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Abstract—This paper proposes an approach for multi-band
image fusion using a multiple output variable Gaussian Process
(GP) model. The considered model uses a new covariance
function, which is a product of an intrinsically sparse kernel
and a Rational Quadratic Kernel (RQK) to model the pixel
coordinates and intensity of the high spatial resolution image.
The new kernel serves as a stochastic prior for each band
of the estimated image. The developed approach allows the
exchange of information between the different modalities
enabling local structure of the high spatial resolution image
on which the model is trained. The accuracy performance and
image quality assessment show that the proposed approach
achieves compelling enhancement when compared with other
fusion methods.

Index Terms: Image Fusion, Remote Sensing, Gaussian Pro-
cesses, Multi-output Variable Gaussian Processes

I. INTRODUCTION

Multi-sensor data fusion allows the integration of informa-

tion originating from different sources with the aim of acquir-

ing a unified information that benefits from complimentary

information from different sensor data [1]. Image fusion is

a subset of the diverse research area of multi sensor data

fusion that provides the framework and tools that enable data

originating from different imaging platforms to be aligned,

producing an image of greater quality than individual ones.

[2], [3].

Technological advancement have enabled diverse design of

imaging sensors including hyperspectral, Synthetic Aperture

Radar (SAR) and multi-spectral systems usually mounted

on satellites, aircraft or Unmanned Aerial Vehicles (UAVs)

to acquire multi modal image data, providing the scientific

community with a wide range of data in different spatial and

spectral resolutions. Efficient fusion methods are necessary to

enable a comprehensive understanding of the scene of interest

from the image and to improve the overall quality of images

[4].

In remote sensing, a conventional image fusion approach

is pansharpening that involves fusing a high spatial resolution

panchromatic (PAN) image and a low spatial but high spectral

resolution multispectral (MS) image to produce an image

with high spatial and high spectral resolution [5]. However,

algorithms developed for this purpose apply smoothness prior

and rely on the sensitivity model of the sensor to obtain super

resolution images while assuming common spectral channels

[6]. The problem of fusing images in different modalities is

an ill-posed one that needs regularization that can be achieved

by fitting a suitable prior distribution on the image [7].

Gaussian Processes (GP) is a powerful data driven approach

that led to efficient solutions of image processing problems

including for modelling of low level image features, image

de-noising and exploring the structural redundancy for super-

resolution image reconstruction. GPs have been applied to

high resolution object reconstruction for lower resolution

images by considering local structures in natural images

defined by their pixel neighbourhood [8]. Additionally, GP

regression provides a flexible framework for fusing multiple

datasets from heterogeneous sensors [9]. In [6] a multi-task

GP approach is developed for multi-modal image fusion.

Other image fusion approaches such as Wavelet Transform

have been used in [10], [11], [12] to improve spatial res-

olution and maintain the spectral property of the images.

This was achieved by converting the image from its spatial

domain to the frequency domain, and decomposing the image

into approximated and fine details without information loss.

This fusion approach allows image properties to be inferred,

thanks to the fusion rule including Haar, Debuchies and other

wavelets [13].

This paper presents an approach that combines high

resolution image data acquired by a UAV exploring marine

environments with multispectral data acquired by the

Sentinel-2 satellite for the same scene. This work extends

the approach proposed in [13] for fusing images with

multiple bands. Firstly, a multi-output regression framework

is introduced by applying an independent GP [14] to each

output band in the high resolution image. Secondly, common

spectral channels in the visible range are selected from the

multi-modal images (3-bands in each dataset). The covariance

function of the model is the product of an intrinsically sparse

kernel and a Rational Quadratic Kernel (RQK) utilised

1



to model the coordinates and intensities of pixels in the

high resolution image which forms the spatial base of the

estimated image to be recovered. This work is motivated

by the ability of GP’s to sufficiently model the relationship

between different modalities with varied outputs, with an

aim at extending its inherent point data operation over areas

[6]. The contribution of this work is the adaptation of a

multi-output variable GP to model the spatial information

from selected bands of the high spatial resolution image

and to use a mapping cross covariance to combine spectral

information. The proposed kernel serve as a base stochastic

prior for each band of the estimated image.

The rest of the paper is organised as follows. In section

II, we make a quick review of GP and introduce multi-

output variable GP. In section III, we describe in more detail

the proposed approach including the prior covariance design

and hyper-parameter estimation. In section IV, the dataset

and experiment are described with simulated results and

discussion. Section V, concludes the paper.

II. GAUSSIAN PROCESSES

A GP can be described by its mean function m(x) and

covariance function k(x,x′) also known as the kernel. It

is a stochastic process that defines a collection of random

variables [15] . The covariance function is defined by some

hyperparameters that characterise its behaviour while the

mean function may conveniently assume a zero value since

GP can be modified to model a non-zero mean [16]. More

insight into different kernels and modelling the mean function

can be found in [17]. Consider a function f(x), whose mean

and kernel are defined as

m(x) = E[f(x)], (1)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (2)

where E is the expectation operator and the GP is then

described as a non-linear function expressed as:

f(x) ∼ GP(m(x), k(x,x′)) (3)

The GP model can achieve the mapping of inputs xi ∈ R
D

to an output space yi ∈ R by imposing a Gaussian prior

over the latent function where the output vector y is a noisy

observation represented as

y = f(x) + ǫ (4)

and

ǫ ∼ N (0, σ2) (5)

is a Gaussian distribution with a zero mean and standard

deviation σ.

The parameters of its kernel are then learnt using N input-

output pairs from a given training dataset D, such that D =
{(x1,y1), . . . (xN,yN)}. The function values are normally

distributed with the mean m(x) and the covariance k(x,x′)
given by:

[f(x1)
T f(x2)

T . . . f(xN)T ]T = N (m(x), k(x,x′)) (6)

here, m(x) and k((x,x′) are as defined in (1) and (2),

respectively.

The entries of the covariance matrix Kij are calculated by

evaluating each element of k(x,x′) using the user defined

kernel e.g the Squared Exponential (SE) with its hyperparam-

eters [17]. This can be expressed as

k(x,x′) =











k(x1,x2) k(x1,x2) . . . k(x1,xN)
k(x2,x1) k(x2,x2) . . . k(x2,xN)

...
...

...
...

k(xN,x1) k(xN,x2) . . . k(xN,xN)











(7)

As part of the GP training, the hyperparameters of the kernel

are optimized. This is achieved by maximising over the hyper-

parameters and the marginal likelihood. This is illustrated in

the next section. Consequently, the joint distribution of the

training outputs y and the test outputs y∗ with the mean

function is defined by

[

y

y∗

]

∼ N

(

µ

[

X

X∗

]

,

[

KXX + σ2
nI KXX∗

KX∗X KX∗X∗

]

)

(8)

In (8) above, X and X∗ define the design matrices for the

training and test data, respectively. When y∗ is conditioned

on the observations y the predictive distribution becomes

p(y∗|X,y,X∗) ∼ N (µ⋆,Σ⋆) (9)

where

µ⋆ = k(X∗,X)K−1
X y (10)

Σ⋆ = k(X∗,X∗)− k(X∗,X)K−1
X k(X,X∗) (11)

Here, KX is defined as

KX = k(X,X) + σ2
nI (12)

and σ2
nI is the standard deviation of the measurement noise,

I is an N-dimensional identity matrix. With the learnt hyper-

parameter values of the kernel, the GP can then predict the

output y∗ using the predictive distribution of input and outputs

points.

A. Multi-Output Variable Gaussian Processes

Normally, a GP model assumes single output value. How-

ever, multiple output values are possible in practice. A com-

mon approach is to model each output value as an independent

GP model [14]. Additionally, new kernels can be constructed

over multi-dimensional inputs by adding or multiplying be-

tween kernels defined on each individual input. An additive

function can simply be expressed as f(x) = f1(x) + f2(x)
and can easily be encoded into GP models. It allows a flexible

way to model functions having more than one input. Consider

the functions f1(x) and f2(x) drawn independently from a GP

prior, for two different datasets D1 and D2,
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f1(x) ∼ GP(0, k1(x,x
′)) (13)

f2(x) ∼ GP(0, k2(x,x
′)) (14)

where the input ouput data pairs is given by:

D1 = {(x1,y1), . . . (xN,yN}) (15)

and

D2 = {(x2,y2), . . . (xN,yN}) (16)

The distribution of the sum is given by

f1(x) + f2(x) ∼ GP(µ1 + µ2,K1 +K2) (17)

where K = k(x,x′). The above expression can be used to

sum any number of components. Consequently, the modelling

of functions of multiple dimensions will result to additive

structure across the dimensions such that

f(x,x′) ∼ GP(0,K1K2) (18)

where the individual covariances are defined by K1, K2 and

assuming a 0 mean, respectively.

III. PROPOSED APPROACH

The approach in this paper is motivated by the works

in [13], [6] and extends them to multi-band images from

heterogeneous imaging sensors. The aim is to combine

two image modalities with different spatial and spectral

characteristics. The approach considers the change of support

problem inherent in image fusion where pixels are of different

resolution with their neighbours. The proposed approach is

given in Fig 1.

Let IHm×n×λ and ILm×n×λ represent the high spatial and

high spectral resolution images acquired by two heterogeneous

sensors for the same scene X . Here, .m×n defines the spatial

and .λ the spectral extent of the images. The total number of

measurements (Tz) in each image is .m×n×λ dimensions for

IH and IL, respectively. The images to be fused represent

debased versions of the image to be recovered. For simplicity,

we select common spectral channels in the visible range

composed of Red, Green and Blue (RGB) in the images to

be fused which means λ = 3. The problems we aim to

solve are 1) To reconstruct a high-spatial and high spectral

image from the complimentary images IH and IL; 2) To

build a covariance kernel that can handle pixel inference

where the change of support problem exist; 3) To calculate

the cross covariance that models the multi-modal and multi-

band images. For this, we introduce a multi-output Gaussian

Processes to model each spatial band of the high spatial

resolution image. This forms the spatial prior of the image

to be recovered.

A. Covariance Function

The covariance function or kernel plays a fundamental role

in a GP model. It has the ability to encode our assumption

of the function we want to model, and defines the correlation

between function values [8]. The kernel is characterized by

its hyperparameters. A commonly used covariance function is

the Squared Exponential (SE) with hyperparameters σ2
f and l .

Conventionally, a covariance kernel is defined on x− x′ and

explores the relationship between these points. However, when

dealing with images the covariance function can be extended

over areas by relating pixel observation to the function f(x),
where a pixel observation is defined by Pk(xi,yi,z), here xi,yi

defines the geometric location of the ith pixel and z its

intensity value at that location in the kth band of the multi-

band image. A detailed derivation of defining covariance over

areas of the image is given in [6].

P(HA) =
1

|AH |

∫∫

x∈HA

f(x)dx (19)

HA is the geometry areas per band of the high spatial

resolution pixels, and HL is the low spatial and high spectral

pixels, the aim is firstly, to design the prior that defines the

structure of the high spatial and high spectral image to be

recovered. For this, we model the high spatial resolution pixels

of the high spatial image by defining areas, where an area

consists of the intensity of the pixel and the geometry of

it at that location. We assume a simple average relationship

between pixels and the GP function. The covariance of two

high spatial resolution pixels in the ith band is then defined

as

kB(HA,H′
A) =

1

|HA||H′
A
|

∫∫

x∈HA

∫∫

x′∈H′

A

k(x,x′)dxdx′

(20)

where kB(HA,H′
A
) defines the covariance between two

high spatial resolution pixels in the ith band of the image

and B ranges from 1-number of bands in the high spatial

resolution image and |H′
A
| is the surface area of HA. In

designing the prior covariance function, the following factors

are considered:

• Image data are normally non-smooth

• Image data exhibit discontinuity

• Spatial non-stationarity of images

The spatial information in IH is used as the input space

of the prior covariance function added with the observed

pixels to achieve contextual non-stationarity that addresses

the discontinuity problem. Firstly, we explore an intrinsically

sparse covariance introduced in [18] to enable sparsity and

reduce computational complexity inherent in the full storage

of the covariance matrix K(X,X) + σ2I. The proposed

kernel is suitable for applications exhibiting discontinuities.

It is smooth but not infinitely differentiable. Let MS be the

intrinsically sparse covariance defined by

3



Train Independent
GP Model GP / band

Spatial Covariance Function 
 K( , I )I

H

′

H

High Spatial Resolution Bands High Spatial UAV Data  

High Spectral Satellite Image  High Spectral Resolution Bands 

Spectral Covariance Function 
  K( , I )I

L

′

L

Cross Covariance 
 K( , I )I

H

′

L

Fused Image

Fig. 1: Multi-Band Fusion Framework

MSB(HA,H′
A
;σ0, l)i =

{

σ0

[

2+cos(2π d

l
)

3 (1− d
l
) + 1

2π sin(2π d
l
)
]

if d < l

0 if d ≥ l
(21)

The proposed kernel is a function of the midpoint coordinates

of areas (pixel coordinates and the intensity value at that

location) in the ith band and reduces to zero for displacements

larger than d. The variables σ0 and l are the hyperparameters

of the kernel. Here σ0 > 0 is a constant coefficient that

determines the average distance of f(x) from µ∗, l > 0 is

the characteristic length scale that determines the length of

change of f(x), and d is defined by

di = |HA −H′
A| (22)

The second step of the prior covariance design utilises the

Rational Quadratic Kernel (RQK) [17] to model the pixel

intensities of each band in the high spatial resolution image,

allowing the pixels to be linked with the observed paired pixel

geometries. The RQK is equal to putting together several

SE kernels with different characteristic lengths that enables

smoothness transfer. It improves efficiency in handling the

change of support problem. Let MP be the RQK kernel

defined by

MPB(I(HA), I(H′
A
);α, θp)i

= σ2

(

1 +
(I(HA)−I(H′

A
))

2αθ2

P

)−α

(23)

Here, IHA, IH′
A

represent the pixel intensity values in the

HA area of the ith band of the high spatial resolution

image. The role of MS is to ensure sparsity that improves

computation while MP links pixels within the covariance

using the multi-band spatial information from the high spatial

resolution multi-band image. The hyperparameters of the

RQK are θp and α, respectively. Lastly, the prior covariance

can be defined as the product of two independent kernels

that models the spatial and pixel intensity of the high spatial

resolution image forming the spatial base of the estimated

image. This is mathematically given by

kB(HA,H
′
A)=σ2MS((HA,H

′
A;θ1)MP(I(HA),I(H

′
A);θ2)

(24)

The GP model is then trained using this kernel to learn the

hyperparameters of the model here represented as θ1 and θ2
where kB represents the number of spatial bands in the high

spatial resolution image.This means an independent GP is

trained for each spatial band of the high spatial image. The

product prior function augments the geometry of pixels and

the intensities. In the next section we describe the learning of

the hyperparameters of the model.

B. Hyperparameter Optimization

The hyperparameters of the GP model refers to the

parameters of the prior covariance function evaluated on each

band of the multi- band high spatial resolution image. The

parameters of the model include µ∗, σ2
nI. The hyperparameter

vector associated with the covariance function is defined as

θ = {σ0, θp, α, l}. In the proposed covariance function θp
controls sensitivity and α determines the relative weighting

for scale variations. When α → ∞, the behaviour of the

RQK is similar to the SE kernel. It is important to initialise

the parameters sensibly as they determine the quality of the

estimated image to be recovered. A non-optimal solution is

likely to produce fusion result that is blurry or even with

high frequency artifacts [8].

To optimize θ, the marginal likelihood is maximised, which

is given by:

p(y|X) =

∫

p(y|f ,X)p(f |X)df (25)

From (3) and (4), the likelihood y|f ∼ N (f , σ2
nI) and the

model prior over the latent function f gives the logarithm of

the marginal likelihood
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log(p(y|X,θ)) = −
1

2
yTK−1

X y−
1

2
log|KX |−

n

2
log2π. (26)

In (26), the first term finds data fit, the second term is the

model complexity term and the third term is a constant that

ensures the marginal likelihood is robust to over-fitting.

C. Cross Covariance

The optimized θ values from (24) are used to calculate

the base covariance k(HA,H′
A
) that forms the spatial base

of the estimated image to be recovered. While applying

independent GP to multi-output regression problems is seen

as a sub-optimal approach because the cross correlation is

not put into consideration, the proposed approach solves this

problem by mapping image areas where an area consists of

both the pixel geometry and intensity values. HA areas are

discretely integrated by assuming they correspond to the HL

areas as shown in [6].

The optimized base covariance is then used to calculate the

cross covariance k(HA,H′
L
) per band in HL. The role of

this kernel is to couple per band the high spatial resolution

pixels with the corresponding high spectral pixels. The cross

covariance is given by

kB(HA,L′
A) =

1

TH

∑

H′

A
∈L′

A

k(HA,H′
A) (27)

where TH defines the total number of HA areas correponding

to HL areas. The function is evaluated over the corresponding

bands in HL. Similarly, the cross covariance between areas

in HL can be calculated using

kB(LA,L′
A) =

1

THT ′
H

∑

HA∈LA

∑

H′

A
∈L′

A

k(HA,H′
A) (28)

D. Image Fusion and Reconstruction

To fuse the image modalities and reconstruct the estimated

image, the training data of the model is extracted from the

high spatial resolution image HA consisting of the spatial

geometries of pixels and the augmented intensity values within

the bands observed. The GP model is then queried over the

high spectral image HL pixel areas and their intensities. The

reconstruction is done by querying the predictive mean of

the model (see (9)-(11)), again we evaluate this function by

querying corresponding bands in the modalities. A constant

mean value of 0.5 is assumed because image values are

continues within the range of 0-1. The predictive mean in

(10) becomes

I∗
B = µ+kB(HA,HL)

[

kB(LA,L′
A
) + σ2

nI
]−1

(IL(Li)−µ)
(29)

E. Fusion Performance Metric

It is important to evaluate the performance of the fusion

model to validate the result. Conventionally, this is done by

comparing the fusion results with a reference image using

fusion performance metrics e.g. image Correlation Coefficient

(CC) [11], Reconstruction Error (RE) or the Universal Image

Quality Index (UIQI) [7]. In situations where a reference im-

age is not available, non-reference image fusion metrics have

been developed. We propose to use the Fast- Feature Mutual

Information (Fast-FMI) introduced in [19] as a measure to

validate the fusion model. Fast-FMI calculates the mutual

information between corresponding regions in the fused and

source images, respectively. Firstly, the mutual information is

normalized using

ℓ(Ii) + ℓ(I∗)

2
(30)

Here, ℓ(Ii) and ℓ(I∗) defines the entropies of corresponding

windows in the source images and the fused image, respec-

tively. Secondly, the mutual information between the source

images and the fused image is defined by

I(i ; I∗) =
2

n

n
∑

i=1

Ii(Ii ; I
∗)

ℓ(Ii) + ℓ(I∗)
(31)

Finally, the non-reference fusion metric is given by

FMIIi

I∗ =
1

2

n
∑

i=1

(

Ii(IH ; I∗)

ℓ(IH) + ℓ(I∗)
+

Ii(IL; I
∗)

ℓ(IL) + ℓ(I∗)

)

(32)

IV. EXPERIMENT

A. Dataset

In this section, we describe the dataset used for the experi-

ment. We utilise multi-band data from a UAV and satellite data

from the sentinel-2 satellite. While the UAV data is high in

spatial resolution, it lacks spectral information. On the other

hand, the satellite data has low spatial resolution and high

spectral resolution. The aim of our model therefore, is to bring

the complimentary information from the two heterogenous

sensors to reconstruct a high spatial and high spectral image

for the scene of interest. Sentinel-2 is a multispectral earth

observation satellite and forms part of the European Union

(EU) Copernicus Programme for environmental monitoring.

It has 13 bands in the visible, near infrared and short wave

infrared part of the spectrum, with 10m spatial resolution in

the visible range comprising the Red, Green, Blue and Near

Infrared bands.

B. Results and Discussion

This section evaluates the performance of the proposed

Multi-Output variable GP model. The images are registered

with pixel correspondence established between them. Image

registration determines the geometric transformation that

aligns one image to the other [20]. We propose to recover a

high spatial and high spectral resolution image by fusing the

two complimentary images. Firstly, the images are resized to

100 × 100 and normalized so that image pixels are in the
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(a) (b)

Fig. 2: Quick Look of UAV and Sentinel-2 Multi Band Images

range of 0-1 and to reduce the computational complexity

inherent in regression models. Secondly, common spectral

bands in the visible range (Red, Green and Blue) are selected

from the images. Pixel geometry per spatial band in IH
and the corresponding intensity values have been extracted

forming HA and I(HA), respectively. The variables extracted

form the input of the prior function are shown in (19)-(24).

The model is then trained using the proposed base kernel

and the marginal likelihood is maximised to optimize the

hyperparameters of the model. A cross covariance is then

calculated using the optimized base kernel that couples

the high spatial pixels and the corresponding high spectral

bands per band using a mapping of 4:1 corresponding areas

between HA and HL, respectively. In Fig.3 we show the

high spatial and high spectral resolution images with the

fused image result using the considered model and their

corresponding image histogram. Image histogram shows

the graphical representation of pixel intensity on the x-axis

and the corresponding number of pixels on the y-axis. The

results shows that there are more pixels in the fused image

when compared to the individual images, implying more

information in the fused image.

In Fig.4 (top), we compare the proposed fusion approach

with the simple averaging and inverse wavelet transform

methods. Simple averaging, sums the source images and

finds the average while the wavelet approach decomposes

the images into approximations and fuses them using a rule.

Both methods do not consider spatial location of pixels and

their corresponding intensities while performing fusion. Our

method on the other hand, uses both characteristics of the

image as the input space to the model. This allows transferral

of information between the image modalities that enables

local structure of images to be learned. In the results, simple

averaging shows ringing leading to artifacts and blurred

image, while the inverse wavelet transform exhibits mosaic

effects which could be due to small decomposition scale. The

proposed method however, shows visually appealing image

with improved edges that alleviates artifacts as can be seen

on the top right corner of Fig.4.

Additionally, we test the performance of our method

by segmenting the fused image using K-means clustering

algorithm [13] and compare the result with the other methods.

Again, our method shows compelling results, picking up

more objects from the image than the other methods as

shown in Fig. 4(bottom). We attribute this to the ability of

the considered approach to sharpen the resolution of the

spectral channels that supports pixel coordinates from the

high spatial image improving the edges.

Finally, the Fast-FMI non-reference image fusion perfor-

mance metric described in (30)-(32) is utilised to validate the

performance of the proposed approach. The proposed method

is compared with other established image fusion methods and

subjected to the performance test. Visual comparisons in Fig.4

(top) shows the proposed method having visually appealing

performance than the other methods. A window of 3×3 is used

which corresponds to evaluating (3× 3)2 regions and finding

the MI between them. Fast-FMI performance metric reduces

the computational complexity from O(n)2 to O(n) when

compared to similar non-reference performance measures.

TABLE I: Fast-FMI Results

Method Fast-FMI

Simple Averaging 0.4321

IWT 0.4532

Proposed 0.3954

V. CONCLUSION

In this paper, we propose the fusion of multi-band images

acquired by heterogeneous imaging sensors using independent

single-output Gaussian Processes to model spatial and spectral

bands. A non-stationary product covariance function is utilised

to model the geometry and intensities of pixels in the high

spatial resolution image forming the spatial base of the fused

image. A cross covariance is then calculated using the base

kernel and a mapping corresponding areas between different

modalities. The multi-output approach allows the exploitation

of local image structure that improved sharp edges with little

visual artifacts when compared with the other methods. The

results of Fast-FMI shows the proposed approach performing

better than the compared methods. We attribute this to the

ability of the model to capture more information from the

complimentary images by finding pixel correspondences and

adapt to the change of resolution problem inherent in multi-

band images.
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