

γiρi

∑

z∈Z

viz · tiz
δriz

tiz | ∇γiz | (27)

with tiz a unit vector along the tangential component of the velocity of particle

i with respect to segment z:

tiz =
viz − (viz · nz) · nz

| viz − (viz · nz) · nz |
(28)

and

δriz = max (riz · nz, dp) (29)

with dp the interparticle distance.

2.5.4. Setting properties for boundary particles and segments

In order to solve the equations in the sections above, the properties at the

boundary particles and boundary segments need to be computed. As was shown

by Ferrand et al. an SPH interpolation is used to calculate the density and hy-

drostatic pressure for the boundary particles assuming the boundary condition

13



∂ρ
∂n

= 0 with n the normal to the boundary [15]:

ρb =

∑

j∈M\B

mjWjb

∑

j∈M\B

mj

ρj
Wjb

, (30)

with B the set of all SPH boundary particles and

pb = ρb

∑

j∈M\B

mj

ρj

(

pj

ρj
− aj · rjb +

1

2
(vj − vb) · rjb

)

Wjb

∑

j∈M\B

mj

ρj
Wjb

, (31)

with aj the acceleration caused by the body forces F j . The deviatoric stress

tensor for the boundary particles is calculated similarly:

Sb = ρb

∑

j∈M\B

mj

ρj

Sj

ρj
Wjb

∑

j∈M\B

mj

ρj
Wjb

. (32)

The same properties are calculated for the boundary segments by taking the

average property values of the two boundary particles belonging to the respective

boundary segment.

2.5.5. Contact criterion

Since we are defining a discrete boundary in the smoothed SPH method,

errors in both density and deviatoric stress calculation are being made when a

material approaches a boundary. In order to ensure a correct estimation of the

hydrostatic pressure and deviatoric stress tensor when a material approaches

a boundary, a contact criterion is introduced as illustrated in Fig. 3. With

the introduced boundary renormalization method a material starts to build up

pressure and deviatoric stress as soon as it is within a distance equal to the kernel

width (generally chosen between 2 and 4 times the interparticle distance) from

the boundary. However, the pressure and deviatoric stress inside a material

are zero when all particles are at exactly one (preset) interparticle distance

away from their closest neighbors. Therefore, the pressure and deviatoric stress

14



should only start to build up when the material is within a distance equal to the

same interparticle distance from the boundary. We propose to add a contact

criterion that aims to reduce the error related to premature stress buildup. This

contact criterion discretizes the material-boundary interface which is normally

smoothed in SPH.

Contact between the material and the boundary is established when material

particles are within one interparticle distance of the boundary. When a particle

is in contact with the boundary, the interaction between the particle and the

boundary will be added to the conservation equations. From the moment that

a material particle is in contact with the boundary, hydrostatic pressure and

deviatoric stress should be built up not only in this particle, but also in the

material particles surrounding the particle in contact. However, particles at the

surface of the material next to the particle in contact that are not yet within

one interparticle distance from the boundary should not be considered to be in

contact with the boundary yet. Therefore, the contact criterion consist of two

steps. In the first step all particles that are within one interparticle distance

from the boundary are considered in contact and will be called “primary contact

particles” hereafter. In the second step all particles within the kernel support of

the primary contact particles that are not located at the surface of the material

are also considered in contact with the boundary and are called “secondary

contact particles”. In order to distinguish the secondary contact particles from

particles on the surface of the material a kernel support value is calculated for

each particle:

ψi =
∑

j∈M\B

mj

ρj
Wij , (33)

which will be approximately 1 for particles in a material and lower for particles

close to the surface of a material. A threshold value (here chosen to be 0.8) is

chosen above which particles are to be selected as secondary contact particles.

An illustration of the contact criterion is shown in Fig. 3.
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Figure 3: Various steps in defining contact using the contact criterion for a material in contact

with a circular indenter. (A) The distance between the material and the indenter is more than

one interparticle distance, thus no contact is established. (B1) The indenter comes within one

interparticle distance from 2 material particle. These particles are selected as “primary contact

particles” (shown in red). (B2) In a second step all particles within the kernel support of a

primary contact particle that are not located at the surface of the material are selected as

“secondary contact particles” (shown in yellow). (C) When the material is indented more

material particles come in contact with the indenter.

Since the total force that acts on a particle changes when it establishes con-

tact with the boundary, during simulations a particle may establish and lose

contact regularly. This means that a particle can move towards the boundary

when it is not in contact and move away from the boundary when it is in contact.

If in this fluctuating state of establishing and losing contact a particle moves

away from the boundary, the hydrostatic pressure of the particle will decrease.

However, if a particle that has lost contact moves back towards the bound-

ary, the hydrostatic pressure will not increase because no contact is established

with the boundary. Therefore, the hydrostatic pressure of the particle starts to

decrease without a net displacement of the particle relative to the boundary.

As this change in hydrostatic pressure (and deviatoric stress) is obviously not

physical, an additional rule is added to the contact criterion to prevent this.

Primary contact particles can only lose contact if they are at a distance from

the boundary which is slightly larger than the interparticle distance. In this

way the stability of the simulations is improved, without affecting too much the

accuracy of the hydrostatic pressure and deviatoric stress calculation.
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2.6. Time stepping

In every time step for NSPH properties are calculated in the order as indi-

cated in Fig. 4. ρ, S and particle position x are integrated using the explicit

Euler method.

calculate p (Eq. 7)

calculate γ and ∇γ (Eq. 21 and Eq. 22)

set properties of boundary parti-

cles and segments (Eq. 30, 31 and 32)

calculate forces and assemble friction matrix (Eq. 25 and Eq. 27)

obtain v by solving Eq. 15

calculate
dρ

dt
(Eq. 24) and

dS

dt
(Eq. 26)

integrate ρ, x and S

Figure 4: Diagram of all steps taken in a single time step in an (N)SPH simulation.

3. Results

In order to demonstrate the effectiveness and accuracy of the viscoelastic

NSPH method in combination with the extended boundary conditions, four

test simulations are performed: tractions applied through focal adhesions to a
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viscoelastic solid, Stokes flow around an array of rigid square pillars, indentation

with a rigid, yet moving, circular indenter of a viscoelastic solid and cell-ECM

interaction with cell migration through a viscoelastic ECM by local degradation.

In [11] it was demonstrated that for SPH the maximal time step ∆t is a

quadratic function of the kernel width:

∆t ≤ 0.125
h2ρ

µ
, (34)

with h the smoothing length, ρ the density and µ the dynamic viscosity of the

material. At the µm-scale, a huge number of calculation steps would be required

to even simulate a process at the timescale of seconds. Therefore, although cell

dynamics takes place at the µm-scale, for comparison between NSPH and SPH

simulations have been performed at a large length scale. For the simplified

model of cell migration in Section 3.4 only NSPH is used and simulations are

performed at µm-scale. The cubic spline kernel is used in simulations unless

stated otherwise. All simulations are performed using the C++ particle-based

software called Mpacts (http://dem-research-group.com).

3.1. Deformation of a viscoelastic solid by tractions applied through focal adhe-

sions

In a 2D square shaped viscoelastic solid (Young’s modulus E = 2.5Pa, Pois-

son’s ratio ν = 0.45 from which the bulk modulus K =
E

3 (1− 2ν)
and shear

modulus G =
E

2 (1 + ν)
are calculated, dynamic viscosity µ = 100Pa·s and ini-

tial density ρ0 = 1000 kg/m3) with side length L = 2m and particle spacing of

2.5×10-2 m on a cubic lattice (smoothing length h = 3.25×10-2 m) three circular

regions of radius 0.2m are selected. A body force of 6.25×10-4 N is applied in-

stantaneously to particles within these circles in a direction indicated in Fig. 5

to create a displacement field in the material. The square domain is surrounded

by stationary particles that function as a rigid boundary. Simulations have

been run until an end time of 1000 s for both SPH and NSPH, with a time step

of 2.5×10-4 s for SPH and 10 s for NSPH simulations. The material displaces
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with a maximal velocity of 5.0×10-4 m/s and hence the Reynolds number equals

Re = 0.01 (Re =
ρvL

µ
, with the initial density ρ = 1000 kg/m3, the maximal

velocity v = 5.0×10-4 m/s, the characteristic length scale L = 2m and the

dynamic viscosity µ = 100Pa·s).

Figure 5: Particle representation of a viscoelastic solid with selected circular patches to which

body forces are applied in the indicated direction. Displacement profiles shown in Fig. 7 are

taken from particles on the horizontal (x) and vertical (y) line.

A comparison is made between SPH, NSPH and a FE simulation serving as

a reference for both the equilibrium (i.e. elastic) solution as well as the transient

response. For the FE simulation Abaqus V6.14 is used with biquadratic plane

strain quadrilateral elements with a grid size fine enough to ensure convergence

(element edge length ranging from 0.015m to 0.067m). The viscoelastic solid

is simulated as a Kelvin-Voigt material for which the Prony series parameters

are obtained as explained in Appendix A.

Displacement fields at equilibrium for FE, SPH and NSPH are shown in

Fig. 6. Although viscoelastic NSPH requires only 100 time steps, the resulting

displacement is equal to that obtained with viscoelastic SPH and agrees very well

with the FE simulation with a relative error of 0.38% for the peak displacement.

Next, displacement profiles are taken at different time points in the SPH, NSPH

and FE simulation along the x- and y-axis (see Fig. 5). Displacement profiles

at equilibrium (1000 s) show very good resemblance between SPH, NSPH and
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FE. Moreover, the SPH, NSPH and FE profiles evolve similarly in time, with

only small differences at the first time step (after 10 s). This demonstrates that

viscoelastic NSPH can capture the viscoelastic behavior of a solid with the same

accuracy as both SPH and FE.

Figure 6: Total displacement magnitudes at equilibrium for circular patches of body forces

(see Fig. 5) calculated by means of FE (top), SPH (bottom left) and NSPH (bottom right).
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Figure 7: Displacement profiles for circular patches of body forces taken from particles on

the horizontal and vertical line (see Fig. 5) at different time points for FE, SPH and NSPH.

Profiles show either the displacement of particles in x-direction (dx) or in y-direction (dy).

Profiles are obtained after 10 (2), 50 (A), 100 (+), 200 (⋄), 500 (◦) and 1000 s (×) of the

simulations, with 1000 s being equal to 4×106 steps for SPH and 100 steps for NSPH.

3.2. Fluid flow around an array of square pillars

Fluid flow around an array of square pillars is simulated by placing a rigid,

stationary 2D square pillar with a side length of 4.0×10-3 m in a 2D square fluid

domain (µ = 5×10-2 Pa·s, K = 2Pa and ρ0 = 1000 kg/m3) domain with side

length 10-2 m. In y-direction stationary particles are used as a rigid boundary.

In x-direction periodic boundaries are imposed and implemented using ghost

particles, leading to the simulation of fluid flow around an array of square pillars.
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Figure 8: Particle system of flow around an array of square pillars either filled up completely

with rigid particles (left) or represented by the extended boundary method (right). The

fluid (blue) is constrained in y-direction by non moving boundary particles and in x-direction

periodic boundary conditions are applied. Velocity profiles are obtained for particles initially

located on the vertical (y) red line.

A particle spacing of 1×10-4 m on a cubic lattice (h = 1.3×10-4 m) is used

and a body force of 2.2 nN is applied to all fluid particles, resulting in a steady

state velocity distribution in the fluid with Re = 2×10-4. Simulations have

been performed with the square pillar being either filled up completely with

rigid particles or represented by the extended boundary method for both SPH

and NSPH. The contact criterion is not used here since the fluid is already in

contact with the boundary. A time step of 5×10-5 s for SPH and 2×10-3 s for

NSPH simulations is used. The velocity profiles along the y-axis (see Fig. 8)

are shown in Fig. 9 at various time steps for NSPH and at steady state for

SPH. For NSPH, as was observed for a similar simulation in [11], a steady state

flow is reached within 10 time steps and is in close agreement with the steady

state solution obtained for SPH after 10000 time steps. The relative difference

in peak velocity between NSPH after 20 time steps and SPH after 10000 time

steps in the simulation with extended boundary method is 0.30%. Further, the

velocity profiles for both boundary methods for SPH as well as NSPH agree

very well, demonstrating that coupling of NSPH with the extended boundary
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method works well for the interaction of a rigid, stationary boundary with a

fluid.

Figure 9: Velocity profiles for flow around an array of square pillars. Fluid velocity in x-

direction for particles initially on the y-axis (see Fig. 8) is shown for SPH as well as NSPH

for a pillar filled with rigid particles (left) and a pillar represented by the extended boundary

method (right). Profiles are shown at different steps n for NSPH and at steady state (n=10000)

for SPH.

3.3. Indentation of a viscoelastic solid with a circular indenter

Indentation of a viscoelastic solid with a rigid, yet moving indenter (ra-

dius 0.4m) is simulated by indenting a 2D square shaped viscoelastic solid

(E = 2.5Pa, ν =0.45, µ= 100Pa·s and ρ0 = 1000 kg/m3) with a side length L =1

m and particle spacing of 2.5×10-2 m on a hexagonal lattice (h = 3.25×10-2 m).

The square domain is supported at the bottom by stationary particles that

serve as a rigid boundary. The indenter is modeled with the extended boundary

method and is considered as a rigid body that can translate, but not rotate or

deform. A force of 0.2 N is applied to the indenter and simulations are run for

2000 s with Re = 0.01. For a reference elastic FE simulation, the grid size is

taken equal to the interparticle distance of the (N)SPH simulations and a no

slip condition is used for the contact between indenter and material.
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Figure 10: Hydrostatic pressure p (left) and von Mises stress distribution σVM (right) at

equilibrium for indentation of a viscoelastic solid with a circular indenter modeled by means

of NSPH without the use of a contact criterion. The indenter is initially positioned at a

distance from the material equal to either one (top) or three (bottom) times the interparticle

distance.

First, two NSPH simulations are performed without use of the contact cri-

terion described in Section 2.5.5. The results of these simulations are shown

in Fig. 10 for an indenter initially positioned at a distance from the material

equal to either one or three times the interparticle distance. For both simu-

lations spurious effects arise that are not observed for FE (see Fig. 11). For

the indenter initially positioned at one interparticle distance from the material,

maximum hydrostatic pressure and deviatoric stress are found at particles lat-

eral from instead of on the vertical center line. This is caused by the fact that

for these particles lateral from the center line the indenter is initially positioned

at a larger distance above the material. Therefore, the indenter has to cover a

larger distance relative to the material before contact is established with these
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particles compared to particles located on the center line. This larger relative

displacement between the indenter and the material particles leads to an over-

estimation of the hydrostatic pressure and deviatoric stress for particles lateral

from the center line. For the indenter initially positioned at three times the

interparticle distance, the indenter has to cover a larger distance in order to

establish contact with the material for all material particles. This leads to an

overestimated hydrostatic pressure for the first line of particles in contact with

the indenter. As a result of this overestimation a striated pattern of lower and

higher hydrostatic pressure can be observed for layers of particles below the top

layer. The same effect can be seen for the von Mises stress.
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FE:

SPH:

NSPH:

Figure 11: Hydrostatic pressure p in Pa (left) and von Mises stress distribution σVM in Pa

(right) at steady state for indentation of a circular indenter in a viscoelastic solid modeled by

means of FE (top), SPH (middle) and NSPH (bottom).

Next, SPH and NSPH simulations are performed with the contact criterion

included. The distance from the boundary at which particles lose contact is set

at 1.1 times the interparticle distance. The hydrostatic pressure and von Mises

stress distribution at equilibrium are shown in Fig. 11. Hydrostatic pressure

and von Mises stress distributions, obtained by means of SPH and NSPH, are

comparable to those obtained by means of FE. The maximum von Mises stress is

not located at the top surface, but slightly below. This is the consequence of the
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no-slip condition between the top surface and the indenter. The same effect can

be observed for both the SPH and NSPH simulation, although the maximum von

Mises stress value is slightly lower compared to FE. The maximum hydrostatic

pressure value is lower as well, with relative errors of 15% and 18.3% respectively

for SPH and NSPH, compared to FE. More importantly, the use of a proper

boundary criterion leads to a smoother hydrostatic pressure and von Mises stress

distribution and avoids the occurrence of spurious pressures and stresses when

no contact criterion is being used. The hydrostatic pressure and von Mises

stress profiles along the central vertical axis are shown in Fig. 12. It can be

seen that SPH and NSPH simulations lead to profiles that are similar to those

of FE, with some differences close to the boundary. Together, these results

demonstrate that the extended boundary method clearly improves modeling of

the contact between a viscoelastic solid and a moving boundary for both SPH

and NSPH.

Figure 12: Hydrostatic pressure p (left) and von Mises stress profile σVM (right) along the

central vertical axis at equilibrium for indentation of a viscoelastic solid modeled by means of

FE, SPH and NSPH.

3.4. Degradation-mediated cell migration through a viscoelastic ECM

Having validated the implementations of (N)SPH and the extended bound-

ary method, simulations of cell migration in a deformable and degradable ECM

are performed in order to highlight the advantages of using a viscoelastic NSPH
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description for the ECM. The cell is modeled as a rigid, circular self-propelling

object similar to the indenter in Section 3.3 and embedded in a viscoelastic solid

that can be locally degraded by the cell. The cell model used here is a strong

simplification of a real cell. At the same time cells in agent-based models are

often and successfully represented as simple geometrical objects (e.g. [23, 24]).

ECM degradation is modeled as fluidization of the material, meaning that the

deviatoric stress is relaxed while the hydrostatic pressure is not affected by the

degradation. In a hydrogel this cell-mediated degradation would represent the

cleavage of polymers by enzymes (proteinases like matrix metalloproteinases

(MMPs)) secreted by the cell. By this cleavage, the connectivity of the poly-

mer network is reduced which allows the cell to move through. Degradation is

implemented by introducing a degradation factor fdegr which is 1 for an intact

viscoelastic solid and 0 for a completely degraded material. fdegr is updated

for each NSPH particle based on its distance to the cell center by solving the

following differential equation:

dfdegr,i
dt

= −
1

τdegr
exp

(

−
di,center − rcell

0.25rcell

)

, (35)

with
1

τdegr
is a reference degradation rate that determines the degradation

speed. di,center is the distance of particle i to the cell center and rcell is the radius

of the cell. A minimal value of 0 for fdegr is enforced in order to prevent negative

values. In this way, particles closest to the cell undergo faster degradation than

particles further away. Besides, degradation is limited to particles in front of the

cell that are within a certain distance from the cell and within a certain angle

(given by θdegr, see Fig. 13) with respect to the prescribed migration direction.

It must be stated that the equation for degradation is arbitrarily chosen and

is a simplification of the mechanics that govern degradation kinetics such as

proteinase expression, section, transport and binding.

The degradation factor and its change in the current time step are used to

adapt the NSPH conservation equations. The deviatoric stress tensor of each
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particle is relaxed:

dSi

dt
= −

dfdegr
dt

Si. (36)

Figure 13: Left: Illustration of cell migration through the ECM by local ECM degradation.

The cell migrates based on a migration force oriented in a certain direction (yellow arrow) and,

after an initial degradation around the entire cell, material particles located within a region

given by the degradation angle θdegr from the migration force direction and within a maximal

distance from the cell center are degraded by decreasing the degradation factor fdegr. Right:

Example of the change in degradation factor ∆fdegr for one time step dt as function of the

distance to the cell boundary (di,center − r) as described in Eq. (35).

Besides, the buildup of deviatoric stress should only occur between solid

particles and not when a fluid particle is moving relative to a solid particle.

To ensure this the deviatoric stress part of the first term in the equation of

momentum (Eq. (25)) and the formula for the rate of change of deviatoric stress

(Eq. (26)) are multiplied by (fdegr,ifdegr,j). In this way moving fluid particles

can not lead to a buildup of deviatoric stress in the ECM. Third, the constant

ξ in the equation of state (Eq. (7)) is chosen to be unaffected by degradation

and thus remains 1 for all particles. This leads to a more compressible fluid

around the cell after degradation, but avoids instabilities due to fast buildup

of hydrostatic forces when ξ would be allowed to increase upon degradation of
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solid particles. Finally, in order to prevent the rare occurrence of penetration

of the boundary by a single particle, a repulsive force is added that pushes the

particle away from the boundary when the distance to the boundary is closer

than a threshold distance (here set at 0.7 times the interparticle distance).

A rigid circular cell with a radius of 40µm is placed in ECM, modeled as a

rectangular domain (E = 2.5 kPa, ν =0.45, µ = 100Pa·s and ρ0 =1000 kg/m3) of

600×800µm with an interparticle distance of 10µm (h = 13.0µm). The latter

distance was found to guarantee resolution-independent results (see Appendix

B). The particles are distributed using a method which iteratively uses weighted

Voronoi tessellations to get an even distribution of particles in an arbitrary area

[25]. In this way, preferred mesh directions are minimized and an even initial

distribution around the cell is guaranteed, which is not the case for a cubic or

hexagonal lattice. The Wendland kernel (see [18]) is used in this simulation to

reduce particle clustering after degradation.

A migration force Fmigr with a constant value Fmigr=10µN and a fluctuating

direction representing Brownian motion is applied to the cell:

Fmigr = Fmigrumigr, (37)

where umigr is a unit vector in the direction of the migration force with a

fluctuating angle θmigr:

dθmigr

dt
= fbias(θ

bias
migr − θmigr) +

√

2Drζ. (38)

This angle changes over time due to rotation towards a bias angle θbiasmigr with

a polarization rate fbias = 0.1 s-1 and due to rotational noise with the rotational

diffusion coefficient Dr = 5×10-5 s-1 and Gaussian white noise ζ(t). We apply

a force of Fmigr= 10µN on the cell, rather than a more realistic force value for

the cell in the range of pN to a few µN, in order to demonstrate a cell trajectory

over a longer distance.

An initial degradation step is performed for all NSPH particles within 40µm

of the cell boundary with a very high degradation rate
1

τdegr
= 1.0×105 s-1 to
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generate a fluidized area around the cell. This allows the cell to move at the start

of the simulation, which would otherwise be prevented by the no-slip boundary

condition between the cell and the ECM. After this initial step, the degradation

radius of 40µm is maintained, but in combination with a degradation angle

θdegr of 90◦ and a reference degradation rate of
1

τdegr
= 10 s-1. A simulation

(Re = 1.0×10-7) is run for 600 s with a time step of 0.01 s. In Fig. 14 it can

be seen that the cell has migrated through the ECM leaving behind a trail of

degraded matrix with low von Mises stress caused by the local degradation. In

front of the cell, the ECM is deformed resulting in a higher deviatoric stress. A

supporting video of this simulation is attached in the online manuscript. In this

simulation the cell reaches an average velocity of 48µm/min which, as expected

by the high migration force applied, was higher than reported migration forces

for embedded cells in literature. Raeber et al. for example reported migration

velocities of approximately 0.1 – 0.3µm/min for fibroblasts in biodegradable

PEG hydrogels [26].
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Figure 14: Degradation factor fdegr (top) and von Mises stress σVM distribution (bottom)

in the degradable viscoelastic ECM around a migrating cell. The cell degrades the ECM by

fluidizing the viscoelastic material and leaves behind a trail of degraded material. The ECM

in front of the migrating cell is deformed and builds up deviatoric stress.

Next, in order to demonstrate the effect of degradation rate on cell migra-

tion speed, 16 simulations are performed with values of reference degradation

rates
1

τdegr
ranging from 0.002 to 200 s-1. The migration speed as a function of

degradation rate is shown in Fig. 15. It can be seen that the cell migration speed

follows a sigmoid curve with a plateau of low migration speed at low degrada-

tion rates, an increase in migration rate at intermediate migration speeds and

32



a second plateau of maximal migration at high degradation rates. This is in

agreement with our basic understanding that increased ECM degradation can

not monotonically augment cell migration.

Figure 15: Cell migration speed in µm/min as function of degradation rate
1

τdegr
in s-1 for

migration of a circular cell through a degradable viscoelastic ECM. The migration speed

follows a sigmoid curve with a plateau of low cell migration speed for low degradation rate

and a plateau of high cell migration speed for high degradation rate.

4. Discussion

In this paper, smoothed particle hydrodynamics was proposed as a method

for modeling cell-ECM interactions. In order to achieve accurate hydrostatic

pressure and stress profiles in the ECM around a cell, we applied the corrected

boundary conditions in SPH as proposed by Kulasegaram et al. and Ferrand

et al. [15, 16] and extended these boundary conditions so that they can be

used for moving boundaries in contact with a viscoelastic solid. In addition, a

contact criterion was implemented, leading to an accurate calculation of hydro-

static pressures and deviatoric stresses during contact establishment as could be

assessed by comparison to FE simulations. By performing benchmark simula-

tions the effectiveness and pitfalls of our extended method were demonstrated.

As was shown in Section 3.4, due to the meshless character of (N)SPH, this
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method is able to capture important characteristics of cell migration such as

ECM degradation, large deformations of the ECM and the migration of a cell

through the ECM without the need for time-consuming and computationally

challenging remeshing.

First, NSPH, a variant of SPH where the equations of motion are assumed to

be overdamped, was introduced as a method to model the viscoelastic behavior

of the ECM in a low Reynolds number environment. When a force was applied

to circular regions that represent focal adhesions, viscoelastic NSPH was able

to reproduce the results obtained by viscoelastic SPH as well as FE both tran-

siently and at equilibrium (see Section 3.1). While SPH required 4 million time

steps to reach the equilibrium solution, NSPH only needed 100 time steps, in

this demonstrating the computational efficiency of NSPH. Besides, for a similar

simulation at the µm-scale the time step for SPH would become prohibitively

small, as it decreases quadratically with the particle spacing (see Eq. (34)). In

contrast, the time step for NSPH will not change, as it is independent of particle

spacing. Therefore, for simulations at the cell scale, because of computational

costs, the use of NSPH is clearly preferred.

Next, the boundary condition proposed by Kulasegaram et al. and Ferrand

et al. [15, 16] was introduced and extended to model the contact between a

viscous fluid or viscoelastic solid modeled by means of NSPH and a rigid, yet

moving object . In Section 3.2 it was shown that for fluid flow around an array

of rigid and stationary square pillars the extended boundary method leads to

results similar to those for a rigid square filled with particles, both for SPH

and NSPH. Besides, NSPH reaches the equilibrium solution after 10 time steps,

while SPH reaches the same equilibrium solution after 10000 time steps. Taken

together, these results demonstrate the accuracy and efficiency of NSPH and

the extended boundary method for modeling low Reynolds number flow around

rigid boundaries.

When an object approaches a material that is modeled by means of (N)SPH

the material starts to build up pressure and deviatoric stress as soon as the

object enters the kernel support [15, 16]. However, the pressure and deviatoric
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stress inside a material should be zero when all particles are at exactly one

interparticle distance from their closest neighbors. Therefore, the pressure and

deviatoric stress should only start to build up when the material is within one

interparticle distance from the boundary. In order to ensure this, a contact

criterion was proposed. In Section 3.3 the importance of this contact criterion,

in combination with the extended boundary method was demonstrated for the

indentation of a viscoelastic solid with a rigid, yet moving circular indenter. For

SPH and NSPH simulations that made use of the contact criterion, hydrostatic

pressure and von Mises stress distributions similar to FE were obtained. The

contact criterion strongly reduced spurious hydrostatic pressures and von Mises

stresses that were encountered in simulations without any contact criterion.

The proposed contact criterion could prove to be problematic when an object

approaches an SPH material with a large velocity as contact is only established

when the object is within one interparticle distance from the material. This

would require the use of a lower time step. Fortunately, movements of cells

are relatively slow and are not expected to cause large problems for contact

detection when the contact criterion is used.

Finally, cell migration through a viscoelastic ECM was simulated in order

to illustrate the potential of the proposed meshless method to deal with cell-

matrix interaction, including matrix degradation. It was shown that the cell

leaves behind a trail of degraded matrix with low von Mises stress caused by the

local degradation. This agrees qualitatively with experimental observations by

for example Schultz et al. who measured by means of multiple particle tracking

rheology how human mesenchymal stem cells remodel PEG hydrogels and who

observed the formation of irreversible tracks in the PEG hydrogel as a result of

degradation-mediated cell migration [27]. When degradation rates are varied a

sigmoid curve is observed for cell migration speed as a function of degradation

rate with a minimal speed for low degradation rate and a plateau of maximal

speed for high degradation rates. In the future, more realistic simulations of

cell migration can be envisioned by replacing the rigid cell with a deformable

cell that captures the viscoelastic properties of the cell cortex as in [8]. The
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addition of filopodia-like structures as in [28] that enable the cell to protrude,

adhere and apply local pulling forces could replace the migration force that was

used here to render the cell its motility.

In conclusion, we have proposed and validated a new computational method

for modeling of a viscoelastic ECM by means of SPH. Contact between ECM

and a cell is modeled by extending an existing boundary method such that

it can handle contact between a viscoelastic material and a rigid, yet moving

boundary. A contact criterion is introduced to reduce errors in the calculation of

hydrostatic pressure and deviatoric stress at the cell-ECM interface. By adding

local degradation this method is able to capture some qualitative aspects of cell

migration through an ECM, which can later be extended towards more realistic

cell-ECM interactions.
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Appendices

A. Modeling of a Kelvin-Voigt solid using finite element method

The current viscoelastic NSPH implementation defines essentially a Kelvin-

Voigt material, for which the constitutive relationship is given by:

σ
hyd (t) = 3Kǫ

vol (t) + 3λ
dǫvol (t)

dt
(39)

and

σ
dev (t) = 2Gǫdev (t) + 2µ

dǫdev (t)

dt
, (40)

where σhyd and σdev are the hydrostatic and deviatoric stresses, ǫhyd and ǫdev

are the volumetric and deviatoric strains, K and λ are the bulk modulus and

bulk viscosity and G and µ are the shear modulus and shear viscosity respec-

tively. It is not possible to directly model a Kelvin-Voigt material in Abaqus,

since the infinitely large instantaneous modulus and the infinitely small relax-

ation time can not be prescribed. However, it is possible to approximate the

40
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Kelvin-Voigt material by appropriately selecting the relaxation factor (that re-

lates instantaneous and equilibrium moduli) and the relaxation time constant.

If the Young’s modulus and Poisson’s ratio are defined as E and ν, then the

bulk and shear moduli can be determined respectively as:

K =
E

3(1− 2ν)
(41)

and

G =
E

2(1 + ν)
. (42)

In a 2D formulation, Morris et al. [17] state that the bulk modulus is given by

λ =
5µ

3
. (43)

Taking the Laplace transform of the constitutive relationships results in:

Σhyd (s) = 3Kε
vol (s) + 3λsεvol (s) (44)

and

Σdev (s) = 2GKε
dev (s) + 2µsεdev (s) , (45)

where Σ and ε denote the Laplace transformed functions of σ and ǫ respectively

and s is the Laplace transform variable. Substituting Eq. (41), (42) and (43)

in the Laplace transform functions above gives:

Σhyd =
Eεvol

1− 2ν
+ 5µsεvol (46)

and

Σdev =
Eεdev

1 + ν
+ 2µsεdev, (47)

where for simplicity the dependence on s has not been written explicitly. Eq.

(46) and (47) can be simplified as:

ε
vol =

1− 2ν

E

Σhyd

1 + sτK
(48)

and

ε
dev =

1 + ν

E

Σdev

1 + sτG
, (49)
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with the following time constants:

τK =
λ

K
=

5µ (1− 2ν)

E
(50)

and

τG =
µ

G
=

2µ (1 + ν)

E
. (51)

In a creep test, the applied stress is given by:

σ = σ
0H (t) , (52)

where H (t) is the unit step function. The Laplace transform of this equation is

given by:
σ0

s
. (53)

The Laplace transformed equations with Σhyd = σ0,hyd and Σdev = σ0,dev

gives:

ε
vol =

1− 2ν

E

σ0,hyd

s (1 + sτK)
=

1− 2ν

E

σ0,hyd

1

s
−

τK

1 + sτK

(54)

and

ε
dev =

1 + ν

E

σ0,dev

s (1 + sτG)
=

1 + ν

E

σ0,dev

1

s
−

τG

1 + sτG

. (55)

Taking the inverse Laplace transforms gives:

ǫ
vol (t) =

1− 2ν

E
σ

0,hyd






1− e

−

(

t

τK

)






(56)

and

ǫ
dev (t) =

1 + ν

E
σ

0,dev






1− e

−

(

t

τG

)






. (57)

The above expressions can be recovered from the following approximations in

the limit of a very small number δ〈〈1:

ǫ
vol (t)

1− 2ν

E
σ

0,hyd






1− (1− δ) e

−

(

t

1− (δ) τK

)

− δe
−

(

t

1− (δ) τG

)





(58)

42



and

ǫ
dev (t)

1 + ν

E
σ

0,dev






1− δe

−

(

t

1− (δ) τK

)

− (1− δ) e
−

(

t

1− (δ) τG

)





. (59)

This approximated response can be fitted using the Prony series [29]:

G (t) = G0






1− g1






1− e

−

(

t

τ1

)






− g2






1− e

−

(

t

τ2

)












(60)

and

K (t) = K0






1− k1






1− e

−

(

t

τ1

)






− k2






1− e

−

(

t

τ2

)












, (61)

with:

τ1 = τKδ = 5µδ
1− 2ν

E
, (62)

τ2 = τGδ = 2µδ
1 + ν

E
, (63)

g1 = δ, (64)

g2 = 1− 2δ, (65)

k1 = 1− 2δ, (66)

k2 = δ, (67)

G0 =
G

1− g1 − g2
=

E

2δ (1 + ν)
(68)

and

K0 =
K

1− k1 − k2
=

E

3δ (1− 2ν)
. (69)

By taking δ = 0.1 and the material properties similar to the (N)SPH simulations

in Section 3.1, i.e. E = 2.5Pa, ν = 0.45 and µ = 100 Pa·s, the parameters in
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the equations can be calculated to be: τ1 = 2 s, τ2 = 11.6 s, g1 = 0.1, g2 = 0.8,

k1 = 0.8, k2 = 0.1, G0 = 8.62 Pa and K0 = 83.33 Pa, resulting in E0 = 25 Pa

and ν0 = 0.45.

The simulation is executed in two steps. In the first step, the body forces are

applied to the selected circular regions by linear increase of the force magnitude

over a period of 0.1 s. In the second step, the body forces are held fixed over

a time period of 1000 s, with a time increment size varying between 0.2 s and

20 s. The results of this simulation are shown in Fig. 7 and compared with

both SPH and NSPH.

B. Effect of resolution on degradation-mediated cell migration simu-

lation

Two simulations are performed to demonstrate the effect of resolution for

the degradation-mediated cell migration simulation in Section 3.4. For these

simulations, that run for 200 s, a smaller rectangular domain of 300×400µm is

used. One simulation is run with an interparticle distance of 10µm and the

other simulation with an interparticle distance of 5µm. The von Mises stress

distribution after 200 s can be seen in Fig. 16 for both simulations. It can be

observed that the von Mises stress distribution is similar for both resolutions. In

Fig. 17 the migration path for the cell center in both simulations is shown. It can

be seen that in both simulations the cell follows a similar path with a distance

between the cell center after 200 s of only 2.76µm (while the radius of the cell is

40µm). These results demonstrate that the coupling of viscoelastic NSPH with

the extended boundary method works well for different resolutions and that the

resolution of the simulations performed in Section 3.4 is high enough to ensure

resolution-independent results.
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Figure 16: Von Mises stress σVM in the degradable viscoelastic ECM around a migrating cell

for a simulation with low (top) and high (bottom) resolution. The cell degrades the ECM by

fluidizing the viscoelastic material and leaves behind a trail of degraded material. The ECM

in front of the migrating cell is deformed and builds up deviatoric stress.
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Figure 17: Cell center migration path for a degradation-mediated cell migration simulation

with a low resolution (A) and a high resolution (2). Both cells start in the origin and the

same fluctuating migration force is applied. The distance between both cell centers after 200 s

of migration is 2.76µm. Notice that the y-axis is scaled compared to the x-axis to better

appreciate the path differences in the y-direction.
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