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Abstract

The experimental characterisation of the swimming statistics of populations ofmicro-organisms or

artificially propelled particles is essential for understanding the physics of active systems and their

exploitation.Here, we construct a theoretical framework to extract information on the three-

dimensionalmotion ofmicro-swimmers from the intermediate scattering function (ISF) obtained

fromdifferential dynamicmicroscopy (DDM).We derive theoretical expressions for the ISF of helical

and oscillatory breaststroke swimmers, and test the theoretical framework by applying it to video

sequences generated from simulated swimmers with precisely-controlled dynamics.We then discuss

howour theory can be applied to the experimental study of helical swimmers, such as active Janus

colloids or suspensions ofmotilemicroalgae. In particular, we showhowfittingDDMdata to a simple,

non-helical ISFmodel can be used to derive three-dimensional helicalmotility parameters, which can

therefore be obtainedwithout specialised 3Dmicroscopy equipment. Finally, we discus howour

results aid the study of activematter and describe applications of biological and ecological importance.

1. Introduction

The behaviour of swimmingmicro-organisms and artificially propelledmicroscopic particles, collectively

termed ‘microswimmers,’ is of both fundamental and practical interest. On the one hand, suspensions of

microswimmers reveal qualitatively distinct statisticalmechanics [1–3] and fluidmechanics [2–6] from those of

passive colloids. On the other hand, a quantitative understanding ofmicroswimmer dynamics opens up exciting

newpossibilities for activematerial engineering [3, 7] andmicrobial biotechnologies [8], as well as formicrobe-

dependent environmental and climate science, such as inmarine plankton population dynamics [5, 9].

Micro-organisms and artificial swimmers typically are observed to swim along trajectories of a helical nature

[10–12]. The helicalmotion arises frombody rotation about an axis that differs from the swimming direction

[11, 13] and is the expected outcome of systems that lack perfect symmetry. For biological swimmers such as

microalgae [10, 14] or spermatozoa [12] the rotation originates from torques caused by non-planar flagellar

motion [13, 15]. In the case ofmicroalgae, the rotation is observed to have a biological role in that it allows cells

to sample the light environment andmove towards regions that are photosynthetically optimal (phototaxis)

[16, 17]. For artificialmicroswimmers such as catalytic Janus particles the rotation is likely due to a combination

of body and coating imperfections [11].

Measurements of the physical characteristics of swimmers permit the parameterisation and improvement of

theoreticalmodels of activematter, which, if successfully predictive, can be used for innovative (bio)engineering

design [3, 8]. Significantly, even in the absence of a theoretical framework,measurements ofmotility statistics

also allowone tomake direct inferences on the biological, ecological and biotechnological behaviour of

microswimmers. For example,motility patterns, including helical swimming, and associatedmotility statistics
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changewhen heterotrophicmicroalgae prey on smaller phytoplankton [10]. Therefore, it is crucial to be able to

characterise three-dimensional swimmingmotions for statistically significant population sizes.

Single-particle tracking [18] and ensemble-averaged techniques, such as dynamic light scattering (DLS) [19],

have been until recently themain techniques used to probe the spatio-temporal dynamics of particle

suspensions. Particle tracking in videomicroscopy, developed for the characterisation of passive colloidal

dynamics [18], has beenwidely applied to study active systems, biological [15, 20] and synthetic [11, 21].

However, the characterisation of three-dimensionalmotion, such as helical swimming, with standard imaging

microscopy is limited by the tracking depth of themicroscope [18]. Specialisedmicroscopy apparatus and image

processing algorithms are required to extract three-dimensionalmotility information, such asmultiple cameras

[14, 22–24], exploitation of optical phase information in phase-contrastmicroscopy [25], digital holographic

microscopy [10, 26] or ‘Lagrangianmicroscopes’ [27–29]. However, these techniques can be limited either in

statistical accuracy and/or to low particle concentrations. For example, the use ofmultiple cameras is limited to

relatively dilute samples because cross-correlation of camera outputs becomes challenging at high

concentrations (due to particle trajectory overlaps) [14].

InDLS, fluctuations in the light scattered froma sample are collected in the farfield at a given scattering

vector q, and analysed to infer themicroscopic dynamics. DLS delivers statistical information for the dynamics

of colloidal samples in three dimensions and plays a crucial role in the study of passive softmatter [19].

Importantly, DLS allows one tomeasure the intermediate scattering function (ISF), also known as the dynamic

structure factor. The ISF is the Fourier component of the probability density function of particle displacements

at a given time. It thus encodes full statistical information about the particle dynamics at a given length scale

l=2π/q, with = ∣ ∣q q , and delay time τ.While the potential for the application ofDLS to suspensions ofmotile

micro-organismswas recognised early (e.g. for bacteria [30], microalgae [31, 32] and sperm [33]), standardDLS

is restricted to large scattering angles, corresponding to small length-scales or large = ∣ ∣q q values. At these small

length-scales,many processes such as ballistic, rotational, and oscillatorymotions all contribute to the ISF. Thus

extracting dynamical information becomes impractical. Therefore, DLS is not suitable for the study of

microswimmers. In particular, because of its limitation tomotions on small scales, DLS studies [33–35] did not

succeed in obtaining information about helical swimming trajectories, as this requires probing larger scale

dynamics.

The discovery and development of differential dynamicmicroscopy (DDM; see [36] for a review on recent

developments) hasmade the dynamics of active systems amenable to being probed by standard imaging

microscopy [37, 38]. DDMyields the ISF and is particularly suited to low optical resolution imagingmicroscopy

with a largefield of view, thus giving access to the particle dynamics over large length-scales, i.e.more than one

order ofmagnitude larger thanDLS. Additionally, DDM is not restricted to lowparticle concentrations [39] and

thus canmore easily provide statistically significant information for densemicroswimmer suspensions.

DDMhas been applied to a range ofmicro-organims to extract keymotility parameters (including bacteria

[37, 38, 40], algae [38] and spermatozoa [41]). For bacteria, DDMhas also been used to clarify the interaction

betweenmotile and non-motile cells [42], characteristics of swimming in a polymer solution [43], and dynamics

of concentrated suspensions [44]. Also, it has been employed to study biological activematter (e.g. [39, 45]) and

artificial swimmers in quasi-two-dimensional geometries [21]. However, despite the fact thatmany of the above

artificial and biological swimmers swimhelically, to the best of our knowledge, no theoretical expression for the

ISFs of helical swimmers has been derived to allow the use ofDDM to study their fullmotion.

In this workwe derive the ISF for swimmers with helical trajectories combinedwith progressive back-and-

forth bodymotion. The latter is included so that the ISF can be used to describe biflagellate algae, such as the

model speciesChlamydomonas reinhardtii, which propel themselves by beatingflagella with a breaststroke

motion [46].We then derive approximations to the ISF that facilitate extraction of helical and breaststroke

swimming statistics fromDDMdata. The accuracy of these approximations is assessedwith video sequences

generated from simulatedmicroswimmers. Finally, we discuss howour analysis suggests a newmethod to

extract helical swimming parameters usingDDMwith standardmicroscopy setups and simple ISFmodels. Our

method should allow the experimental study ofmore concentrated suspensions of active swimmers than

afforded by current 3Dmethods.

2. Theory: ISF and approximations

The ISF for independent (non-interacting) swimmers is given by:

t = á ñtD +( ) ( )· ( )f q, e , 1tq ri j

whereΔr j(t+τ)=r j(t+τ)−r j(t) is the displacement of swimmer j, τ the delay time, q is thewavevector,

withmagnitude = ∣ ∣q q , probing the dynamics at a length-scale l=2π/q, and angled brackets denote averages
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over time t, and all swimmers andwavevector direction q/q. The position vector of a helical swimmerwith an

oscillating back-and-forth component is given by

t d= +( ) ( )r r r , 2c b

where rc is the position of the centre aroundwhich the particle centre oscillates back-and-forth, with a

diplacement δrb(τ). Here and henceforth, we omit the swimmer index j (e.g. rc,j→rc) for clarity andwith a
view to later replacing sums over swimmers with integrals. The tip of the vector rc traces a helical path, and δrb

models a back-and-forth oscillatorymotion, such as the body rocking that results from the back-and-forth

swimming of biflagellate algae likeChlamydomonas spp. [46], see figure 1. For each swimmer, we consider a

reference framewith the z axis coincidingwith that of the helix, so that, adopting the cylindrical polar coordinate

system (r,ψ, z) shown infigure 1(b), we can decompose the helicalmotion as a superposition of translation along

the helix axis and rotation around it

t= + ( )v Rr e e , 3c p z r

where vp is the progressive speed, the projection of the cell velocity on the helical axis, andR is the helical radius.

The unit vector er rotates around the helical axis with angular speedωh=2πfh (with fh the helical frequency),

described by the azimuthal coordinateψ=ωhτ+fh, wherefh is a randomphase, uniformly distributed in the

interval [0, 2π], added to ensure the helical rotations of different cells are not synchronised. The back-and-forth

motion is along the instantaneous swimming direction

w w= = + = +y( ) ( ) ( )v v R v v v Rp v e e , where . 4p h p z h h h p h
2 2

This is the speed along the helical trajectory. The back-and-forth displacement can then bewritten as

d d
w

= + y
⎡

⎣
⎢

⎤

⎦
⎥ ( )r

v

v

R

v
r e e , 5b b

p

h
z

h

h

where

d t w t f= +( ) ( ) ( )r A sin . 6b b b b

Here,Ab andωb=2πfb are the back-and-forth oscillatory amplitude and angular speed (with fb the back-and-

forth oscillatory frequency), respectively, andfb a randomphase added to avoid synchronisation, as for the

helicalmotion.

With these approximations, the phase contribution to the ISF due to swimmers can be shown to be given by

(see appendix A)

h t t q

w t f f q

w t f f q
w

w t f w t f f f q

º D =

+ + -

+ + -

- + + -

· ( )

[ ( ) ]

[ ( ) ]

[ ( ) ( ) ] ( )

qv

qA
v

v

qR

qA
R

v

q r cos

sin sin cos

cos cos sin

sin sin sin sin sin , 7

p

b

p

h
b b b

h h h

b
h

h
h h b b b h

Figure 1. (a)Helical trajectory, of radiusR, traced by a swimmer swimming in direction p and, due to internal torques (e.g. azimuthal
components to theflagellar beat of biflagellate algae), rotating around the directionn0making an angle γwithp. This direction
coincides with the orientation of the traced helix. (b)The helix frame used to evaluate the Intermediate Scattering Function. The
z-coordinate is alignedwith the helix axis, aroundwhich the swimmer, with centre-ofmass position rc, rotates with angular speedωh,
sweeping an azimuthal angleψ=ωhτ+fh. Superposed on thismotion along the instantaneous swimming direction p is a back-
and-forth oscillation δrb. The vector q is the scattering vector, as in dynamic light scattering.
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where θ is the angle between q and the helical axis along z. Thefirst term in equation (7) is the contribution of

progressive swimming, the second term corresponds to breastroke swimming oscillations, the third to helical

rotation, and the forth is a cross-term reflecting the coupling between breastroke and helical swimming.

To evaluate the ISF given by (1)weneed to average over all swimmers, whichmeans averaging over all

distributions of swimming parameters. Tomake analytical progress, henceforthwe assume isotropic swimming,

and consider a distribution P(vp) only for swimming speeds: all other swimming parameters are approximated as

having single values. The ISF for the algae is then amultiple integral over the volume of the swimming velocity

spaceΓs, as well as over the randomphasesfh andfb

ò ò ò

ò ò ò
t

f f

f f
= á ñ ºh

h
G

G

( )
( )

( )
( )f q

P v

P v

v

v

, e
d d e d

d d d
, 8

h b p p

h b p p

i

i 3

3

s

s

where normalisation ensures f=1 for q=0 or τ=0.Upon substituting (7) into (1) and choosing spherical

polar coordinates for the velocity space integrationwe obtain

ò ò ò òt
p

f f q q=
p p p

h
¥

( ) ( ) ( )f q P v v,
1

8
d d sin d e d , 9b h s p p2 0

2

0

2

0 0

i

where the isotropic speed distribution is defined as p= ( )P P v v4s p p
2.

2.1. Speed distribution transformations

The readerwill have noticed that the averaging over speed in the ISF integral (9) is evaluated using Ps(vp), the

distribution of progressive speeds vp (projected onto the helical axis), and notPs(vh), the distribution of along-

helix speeds. In fact, either distribution can be used, as a simple change of variables in the integral demonstrates:

ò ò=
w

¥ ¥
( ) ( ) ( ( )) ( )h v P v v h v v P v vd d

R
h s h h h p s p p

0h

, where h is a general function. This same result implies we can

derive the along-helixmotility statistics if we know the distribution of progressive speeds. Indeed, from

equation (4) it follows that themean along-helix speed average is given by

ò w= +
¥

[ ( ) ] ( ) ( )v v R P v vd , 10h p h s p p
0

2 2 1 2

where here and henceforth overbars denoted averages over the speed distribution. The speed average in

equation (10) provides a value of the along-helix speed given values ofωh,R, and the distribution Ps (vp).

Similarly, recalling Ps is normalised, it is easily shown that the secondmoment of the along-helix speed is given

by w= + ( )v v Rh p h
2 2 2. Using this relation and s = -v vp p p

2 2 2, the variance of the progressive speed

distribution, the variance of the along-helix speed distribution can then bewritten as

s s w= - = + - + ( ) ( )v v v v R . 11h h h p p h h
2 2 2 2 2 2 2

Wewill use transformations (10) and (11) in the analysis of our simulated results, and in particular to deduce

three-dimensional swimming parameters from two-dimensional data. These relations apply generally for

swimmers with swimming distributionswith finitefirst and secondmoments. Inwhat follows, as in [37, 38], we

consider swimmers with a Schulz distribution [47] of progressive swimming speeds, such that

=
+

+
- +⎛

⎝
⎜

⎞

⎠
⎟ ( )( )

!
( )P v

Z

Z

v
v

1 1
e , 12s p

p

Z

v
p
Z

1
Z

vp p
1

where vp is the progressivemean speed and s= -( )Z v 1p p
2 is a parameter related to thismean and the

variance of the progressive speed distribution. The Schulz distribution (12) is identical to the gamma

distribution,modulo a simple transformation of parameters (see section 3.1). Physically it displays the correct

general features (going through the origin and peaked), andmathematically it allows us tomake analytical

progress.

2.2. Approximate ISF expressions

We summarise here limiting expressions of the ISF (9), whichwill be employed in section 4 to analyse

simulations of helical swimmers and aid interpretation of experiments with real helical swimmers. Deriving

these from the full ISF is straightforward, as demonstrated in the next section for the case when back-and-forth

and helical swimmingmotions are uncoupled.

2.2.1. Uncoupled back-and-forth and helical swimmingmotions.

The swimming of realistic swimmers, such as the biflagellate algaeChlamydomonas reinhardtii andDunaliella

salina, displays both back-and-forth and helical swimmingmotions. In this case, the full ISF (9) is required,

which is hard to simplify analyticallymuch further (integration is straightforward over either, but not both,

randomphases). For helical swimmers likeC. reinhardtii thatmove along tight helices withwell-separated
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helical (1/ωh) and back-and-forth (1/ωb)motion timescales [31, 32, 48], the ISF (9) can bewritten in terms of

the non-dimensional small parameters  w≔ R vh p and n w w≔ h b, so that (see appendix B)

h t q
w t

f
w t

f» + + - +⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )qv X Xcos cos
2

sin
2

, 13p b
b

b h
h

h

wherewe have defined

q t
w t

q f qº -⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )X qA, 2 sin
2

cos 1 sin tan 14b b
b

h

and

q t
w t

qº ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )X qR, 2 sin
2

sin , 15h
h

andwe have used the trigonometric identity - = - + -( ) ( ) [( ) ] [( ) ]A B A B A Bcos cos 2 sin 2 sin 2 and

similarly for -( ) ( )A Bsin sin . Substituting equation (13) into the ISF (9), we can integrate over the random

phasefb to obtain:

ò ò

ò

t q q

f

»

´

p
t q

p
f

¥

+w t( )

( ) ( )

( ) ( )

f q P v v

J X

,
1

2
sin d e d

e d , 16

s p
qv

p

X
b h

0 0

i cos

0

2
i sin

0

p

h
h

h2

where òp f=
p f+w t( )( ) ( )/J X 1 2 e db

X
b0

0

2
i cosb

h
b2 is the zeroth order Bessel function of the first kind [49]. As

shown in appendix B, if qAbò is small, a condition alwaysmet at large scales where qAb=1, it is possible to
further integrate the ISF overfh. For swimmers with a Schulz distribution (12), we can also integrate over

swimming speeds vp to obtain the ISF

òt c
w t

c

w t
c c

»

´ -

⎜ ⎟

⎜ ⎟

⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤
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, 2 sin
2

2 sin
2

1 d , 17

b
b

h

0

1

0

0
2

wherewe have changed variables to c q= cos , and defined a ‘ballistic kernel’ function

c
c

c
º

+ L
+ L

-

+
( )

[( ) ( )]

[ ( ) ]
( )

( )
W

Zcos 1 tan

1
. 18

Z

1

2 1 2

Wehave given it this name because integrating overχprovides the ballisticmodel [38], see equation (22).We

have also used definitions (14), (15) tomake swimming parameter dependencies evident and defined the

constant tL = +( )qv Z 1p , wherewe recall s= -( )Z v 1p p
2 is a parameter fromwhich the standard

deviationσp of the progressive speed distribution can be obtained.

2.2.2. Pure helical swimming (negligible breastrokemotion)

Somemicroswimmers, such as dinoflagellates [10], are known to have negligible or non-existent oscillatory

back-and-forthmotion (Ab≈0 for all q values). In this case, since J0(0)=1, the ISF (17) simplifies to

òt c
w t

c c» -⎜ ⎟
⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤

⎦⎥
( ) ( ) ( )f q W J qR, 2 sin

2
1 d , 19

h

0

1

0
2

where all quantities have been defined above. Inwhat follows, to understand the effect of helical swimming on
the ISF, we also consider swimmers with speed distribution d= -( ) ( )P v v vs p p p

1 , where vp
1 is the single

progressive speed possessed by all swimmers. In this case, the ISF is still given by (19), but with the substitution

W→W1, where

c tcº( ) ( ) ( )W qvcos . 20
p1
1

is the single speed ballistic kernel.

2.2.3. Pure back-and-forth swimming (negligible helical motion)

It is also of interest to consider the case of negligible helicalmotion (R≈0 for all q). In this case the ISF (17)

reduces to

òt c
w t

c c» ⎜ ⎟
⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤

⎦⎥
( ) ( ) ( )f q W J qA, 2 sin

2
d , 21b

b

0

1

0
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whereW is given by equation (18). However, we note that, in the absence of helicalmotion, tL = +( )qv Z 1 ,
where v is the average swimming speed and s= -( )Z v 12 provides the standard deviationσ. The distinction

between progressive and along-helix speeds is not relevant for thismodel: there is only one speed, whichwe

denote by v.

2.2.4. Ballistic swimming (negligible back-and-forth and helicalmotion)

Finally, we consider the limit of ballisticmotion, where both back-and-forth and helicalmotion are neglected. It

is then possible to integrate the ballistic kernel to obtain

òt c c» =
L

L
+ L

-
( ) ( )

( )

( )
( )f q W

Z

Z
, d

1 sin tan

1
. 22

Z0

1 1

2 2

This ISF, just as the one for pure breastrokemotion (21), provides themean speed v and standard deviationσ.

When applied to particle dynamics that are not purely ballistic, equation (22) yields effective quantities, that are

scale-dependent, as we shall see later, and has been previously used tomodel the swimming of bacteria [37] and

algae [38].

For swimmers with a single speed, as for the pure helical swimming case, we canmake the substitution

W→W1, whereW1 is given by equation (20) butwith a speed v1 replacing the progressive one. Then

equation (22) integrates to

t t»( ) ( ) ( )f q qv, sinc . 231

3.Numericalmethods andDDManalysis

Weperformed simulations of swimmers undergoing helical and/or back-and-forthmotions (in 3D). These

were carried out to demonstrate that it is possible to recover swimming parameters from the simulated ISFs

usingDDManalysis and the ISFmodels just presented. ISFswere obtained by applying such analysis to

‘microscopy-like’ pseudo-image sequences derived from the coordinates of simulated swimmers, as detailed

below.

3.1. Simulations andpseudo-image sequence generation

Weuse an individual basedmodel, adapted from [13], to simulate the dynamics of swimmers with both helical

and back-and-forthmotions. Each swimmer j obeys the dynamical system

w= = ´˙ ( ) ˙ ( )v tr p p n p, , 24j h j j j h j j, 0

where rj is the position of the centre of oscillation of the jth swimmer and pj=vh,j/vh,j its swimming direction,

which rotates around the directionn0, j (the helical axis direction for swimmer j, see figure 1). Dots denote time

derivatives. The speed along the helix is given by

w w= +( ) ( )v t v A tsin , 25h j h j b b b, ,

a superposition of a linear translationwith constant speed vh,j and a sinusoidal oscillation thatmodels back-and-

forthmotion, e.g. for swimming algae. This is analogous towhatwe did for the derivation of the ISFmodel.

UsingCartesian coordinates for rj and sphericals for pj, equation (24) is expanded in the systemof component

ordinary differential equations, and thesewere solved numerically withMATLABusing swimming parameters

realistic for algae such asC. reinhardtii (see appendix C for details). As in the ISFmodel, all of these parameters

were assumed to have a single value, with the exception of the swimming speeds. These were obtained from the

distribution of speeds projected along the helix, vp,j, provided by theGammadistribution

a b
=

G a
a b- -( )

( )
( )P v v

1 1
e , 26p j p j

v
, ,

1 p j,

whereα=Z+1 and b = +( )v Z 1p j, are thedistribution parameters (substituting these into (26) yields the

Schulz distribution (12)). Using relation (4)we thenobtain the speed along the helix w= + ( )v v Rh j p j h, ,
2 2 , which

can be substituted into (24) for each swimmer. The swimmingdirection,pj, andbeat phase are initialised randomly

(again, see appendixC fordetails), while the initial values for thehelix angle γjbetweenpj andn0, j can beobtained

from the initial along-helix, vh,j, and progressive, vp,j, speeds. This is given by g= =· v vp n cosj j p j h j j0, , , , and

needs to beprescribed for each simulated swimmer, as it is a functionof speed. Image sequences of the simulated

helical swimmerswere constructed from the simulations by generating aGaussian pseudo-diffraction spot for each

point position (xi, yi, zi), as detailed in appendixC.
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3.2.DDManalysis

For each simulatedmovie, we calculate the differential image correlation functions, t


( )g q , , i.e. the power-

spectrumof the difference between pairs of images delayed by time τ. Under suitable conditions, such as

isotropicmotion, t t= á ñ
 ( ) ( )g q g q, , q is related to the ISF f (q, τ), the qthmode of the number density

autocorrelation function, also called the normalised dynamic structure factor:

t t= - +( ) ( )[ ( )] ( ) ( )g q A q f q B q, 1 , , 27

withB(q) the instrumental noise andA(q) the signal amplitude. Details can be found elsewhere [38]. For a given

simulatedmovie, the g(q, τ)s werefitted as a function of τ either for each q independently or simultaneously over

a given q range. A range ofmodels were used. For simplifiedmodels that ignore the helical path, we found that

applying a fittingweight at longer times allowed better recovery of the input parameters. Details arementioned

in eachfigure captionwhen relevant. For practicality, we present directly ISFs extracted from equation (27) using

thefitted parametersA(q) andB(q).

4. Results

4.1. Pure helical swimming

We start by analysing simulations of swimmers undergoing pure helical swimming (no back-and-forthmotion).

To avoid the complications of swimming speed heterogeneity, we consider first a population of swimmers

swimmingwith a single speed. Typical trajectories are shown infigure 2. Figure 3(a) shows the ISFs as a function
of delay time τ at several values of q for a population of swimmers with a single along-the-helix speed vh

1=

120 μm s−1, helical radiusR=2 μm, and helical frequency fh=2 Hz. The decay is qualitatively different

depending on the value of q, which defined the length scale of interest. Indeed, equations (19), (20) suggest that

the characteristic times of ballistic and helical contribution scale as τb∼2π/qvp and τh∼2/fh, respectively, so

Figure 2.Examples of helical trajectories obtained from simulatedmovies with single progressive speed vp
1=120 μm s−1, fh=2 Hz,

andR=0, 2, 4, and 8 μmas indicated. Each imagewere obtained by accumulating images over 1s frommovies (with Lz=1000 μm,
see appendixC). Scale bar corresponds to 200 μm.
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that there exists a crossover qc∼πfh/vp≈0.1 μm
−1 for which τb=τh. Thus, helicalmotion should provide

the fastest contribution to the dynamics for q=qc, and the slowest at q?qc.

For small q, i.e. q=qc (large length-scales), the ISF displays twomain decays, corresponding to ballistic and

helical contributions to the swimmingmotion. In particular, a kink in the ISF can be seen at time τ;0.5 s,

independent of q, for q0.1 (see vertical dashed line infigure 3(a)), which corresponds to the characteristic

period 1/fh=0.5 s of helical swimmers rotating at fh=2 Hz (the simulation input frequency). At large values

of q, i.e. q?qc, the ISF shows a single decay, which fully decorrelates on time-scales τ=τh. This is

characteristic of ballisticmotion: large q values correspond to small length scales, where helical trajectories are

ballistic to a good approximation, so helical features in the ISF are not pronounced (or easily distinguished).

Additionally, the amplitude of the helical process scales with q and thus decreases with q as expected from the J0
term in equation (19).

The effect of helical rotation on the ISF, via the observation of a kink, is strongly sensitive to the helical

swimming parameters. For example, the characteristic kink evident for single speed swimmers (figure 3(a)) is

less apparent in the following instances when the radiusR of the helical path is decreased (figure 3(b)), or when

swimmers obey a speed distributionwith non-zero standard deviation (figures 3(c) and (d)).

The signature of helicalmotion is nevertheless encoded in the swimmer ISF.We demonstrate in the next

sections thatfitting the ISFswith appropriatemodels derived in section 2 allows tomeasure the 3Dmotility

parameters, with good accuracy, from2Dmovies of the swimmers.

4.1.1.Motility parameters from the simulated swimmer ISF: single speed swimmers

Wefirst analyse the ISF of a population of helical swimmerswith one swimming speed. The ISF is fitted using

equation (19)withW given by equation (20). Fitting for each q independently, we can infer the swimming

Figure 3.Pure helical swimming ISFs as a function of delay τ for different q values: (a) from simulations of helical swimmers with a
single speed (input parameters: single along-the-helix vh

1=120 μm s–1, helical frequency fh=2 Hz and radiusR=8 μm). Thick
lines are independent fits to the ISFs for each q using the single speed helical ISFmodel (19), as discussed in the text; (b) as in (a), but
showing the effect of varying helical radiusR at small q (large length-scales) and large q (small length-scales). A kink is highlighted in
the ISF (vertical dotted lines) at small q, which is a characteristic of helicalmotion that vanishes asR is reduced to 0 (ballisticmotion);
(c) for swimmers with a Schulz speed distribution Ps(v)withmean progressive speed =v 120p μm s–1 and standard deviation

σp≈26.2 μm s–1 (helical parameters as above). Thick lines indicate a globalfit over all q using the helicalmodel (19), while dashed
lines denote independent fits to the ISF for each qusing the ballisticmodel (23); (d)As in (c), but showing the effect of increasingσp at
fixed (small) q. The signature helical kink is no longer obvious, but helical swimming parameters can nevertheless be extracted from
the data by a global fit using the helicalmodel (19), see text.
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parameters as a function of q. Figure 4 displays the q dependence of the progressive single swimming speed vp
1,

helix radiusR and frequency fh (panels (a)–(c) respectively).We see that parameters are recoveredwell with

better results at largeR. For smallR, features of helicalmotion in the ISF are not pronounced (e.g. see figures 3(b)

and (c) forR=2 μm), resulting in less accurate parameter recovery. However, globalfits over given ranges of q

permit accurate recovery of input values, see dotted lines infigure 4 and figure caption.

It is also interesting to analyse the ISF of helical swimmingwith the simpler ballisticmodel (23), which does

not account for helical swimmingmotions. The ballisticmodel yields a speed that varies with q for non-zeroR

(figure 4(d)). The ballisticmodel does not account for helicalmotion and thus provides an effective speed, with a

meaning that depends on length scale. For small length scales (high q), it represents the along-helix speed vh
1,

matching the input values to�3%,where the effects of helicalmotion are not appreciable. At large length scales

(q=qc), the speed tends towards the progressive speedwhich, rearranging equation (4), is given by

w= -( ) ( )v v Rp h h
1 1 2 2 .We recall this is the projection of the along-helix speed onto the helix axis: at large

length scales, helicalmotion is averaged out over several helical pitches.

4.1.2.Motility parameters from the simulated swimmer ISF: Schulz speed distribution

We show infigure 3 typical ISFs for helical swimmerswith a Schulz swimming speed distribution. As

mentioned, a distribution of speedsmakes helical features in the ISFmore subtle and they qualitatively look

similar to swimmers with pure ballisticmotion (R=0) (figure 3(d)). Here, we fit the ISFswith amodel for

helical swimmers with a Schulz swimming speed distribution given by equation (12), using (19) for the ISFwith

W given by the ballistic kernel (18). For smaller values of the helix radii, we found that global fitting the ISFs

providesmore reliable results thanfitting each q independently (data not shown). Figure 5(a) shows the ratio of

the swimming parameters extracted from the globalfit to simulation input values, as a function of the helix

radiusR. The parameters are denoted collectively as s=X v R f, , ,p h, the swimming speed, variance, helix

radius and frequency, respectively (corresponding input values are denoted byXinput). It is clear from figure 5(a)

Figure 4. Swimming parameters fromfits to ISFs generated from single speed helical swimmer simulations (inputs: single speed
vp

1=120 μm s–1, helical frequency fh=2 Hz, helix radiusR values in legends).Measured parameters are shown as function of q for

differentR. Panels (a)–(c) show swimming speed vp
1, helical radiusR and frequency fh, respectively. Symbols are results obtained by

independent fits of the ISF for each q using the single speed helicalmodel (19). Dotted lines are results from global fits of the ISFs over
the range 0.05q0.45 μm−1. Solid lines are input values used for the simulating the swimmers trajectories. (d) effective
swimming speed v1 obtained byfitting the same ISFswith a simpler ballisticmodel using equation (22). At high q (small length scales),

v vh
1 1, matching the input values (thick lines) to3%. At low q (large length scales), the speed v1 equals the input value of the
progressive speed vp (dotted line). Note: here and in subsequent figures, data errorbars are smaller than the pointsize.
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thatmost parameters are recoveredwith good accuracy (within≈10%) for allR. This demonstrates the

applicability of the helical ISFmodel for swimmers with a Schulz distribution and shows how thismodel is

sensitive to helical signatures not evident from inspection of the ISF (see figure 3(b)). At lower values ofR, while

vp and fh are recovered towithin a few percent across the range, the accuracy of recovery forR is less accurate.

This is because, at such smallR values, the helical signature in the ISF is tooweak for even the global fit to pick up.

It is useful to also analyse the Schulz swimmer ISF using the ballisticmodel, as we did for single speed

swimmers. In this case we can fit the ISFwith equation (22) independently for each value of q. The results for the

effectivemean swimming speed v and distribution standard deviationσ are shown infigures 5(b) and (c),

respectively, as a function of q for different values ofR. As for the single speed case, fitting the ballisticmodel to

the helical swimmer ISF results in a q-dependent speed ( )v q , whose value increases from its progressive value vp

at low q to its along-helix value vh at high q. A similar trend is observed forσ although the data can be noisier.

As is clear from figure 5(b), themean along-helix speed value growswith the helix radiusR. The functional

form for this variation, provided by equation (10), is explicitly plotted infigure 5(d) and comparedwith the ratio

between the high q value of themean speed from fits and the simulation input. Similarly, the theoretical and

fitted ratios of the corresponding standard deviations, using equation (11) are plotted on the same graph. The

speed and standard deviation data follow the expected variationwithR, which provides a useful check that the

dependencies predicted by our analytical theory are borne out by the simulated experiments.

4.2. Pure back-and-forth swimming

Next, we analyse simulations of swimmers with only back-and-forthmotion (no helical swimming) and a Schulz

distribution of swimming speeds using typical swimming parameters for biflagellatemicroalgae, like

Chlamydomonas spp. orDunaliella spp.. The ISF obtained from these simulations is shown for different values of

Figure 5. Swimming parameters fromfits to ISFs obtained from simulations of helical swimmers with a Schulz speed distribution
(input values: m=v 120p m/s and fh=2 Hz,σp andR in legends). (a)Dependence on radiusR of the observed to input swimming
parameters (see legend) obtained from a globalfit of the ISFs, over the range 0.05q0.45 μm−1, using the helicalmodel for
swimmers with a Schulz distribution using equation (19) and a fittingweight at longer times. (b)Mean speed v̄ and (c) standard
deviationσ of the effective speed distribution as a function of q extracted byfitting the ISFswith the ballisticmodel using equation (22).
Thick lines denote the input values ofmean along-helix speed vh and standard deviationσh obtained from input values of the
progressive speed vp and standard deviationσp (dotted lines) using equations (10) and (11), respectively. (d)Ratio of high q (small
length scales)mean speed v̄ (open symbols) and standard deviationσ (filled symbols) obtained by fitting the ballistic ISF (22), to
simulation input values as a function ofR. The normalised speed and standard deviation increases and decreases, respectively,
monotonically withR, reflecting the dependence of themean along-helix swimming speed vh and standard deviationσh onR given by
equations (10) and (11) and plotted as dashed lines.
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q infigure 6(a). As for helical swimming, a q-independent signature of back-and-forthmotion is evident. This is

oscillatory in time and its amplitude decreases with decreasing back-and-forth amplitudeAb, vanishing for

Ab=0, see figure 6(b), as expected from the J0 term in equation (21). The short-time decay of the ISF (τ

0.02 s) corresponds to the back-and-forth swimming oscillation, while longer time decay corresponds to ballistic

motion. Subsequent oscillations at longer times in the decay, before the noisefloor is reached, reflect oscillations

in the Bessel function J0 (see equation (21)). In contrast to the helical case, the back-and-forth signature in the

ISF ismore evident at high q values, because of its small length-scale amplitude.

4.2.1.Motility parameters from the simulated swimmer ISF

Analogously to the helical case, fitting the simulated back-and-forth swimmer ISFwith equation (21) provides

values for the swimming parameters. Figures 7(a)–(c) shows the variationwith q of themean swimming speed v

and standard deviation σ (inset), back-and-forth amplitudeAb and frequency fb, respectively. For small values of

Ab, the values of v andσ deviate from the simulation inputs at low q: here, the back-and-forth signal in the ISF

for smallAb is weak, and thus harder tofit (similarly to the smallR case for helical swimmers). Unsurprisingly, on

the other hand, since fb andAb are q-independent, their values can be accurately determined across the q range.

The effect of themagnitude ofAb on parameter accuracy is shown infigure 7(d), wherewe plot the ratio of the

high q value of the swimming parameters to the input value.Note how the effect ofAb on accuracy is analogous

to that ofR for helical swimmers.

4.3. Back-and-forth and helical swimming

Finally, we consider simulations of swimmers with both helical and back-and-forthmotions, and a Schulz

distribution of speeds. Figure 8 shows the corresponding ISF decay for different q values. The ISFs encode both

pure helical and back-and-forth swimming although only back-and-forth features are clearly evident.

4.3.1.Motility parameters from the simulated swimmer ISF

Wefit the back-and-forth and helical swimming ISFwith equation (17) to obtain swimming parameters. As for

the pure helical case, a global fit over a selected q range provides the best accuracy, with parameter value recovery

�5% (figure 9).

We have alsofitted the ISFwith the pure back-and-forthmodel (ignoring the helical path) given by

equation (21), independently for each value of q. Figures 9(a) and (b) shows themean effective swimming speed

v , distribution standard deviationσ, swimming amplitudeAb and frequency fb, respectively, as a function of q.

We found that fittingwith a stronger weight at longer times, thus ignoring short-time contributions, yielded a

similar q dependencewe observed for the pure helical case. As in this case, this is an artefact of using amodel that

is unable to account for helical trajectories. As a result, v transitions from its progressive value, vp, at low q, to its

along-helix value, vh, at high q, and similarly for the distribution standard deviationσ. As for the helical case, we

can use equations (10) and (11) to relate along-helix and progressive values for a given helical angular frequency

ωh and radiusR.More interestingly, when the helical parameters are not known (as is the case in experiment)we

Figure 6.Back-and-forth swimming ISFs as a function of delay τ: (a) for several q values (see legend) from simulations of back-and-
forth swimmers with a Schulz speed distribution (input parameters:mean progressive speed =v 120p μm s–1, standard deviation
σp=26.2 μm s–1, back-and-forth frequency fb=50 Hz and amplitudeAb=2 μm); (b) for different values of the amplitudeAb. The
characteristic, q-independent signature of the back-and-forth oscillation is a dip in the ISF at the back-and-forth timescale 1/fb=
0.02 s indicated as vertical dashed lines. IncreasingAbmakes this featuremore pronounced. Continuous grey lines in (a) and (b)
represent fits for each qusing the back-and-forthmodel with equation (21) for the ISF. In (b) the dotted line is afit toAb=0 using
ballisticmodel.
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can estimate the productωhR, ameasure of the rotational speed around the helical axis. Indeed, simply

rearranging equation (11) provides:

w s s= - + -( ) ( ) ( )R v v . 28h h p h p
2 2 2 2

Figure 7. Swimming parameters fromfits to ISFs from simulations of back-and-forth swimmers with a Schulz speed distribution
(input values: m=v 120 m s−1,σ=26.2 μm s−1 and fb=50 Hz; amplitudesAb are as indicated in the plots). (a)Mean speed,
(b) beating amplitudeAb, and (c) beating frequency fb obtained by fitting the ISFswith the back-and-forthmodel using equation (21).
Dashed lines are input values of the simulations. (d)Ratio of observed to input swimming parameters (as shown in legend) as a
function ofAb.

Figure 8. ISF for swimmers with back-and-forth and helical swimmingmotions shown for different values of q. Simulation input
values are: m=v 120p m s–1,σp=26.2 μm s–1,R=8 μm, fh=2 Hz,Ab=2 μm, and fb=50 Hz. Dotted Lines arefits using

equation (21) for the back-and-forthmodel. Thick lines are from globalfits using equation (17) for the helical and back-and-forth
model.
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Thus, along-helix (high q) and progressive (low q) values of the speed and distribution standard deviation can be

used to estimateωhR based on a simple ISFmodel that does not account for helicalmotions. Fromfigure 9, we

measure the following values: vp≈122 μm s–1,σp≈24 μm s–1, vh≈154 μm s–1, andσh≈21 μm s–1. Thus,

using equation (28), we obtain (ωhR)≈95 μmrad s–1, only 6% from the simulation input value. Finally, while

oscillating components are only recovered towards higher q values, fittingwith a strongerweight at short-time

allows determination of the oscillating componentwithin�0.01%, see caption offigure 9.

5.Discussion and conclusions

The experimental characterisation of the helical and oscillatorymotions ofmicroswimmers is essential for

understanding their statisticalmechanics [2, 3], fluidmechanics [2, 3, 5], biology [46] and ecology [10]. In this

work, we developed a theoretical framework enabling the quantification of suchmotions byDDM, a technique

allowing to infermotility statistics from videomicroscopywithout the need for specialised apparatus.We

modelled the ISF corresponding to helical, back-and-forth, and combined helical and back-and-forthmotions.

Individual basedmodel simulations of swimmers with theses samemotions were used to generate artificial

movie sequences, fromwhich the ISFswere extracted, as inDDM [38] and fittedwith ourmodels. This study

provides the basis for applying ensemble averaging techniques such asDDM tomeasure themotility statistics of

microswimmers following a helical path orwith a combination of helical and othermotions.

The ISFs fromour simulations allow to explore characteristic ISF features emerging fromhelical and back-

and-forth swimmermotions. In particular, for swimmerswith pure back-and-forthmotion, a characteristic dip

in the ISF is evident at the timescale corresponding to the oscillation (figure 6). A similar feature is evident for

pure helical swimmers, corresponding to helical rotation. This is only apparent for swimmers with a single

speed, and at large enough value of the helix radius. For swimmers with a speed distribution, the helical

swimming feature is not conspicuous (seefigure 3), because it is spread across different length-scales for

swimmers with different swimming speeds.

Beyond predicting features to be expected experimentally, our simulated ISFs can befitted using themodels

we have developed to test how accurately the simulation input parameters can be extracted usingDDM. For all

themodels considered in this work, we find that it is possible to extract helical swimming statistics from

simulated ISFswith good accuracy, evenwhen qualitative features are not evident in the ISFs.We note that some

of the assumptionswe havemade in ourmodels (e.g. that all swimming parameters but speed are delta function

distributions, different swimmingmotions can be decoupled)may not apply in real experimental systems.More

detailedmodels of swimmer ISFs than considered heremay be formulated, e.g. when several contributions to

the ISFs fromdifferent swimmingmotions cannot be decoupled. In this case, however, the added details (e.g.

multiple integrals, additional dynamical parameters, parameter distributions)may render fitting impractical.

Figure 9. Swimming parameters fromfits to the ISFs offigure 8 for swimmers with combined helical and back-and-forthmotions
using input parameters m=v 120p m s–1,σp=26.2 μm s–1,R=8 μm, fh=2 Hz,Ab=2 μm, and fb=50 Hz. Symbols are in
(a)mean effective speed v̄ and standard deviationσ (inset); and (b) amplitudeAb and frequency fb (inset) as a function of q obtained by
fitting independently each f (q, τ) using the back-and-forthmodel (nohelical path)with equation (21). Black and red symbols
correspond tofits using stronger fittingweight at longer or shorter times, respectively. Dotted lines are input values of simulations.
Thick lines are fitted parameters using a globalfit (noweight)with combined helical and back-and-forthmotions (equation (17)) over
the range 0.05q0.45 μm−1with at low q and high q the progressive speed and the along-helix speed, respectively. Results from
global fits are m=v̄ 122.8p m s–1,σp=25.9 μm s–1,R≈7.5 μm s–1, fh≈2.0 Hz,Ab=2.0 μm, and fb=50.0 Hz.
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In alternative to detailedmodels, our analysis also shows that it is also possible to extract information about

complex swimmingmotions from simple ISFmodels. For example, when fitting the ISF of helical and back-and-

forth swimmers with a simplermodel ignoring helicalmotion, we find that a scale-dependent effectivemean

speed, ( )v q , and a speed distribution standard deviation,σ(q), emerge. Their low q (large lengthscale) values

correspond to themean progressive speed vp and standard deviationσp, while their high q (small lengthscale)

values represent themean along-helix speed vh and standard deviationσh. These progressive and along-helix

values can be combined to estimate the productωhR between the helical angular frequencyωh and radiusR, see

equation (28), whereωhR is ameasure of the speed around the helical axis. Further, independent knowledge of

ωh, obtainable e.g. fromparticle tracking, can provide an estimate of the (mean) helix radiusR. For example,

assuming ameasured helical frequency fh=2 Hz, we can use the valueωhR≈95 μmrad s–1 (estimated in the

previous section from the data infigure 9) to obtain a helix radiusR≈7.6 μm,which is within 5%of the input

value used for the simulation.

The helix radius is an intrinsically 3Dproperty of helical swimming. Thus far, to acquiremotility statistics

for this parameter, specialised techniques have been used, e.g.microscopy involvingmultiple cameras

[14, 22–24, 50] or holographicmicroscopy [10]. Such techniques are limited in statistical accuracy and/or to

relatively dilutemicroswimmer systems, as explained in the introduction. Gurarie et al [51] recently obtained 3D

motility statistics of dilute suspensions of dinoflagellatemicroalgae from2Dprojections of helical trajectories

obtained using standardmicroscopy using a continuous stochasticmodel (CSM) of helical swimming [51]. In

this study, the dinoflagellates swamwith pronounced (large radius) helical trajectories, and little other body

oscillations. It would be challenging, however, to apply theCSMmethod to swimmers with small helical radius

and back-and-forth oscillations, such asC. reinhardtii. Instead, the hybridDDM-tracking approach proposed

here has great potential to enablemeasurements of the helix radii formoderately concentrated suspensions of

helical swimmers.

The efficacy of ourmethods and analyses needs to be tested by applyingDDMto suspensions of real artificial

and biological swimmers. As discussed, helical swimmingmotions are commonplace formany types of

microswimmer [3]. Using themethodswe have here developed, high quality 3Dmotility statistics can be

collectedwith standard 2D-imagingmicroscopy. This provides economical experimental set-ups for the analysis

of 3Dmicroswimmermotility,making this important area of research accessible to researchers with a limited

equipment budget, such as in schools and developing countries. The ability of our newmethods to extract helical

swimming parameters without the use of specialisedmicroscopy setups could also be exploited infieldwork (e.g.

to characterise unculturable helical swimmers, such as dinoflagellates, in situ). Futurework could develop the

models used in our analysis, adapting them to the large variety of interesting synthetic and biological swimmers,

both currently known and to be discovered. This will allow theoretical and experimental progress in our

statistical understanding ofmicroswimmers, facilitating the development ofmicroswimmer based

biotechnologies, and aiding the characterisation of biologicalmicroswimmers in the environment.

6.Data availability

The rawdata (i.e. simulatedmovies) presented in this publication is available on the EdinburghDataShare [52].
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AppendixA. Phase of the full ISF

From equation (1) the phase of the ISF is defined as

h tº D = -· · [ ( ) ( )] ( )q r q r r 0 . A.1

If we substitute equations (3), (5) and (6) from themain text into (2) then, writing q q= +q qq e esin cosx z ,

and noting y t=· ( )e e cosx r and y t= -y· ( )e e sinx (seefigure 1), we obtain
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We recall thatψ(τ)=ωhτ+fh is the azimuthal coordinate of the swimmer. Substituting into equation (A.2)
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. Subtracting this

from equation (A.2)we arrive at expression (7) for the ISF phase angle.

Appendix B.Uncoupled helical and back-and-forthmotions approximation

Wedefine the small parameters  w≔ R vh p and n w w≔ h b. Then, for the second and fourth terms in phase of

the ISF (7) in themain text, we have:  w= + = - +-[ ( ) ] ( )v v R v O1 1 2p h h p
2 1 2 2 4 and, similarly,

  w w w= + = - +-( )[ ( ) ] ( )R v R v R v O1 2h h h p h p
2 1 2 3 5 . Further, rescaling time such that τ′=ωbτ,

nt f nt f f n¢ + = ¢ + +( ) ( )Osin cos sinh h h
2 , so that equation (7) becomes

 

h
t
w

q t f f q

nt f f q
f t f f q n

=
¢

+ ¢ + -

+ ¢ + -
- ¢ + - +

[ ( ) ]

[ ( ) ]

[ ( ) ] ( ) ( )

qv qA

qR

qA O

cos sin sin cos

cos cos sin

sin sin sin sin . B.1

p
b

b b b

h h

b h b b

If νò=1, the above expression for η is identical to that in equation (13) in themain text, once dimensional time

is restored, andXb andXh defined in equations (14) and (15).

Next, we consider the approximation necessary to integrate (16) overfh. Consider the Bessel function of the

first kind J0(Xb), with argumentwritten as d f= + ( )X X Xb b b h
0 , where qw t( )≔X 2 sin cosb

0

2

b and

d f q-≔X qA X sin tanb b b h
0 . Taylor expanding this function,

d d d+ = - +( ) ( ) ( ) ( ) ( )J X X J X X J X O X , B.2b b b b b b0 0
0

1
0 2

wherewe have used ¢ = -J J0 1. Thus, the integral overfh in (16) can bewritten as



ò f »

+

p
f

p

+w t( ) ( ) ( ) ( )

( ) ( )

J X J X J X

qA X J X

e d

e , B.3

X
b h h b

b b h

0

2
i sin

0 0 0

0 i 2
1

h
h

h2

wherewe have used òp f f=
p f+w t( )( ) ( )/J X 1 2 e sin dh

X
h h1

0

2
i sinh

h
h2 . Since ( )∣ ∣J X X 1h b1

0 , contributions from

the second term to the ISF integral are negligible when òqAb is small. If ò=O(1) (but still òν=1, as above), the
latter condition is stillmet at large lengthscales, where qAb=1. For the parameters used in our simulations,

which correspond toC. reinhardtii-like swimmers,  p» =¯ –f R v2 0.2 0.8h p and ν=fh/fb=0.04, òν is always
small,making equation (B.1) a good approximation to the phase of the ISF (7). The condition òqAb=1
required for the approximation to the Bessel integral just discussed, however, requires small values of the helix

radiusR to be strictly satisfied for all q values. Successful recovery of helical parameters from simulations

analysed using ISF expressions for swimmers with uncoupled helical and back-and-forthmotions, based on the

approximations just described, further justifies the appropriateness of these approximations.

AppendixC. Simulation details

Expanded in component form, equations (24) become

q f=˙ ( ) ( )x v t sin cos , C.1j j p j p j, ,

q f=˙ ( ) ( )y v t sin sin , C.2j j p j p j, ,

q=˙ ( )z cos , C.3j p j,

q w q f f= -˙ ( ) ( )sin sin , C.4p j h n j n j p j, , , ,0 0

f w q q f f q q
q

= - - -˙ [ ( ) ] ( )sin cos cos cos sin
1

sin
, C.5p j h n j p j n j p j n p j

p j
, , , , , ,

,
0 0 0

where vj(t)=vh,j+ωbAb sin ωbt is the net along-helix speed including a sinusoidal contribution due to back-

and-forthmotions. The angles qn0
and fn0

determining the helix orientation are given by the constraint

g= =· v vp n cosj j j h j j0, , . This systemofODEs is solved numerically usingMATLAB (Mathworks, Natick,

MA,USA)with a Runge–Kutta–Fehlberg (RK45)method parallelised forN=1000 swimmers in a periodic box

of size Lx×Ly×Lz, where Lx=Ly=Lz=1000 μm infigures 3, 6, 7 and 8. The box size was increased to
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Lx=Ly=Lz=2000 μm infigures 4, 5 and 9, where the analysis of swimming parameters requires reaching

lower q values. In thefirst case, a 500 μmthick slice of the boxwas taken to generatemicroscopy videos, whereas

the full boxwas used in the latter case.Microscopy-like videoswere generated by assigning aGaussian pseudo-

diffraction spot to the position of each simulated swimmer in the slice volume. This is achieved by subtracting

the intensity s d- - + - -( (( ) ( ) ) ( ))[ ( ) ]I x x y y zexp 2 1i i i
o

0
2 2 2 2 from the background intensity IB for of

each pixel (x, y)within a cut-off distance (in x and y only) of each alga, where zi
o is the offset of the algae from the

centre of the simulation box in z-direction.Here I0 is theGaussian peak intensity,σ its standard deviation in the

plane and δ its extent in depth. The following image parameters were used in all simulations: IB=255, I0=50,
δ=Lz/2 andσ=1. The videos simulated capture at 500 Hz, resulting in sequences of duration 15.32 s

(Lz=1000 μm) or 32 s (Lz=2000 μm). As in the ISFmodel, the simulations neglect orientational noise and

other realistic effects discussed in [15].
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