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Abstract 
This paper deals with the formulation and experimental validation of a novel fatigue lifetime estimation 
technique suitable for assessing the extent of damage in notched metallic materials subjected to in-
service proportional/non-proportional constant/variable amplitude multiaxial load histories. The 
methodology being formulated makes use of the Modified Manson-Coffin Curve Method, the Shear 
Strain-Maximum Variance Method and the elasto-plastic Theory of Critical Distance, with the latter 
theory being applied in the form of the Point Method. The accuracy and reliability of our novel fatigue 
lifetime estimation technique were checked against a large number of experimental results we generated 
by testing, under proportional/non-proportional constant/variable amplitude axial-torsional loading, 
V-notched cylindrical specimens made of unalloyed medium-carbon steel En8 (080M40). Specific 
experimental trials were run to investigate also the effect of non-zero mean stresses as well as of different 
frequencies between the axial and torsional stress/strain components. This systematic validation 
exercise allowed us to demonstrate that our novel multiaxial fatigue assessment methodology is 
remarkably accurate, with the estimates falling within an error factor of 2. By modelling the cyclic elasto-
plastic behaviour of metals explicitly, the design methodology being formulated and validated in the 
present paper offers a complete solution to the problem of estimating multiaxial fatigue lifetime of 
notched metallic materials, with this holding true independently of sharpness of the stress/strain raiser 
and complexity of the load history. 
 
Keywords: Multiaxial fatigue, variable amplitude, notch, critical plane, critical distance. 
 
NOMENCLATURE 
b Fatigue Strength Exponent 
b0 Shear Fatigue Strength Exponent 
c Fatigue Ductility Exponent 
c0 Shear Fatigue Ductility Exponent 
f  ratio between the frequencies of the axial and torsional loading channels 
n’ Cyclic Strain Hardening Exponent 
n’NP Cyclic Strain Hardening Exponent under 90° out-of-phase loading 
t Time 
Fa-max Maximum amplitude of the axial force in the load history 
K’ Cyclic Strength Coefficient 
K’NP Cyclic Strength Coefficient under 90° out-of-phase loading 
Kt Linear-elastic stress concentration factor under axial loading 
Ktt Linear-elastic stress concentration factor under torsion 
L Critical distance 
Nb Number of blocks to failure 
Nb,e Estimated number of blocks to failure 
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Nf Number of cycles to failure 
Nf,e Estimated number of cycles to failure 
Oxyz Frame of reference 
r Notch root radius 
R Load ratio 
T Time length of the observation period 
Ta-max Maximum amplitude of the torsional force in the load history 

 Out-of-phase angle 

'f Fatigue Ductility Coefficient 

x,a Amplitude of the axial strain 

x,a-max Maximum amplitude of the axial strain in the load history 

'f Shear Fatigue Ductility Coefficient 

'f() Multiaxial Fatigue Ductility Coefficient depending on  

a Shear strain amplitude relative to the plane of maximum shear strain amplitude 

m Mean value of the shear strain relative to the critical plane 

MV,max Maximum and minimum value of MV(t) 

MV,min Minimum value of MV(t) 

MV(t) resolved shear stain 

xy,a Amplitude of the shear strain 

xy,a-max Maximum amplitude of the shear strain in the load history 

e Poisson’s ratio for elastic strain 

p Poisson’s ratio for plastic strain 

'f Fatigue Strength Coefficient 

n(t) Stress normal to the critical plane
n,max Maximum stress perpendicular to the critical plane 

n,min Minimum stress perpendicular to the critical plane 

UTS Ultimate tensile strength 

x,a Amplitude of the axial stress 

 Stress ratio relative to the critical plane (=n,max/a) 

lim Limit value for stress ratio  

'f Shear Fatigue Strength Coefficient 

'f() Multiaxial Fatigue Strength Coefficient depending on ratio  

a Shear stress amplitude relative to the critical plane 

m Mean value of the shear stress relative to the critical plane 

MV,max Maximum of resolved shear stress MV(t) 

MV,min Minimum value of resolved shear stress MV(t)
MV(t) Resolved shear stress 

xy,a Amplitude of the shear stress 
 
1. Introduction 
In situations of practical interest engineering components and structures not only contain geometrical 
features leading to localised stress/strain concentration phenomena, but are also subjected to in-service 
variable amplitude multiaxial load histories. This explains why since the beginning of the last century a 
tremendous effort has been made worldwide to devise robust design methodologies suitable for 
addressing such an intractable problem. 
In terms of fatigue assessment philosophies, examination of the state of the art demonstrates that so far 
the international scientific community has focussed their attention on the formulation of fatigue design 
parameters whose definition is based either on linear-elastic stresses or on elasto-plastic cyclic strains1. 
By their nature, stresses are usually preferred in those situations where cyclic plasticity can be neglected 
with little loss of accuracy - i.e., mainly in the medium/high-cycle fatigue regime2. In contrast, strains 
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are recommended to be used whenever metallic materials subjected to time-variable loading undergo 
large scale cyclic plastic deformations [3]. 
As far as notched components working in the medium/high-cycle fatigue regime are concerned, current 
state of knowledge shows that different multiaxial fatigue criteria have been devised by taking full 
advantage of the pioneering work done back in the 1940s-50s by Neuber [4] and Peterson [5]. In 
particular, these approaches model the detrimental effect of stress raisers either by performing the stress 
analysis in terms nominal quantities [6-9] or by directly post-processing the local linear-elastic 
stress/strain fields in the vicinity of the geometrical features under investigation [2, 10]. In this setting, 
the most successful criteria are seen to be those making use of either the critical plane concept [11-14] 
or energy related parameters [15-18]. 
As the magnitude of the forces/moments being applied increases, cyclic plasticity plays a role that 
becomes increasingly important [1-3]. This is the reason why under these circumstances the mechanical 
behaviour of metallic materials is no longer recommended to be modelled by using a simple linear-
elastic constitutive law. By taking as a starting point this idea, in about the mid-50s Manson [19] and 
Coffin [20] proposed to estimate fatigue lifetime by making use of elasto-plastic cyclic strains. 
Subsequently, this approach was further developed by incorporating into it also the stress components, 
with this being done to model effectively the detrimental effect of superimposed static stresses [21, 22]. 
By forming the hypothesis that fatigue strength in the presence of notches is a function of the magnitude 
of the elasto-plastic root deformations, the strain based approach was subsequently extended also to the 
fatigue assessment of metallic components containing stress/strain raisers [1, 3]. In this context, the 
need for accurately quantifying root stresses and root strains explains why since the 1980s different 
attempts have been made to devise specific techniques suitable for estimating the elasto-plastic stresses 
and strains at the tips of notches [23-28]. 
As far as the multiaxial fatigue assessment problem is concerned, the use of root stresses and root strains 
applied in conjunction with the critical plane concept is seen to return accurate estimates [29-31]. This 
holds true provided that the structural details being designed are weakened by relatively blunt notches 
[30]. In contrast, when the notches under investigation are sharp, the strain based approach is seen to 
return results that are somehow too conservative, with the level of conservatism increasing as the 
sharpness of the stress/strain concentrators being assessed increases [32]. This explains the reason why 
notched components should be designed against fatigue by adopting suitable elasto-plastic fatigue 
strength reduction factors [1]. 
In order to extend effectively the use of the strain based approach also to those situations involving 
severe stress/strain gradients resulting from sharp geometrical features, in recent years a number of 
successful attempts have been made to develop design methodologies that couple local elasto-plastic 
stresses and strains with the so-called Theory of Critical Distances (TCD) [32-35]. The TCD is the name 
which has been given by David Taylor [10] to a group of methods that all use a material critical length 
to assess the strength of engineering components weakened not only by cracks, but also by short, sharp 
and blunt notches. 
As to the use of the TCD as a structural design tool, it is worth observing here that, since the beginning 
of the 2000s, systematic theoretical/experimental work has been carried out to develop specific 
procedures suitable for using this theory along with the critical plane concept to perform, in the 
medium/high-cycle fatigue regime, the multiaxial fatigue assessment of notched components [11- 13, 
36-38]. Thanks to this large body of work, nowadays we can make direct use of local linear-elastic stress 
fields to effectively design against proportional/non-proportional constant/variable amplitude 
uniaxial/multiaxial fatigue loading components containing geometrical features of all kinds [39, 40]. 
In this challenging scenario, owing to the accurate results that have been obtained in the recent past by 
applying the uniaxial elasto-plastic TCD [32, 33], this paper aims at extending in a rigorous and effective 
way the use of this theory to those notch situations involving cyclic elsto-plastic deformations and 
constant/variable amplitude multiaxial fatigue loading. 
 
2. Theoretical framework 
The methodology formulated and validated in the present paper makes use of the Modified Manson-

Coffin Curve Method (MMCCM) [41, 42], the Shear Strain-Maximum Variance Method (-MVM) [42, 
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43] and the Theory of Critical Distance (TCD) [32, 33]. The MMCCM is an elsto-plastic critical plane 
approach whose formulation takes as a starting point the idea that fatigue damage reaches its maximum 

value on those material planes experiencing the maximum shear strain amplitude. According to the -
MVM the orientation of the critical plane is determined via that direction which is associated with the 
maximum variance of the resolved shear strain. As far as variable amplitude load histories are 
concerned, this specific direction is used in conjunction with the standard Rain-Flow method also to 
count the fatigue cycles. In the presence of geometrical features, the detrimental effect of stress/strain 
gradients is modelled according to the Point Method (PM), i.e., by directly post-processing the 
stress/strain tensors at a given distance from the assumed crack initiation point. In this setting, the 
required critical distance is treated as a material property, with this characteristic length being closely 
related to the size of the dominant source of microstructural heterogeneity. 
In what follows the key features of the different theories/approaches on which the proposed multiaxial 
fatigue design method is based are reviewed briefly. 
 
2.1. Orientation of the critical plane and cycle counting 
To estimate the orientation of those material planes experiencing the maximum shear strain amplitude, 
we have developed and systematically validated an efficient numerical tool [42, 43] that is based on the 

use of the maximum variance concept [44]. This section briefly summarises the key features of the -
MVM, the reader being referred to Ref. [43] for the complete formulation of this methodology and its 
theoretical justification. 
Initially, in order to clarify the fundamental idea on which the MVM is based, it is worth recalling here 
that the variance of a time-dependent signal is the average squared deviation of the signal itself from its 
mean value. Therefore, the variance can be thought of as a quantity that measures the amount of 
variation of the signal being assessed within the maximum and minimum values which define the 
absolute range. As far as fatigue assessment of metallic materials is concerned, this definition suggests 
that the variance of a stress/strain signal can be treated as a design quantity whose magnitude is 
proportional to the extent of the fatigue damage [42-44]. 
Another important implication associated with the way the variance is calculated is that the order of the 
cycles does not affect the way fatigue damage is quantified. In other words, in the presence a damaging 
event, the value of the calculated variance is in any case sensitive to this specific event, with this holding 
true no matter if this damaging event occurs at the beginning or at the end of the load history being 
assessed. In this setting, it is important to highlight that the sequence effect in the estimation of fatigue 
damage is taken into account instead via the specific hardening rule being employed to model/estimate 
the cyclic stress vs. strain response of the metal being designed. 

Turning to the -MVM, this method defines the orientation of the critical plane via that direction, MV, 

that is associated with the maximum variance of the resolved shear strain, MV(t) – see Figs 1a and 1b. 
From a physical point of view, the use of this direction can be justified by advocating the damage model 
proposed back in the 1970s by Kanazawa, Miller and Brown [45] and based on an extensive experimental 
investigation. In particular, according to their pivotal findings, Stage I cracks in ductile metals subjected 
to multiaxial fatigue loading always initiate on those crystallographic planes that are most closely 
aligned with the maximum shear strain direction. In this setting, the direction of maximum variance of 
the resolved shear strain is then that physical direction experiencing the maximum variation of the shear 
stress/strain components. 

As far as constant amplitude (CA) load histories are concerned, the amplitude (a, a, and n,a) and the 

mean value (m, m, and n,m) of the stress and strain components relative to the critical plane are 
determined directly via the following standard definitions (see also Fig. 1c): 
 𝛾𝑚 = 12 (𝛾𝑀𝑉,𝑚𝑎𝑥 + 𝛾𝑀𝑉,𝑚𝑖𝑛)              (1a) 𝛾𝑎 = 12 (𝛾𝑀𝑉,𝑚𝑎𝑥 − 𝛾𝑀𝑉,𝑚𝑖𝑛)              (1b) 𝜏𝑚 = 12 (𝜏𝑀𝑉,𝑚𝑎𝑥 + 𝜏𝑀𝑉,𝑚𝑖𝑛)              (2a) 𝜏𝑎 = 12 (𝜏𝑀𝑉,𝑚𝑎𝑥 − 𝜏𝑀𝑉,𝑚𝑖𝑛)             (2b) 
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𝜎𝑛,𝑚 = 12 (𝜎𝑛,𝑚𝑎𝑥 + 𝜎𝑛,𝑚𝑖𝑛)              (3a) 𝜎𝑛,𝑎 = 12 (𝜎𝑛,𝑚𝑎𝑥 − 𝜎𝑛,𝑚𝑖𝑛)             (3b) 

 

In Eqs (1a) and (1b) MV,max and MV,min are the maximum and minimum value of MV(t), respectively, 

whereas in Eqs (2a) and (2b) MV,max and MV,min are the maximum and minimum value of the shear stress, 

MV(t), resolved along direction MV (Figs 1b and 1c). In a similar way, in definitions (3a) and (3b) the 

amplitude, n,a, and the mean value, n,m, of the stress perpendicular to the critical plane are determined 

via the maximum, n,max, and minimum, n,min, value of normal stress n(t) – see Figs 1b and 1c. 
Assume now that the material point of interest in the structural component being designed (Fig. 1a) 
experiences a stress/strain state whose components vary randomly, with T denoting the time length of 
the observation period. As soon as the direction, MV, experiencing the maximum variance of the 
resolved shear strain is known (Fig. 1b), the mean values and the equivalent amplitudes of the shear 
stress/shear strain components relative to the critical plane take on the following values (Fig. 1d) [43]: 
 𝛾𝑚 = 1𝑇 ∫ 𝛾𝑀𝑉(𝑡) ∙ 𝑑𝑡𝑇0               (4a) 𝛾𝑎 = √2 ∙ 𝑉𝑎𝑟[𝛾𝑀𝑉(𝑡)]              (4b) 𝜏𝑚 = 1𝑇 ∫ 𝜏𝑀𝑉(𝑡) ∙ 𝑑𝑡𝑇0                (5a) 𝜏𝑎 = √2 ∙ 𝑉𝑎𝑟[𝜏𝑀𝑉(𝑡)]              (5b) 𝜎𝑛,𝑚 = 1𝑇 ∫ 𝜎𝑛(𝑡) ∙ 𝑑𝑡𝑇0               (6a)  𝜎𝑛,𝑎 = √2 ∙ 𝑉𝑎𝑟[𝜎𝑛(𝑡)]             (6b) 

 
where the variance terms are calculated as: 
 𝑉𝑎𝑟[𝛾𝑀𝑉(𝑡)] = 1𝑇 ∫ [𝛾𝑀𝑉(𝑡) − 𝛾𝑚]2 ∙ 𝑑𝑡𝑇0𝑉𝑎𝑟[𝜏𝑀𝑉(𝑡)] = 1𝑇 ∫ [𝜏𝑀𝑉(𝑡) − 𝜏𝑚]2 ∙ 𝑑𝑡𝑇0𝑉𝑎𝑟[𝜎𝑛(𝑡)] = 1𝑇 ∫ [𝜎𝑛(𝑡) − 𝜎𝑛,𝑚]2 ∙ 𝑑𝑡𝑇0

              (7) 

 

As demonstrated in Refs [42], the first key advantage of using the -MVM in situations of practical 
interest is that this approach allows the time needed to determine the orientation of the critical plane to 
be reduced markedly. The second key advantage is that the shear stresses and shear strains relative to 

the critical plane are managed and quantified via resolved quantities MV(t) and MV(t), respectively. 

Since, by definition, both MV(t) and MV(t) are monodimensional stress/strain signals, fatigue cycles 
under multiaxial fatigue loading can be counted rigorously and effectively by simply using one of those 
methods that were originally formulated to specifically assess uniaxial fatigue situations (such as, for 
instance, the well-known Rain-Flow counting method [46, 47]). These two unique features explain the 
reason why the development of the novel fatigue design methodology being proposed in the present 

paper is fully based on the -MVM. 
 
2.2. The Modified Manson-Coffin Curve Method under constant amplitude loading 
The mathematical formulation of the MMCCM takes as a starting point the experimental observation 
[47, 48] that Stage I cracks initiate on those crystallographic planes that are almost parallel to the 
direction experiencing the maximum shear strain amplitude. Further, much experimental evidence 
suggests that the subsequent propagation phase is influenced not only by the amplitude [49], but also 
by the mean value [48] of the stress perpendicular to the Stage I plane. According to this fatigue damage 
model, the specific features of the stress state at the assumed crack initiation site can directly be 

quantified and modelled via critical plane stress ratio  which is defined as [2, 41]: 
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𝜌 = 𝜎𝑛,𝑚+𝜎𝑛,𝑎𝜏𝑎 = 𝜎𝑛,𝑚𝑎𝑥𝜏𝑎                 (8) 

 

In Eq. (8) a is the shear stress amplitude relative to the plane of maximum shear strain amplitude, 

whilst n,m, n,a and n,max are the mean value, the amplitude and the maximum value of the stress 
perpendicular to the critical plane, respectively. It is worth recalling here that, thanks to the way it is 

defined, ratio  is sensitive not only to the degree of multiaxiality and non-proportionality of the applied 
loading path, but also to the presence of superimposed static stresses [41, 42]. 
Fatigue assessment according to the MMCCM is performed via non-conventional bi-parametrical 

Manson-Coffin curves whose calibration constants change as stress ratio  varies [41]. In more detail, 

according to the schematic a vs. 2Nf log-log diagram reported in Fig. 2a, different modified Manson-

Coffin curves are obtained as ratio  increases, with each of these curves being expressed mathematically 
via the following relationship: 
 𝛾𝑎 = 𝜏′𝑓(𝜌)𝐺 (2 ∙ 𝑁𝑓)𝑏(𝜌) + 𝛾′𝑓(𝜌) ∙ (2 ∙ 𝑁𝑓)𝑐(𝜌)

              (9) 

 
In Eq. (9) the calibration constants being required are derived directly from the fully-reversed uniaxial 

(=1) and torsional (=0) Manson-Coffin fatigue curves as follows [2, 41]: 
 𝜏′𝑓(𝜌)𝐺 = 𝜌 ∙ (1 + 𝜈𝑒) 𝜎′𝑓𝐸 + (1 − 𝜌) 𝜏′𝑓𝐺  𝛾′𝑓(𝜌) = 𝜌 ∙ (1 + 𝜈𝑝)𝜀′𝑓 + (1 − 𝜌)𝛾′𝑓 𝑏(𝜌) = 𝑏∙𝑏0(𝑏0−𝑏)𝜌+𝑏                (10) 𝑐(𝜌) = 𝑐 ∙ 𝑐0(𝑐0 − 𝑐)𝜌 + 𝑐 

 

where e and p are Poisson’s ratio for elastic and plastic strain, respectively, whereas the meaning of 
the other material constants being used is explained in the Nomenclature. 
According to Fig. 2a as well as to Eq. (9), for a given material, the corresponding modified Manson-

Coffin curves are seen to move downwards as ratio  increases [2, 41]. This means that the MMCCM 

performs the fatigue assessment based on the hypothesis that, for a given value of a, the extent of fatigue 

damage increases as ratio  increases. 
An important aspect that must be considered here in detail is that calibration constants (10) can be used 

to estimate the position of the necessary modified Manson-Coffin curve as long as ratio  is lower than 

a specific threshold value (denoted as lim), with this limit ratio being determined by running appropriate 

experiments. In contrast, when the experimental value of  is larger than lim, the constants of the 
modified Manson-Coffin curve to be used to estimate fatigue life time are recommended to be derived 

still from calibration functions (10), but by setting  invariably equal to lim.This correction is suggested 

to be used to model (in an simplified way) the fact that in the presence of large values of stress ratio , 
fatigue damage is no longer governed solely by the shearing forces [2]. This is the reason why, when 

n,max is much larger than a, the classic critical plane approach is seen to return predictions that are 
characterised by a very large level of conservatism [13, 50, 51]. This can be seen as a consequence of the 

fact that, as soon as n,m becomes larger than a material-dependant threshold value, a further increase 
of the mean stress perpendicular to the critical plane does not lead to a further increase of the resulting 
fatigue damage [48, 50]. This experimental evidence was explained by Kaufman and Toper [48] by 

observing that, when n,m is lower than the aforementioned material threshold, the magnitude of the 
shearing forces guiding the crack growth process is reduced due to the friction between the two surfaces 
of the Stage I crack itself. This friction clearly reduces the crack propagation rate markedly. In contrast, 

when n,m is larger than this material threshold, the shearing forces are fully transmitted to the tips of 
the cracks, with this favouring the propagation process. This situation results in the fact that, when 



7 
 

micro/meso cracks are fully open, a further increment of the mean stress perpendicular to the Stage I 
plane does not lead to a further increment of the crack propagation rate [48]. As mentioned above, these 

phenomena are incorporated into the MMCCM by simply assuming that, when  is larger than lim, the 

constants in Eq. (9) are estimated from calibration functions (10) by setting  invariably equal to lim. 
To conclude, it is worth recalling here that, under time-variable loading, there are always at least two 
material planes on which the shear strain amplitude reaches its maximum value. Therefore, when 
choosing the critical plane amongst those planes experiencing the maximum shear strain amplitude, the 
plane that must be used to estimate the extent of fatigue damage according to the MMCCM is the one 

which is associated with the largest value of stress ratio  [41, 42]. 
 
2.3. The elasto-plastic Theory of Critical Distances 
The core idea on which the TCD is based was first proposed by Neuber [4] and Peterson [5] in the 1940s-
50s to specifically address the high-cycle notch fatigue problem. The common feature of the different 
formalisations of the TCD is that the extent of damage is quantified via a design quantity that depends 
not only on the magnitude of the local stress/strain fields acting on the material in the vicinity of the 
crack initiation locations, but also on a material length scale parameter, L [10, 32]. In the TCD 
framework the critical distance, L, is treated as a material constant which is independent from the 
geometrical features of the stress concentrator being assessed [10]. 
The TCD can be formalised in different ways which include the Point, Line, Area and Volume Method 
[1o]. In more detail, the Volume Method (VM) assumes that the design quantity to be used to estimate 
fatigue strength has to be calculated by averaging the stresses/strains over a reference material volume 
in the vicinity of the notch being assessed [1o]. According to the Area Method (AM), the same design 
quantity can also be determined by simply averaging the local stresses/strains over a reference area 
having size of the order of L. The VM and AM’s modus operandi suggests that the TCD assesses fatigue 
strength of notched/cracked materials by post-processing the entire stress/strain fields acting on a 
process zone whose size mainly depends on the material microstructural features as well as on the local 
micro-mechanical properties (Fig. 2b) [2, 10, 32]. This process zone represents the portion of material 
that controls the overall fatigue strength of the component being assessed and, according to both the 
VM and AM, its size approaches L (Fig. 2b) [2, 10]. 
Unfortunately, using the VM and AM in situations of practical interest is not at all straightforward 
because averaging stress/strain fields in 2D/3D domains is never a trivial task. However, the problem 
can be simplified greatly by observing that, as postulated by the Line Method (LM), the design quantity 
of interest can be determined also by averaging the relevant stress/strain components along a line 
having length equal to 2L. Finally, a further simplification can be introduced by applying the TCD in the 
form of the Point Method (PM). The PM postulates that the design quantity of interest can directly be 
taken equal to the stress/strain relative to a point that is positioned at a distance from the crack/notch 
tip equal to L/2 - i.e., at the centre of the process zone (Fig. 2b) [10, 32]. 
Taking as a starting point the unique features of the TCD, recently an elasto-plastic reformulation of this 
theory was proposed to estimate lifetime of notched metallic materials experiencing cyclic plastic 
deformations in the crack initiation regions [32, 33]. This problem was addressed by defining the TCD 
design quantity being used not only according to the classic approach due to Manson and Coffin [19, 
20], but also according to the solutions proposed by Smith, Watson and Topper [22] as well as by 
Morrow [21, 52]. The accuracy and reliability of this alternative formulation of the TCD was checked by 
using a large number of experimental data we generated by testing, under both CA [32] and VA [33] 
uniaxial load histories, notched specimens made from different ferrous and non-ferrous metallic 
materials. The sound agreement we obtained between experimental and estimated fatigue lifetime 
prompted us to extend the use of the elasto-plastic TCD to those notch situations involving multiaxial 
fatigue loading. The key feature of the new approach being proposed here are explained in the next 
section. 
 
3. Formulation of the novel fatigue lifetime estimation methodology 
The multiaxial fatigue life estimation methodology being formulated and validated in the present paper 

makes use of the three tools reviewed in Section 2, i.e., the MMCCM, the -MVM, and the elasto-plastic 
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TCD (applied in the form of the PM). The key features of the novel design approach being proposed will 
be explained in Section 3.1 and in Section 3.2 by considering CA loading paths and VA load histories, 
respectively. It is important to point out here that, for the sake of clarity, in these two Sections our novel 
multiaxial fatigue assessment methodology will be formulated by assuming that the required critical 
distance, L, is known a priori. The procedure being recommended for the experimental determination 
of critical distance L will be explained in detail in Section 3.3. 
 
3.1. Constant amplitude solution 
Figure 3 summarises the design methodology we have devised to estimate CA fatigue lifetime of notched 
components by applying the MMCCM along with the elasto-plastic PM. Consider then the notched body 
sketched in Figure 3a and assume that, during in-service operations, this structural detail is subjected 
to a complex system of time-variable external forces and moments. 
To use the MMCCM in conjunction with the PM effectively, the first task to be completed is the 
determination of the elasto-plastic cyclic stress/strain fields along the so-called focus path. In this 
context, the focus path is defined as a straight line that originates from the assumed crack initiation 
point (i.e., point A in Figure 3a) and is normal to the component surface at the hot spot itself (Fig. 3a) 
[2, 39]. This rule to determine the orientation of the focus path was devised by making the most of the 
process zone concept [2, 4, 11]. In particular, as per the reasoning summarised in Section 2.1, initiation 
and early growth of Stage I cracks is assumed to be governed by the micro-stress/strain components 
acting on those slip planes that are most closely aligned with the macroscopic material planes of 
maximum shear [45]. Owing to the fact that, in practice, the orientation of the above crystallographic 
planes is never known, by taking full advantage of the VM [10], a macroscopic stress/strain state that is 
representative of the extent of damage associated with those grains in the vicinity of the assumed crack 
initiation location can be estimated by simply averaging the stress/strain fields over the process zone 
itself (Fig. 2b). Since the effective stress/strain state estimated in terms of the VM is the same as the one 
that is calculated according to the PM [10], the problem can greatly be simplified by simply using the 
time-variable stress/strain tensors estimated at the centre of the process zone (Fig. 2b). This fairly 
articulated reasoning leads to the conclusion that the stress/strain state estimated at the centre of the 
process zone can be seen as an engineering quantity which is representative of the microscopic 
stress/strain state damaging those grains in the vicinity of the crack initiation site [2]. In this setting, 
the assumption can be made that the shear/normal macroscopic stress/strain components relative to 
the plane of maximum shear are proportional to the corresponding microscopic stress/strain quantities 
acting on the most damaged easy glide planes [2, 11]. Accordingly, the centre of the process zone 
becomes the reference material point to be used to estimate the stress/strain tensors needed to perform 
the fatigue assessment. By so doing, the obvious hypothesis which can be formed to define the focus 
path is that this path is a straight line emanating from the crack initiation point and normal to the 
component surface at the crack initiation point itself – i.e., according to Fig. 3a, the focus path originates 
from point A and passes through the centre of the process zone. The validity of this simple geometrical 
rule suitable for defining the orientation of the focus path has been demonstrated in a number of 
technical articles published in the recent past [11, 12, 13, 37, 39]. 
Having defined the orientation of the focus path, as per the PM’s modus operandi, the relevant 
stress/strain quantities needed to estimate fatigue lifetime have to be determined by post-processing 

the cyclic stress tensor, [(t)], and the cyclic stain tensor, [(t)], evaluated, along the focus path, at a 
distance from the assumed crack initiation point equal to L/2 (i.e., at point O in Figure 3a). 
The direction of maximum variance of the resolved shear strain and, therefore, the orientation of the 

critical plane are then determined from the time-variable strain tensor, [(t)], at point O by making use 

of the -MVM (Section 2.1). As soon as the direction, MV, of maximum variance of the resolved shear 

strain is known (Fig. 3b), both the maximum shear strain amplitude a (Fig. 3c) and the maximum shear 

stress amplitude a (Fig. 3d) can directly be determined according to definition (1b) and definition (2b), 

respectively. In a similar way, by post-processing stress signal n(t), the mean value and the amplitude 
of the stress perpendicular to the critical plane can be calculated unambiguously by using Eq. (3a) and 
Eq. (3b), respectively (Fig. 3e). 
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The values for a, n,m, and n,a being determined via the -MVM are then used to quantify through 

definition (8) the stress ratio relative to the critical plane,  (Fig. 3f). According to the calculated value 

for ratio , the corresponding modified Manson-Coffin curve, Eq. (9), is then estimated directly via 
calibration functions (10) – see Fig. 3g. Finally, as shown in the Modified Manson-Coffin diagram 
sketched in Figure 3h, the modified Manson-Coffin curve being estimated via Eq. (9) allows the number 
of reversals to failure, 2Nf, to be estimated directly. 
 
3.2. Variable amplitude solution 
The methodology we devised to use the MMCCM in conjunction with the elasto-plastic PM to address 
the VA multiaxial notch fatigue problem is summarised in Figure 4. 
Consider the notched component of Figure 4a and assume that this structural detail is subjected to a 
complex system of external time-variable forces and moments. This load history is hypothesised to result 
in local VA multiaxial stress/strain fields acting on the material in the vicinity of the notch being 
designed. 
As per the CA case, under VA loading as well the first problem to be addressed is the determination of 
the elasto-plastic cyclic stress/strain distributions along the focus path. As soon as the relevant 

stress/strain fields are known, the required tensors (i.e., [(t)] and [(t)]) are determined at a distance 

from the assumed crack initiation point equal to L/2 (Fig. 1a). Subsequently, tensor [(t)] is post-

processed by making use of the -MVM so that the direction, MV, experiencing the maximum variance 
of the resolved shear strain is determined unambiguously (Fig. 4b). 
After determining the orientation of direction MV (Fig. 4b), the equivalent amplitude of the shear stress 

acting on the critical plane, a, is calculated via Eq. (5b) – see Fig. 4c. In a similar way, the mean value, 

n,m, and the equivalent amplitude, n,a, of the stress perpendicular to the critical plane are determined 

via definition (6a) and definition (6b), respectively (Fig. 4d). Equivalent stress components a and n,max 

(where n,max=n,m+n,a) are then used along with definition (8) to determine the value of the critical 

plane stress ratio, , characterising the VA fatigue load history being assessed (Fig. 4e). By so doing, 

ratio  and functions (10) allow the constants in the MMCCM to be estimated directly (Fig. 4f). 
After deriving the modified Manson-Coffin curve needed to assess fatigue damage (Fig. 4g), the next 
step is using the Rain-Flow cycle counting method [46, 47] to post-process monodimensional signal 

MV(t) so that the shear strain spectrum associated with the load history being assessed is determined 
unambiguously (Figs 4h and 4i). This shear strain spectrum (Fig. 4j) and the modified Manson-Coffin 
curve estimated via Eq. (9) are then employed to quantify the damage associated with any shear strain 
cycles being counted (Fig. 4g). Finally, the number of cycles to failure can directly be predicted as follows 
(Fig. 4k): 
 𝐷𝑡𝑜𝑡 = ∑ 𝑛𝑖𝑁𝑓,𝑖𝑗𝑖=1   𝑁𝑓,𝑒 = 𝐷𝑐𝑟𝐷𝑡𝑜𝑡 ∑ 𝑛𝑖𝑗𝑖=1               (11) 

 
In the above relationships, Dtot is the total value of the damage sum, whereas Dcr is the critical value of 
Dtot resulting in the initiation of a fatigue crack in the notched component being assessed. 
To conclude, it is important to point out that the classic theory as devised by Palmgren [53] and Miner 
[54] postulates that Dcr should be invariably equal to unity. However, in situations of practical interest 
the value of the critical damage sum is seen to vary in range 0.02-5, where the only way to determine Dcr 
accurately is by running appropriate experiments [55]. 
 
3.3. Experimental determination of the critical distance 
The formulation of the multiaxial notch fatigue design methodology summarised in the previous sub-
sections takes as a starting point the assumption that critical distance L is known a priori, with length 
L being a material property to be determined by running appropriate experiments. 
Figure 2c summarises the procedure we recommend for the experimental determination of L. To this 
end, the uniaxial and torsional fatigue properties of the plain (i.e., un-notched) material under 
investigation are supposed to be known. This means that calibration constants in the MMCCM – i.e., 

Eqs (10) - can be determined accurately as critical plane ratio  varies. 



10 
 

Consider now the notched specimen of Fig. 2c and assume that this sample is subjected to a fully-
reversed nominal uniaxial loading. Under the applied CA loading path, this sample is seen to fail at a 
number of cycles to failure equal to Nf,c. 
The stress/strain-distance curves along the focus path associated with the investigated notched 
geometry are to be determined by directly post-processing the results from an elasto-plastic Finite 
Element (FE) model. Subsequently, the stress and strain components along the focus path are post-

processed according to the -MVM. By so doing, the distribution of a, a, n,max, and  along the focus 
path itself can be determined unambiguously (Fig. 2c). Finally, according to the PM, L/2 is the distance 

from the notch tip at which the shear strain amplitude, a
*, is equal to the shear strain amplitude 

estimated from the MMCCM, Eq. (9), that causes failure in the plain material at Nf=Nf,c (Fig. 2c). 
Turning to the type of geometrical feature to be used to estimate length L, according to our previous 
experience [32, 33], the usage of notches that are as sharp as possible is advisable. This is because the 
TCD should always be calibrated by considering the two extreme cases, i.e., plain and cracked material. 
Since metallic materials’ fatigue behaviour in the presence of very sharp stress raisers is seen to be 
similar to that observed in the presence of cracks [10], critical length L is then recommended to be 
estimated by testing notches with tip radius as small as possible. 
To conclude, it is important to highlight that, in theory, only one single calibration test would be enough 
to estimate L. However, due to the inevitable scattering that always characterises fatigue data, the use 
of several calibration tests is always recommended. 
 
4. Experimental details, material fatigue properties and cracking behaviour 
To check the accuracy and reliability of the multiaxial notch fatigue design methodology formulated in 
Section 2, a systematic experimental investigation was carried out by testing the plain and V-notched 
cylindrical specimens that are sketched in Fig. 5a. As far as the notched samples are concerned, this 
figure also shows the values of the net stress concentration factors, where Kt and Ktt were estimated 
under tension and torsion, respectively, by using ad hoc analytical solutions [56, 57]. 
The material being tested was unalloyed medium-carbon steel En8 (080M40) that had ultimate tensile 

stress, UTS, equal to 701 MPa, yield stress, Y, to 453 MPa, and Young’s modulus, E, to 210 GPa. 
The experimental results needed to check the accuracy of our novel design approach were generated by 
using a SCHENCK servo-controlled closed-loop axial-torsion fatigue machine with maximum axial load 
capacity of 400 kN and maximum torque capacity of 1000 Nm. The cylindrical specimens were clamped 
using two MTS 646.25S hydraulic collet grips. 
The strain-controlled tests as well as the force/torque-controlled tests were run under CA/VA sinusoidal 
loading signals, with the frequency varying in the range 0.5-2 Hz. The experimental results obtained by 
testing the un-notched specimens were generated by controlling the axial and the shear strains via an 
Epsilon 3550-025M bi-axial extensometer with gauge length equal to 25 mm. 
Fatigue failures (i.e., the number of cycles/blocks to failure) were defined both for the plain specimens 
and the notched samples by 5% axial/torsional stiffness drop, with the stiffness decrease being estimated 
under the maximum amplitude of the strain/force applied in the loading path. To observe and analyse 
the cracking behaviour displayed by the investigated material both in the presence and in the absence 
of stress/strain concentration phenomena, all the tests were run up to the complete breakage of the 
specimens. 
By adopting the concave upwards spectrum with sequence length, SL, of 50 cycles that is shown in Fig. 
5b, the VA fatigue behaviour of the plain and notched specimens of Fig. 5a was investigated by 
controlling the axial/shear strain and the axial/torsional loading, respectively. In the spectrum of Fig. 

5b, given either the axial force, the torque, the axial strain, or the shear strain, a,i denotes the amplitude 

of the reference strain/loading quantity characterising the i-th cycles, whereas a,max denotes the 
maximum value in the spectrum of the amplitude of the strain/loading quantity of interest. As to the 
results generated under VA loading, it is important to point out here that all the cycles were applied in 
random order (Fig. 5c), with the instantaneous values of the strain/load channels being gathered during 
testing systematically. 
The cyclic mechanical properties of the steel being investigated were determined by testing the plain 
cylindrical samples under fully-reversed axial strain as well as under fully-reversed shear strain (Tab. 
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1). These results were then post-processed to determine the axial (Fig. 5d) and torsional (Fig. 5e) 
stabilised stress-strain curves as well as the uniaxial (Fig. 5f) and torsional (Fig. 5g) Manson-Coffin 
curves. All the strain-controlled testes being run are summarised in Tab. 1, with this table listing not 
only the results obtained under pure uniaxial and pure torsional fatigue loading, but also those 

generated under CA and VA axial/torsion load histories. In Tab. 1, symbols x,a-max and xy,a-max are used 

to denote the maximum value of the amplitude during testing. Clearly, under CA fatigue loading, x,a-max 

and xy,a-max were equal to the amplitude of the constant amplitude sinusoidal strain signal that was 
applied to the plain specimens being tested. 
All the force/torque-controlled experimental results we generated by testing the notched specimens are 
listed in Tables 2 to 5. In these tables, the tests we ran are described in terms of: maximum amplitude 
in the load history (either CA or VA) of the axial, Fa-max, and torsional, Ta-max, loading; load ratio, R; out-

of-phase angle, ; ratio f between the frequencies of the two loading channels; and, finally, experimental 
value of the number of cycles to failure, Nf (or number of blocks to failure, Nb). 
Turning to the cracking behaviour that was observed in the plain specimens, the crack initiation process 
was seen to occur always on those material planes experiencing the maximum shear stress/strain 
amplitude, with this holding true independently of the complexity of the loading path being applied. 
This conventional Mode II governed initiation process (Stage I) can be seen clearly in the pictures 
reported in Figs 6a and 6b. In particular, under uniaxial fatigue loading, the crack initiation process as 
well as the initial propagation phase were seen to occur always on materials planes that were at 45° to 
the specimen’s axis (Fig. 6a). In contrast, under pure torsional loading, the cracks were seen to initiate 
and propagate along material planes that were either parallel or perpendicular to the longitudinal axis 
of the samples (Fig. 6b). 
The failure matrix reported in Fig. 6d provides an overview of the fracture surfaces that were observed 
in the notched specimens tested under both CA and VA load history. According not only to the failure 
matrix of Fig. 6d, but also to the picture reported in Fig. 6c, in the notched specimens cracks initiated, 
at the notch roots, always on those planes of maximum shear stress/strain amplitude (i.e., Stage I cracks 
whose initiation was Mode II governed). Subsequently, these notch tip circumferential cracks were seen 
to radially propagate toward the centre of the net cross-sectional area. After exhausting the initial Stage 
I phase, the branching phenomenon occurred and cracks kept growing by changing their orientation so 
that they could experience the maximum Mode I loading (Stage II process). This complex cracking 
process was seen to result always in the formation of “factory roof” failure surfaces (Figs 6c and 6d). 
The massive body of experimental work summarised in Tables 1 to 5 will be used in what follows to 
calibrate the fatigue design approach devised in Section 2 as well as to check its accuracy and reliability 
in estimating the lifetime of the notched specimens we tested under CA and VA multiaxial fatigue 
loading. 
 
5. Numerical stress/strain analyses 
One of the key features of the fatigue design methodology being formulated in Section 2 is that the extent 
of damage can be estimated provided that the elasto-plastic cyclic stress/strain fields in the vicinity of 
the tip of the notches being assessed are known. Since the available analytical solutions [25-28] are 
suitable for estimating stresses and strains solely at the notch tip, the only way to determine the required 
stress/strain fields is by solving cyclic elasto-plastic FE models. In this context, being able to reach an 
adequate level of accuracy implies using numerical techniques capable of accurately 
quantifying/modelling important phenomena that include, amongst other, strain hardening/softening, 
non-proportional hardening, ratcheting, memory effect, and mean stress relaxation. 
Owing to the fact that sub-surface stress/strain fields in notched metallic materials subjected to fatigue 
loading cannot be determined experimentally, the only way to build up the necessary confidence in the 
FE code being used is by modelling the elasto-plastic mechanical response of un-notched materials. This 
is a useful exercise because, in plain metals, the superficial stresses and strains can not only be quantified 
experimentally, but also estimated analytically by using very accurate tools - such as, for instance, the 
well-known approach devised by Jiang and Sehitoglu [58, 59]. 
In the present investigation local elasto-plastic cyclic stresses and strains were modelled numerically by 
using commercial FE code ANSYS®. According to the strategy mentioned above, we built up our 
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confidence in this software by checking its accuracy in modelling/estimating the elsto-plastic stresses 
and strains on the surface not only of the plain specimens we tested under strain control (Tab. 1), but 
also of a number of un-notched tubular specimens made of different metallic materials (Tab. 6). The 
results obtained by testing plain tubular samples were taken from the technical literature and they were 
generated by considering a variety of CA and VA axial/torsional loading paths. Some of the load histories 
that were post-processed to implement the present validation exercise are shown in Fig. 7. 
The tubular (Fig. 8a) and cylindrical (Fig. 8b) specimens employed for this initial validation exercise 
were modelled in ANSYS® using three-dimensional 8-node structural element SOLID185. A multi-
linear kinematic rule was adopted to model the cyclic elasto-plastic behaviour of the considered metallic 
materials, with the mechanical response being quantified solely via the axial stabilised stress-strain 
curve. In the different FE models being solved, the mesh density was gradually increased until 
convergence occurred in terms of linear-elastic stresses. To model the results generated under CA 
loading, six complete virtual cycles were run for any loading path being analysed. This was done to allow 
the numerical solution to reach a stabilised configuration for the stress vs. strain response. Under VA 
loading instead, local elasto-plastic stresses and strains were determined by simulating two loading 
blocks. It is important to point out here also that all the numerical simulations were run by using as 
boundary conditions the considered load histories expressed in terms of axial displacements and 
torsional rotation angles. In other words, the simulations were run by assuming that the considered CA 
and VA loading histories were known in terms of strains, with the corresponding elasto-plastic stresses 
being estimated both numerically and analytically. 
As far as the results taken from the technical literature are concerned, the stress vs. strain graphs of Fig. 
9 show (as an example) seven sets of hysteresis loops from the twenty different numerical simulations 
that we ran using FE code ANSYS®. These charts also compare the hysteresis loops obtained 
experimentally to the corresponding ones estimated via Jiang and Sehitoglu’s analytical method [58, 
59]. 
The diagrams reported in Fig. 10 summarise instead the accuracy of ANSYS® in modelling the stress 
vs. strain response of the plain cylindrical specimens we tested under both CA and VA loading (see also 
Tab. 1). The charts of Fig. 10 make it evident that, as far as the carbon steel being tested was concerned, 
ANSYS® was capable of estimating the maximum values of the stresses in the cycles with a remarkable 
level of accuracy, the maximum error in terms of stress amplitude being of the order of 15%. In contrast, 
the areas of the estimated hysteresis loops were seen to be systematically larger than the corresponding 
areas of the experimental stress vs. strain loops. 
This validation exercise allowed us to come to two relevant conclusions. First, commercial FE code 
ANSYS® is capable of modelling the elasto-plastic stress vs. strain response of metallic materials by 
reaching the same level of accuracy as the one that is obtained by using the well-known analytical 
solution devised by Jiang and Sehitoglu [58, 59] (Fig. 9). Second, when the cyclic elasto-plastic 
mechanical properties of the parent material are known from the experiments, both the numerical and 
the analytical solutions are capable of estimating the maximum values of the stress components in the 
CA and VA cycles well within an error factor of two (Figs 9 and 10a). 
To conclude the present section, it has to be pointed out that both the numerical and the analytical 
approach being used were seen to result always in a certain level of inaccuracy in estimating the 
maximum values of the cyclic stress components. This is a very important aspect because, clearly, the 
error that is made in the stress/strain analysis phase propagates itself by ending up affecting also the 
overall accuracy that is obtained when estimating fatigue lifetime. However, since the error associated 
with the stress/strain analyses cannot be eliminated, this intrinsic limitation must be borne in mind 
when using estimated values for the elasto-plastic stresses and strains to perform fatigue assessment in 
situations of practical interest. 
 
6. Validation by experimental data 
In order to check the overall accuracy of the design methodology being formulated in Section 3, the first 
step was calibrating the MMCCM’s governing relationships, i.e. Eqs (10). This was done by directly using 
the values of the parent material fatigue constants that we determined by testing the plain specimens 
both under fully-reversed uniaxial loading and under fully-reversed torsional loading (see Figs 5d to 5g). 
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Subsequently, attention was focussed on the estimation of the limit value of critical plane stress ratio, 

lim. To this end, we used the experimental result that we generated by testing an un-notched specimen 
under 90º out-of-phase CA axial loading and torsion with non-zero mean strain (i.e., test 
PSBCANZMSOoPh2 in Tab. 1). This experimental datum was chosen because this complex CA loading 

path resulted in a large value of , i.e. =2.2, so that it could be used to directly solve Eq. (9) for lim, i.e.: 
 𝛾𝑎 = 𝜏′𝑓(𝜌𝑙𝑖𝑚)𝐺 (2 ∙ 𝑁𝑓)𝑏(𝜌𝑙𝑖𝑚) + 𝛾′𝑓(𝜌𝑙𝑖𝑚) ∙ (2 ∙ 𝑁𝑓)𝑐(𝜌𝑙𝑖𝑚)

  𝜌𝑙𝑖𝑚 = 1.7, 

 

where the amplitude of the shear strain relative to the critical plane, a, was calculated to be 0.0039, with 
the experimental number of cycles to failure, Nf, being equal to 1356 (see also Tab. 1). 
Having calibrated the MMCCM for the specific carbon steel being tested, the subsequent step was 
checking the accuracy of our multiaxial fatigue criterion in estimating fatigue lifetime in the absence of 
stress/strain concentration phenomena. To this end, the results generated under CA and VA biaxial 
loading that are listed in Tab. 1 were post-processed to determine the stress/strain quantities relative to 
the critical plane that were needed to estimate lifetime according to Eq. (9) [41, 42]. 
The experimental, Nf, vs. estimated, Nf,e, number of cycles to failure diagram reported in Fig. 11a 
summarises the overall accuracy that was obtained by applying the MMCCM to post-process the data 
listed in Tab. 1. According to Palmgren [53] and Miner [54], the predictions under VA loading shown in 
Fig. 11a were obtained by taking the critical value of the damage sum, Dcr, invariably equal to unity. This 
error chart demonstrates that the use of our critical plane approach resulted in estimates falling within 
an error factor of 2, i.e., within a scatter band as wide as the one containing the fatigue results generated 
under axial and torsional CA fatigue loading and used to calibrate the MMCCM itself. This suggests that 
the level of accuracy obtained is as good as possible, since we cannot ask a predictive method to be, from 
a statistical point of view, more accurate than the experimental information used to calibrate the method 
itself. Accordingly, this level of error will be used in what follows to assess the overall accuracy of our 
novel design methodology in estimating lifetime of notched components subjected to CA/VA multiaxial 
fatigue loading. 
In order to post-process the experimental results we generated by testing the notched specimens (Tabs 
2 to 5) to check the accuracy of our novel design methodology, commercial FE code ANSYS® was used 
to determine the required time-variable elasto-plastic stress/strain fields. In particular, the notched 
specimens of Fig. 5a were modelled using three-dimensional 8-node structural element SOLID185. The 
elasto-plastic behaviour of the tested carbon steel was simulated by adopting a multi-linear kinematic 
rule that was calibrated via the axial stabilised stress-strain curve experimentally generated by testing 
the plain specimens (Fig. 5d). Very refined mesh was used to model the material in the vicinity of the 
tips of the notches being investigated (Figs 8c, 8d, and 8e). Convergence in the three-dimensional FE 
models was tested by comparing the linear-elastic stress fields being determined under pure tension as 
well as under pure torsion to the corresponding ones calculated by using simple axisymmetric bi-
dimensional elements. Stress-strain elasto-plastic numerical analyses were run by simulating six 
complete virtual cycles and two loading blocks under CA and VA fatigue loading, respectively. 
The critical distance value was determined by applying the PM along with the MMCCM as schematically 
shown in Fig. 2c. In particular, the PM critical distance, L/2, was determined by post-processing the 
experimental results we generated by testing six sharply notched specimens under uniaxial fatigue 
loading (see Tab. 2). The critical lengths we calculated were remarkably consistent, with the 
experimental procedure summarised in Fig. 2c returning values for L/2 varying in the range 0.76 mm-
0.80 mm. Such a high level of consistency fully supports the idea that the elasto-plastic TCD [32, 33] 
can successfully be applied also along with suitable multiaxial fatigue criteria. 
According to the critical lengths being estimated, an average value for L/2 of 0.78 mm was then used for 
the final validation exercise, whose results are summarised in the error diagrams of Figs 11b to 11e. In 
more detail, these charts of Figs 11b, 11c, and 11d were built by plotting the experimental, Nf, against the 
estimated, Nf,e, number of cycles to failure for the different CA and VA load history being considered. 
The error diagram of Fig. 11e summarises instead the accuracy in terms of number of blocks to failure 
of our approach in estimating fatigue lifetime when the axial and torsional loading were applied at 
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different frequencies. As per the un-notched samples, also the VA fatigue lifetime of the notched 
specimens was determined, as recommended by Palmgren [53] and Miner [54], by setting the critical 
value of the damage sum, Dcr, invariably equal to unity. These charts make it evident that the use of our 
multiaxial fatigue life estimation technique resulted in a very high level of accuracy, with all the 
experimental results falling within an error factor of 2. Such a degree of precision is clearly very 
satisfactory especially because these estimates were obtained by post-processing results generated by 
testing notches of different sharpness under very complex CA and VA loading paths, with these load 
histories involving different levels of non-proportionality, non-zero mean stresses, and axial/torsional 
load signals applied at different frequencies. 
To conclude, it can be said that, when the stress/strain analysis is performed by explicitly modelling the 
elasto-plastic cyclic behaviour of metallic materials, the design approach formulated and validated in 
the present paper offers to date the most complete solution to the multiaxial notch fatigue problem. 
 
7. Conclusions 
In the present paper a novel multiaxial notch fatigue life estimation technique based on the combined 

use of the MMCCM, the -MVM, and the elasto-plastic PM is formulated first and the validated against 
a large number of experimental results. The most important conclusions can be summarised as follows: 

 the proposed design approach allows notched structural components to be designed against 
multiaxial fatigue loading by directly post-processing the relevant stress/strain fields 
determined by solving elasto-plastic FE models; 

 the proposed multiaxial fatigue assessment methodology is seen to be successful in estimating 
the lifetime of notched metallic materials subjected to both CA and VA load histories, with this 
holding true independently of the sharpness of the notch being designed; 

 the use of the design approach being proposed is seen to result in a remarkable level of accuracy 
also in the presence of load histories involving different levels of non-proportionality, non-zero 
mean stresses, and load signals applied at different frequencies; 

 according to the systematic validation exercise being performed, the use of our novel fatigue 
design methodology is seen to result in estimates falling within an error factor of 2 (i.e., within a 
scatter band which is as wide as the one containing the fatigue results generated by testing the 
plain specimens under axial and torsional CA fatigue loading and used to calibrate the MMCCM); 

 more work needs to be done in this area to develop novel technological/numerical solutions that 
allow the computational time needed to perform the required elasto-plastic stress/strain 
analyses to be reduced markedly. 
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Tables 
 

Code R x,a-max xy,a-max 
 Nf Load 

History(1) [°] [Cycles to failure] 

PSUCAZMS1 

-1 

0.0018   85408 

CA 

PSUCAZMS2 0.0019   71336 

PSUCAZMS3 0.0019   40132 

PSUCAZMS4 0.002   57039 

PSUCAZMS5 0.003   15040 

PSUCAZMS6 0.004   7338 

PSUCAZMS7 0.005   4059 

PSUCAZMS8 0.005   2251 

PSTCAZMS1 

-1 

 0.0022  673052 

CA 

PSTCAZMS2  0.0035  54255 

PSTCAZMS3  0.0044  20705 

PSTCAZMS4  0.0046  14012 

PSTCAZMS5  0.0058  8247 

PSTCAZMS6  0.0068  6285 

PSTCAZMS7  0.0079  4003 

PSTCAZMS8  0.0094  3142 

PSBCAZMSIPh1 
-1 

0.0027 0.0046 0 8050 
CA 

PSBCAZMSOoPh2 0.0026 0.0045 90 1779 

PSBCANZMSIPh1 
0 

0.003 0.0046 0 5771 
CA 

PSBCANZMSOoPh2 0.0025 0.0039 90 1356 

PSBVAZMSIPh1 
-1 

0.005 0.0037 0 14936 
VA 

PSBVAZMSOoPh2 0.0037 0.0021 90 9986 

PSBVANZMSIPh1 
0 

0.0045 0.0035 0 10806 
VA 

PSBVANZMSOoPh2 0.0046 0.0025 90 8926 

(1)CA=Constant Amplitude; VA=Variable Amplitude 
 
Table 1. Summary of the experimental results generated by testing the plain specimens under CA 

and VA fatigue loading. 
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Code R 
Fa-max Ta-max  Nf Laod 

History(1) [kN] [Nm] [°] [Cycles to failure] 

SNUCAZMS1 

-1 

78.7   6164 

CA 

SNUCAZMS2 58.3   35247 

SNUCAZMS3 52.0   41229 

SNUCAZMS4 69.8   13469 

SNUCAZMS5 46.8   8629 

SNUCAZMS6 42.3   145989 

SNBCAZMSIph1 

-1 

39.1 101.8 0 63012 

CA SNBCAZMSIph2 44.1 120.5 0 22974 

SNBCAZMSIph3 55.1 153.7 0 7156 

SNBCAZMSOoPh1 

-1 

41.3 110.6 90 31594 

CA SNBCAZMSOoPh2 45.1 125.6 90 11989 

SNBCAZMSOoPh3 55.8 158.1 90 6229 

SNBVAZMSIph1 

-1 

64.6 160.4 0 39428 

VA 

SNBVAZMSIph2 67.2 174.6 0 19519 

SNBVAZMSIph3 71.8 154.1 0 22811 

SNBVAZMSIph4 58.4 86.3 0 54296 

SNBVAZMSIph5 57.3 114.5 0 82054 

SNBVAZMSOut1 

-1 

65.6 117.9 90 50764 

VA 

SNBVAZMSIph2 67.7 130.3 90 35338 

SNBVAZMSOut3 72.9 128.9 90 22436 

SNBVAZMSOut4 55.2 99.4 90 67704 

SNBVAZMSOut5 56.4 132.1 90 78078 

SNBVANZMIph1 

0 

57.0 148.1 0 34677 

VA 

SNBVANZMIph2 60.5 157.2 0 25220 

SNBVANZMIph3 48.6 126.3 0 47235 

SNBVANZMIph4 68.4 177.7 0 12857 

SNBVANZMIph5 45.6 118.5 0 45245 

SNBVANZMOut1 

0 

57.0 148.1 90 62310 

VA 

SNBVANZMIph2 60.5 157.2 90 30665 

SNBVANZMOut3 48.6 126.3 90 58580 

SNBVANZMOut4 68.4 177.7 90 13755 

SNBVANZMOut5 45.6 118.5 90 116119 

(1)CA=Constant Amplitude; VA=Variable Amplitude 
 

Table 2. Summary of the experimental results generated by testing under CA and VA fatigue 
loading the specimens containing the notches with r=1.5 mm. 
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Code R 
Fa-max Ta-max  Nf Laod 

History(1) [kN] [Nm] [°] [Cycles to failure] 

INBCAZMSIph1 

-1 

40.4 102.72 0 156422 

CA INBCAZMSIph2 49.0 123 0 47739 

INBCAZMSIph3 60.6 178.8 0 9725 

INBCAZMSOoPh1 

-1 

46.0 140 90 46428 

CA INBCAZMSOoPh2 51.0 132.5 90 33269 

INBCAZMSOoPh3 63.6 181.7 90 8428 

INBVAZMSIph1 

-1 

66.7 153.1 0 39837 

VA 

INBVAZMSIph2 56.9 124.5 0 70645 

INBVAZMSIph3 71.8 163.1 0 30919 

INBVAZMSIph4 79.5 184.7 0 24372 

INBVAZMSIph5 54.0 129.1 0 70879 

INBVAZMSOut1 

-1 

64.5 176.4 90 32549 

VA 

INBVAZMSIph2 56.7 135.8 90 59743 

INBVAZMSOut3 72.9 177 90 24930 

INBVAZMSOut4 77.2 197.9 90 19385 

INBVAZMSOut5 54.3 132.9 90 65910 

INBVANZMIph1 

0 

55.1 143.2 0 77310 

VA 

INBVANZMIph2 60.6 157.4 0 39124 

INBVANZMIph3 66.7 173.3 0 37870 

INBVANZMIph4 73.4 190.7 0 25609 

INBVANZMIph5 80.8 209.9 0 9559 

INBVANZMOut1 

0 

55.1 143.2 90 99157 

VA 

INBVANZMIph2 60.6 157.4 90 45491 

INBVANZMOut3 66.7 173.3 90 28616 

INBVANZMOut4 73.4 190.7 90 20810 

INBVANZMOut5 80.8 209.9 90 10386 

(1)CA=Constant Amplitude; VA=Variable Amplitude 
 

Table 3. Summary of the experimental results generated by testing under CA and VA fatigue 
loading the specimens containing the notches with r=3 mm. 
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Code R 
Fa-max Ta-max  Nf Laod 

History(1) [kN] [Nm] [°] [Cycles to failure] 

BNBCAZMSIph1 

-1 

39.3 114.8 0 225655 

CA BNBCAZMSIph2 49.8 126.3 0 58662 

BNBCAZMSIph3 67.2 170.7 0 12423 

BNBCAZMSOoPh1 

-1 

49.6 114.2 90 131784 

CA BNBCAZMSOoPh2 61.8 148.4 90 35127 

BNBCAZMSOoPh3 69.5 186.5 90 14146 

BNBVAZMSIph1 

-1 

80.6 209.5 0 33765 

VA 

BNBVAZMSIph2 88.7 230.4 0 15386 

BNBVAZMSIph3 72.6 188.6 0 52223 

BNBVAZMSIph4 65.3 169.8 0 97300 

BNBVAZMSIph5 95.0 246.8 0 14169 

BNBVAZMSOut1 

-1 

80.6 209.5 90 36032 

VA 

BNBVAZMSIph2 88.7 230.4 90 15681 

BNBVAZMSOut3 72.6 188.6 90 51710 

BNBVAZMSOut4 65.3 169.8 90 75650 

BNBVAZMSOut5 95.0 246.8 90 12223 

BNBVANZMIph1 

0 

65.0 168.9 0 39870 

VA 

BNBVANZMIph2 71.5 185.8 0 29100 

BNBVANZMIph3 78.7 204.5 0 10486 

BNBVANZMIph4 59.8 155.4 0 62620 

BNBVANZMIph5 67.9 176.4 0 35225 

BNBVANZMOut1 

0 

65.0 168.9 90 50072 

VA 

BNBVANZMIph2 71.5 185.8 90 27149 

BNBVANZMOut3 78.7 204.5 90 28250 

BNBVANZMOut4 59.8 155.4 90 61250 

BNBVANZMOut5 67.9 176.4 90 46328 

(1)CA=Constant Amplitude; VA=Variable Amplitude 
 

Table 4. Summary of the experimental results generated by testing under CA and VA fatigue 
loading the specimens containing the notches with r=6 mm. 
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Code 
r 

R 
Fa-max Ta-max 

f Nb 

[mm] [kN] [Nm] [Blocks to failure] 

SNBVAZMSDF1 

1.5 -1 

70.0 181.9 

0.5 

53 

SNBVAZMSDF2 64.4 167.3 69 

SNBVAZMSDF3 58.0 150.6 76 

SNBVAZMSDF4 52.1 135.4 179 

SNBVAZMSDF5 

1.5 -1 

70.0 181.9 

2 

217 

SNBVAZMSDF6 64.4 167.3 344 

SNBVAZMSDF7 58.0 150.6 647 

SNBVAZMSDF8 77.0 200.1 148 

INBVAZMSDF1 

3 -1 

70.0 181.9 

0.5 

96 

INBVAZMSDF2 64.4 167.3 132 

INBVAZMSDF3 58.0 150.6 163 

INBVAZMSDF4 52.1 135.4 280 

INBVAZMSDF5 

3 -1 

70.0 181.9 

2 

278 

INBVAZMSDF6 64.4 167.3 510 

INBVAZMSDF7 58.0 150.6 786 

INBVAZMSDF8 77.0 200.1 252 

BNBVAZMSDF1 

6 -1 

70.0 181.9 

0.5 

162 

BNBVAZMSDF2 64.4 167.3 163 

BNBVAZMSDF3 58.0 150.6 291 

BNBVAZMSDF4 77.0 200.1 72 

BNBVAZMSDF5 

6 -1 

70.0 181.9 

2 

780 

BNBVAZMSDF6 64.4 167.3 813 

BNBVAZMSDF7 77.0 200.1 565 

BNBVAZMSDF8 84.7 220.1 240 

 
Table 5. Summary of the experimental results generated by testing the notched specimens under 

VA fatigue loading where the axial and torsional loadings were applied at different frequencies. 
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 AISI304 S46N SNCM630 1%Cr-Mo-V 45 Steel S45C 

 [49] [60] [61] [62] [63] [64] 

Outer/inner 
diameter [mm] 

16/15 41/36 12.5/10 22/16 25/21 12.5/10 

E [GPa] 183 200 196 200 190 186 

G [GPa] 83 77 77 77 79 71 

e 0.3 0.3 0.273 0.3 0.202 0.28 

y [MPa] 325 365 951 707 370 496 

UTS [MPa] 650  1103 805 610 770 

'f [MPa] 1000 865 1272 987 843 923 

b -0.114 -0.097 -0.073 -0.071 -0.1047 -0.099 

'f 0.171 0.119 1.54 1.369 0.3269 0.359 

c -0.402 -0.359 -0.823 -0.802 -0.5458 -0.519 

K' [MPa] 1660 1329 1056 1113 1258 1215 

n' 0.287 0.244 0.054 0.11 0.208 0.217 

'f [MPa] 709 500 858 570 559 685 

b0 -0.121 -0.097 -0.061 -0.071 -0.1078 -0.12 

'f 0.413 0.206 1.51 2.371 0.496 0.198 

c0 -0.353 -0.359 -0.706 -0.802 -0.469 -0.36 

K'0 [MPa] 785 785  592   

n'0 0.296 0.296  0.05   

K'NP [MPa] 2075 1161 1320 1391 1573 1519 

n'NP 0.287 0.244 0.054 0.11 0.208 0.217 

 
Table 6. Static and fatigue properties of the materials used to investigate the accuracy of FE 
software ANSYS® in estimating stress path under time-variable elasto-plastic deformations. 
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Figure 1. Stress and strain components relative to the critical plane determined according to the -MVM under CA (c) and VA (d) fatigue loading. 
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Figure 2. The modified Manson-Coffin diagram (a); process zone defined according to the Theory 
of Critical Distances (b); determination of the critical distance L according to the Point Method (c). 
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Figure 3. The MMCCM applied along with the PM to estimate fatigue lifetime of notched components subjected to CA fatigue loading. 
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Figure 4. The MMCCM applied along with the PM to estimate fatigue lifetime of notched components subjected to VA fatigue loading.
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    (b)     (c) 

    (d)     (e) 

(f) (g) 
Figure 5. Geometry of the plain and notched specimens being tested (a); experimental load 

spectrum (b, c); axial (d) and torsional (e) stabilised stress-strain curves; fully-reversed uniaxial (f) 
and torsional (g) Manson-Coffin curves.  
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Figure 6. Observed cracking behaviour. 
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Figure 7. Shear/axial strain paths used to assess the accuracy of FE software ANSYS® as well as 
of Jiang and Sehitoglu’s method [58, 59] in estimating stress path under time-variable elasto-

plastic deformations.  
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Figure 8. Three-dimensional FE models solved using commercial code ANSYS®. 
  

(a) 

(b) 

(c) 

(d) 

(e) 

Tubular 
Specimen 

Plain 
Specimen 

Blunt Notch 
r=6 mm 

Intermediate Notch 
r=3 mm 

Sharp Notch 
r=1.5 mm 



33 
 

 

 
 

AISI 304 [49] – Path A AISI 304 [49] – Path B ASI 304 [49] – Path C 

    

1%Cr-Mo-V [62] – Path H SNCM630 [61] – Path K 

    
S45C [64] – Path N 45 Steel [63] – Variable Amplitude 

    
 

Figure 9. Examples of the analyses carried out to assess the accuracy of FE software ANSYS® as 
well as of Jiang and Sehitoglu’s method [58, 59] in estimating stress vs. strain loops under time-

variable elasto-plastic deformations. 
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Figure 10. Accuracy of FE code ANSYS® in modelling the stress vs. strain response of the tested 
plain specimens of carbon steel En8 (CA=Constant Amplitude; VA=Variable Amplitude; IPh=In-

Phase; OoPh=90˚ Out-of-Phase; ZMS=Zero Mean Stress; N-ZMS=Non-Zero Mean Stress). 
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(a) 

 

(b) 
 

(c) 

 

(d) 
 

(e) 
Figure 11. Overall accuracy of the proposed multiaxial fatigue life estimation technique 

(CA=Constant Amplitude; VA=Variable Amplitude; IPh=In-Phase; OoPh=90˚ Out-of-Phase; 
ZMS=Zero Mean Stress; N-ZMS=Non-Zero Mean Stress; f= ratio between the frequencies of the 

axial and torsional loading channels). 
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