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Abstract—Target tracking performance relies on the match
between the tracker motion model and the unknown target
dynamics. The performance of these model-based trackers de-
grades when there is a mismatch between the model and the
target motion. In this paper, a Gaussian process based approach,
namely, Gaussian process motion tracker (GPMT) is proposed.
The Gaussian process framework is flexible and can represent an
infinite number of motion modes. The evaluation of the proposed
approach is performed on challenging scenarios and is compared
with popular single and multiple-model based approaches. The
results show high accuracy of the predicted and estimated target
position and velocity over challenging maneuver scenarios.

Index Terms—Target Tracking, Gaussian Process, Motion
Models.

I. INTRODUCTION

Mulitple target tracking (MTT) [1], [2] aims at finding

trajectories of multiple targets from sensor data and provides

solutions to challenging data association problems. The MTT

methods are broadly categorized to point target tracking (PTT)

methods and extended / group target tracking (ETT / GTT)

methods [3]–[6]. PTT deals with the target kinematics esti-

mation, whereas ETT / GTT involves estimation of the target

kinematics and the extent. PTT methods have been used in

numerous systems and in diverse fields such as for air, land and

sea traffic management, oceanography [7], medicine. Similarly,

ETT / GTT has also been applied in various fields such

as autonomous vehicles, urban management, environmental

studies.

MTT methods provide a solution to two closely related

problems, namely the data association and the filtering problem.

The data association requires finding the correct measurement

to trajectory assignment. Most filtering methods are model

based and the choice of the motion and measurement models

are of primary importance. This, in turn, also affects the data

association process in the subsequent step. Various motion

models have been proposed for tracking simple and complex

target dynamics [8]. All of these models are equally applicable

to the kinematics estimation required in the PTT, ETT and

GTT.

A wealth of model-based filtering approaches [5], [6], [9]

have been typically proposed. In most applications, the actual

target dynamics cannot be represented exactly by the model. A

modeling noise is added to capture this mismatch. Moreover,

as the target motion is a continually changing process, a large

number of models and model switchings are required to mimic

the target motion and to determine good estimates. Even if

the switching process is known a priori, it is not efficient to

design a practical system with a large number of models. The

modeling noise is again included to reflect inaccuracies of

the motion representation. The state estimation using model

switching among a large or even an infinite number of models

can be achieved using the model-free approach proposed in

this paper.

A wealth of research has been done on time series prediction

and estimation using Gaussian process (GP) methods such

as [10], [11]. However, the GP approach has not been widely

studied by the target tracking community for estimating the

target motion, especially for highly maneuvering targets. A GP

based trajectory estimation has been proposed for simultaneous

localization and mapping [12], [13], where the target kinematics

are not considered as highly maneuverable. A novel approach

for extended target tracking using GPs has been proposed

in [14]. In this work and the other similar works [15]–[17],

the target shape estimation is proposed using a GP model

whereas the target (center/average) motion is filtered using the

model based approaches proposed for PTT. An overlapping

mixture of GPs (OMGP) has also been proposed in [18] to

solve the data association problem arising in the MTT. To

the best of our knowledge, all previous approaches for the

estimation of the target kinematics are model based. Hence, for

the first time, this paper proposes a data-driven approach for

the target kinematics estimation. A Gaussian process motion

tracker (GPMT) is proposed in this paper and it represents the

target kinematics as a GP regression [10].

A Gaussian process motion tracker (GPMT), proposed in this

paper, is a data driven approach based on the GP regression [10].

The GP is a stochastic process that uses a prior distribution over

functions and training data to predict the functional values at

points not included in the training data. The GPMT models the

target motion as a nonlinear function of time using a GP prior

over this unknown function. The mean of the GP represents

the mean of the function matched to the target dynamics. Since

the GP is a distribution over functions, an infinite number of

functions or models selection can be achieved using the GPMT.

The GPMT uses the available data to select the model and

then find the current or predicted estimate based on the chosen

model. A GP, being a batch regression approach, is not suitable



for real-time temporal systems. The GPMT assumes that the

model selection depends on the training data in the near past,

only. Hence, the batch regression problem is reduced and the

real-time implementation is achieved.All MTT model-based

approaches rely on the calculation of current and predicted

state estimates. In contrast, the GPMT does not require such a

two-step process. The estimation and the prediction processes

run independently of each other. Hence, when only estimates

at the current time moment are required, the prediction process

can be omitted.

The GPMT based filter gives the location estimates. In most

applications, the consideration of higher order time derivatives

of the location is also important. This can be achieved by using

the derivative of the GPs [10]. A first order time derivative

extension of the GPMT is presented in this paper for estimating

the target velocity. The same concept can be extended to

determine other higher order derivatives.

The rest of the paper is paper is structured as follows.

Sections II-A and II-B provide a brief overview of the state

space models used in MTT and the motion models. The

theoretical background of the GP and the derivative GP is

covered in Sections II-C and II-D, respectively. The proposed

model is explained in Section III and the extension of the

proposed model is given in Section III-B. The performance

evaluation is done in Section IV followed by conclusions.

II. BACKGROUND KNOWLEDGE

A. State Space Model for Multiple Target Tracking

This section gives a brief overview of the state space

model used in MTT. The MTT algorithms deal with data

association and maintain the trajectories of multiple targets by

an appropriately chosen estimation approach. The assignment

of measurements to respective target trajectories is key for

achieving accurate results. The following state-space model

represents the target dynamics and the sensor model:

xk+1 = f(xk,wk), (1)

zk = h(xk,vk), (2)

where x and z represent, respectively, the state and the

measurement vector, k is the discrete time index, f and h

represent the state motion model and the measurement function,

respectively, and w and v are the process and measurement

noise vectors, respectively.

B. Overview of Target Motion Models and Filtering Methods

This section gives a brief overview of target motion models.

A comprehensive survey of the motion models can be found

in the three survey papers [8], [19], [20]. The models have

been categorized and studied as non multiple-model (non-

MM) [8], decision-based methods [19] and multiple-model

methods (MM) [20]. Their practical implementation has been

discussed extensively in [1].

The non-MM motion models can be categorized from simple

to complex models based on the assumption made on the

coordinate coupling and the temporal correlations as shown in

Fig. 1. The simplest models assume that the target motion is

uncoupled across coordinates and uncorrelated in time. The

acceleration and jerk1 models are assumed to be a white

noise process in nearly constant velocity (NCV) [1] and

nearly constant acceleration (NCA) [21] models, respectively.

The velocity and acceleration are assumed almost constant

in the NCV and NCA, respectively. The (n + 1)-th order

polynomial model [21] is achieved by assuming the (n+1)-th
position derivative to be white noise and an almost constant n-

th position derivative. These models assume zero coupling

among the coordinates. This assumption is relaxed in the

nearly coordinated turn (NCT) [1], [21] based models, which

in addition to the coupling assume an almost constant forward

speed and turn rate. Such models provide better estimates

during target maneuvers. The performance is degraded, in

comparison to the NCV and NCA, when the target follows a

linear motion. Since the true target dynamics is a continuous

process, the motion parameters are correlated in time. The

time correlation is considered in relatively complex models

such as Singer [22] and jerk models [23]. The coordinate

coupled version of the Singer model is also proposed as n-th

order Markov model [24]. The target acceleration based models

provide better estimates in the presence of both the position and

the velocity measurements [1]. These models are applicable

to the two dimensional (2D) tracking case directly and are

extended to the three dimensional (3D) case as well. Often the

Kalman filter [25] is applied when there is no measurement

data association filter.

Two other groups of methods - the decision-based and the

MM methods [19], [20], use a bank of filters to provide the

estimates. The decision-based methods choose a single filter to

give the state estimates at any given time. On the other hand,

the MM filters combine the filters to give the state estimates.

These have been classified into three generations [20],the first

generation [26], [27] methods, the second generation namely

interacting MM (IMM)) [2], [28]) and the third generation

referred to as the variable structure IMM (VSIMM) [29].

Considering the computational complexity and the performance,

the interacting multiple-model (IMM) has been shown to be

the most cost-effective method. The IMM, also called Fixed

Grid IMM (FGIMM), has been successfully applied in various

tracking systems [1]

C. Gaussian Process

A GP is a stochastic process, any finite realization of which

is jointly Gaussian distributed. The GP, defined by a mean

function and a covariance kernel, has been used for solving

problems involving regression and classification [10]. It allows a

non-parametric functional mapping from the input to the output

space. These spaces can be single, multiple or a combination

of them. As a non-parametric method, the GP method relies

on training data for the output prediction at the unknown input

locations. The GP mean and the covariance kernel act as a prior

on the prediction process. In most applications, the mean is kept

1The time derivative of acceleration is called a jerk.
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Fig. 1. Classification of motion models for target tracking.This figure shows the classification of motion models based on the assumptions of the coordinate
coupling and time correlations. The ’+’ and ’x’ represent, respectively, the presence and absence of the model assumption e.g. the left most box represents
models that assume no coordinate coupling or time correlations. The model complexity increases from left to right.

constant or zero, which means that there is no prior information

regarding the mean behavior of the modeled function. Hence,

the covariance kernel is the most important design parameter

of the GP based models. The details of different mean and

covariance kernels can be found in [10].

Suppose, a GP is used to model a nonlinear function f , which

relates the one dimensional input r to the one dimensional

output s as given below:

s = f(r), f ∼ GP (µ, k(r, r′)), (3)

where µ and k represent, respectively, the mean and the

covariance kernel of the GP. Suppose, the output is known at

n input locations. The output at unknown n⋆ input locations

can be determined using the GP as given below:

E[s⋆] = µ+Kr⋆r(Krr + σ2In)
−1(s− µ), (4)

cov[s⋆] = Kr⋆r⋆ −Kr⋆r(Krr + σ2In)
−1Krr⋆ , (5)

where s⋆ and r⋆ represent, respectively, the output and input

vectors at n⋆ locations, E[·] is the mathematical expectation

operator, E[s⋆] and cov[s⋆] represent, respectively, the pre-

dicted mean and the predicted covariance of the GP, r and s

are the n-dimensional input and output training data vectors,

respectively, µ represents the n-dimensional GP mean vector

at the training input locations, σ2 is the noise variance, K

denotes the GP covariance matrix, ·−1 denotes the inverse

matrix and In represents an n-dimensional identity matrix. A

GP covariance matrix between a j-dimensional vector p and

an l-dimensional vector q is given below:

Kpq =











m(p1, q1) m(p1, q2) · · · m(p1, ql)
m(p2, q1) m(p2, q2) · · · m(p2, ql)

...
...

. . .
...

m(pj , q1) m(pj , q2) · · · m(pj , ql)











. (6)

The parameters of the GP mean function and the covariance

kernel are called hyperparameters. The hyperparameters can

also be found, e.g. by maximizing the likelihood (−1

2
s′K−1

rr s−
1

2
log |Krr| −

n
2
log 2π). The process of finding (learning) the

hyperparameters is a non-convex optimization problem which

is computationally complex and might sometimes be locked

in local minima. For some applications, hyperparameters can

be learned or set to a fixed value based upon prior knowledge.

This, in turn, improves the processing time and avoids the

prediction based on poor optimization results.

D. Derivative Gaussian Process

The derivative of a GP is also a GP [10]. The GP regression

using derivative measurements has been proposed in [30]. In

typical radar tracking applications, these derivative measure-

ments are not available. The GP inference of a function and

its derivatives using the observations is proposed in [31].

In what follows we present the new approach, using the

observations only. It requires the GP covariance kernel to be as

many times differentiable as the order of the desired derivative

process. Next, we describe a second order derivative GP which

is in the heart of the developed approach.

Consider the GP model (3), with mean µ = 0. The joint

probability density function of the known output vector s, the

unknown output vector s⋆ and its higher order derivatives

s′
⋆
= ds⋆

dr
and s′′

⋆
= d2s⋆

dr2
is also Gaussian. The means and

the covariance matrices of the first- and second-order derivative

processes are given below:

E

[

s′
⋆

s′′
⋆

]

=

(

∂K⋆

∂r⋆

∂2K⋆

∂r⋆2

)

[

K + σ2In

]−1
s, (7)

cov
[

s′
⋆]

=
∂2K⋆⋆

∂r⋆∂r
−
∂K⋆

∂r⋆
[K + σ2In]

−1

[

∂K⋆

∂r⋆

]T

, (8)

cov
[

s′′
⋆]

=
∂4K⋆⋆

∂r⋆2∂r2
−
∂2K⋆

∂r⋆2
[K + σ2In]

−1

[

∂2K⋆

∂r⋆2

]T

, (9)

where K⋆ = Kr⋆r, K = Krr, K⋆⋆ = Kr⋆r⋆ , ∂ denotes

the partial derivative and ·T is the matrix transpose.

III. GAUSSIAN PROCESS MOTION TRACKER

The GPMT relies on past measurements to estimate the

current and predict the future states. This model assumes that

the coordinate coupling is weak enough to be ignored. This

coupling can be included by extending the proposed approach

with coupled GP [32]. The proposed model is in 2D and can

be extended to 3D in a straightforward way.



A. 2D Gaussian Process Motion Tracker

The 2D GPMT assumes that the Cartesian x and y position

coordinates of the target are not correlated in the last time

instant, but these position coordinates could be correlated

in past moments in time. The past measurements and the

GP model, essentially the GP covariance kernel, are used

to determine the nonlinear function. The unknown nonlinear

functions mapped to the x and y Cartesian position coordinates

of the target using a GP in the GPMT are given below:

x = fx(t), y = fy(t), (10)

fx ∼ GP (0, k(t, t′)), fy ∼ GP (0, k(t, t′)), (11)

where fx and fy are the corresponding non-linear latent

functions and t is the (input) time domain parameter. In this

paper we adopt the squared exponential covariance kernel [10]

for the two GPs. Other kernels can also be explored depending

upon the application.

The GPMT considers the d most recent measurement

samples, also called depth of the tracker, for the state prediction

and estimation as given below:

αk+1|k = Kũu[Kuu + σ2Id]
−1zu, (12)

ρ2k+1|k = Kũũ −Kũu[Kuu + σ2Id]
−1KT

ũu, (13)

αk+1|k+1 = Kûu′ [Ku′u′ + σ2Id]
−1zu′ , (14)

ρ2k+1|k+1 = Kûû−Kûu′ [Ku′u′ + σ2Id]
−1KT

ûu′ , (15)

where ũ = k + 1, u = [k − d + 1, k − d + 2, · · · , k]T ,

û = k, u′ = [k − d + 2, k − d + 3, · · · , k + 1]T , α and

ρ2 denote, respectively, the position means and the variances,

the subscripts k+1|k and k+1|k+1 represent, respectively, the

predicted and the estimated states, σ2 is the measurement noise

variance and za represents the measurement vector consisting

of samples corresponding to time vector a. At each time-step

the hyperparameters are learnt by maximizing the likelihood.

B. First Order 2D GPMT

The 2D GPMT, given in Section III-A, provides both the

predicted and estimated position coordinates of the target. The

first-order derivatives with respect to position coordinates can

be determined, based on the the derivations from [30] and [31],

using the first order 2D GPMT (FO-GPMT). These are given

below:

α̇k+1|k =
∂Kûu

∂û
[Kuu + σ2Id]

−1zu, (16)

ρ̇2k+1|k =
∂2Kûû

∂û∂û

−
∂Kûu

∂û
[Kuu + σ2Id]

−1

[

∂Kûu

∂û

]T

, (17)

α̇k+1|k+1 =
∂Kûu′

∂û
[Ku′u′ + σ2Id]

−1zu′ , (18)

ρ̇2k+1|k+1 =
∂2Kûû

∂û∂û

−
∂Kûu′

∂û
[Ku′u′ + σ2Id]

−1

[

∂Kûu′

∂û

]T

, (19)

where α̇ and ρ̇2 denote, respectively, the mean and variance of

the first order derivatives with respect to position coordinates.

IV. PERFORMANCE VALIDATION

The GPMT performance is validated over five challenging

maneuvering testing examples and over 10000 Monte Carlo

independent runs. The proposed approach is compared with

three other filters based on the NCV, FGIMM and Singer

models [8]. The root mean square error (RMSE) of the position

and the velocity are considered as the performance comparison

parameters. A performance grade ∈ {1, 2, 3, 4} is assigned

to each model for each RMSE value of each scenario. The

grade value of 1 is assigned to the best and 4 to the worst, out

of the four methods. Testing scenarios in which the motion

models used to generate the trajectory of the targets are the

same with the models used in the tracking algorithms are called

“matched”. The five scenarios are explained below:

1) S1: Uniform motion. The target velocity is constant and

the scenario matches the NCV and the FGIMM filters.

2) S2: Coordinated turns matched. The target motion is

modeled using the NCT (25 deg /s for 8s) and NCV

motion models. This scenario is matched to FGIMM

filter.

3) S3: Coordinated turns mis-matched. This is similar

to S2 but the NCT (12 deg /s for 20s) model is not

matched to the FGIMM. The scenario is not matched to

any filters.

4) S4: Singer matched. The target motion is modelled

using a Singer acceleration model with maximum pos-

sible acceleration Amax = 50m/s2, probability of

no-acceleration P0 = 0.4, probability of maximum

acceleration Pmax = 0.1 and maneuver time constant

τm = 8s.

5) S5: Singer mis-matched. This scenario is similar to

S4 with following changes in the parameters, Amax =
2m/s2, P0 = 0.6 and τm = 25s. This scenario is not

matched to any filter.

The initial target velocity in each coordinate is chosen randomly

between 150m/s and 250m/s and the target maintains uniform

motion for initial 5s in all scenarios. The total duration is 100s
and the measurement noise standard deviation is σ = 25m.

The position and velocity RMSE are used to evaluate the

performance. A sample trajectory of each scenario is shown

in Fig. 2. A 15% initialization noise is added to all filters.

A. Filter Parameters

a) NCV-KF: The process noise variance is 500m2/s2.

The noise variance value is chosen high to prevent the filter

from diverging during sharp maneuvers of scenarios S2, S3

and S4.

b) Singer-KF: The model parameters are chosen the same

as in S4.

c) FGIMM: The fixed grid is modeled using a single NCV

model and 2 NCT models. The rate of turns of the NCT models

are set to {−25, 25} deg /s. The Markov transition probability

of the same mode is set to 0.7 and for changing the mode is
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Fig. 2. Sample trajectory. The figure shows a sample trajectory for each
scenario. The trajectory starts from origin (0,0) in all scenarios.

TABLE I
PERFORMANCE GRADES OF THE PROPOSED APPROACH

Prediction Grades Estimation Grades

Scenario x y vx vy x y vx vy

S1 1 1 1 1 1 1 1 1

S2 2 2 2 2 2 2 2 2

S3 1 1 1 1 1 1 1 1

S4 2 2 2 2 2 2 2 2

S5 1 1 1 1 1 1 1 1

0.15, the initial model probability vector is {0.15, 0.7, 0.15}
and the process noise variance is set to 7.57× 10−8m2/s2 for

each model.

d) FO-GPMT: The tracker depth is set to d = 10 samples.

B. Results

The graphical and numerical comparisons of the prediction

process are given in Figures 3 and 4, respectively. Similarly,

the comparisons of the estimation process are given in the

Figures 5 and 6. The performance grades of the proposed

approach are given in Table I. It can be observed that both the

prediction and estimation accuracies of the proposed approach

are better than the model based approaches in the mismatched

scenarios, S3 and S5. In matched scenarios, it is second best

to the matched filter only. An improved performance in the

estimates is observed for the Kalman filter based methods. This

improvement in the model based approaches in the estimation

process, as compared to their respective prediction process, can

be attributed to the Kalman filter rather than to the performance

of the underlying model.

The NCV and the FGIMM filters are expected to give grade 1
performance for S1. However, the proposed approach performs

better than both matched filters. The FGIMM and Singer filters

perform best for S2 and S4, respectively, as the simulated

scenario is exactly matched to the motion model of the filter.

The performance of the FGIMM is worse for mismatched

scenarios and it even diverges for S4. The Singer based filter

performs worst for the uniform motion based scenario that is

S1. This motion is one of the common modes in many tracking

applications. For example, the aerial targets tracking systems

are expected to track airliners which are mostly moving under

nearly constant motion.

V. CONCLUSIONS

This paper presents a GP model free approach for filtering

and prediction of multiple target trajectories. The proposed

GPMT approach can provide both estimates in the current

time moment and future predictions of the target positions. A

first-order extension of the proposed approach, FO-GPMT,

is also proposed for the predicted and estimated velocity.

The proposed approach does not require initialisation and the

estimation and the prediction processes run independently. The

evaluation of the proposed model-free approach is compared

with model-based approaches. The results show that the FO-

GPMT predicted and estimated positions are more accurate than

the model-based results. This also provides an improvement to
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Fig. 3. Prediction performance. The figure shows the prediction performance
results of 10000 Monte Carlo runs for the given five scenarios. Considering
all the 5 scenarios, the proposed approach performs best due to its adaptability.

S1

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 25 25 11 11

Singer 31 31 19 19

FGIMM 32 32 27 27

FO-GPMT 22 22 10 10

S2

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 115 159 113 160

Singer 98 155 107 171

FGIMM 35 43 37 47

FO-GPMT 70 72 81 86

S3

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 69 86 64 82

Singer 46 49 44 47

FGIMM 49 54 53 57

FO-GPMT 43 43 38 36

S4

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 52 52 46 46

Singer 38 38 31 31

FGIMM NaN NaN NaN NaN

FO-GPMT 46 46 41 41

S5

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 25 25 11 11

Singer 31 31 19 19

FGIMM 32 32 27 27

FO-GPMT 23 23 11 11

Fig. 4. Predicted mean errors. This figure shows 5 tables providing
comparison of the RMSE values for the 5 scenarios. Each Table is tagged
with the scenario label at the left bottom. The cell value of NaN means that
the corresponding filter diverged.
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Fig. 5. Estimation performance. The figure shows the estimation performance
results of 10000 Monte Carlo runs for the given five scenarios. It can be
observed that the estimation performance of the model based approaches
improves as compared to their respective prediction performance. This
improvement is due to the Kalman filter, which improves the prediction
performance using the innovation process.

S1

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 16 16 11 11

Singer 17 17 14 14

FGIMM 15 15 15 15

FO-GPMT 15 15 8 8

S2

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 35 45 66 92

Singer 26 36 58 89

FGIMM 16 17 22 32

FO-GPMT 20 19 38 37

S3

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 23 27 36 45

Singer 18 19 24 25

FGIMM 18 18 29 33

FO-GPMT 18 18 22 21

S4

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 20 20 26 26

Singer 18 18 19 19

FGIMM NaN NaN NaN NaN

FO-GPMT 19 19 24 24

S5

1

2

3

4

Model rmse-x rmse-y rmse-vx rmse-vy

CV 16 16 11 11

Singer 17 17 14 14

FGIMM 15 15 15 15

FO-GPMT 15 15 8 8

Fig. 6. Estimated mean errors. This figure shows 5 tables providing
comparison of the mean estimation errors for the 5 scenarios. Each Table is
tagged with the scenario label at the bottom left. The cell value of NaN means
the corresponding filter diverged.



the data association. Future work will focus on evaluation of

the uncertainty propagation using different covariance kernels

and theoretically.

APPENDIX A

DISCRETE TIME KALMAN FILTER

The discrete time Kalman filter is based on the following

discrete time system model:

xk+1 = F kxk +wk, wk ∼ N (0,Qk)

zk = Hkxk + vk, vk ∼ N (0,Rk)

where F k and Hk represent, respectively, the state update and

measurement matrices and Qk and Rk are the process and

measurement covariance matrices, respectively. The Kalman

recursion [25] is given below:

x̃k+1|k = F kx̂k|k, P̃ k+1|k = F kP̂ k|kF
T
k +Qk,

Sk = Rk +HkP̃ k+1|kH
T
k , K̃k = P̃ k+1|kH

T
kS

−1

k ,

x̂k+1|k+1 = x̃k+1|k + K̃k(zk −Hkx̃k+1|k),

P̂ k+1|k+1 = (I − K̃kHk)P̃ k+1|k,

where ·̃ and ·̂ denote the predicted and the estimated vector /

matrix, respectively and K̃ represents the Kalman gain.
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