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Abstract

We consider 1D Landau-Lifshitz-Gilbert equations with an external force. We

first prove the existence and uniqueness of the strong solution, and then give a

definition of the quasipotential and prove that the quasipotential is equal to the

potential energy of the system.
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1. Introduction

We consider the following Landau-Lifshitz-Gilbert (LLG) equations with the

magnetisation field m depending on the time and the space variables (t, x) ∈

R×O, where O := (0, 2π) and taking values in R
3:

∂m

∂t
= λ1m×(∆m−φ′(m)+h)−λ2m×

(

m×(∆m−φ′(m)+h)
)

, λ1 ∈ R, λ2 > 0.

(1.1)

with periodic boundary conditions

m(t, 0) = m(t, 2π), ∇m(t, 0) = ∇m(t, 2π), for a.e. t ∈ [0, T ], (1.2)

and initial condition

m(0) = m0, (1.3)

where we assume that the data m0 takes values in the two dimensional sphere

S
2. In the system (1.1)-(1.3), the function φ : R3 → R

+ is a given map related

to the anisotropy energy and h can be regarded as an external “force”. To each

configuration m ∈ H1,2(O;R3), we associate the energy defined by

E(m) =
1

2
‖∇m‖2H +

∫

O

φ(m(x)) dx. (1.4)

2



We will show that the solution of the system (1.1)-(1.3) takes values in the

two dimensional sphere S
2. If, e.g. h = 0 and

φ(m) =
1

2
(m2

1 +m2
2),

for m = (m1,m2,m3), the constant configurations ζ± equal respectively to the

north and south poles on the sphere S
2 are asymptotically stable equilibria of

the system (1.1)-(1.3). We are interested in how stable each equilibrium is, i.e.

how much “action” is necessary to move the solution m from ζ+ to another5

configuration a taking values in S
2 following the trajectory of the system (1.1)-

(1.3). To find out an answer to this question, we use a notion of the so called

quasipotential defined to be equal to, modulo a multiplicative constant, the

infimum of the L2-space time norms of the external forces h and prove that it

is equal to the energy E(a) at the configuration a. This is our main result, see10

Theorem 5.2.

To the best of our knowledge, the quasipotential of LLG system has not

been studied before. The “quasipotential” has been an object studied only in

the context of stochastic dynamical systems, such as in the monograph [10] by

Freidlin and Wentzell, where it has been defined via the so-called “action func-15

tional”, which is the rate function of the large deviation property of the solution

process. The quasipotential is defined as an appropriate infimum of the action

functional. But in some special cases, of which could be called the gradient

systems, there is an essential property (where the name “quasipotential” comes

from) of the equipotential, see [10, Theorem 4.3.1] and [8, Theorem 3.7] , ac-20

cording to which the quasipotential differs from the potential of the system only

by a multiplicative constant. This property is not necessary to be stochastic,

and it is the motivation of our definition (Definition 5.1). A similar result for

the 2-D Navier-Stokes Equations with periodic boundary conditions has recently

been proved by the first named author et all [4]. The LLGEs, contrary to those25

studied before but similarly to the NSEs, are not of the gradient type. In this

sense, the main result of our paper, i.e. Theorem 5.2, shows that our definition

of quasipotential is well defined. In view of our deterministic definition, i.e. in
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view of Definition 5.1, we can also expect that in classical results, such as the

exit point is close to the minimum point of the quasipotential on the bound-30

ary, the principal term of the asymptotics of the mean time before reaching the

boundary can be expressed in terms of the quasipotential and the behaviour

of the invariant measure of the solution can also be described in terms of the

quasipotential, hold if we change the external force h in (1.1) to be stochastic.

These properties will be studied in the future.35

In section 2, we introduce the notation used throughout the whole paper

and the definition of a solution of the system of LLG system (1.1)-(1.3).

In section 3, we show the existence and uniqueness of the strong solution of

the system (1.1)-(1.3). To do this, we first prove the existence of weak solutions

by the Galerkin approximation method. In the next section, we show that the40

weak solutions have sufficient regularity to be strong solutions. It is worth

mentioning that to show the regularity of weak solutions of LLG system; one

can write the equation in a mild form and then use the ultracontractivity and

the maximal regularity properties of the heat semigroup, see the paper [6]. This

method works here as well but would need quite a lot of calculations. In the45

current paper, we prove the regularity of weak solutions easily by using a certain

geometric property of the LLG system without any complicated calculations. In

the last part of this section, we state the uniqueness result which can be proved

by the same method as in [6].

In section 4, we show that with a suitably defined function φ ∈ C2
0 (R3;R+)

which relates to the anisotropy energy, the constant function ζ+ which equals

to the north pole of the unit ball is an asymptotically stable equilibrium of the

system (1.1)-(1.3). If the initial data m0 is close enough in the H1 metric to ζ+,

then the solution will converge to it exponentially. The particular φ we choose

is different from the one in [6]. With our choice of φ, we have the following

property
1

2
‖m(t) − ζ+‖

2
H1 = E(m(t)), t ≥ 0.

This equality is somehow the reason for the exponential convergence.50
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Inspired by this, we use the energy as control of ‖m(t) − ζ+‖
2
H1 and prove a

better convergence result with the function φ as in [6]. We postpone the proof

in the first part of Appendix B. In the second part of Appendix B, we give

another choice of φ, such that there are infinitely many stationary solutions of

the system (1.1)-(1.3) and the poles are no longer attractors. In section 5, we55

present a definition of quasipotential of the deterministic LLG system and prove

that the quasipotential is just the energy as in (1.4) which is our main result.

In the last part of this introduction, we would like to summarise the novelties

of this paper. Firstly, this is the first time one proved the existence and unique-

ness of a strong solution of this version of Landau-Lifshitz-Gilbert equations,60

i.e. the system (2.7)-(2.9). The difficulty in proving existence and uniqueness

is that our assumptions are quite weak. In particular, we assume only that the

external “force” h belongs to space L2
loc([0,∞);L2). Secondly, as mentioned

before, we use a new method to show the regularity of the solution. Thirdly,

we have improved the convergence result in [6]. Finally, we define a quasipoten-65

tial for this infinite dimensional non-gradient system and prove that this is well

defined.
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2. Notation and preliminaries

Notation 2.1. O := (0, 2π), Wm,p := Wm,p(O;R3), Hm := Hm(O;R3). More-

over, we will use S2 to denote the unit sphere, use ∇ to denote the weak deriva-
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tive with respect to the spatial variable x.80

We define the linear operators A and A1 by the following definition:

Definition 2.2. Let A be a linear operator acting on L
2(O) with the domain

defined by

D(A) :=
{

u ∈ H
2 : u(0) = u(2π) and ∇u(0) = ∇u(2π)

}

, Au := −∆u, u ∈ D(A).

D(A1) := D(A), A1 := I +A.

It is known that, A1 is positive self-adjoint operator in the Hilbert space

H = L2(O,R3) and that

D(A
1
2

1 ) =
{

u ∈ H
1 : u(0) = u(2π)

}

. (2.1)

Notation 2.3. We define V := D(A
1
2

1 ). Since V is a dense subset of H and the

embedding V →֒ H is continuous, we have the following Gelfand triple

V ⊂ H ≡ H∗ ⊂ V∗

where V∗ is the dual space of V.

To denote the norm and the inner product in the space H, resp. V, we will use

the subscript H, resp. V.

Definition 2.4. For m ∈ V we define ∆m, m × ∆m and m × (m × ∆m) as

elements of the dual space V∗ by the following formulae

V〈u,∆m〉V∗ := −〈∇u,∇m〉H , u ∈ V. (2.2)

V〈u,m× ∆m〉V∗ := 〈m×∇u,∇m〉H , u ∈ V. (2.3)

and

V〈u,m× (m× ∆m)〉V∗ := −
〈

∇
(

m× (m× u)
)

,∇m
〉

H
, u ∈ V. (2.4)

Remark 2.5. An attentive reader would notice that in order the definitions85

above are correct, the RHS on the three equalities in Definition 2.4 should be

continuous linear w.r.t. u from V to R. Since m ∈ V and V is an algebra, this

is the case.
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To describe the problem we are going to deal with, we also need the following

notations:90

Notation 2.6.

M :=
{

a ∈ H
1 : a(x) ∈ S2 for all x ∈ O

}

, (2.5)

M+ := {a ∈ M : a3(x) > 0 for all x ∈ O} . (2.6)

Let us fix a function

φ ∈ C2
0 (R3;R+),

an external “force”

h ∈ L2
loc([0,∞); H)

and the initial data

m0 ∈ V ∩M.

Let us consider the following initial value problem for the 1-dimensional

Landau-Lifshitz-Gilbert (LLG) system with periodic boundary conditions

∂m

∂t
= λ1m×(∆m−φ′(m)+h)−λ2m×

(

m×(∆m−φ′(m)+h)
)

, λ1 ∈ R, λ2 > 0.

(2.7)

m(t, 0) = m(t, 2π), for a.e. t ∈ [0,∞), (2.8)

m(0, ·) = m0. (2.9)

Definition 2.7. We say that m ∈ L2
loc([0,∞); V) ∩H1

loc([0,∞); V∗) is a weak

solution of the LLG system (2.7)-(2.9) iff for all u ∈ V, m satisfies
∫

O

〈m(t) −m0, u〉 dx (2.10)

=

∫ t

0

∫

O

〈λ1m× (−φ′(m) + h) − λ2m× (m× (−φ′(m) + h)), u〉 dx ds

+

∫ t

0

∫

O

λ1 〈∇m,∇(m× u)〉 + λ2 〈∇m,∇(m× (m× u))〉 dx ds,

for all t ∈ [0,∞).95

7



In what follows, we will look for solutions on finite time intervals of type

[0, T ], T > 0. Since we will prove uniqueness, proving existence on such time

intervals is sufficient to proving the existence on infinite interval [0,∞).

Remark 2.8.(i) Since by Lions-Magenes [13],

L2(0, T ; V) ∩H1(0, T ; V∗) →֒ C([0, T ]; H) continuously,

every weak solution m of equations (2.7)-(2.9) belongs to the space C([0, T ]; H).

(ii) By Definition 2.4, the equation (2.10) can be written in the following form

∂m

∂t
= λ1m× (∆m− φ′(m) + h) − λ2m× (m× (∆m− φ′(m) + h)) (2.11)

with the initial condition (2.9).100

We have the following proposition about the weak solution of equations

(2.7)-(2.9):

Proposition 2.9. If m is a weak solution of the LLG system (2.7)-(2.9), then

for all t ∈ [0, T ] and a.e. x ∈ O we have

|m(t, x)| = |m0(x)|. (2.12)

Proof. Let us point out that the idea of this proof is borrowed from [5].

For any ϕ ∈ C∞
0 (O;R), let us define a function

ψ : H ∋ m 7−→ 〈m,ϕm〉H ∈ R.

It is known that ψ is of C1 class and

ψ′(m) = 2ϕm, m ∈ H.

Since by Definition 2.4 and equation (2.11) and Lemma III.1.2 in [18], one has

ψ(m(t)) − ψ(m0) =

∫ t

0 V

〈

ψ′(m(s)),
dm

ds

〉

V∗

ds

=

∫ t

0 V

〈

2ϕm(s),
dm

ds

〉

V∗

ds = 0, t ∈ [0, T ].
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We infer that for every t ∈ [0, T ] we have105

∫

O

ϕ(x)
(

|m(t, x)|2 − |m0(x)|2
)

dx

=

∫

O

〈m(t, x), ϕ(x)m(t, x)〉 dx−

∫

O

〈m0(x), ϕ(x)m0(x)〉 dx = 0.

Since ϕ ∈ C∞
0 (O;R) is arbitrary, we deduce that the equality |m(t, x)| =

|m0(x)| is valid for all t ∈ [0, T ] and a.e. x ∈ O. Hence the proof is complete.

Definition 2.10 (Energy). For a ∈ H
1, we define the energy E(a) by

E(a) =
1

2
‖∇a‖2H +

∫

O

φ(a(x)) dx. (2.13)

About the energy E , we have the following dissipative proposition:

Proposition 2.11. Let m be the weak solution of the system (2.7)-(2.9) with

h = 0, then for all t ≥ s ≥ 0,

E(m(t)) + λ2

∫ t

s

‖m(r) × (∆m(r) − φ′(m(r)))‖2
H

dr = E(m(s)). (2.14)

Proof. Let m be a weak solution of the system (2.7), (2.8) and (2.9) with h = 0.

Then110

d

dt
E(m(t)) = 〈∇mE(m(t)),m′(t)〉H

= 〈−∆m(t) + φ′(m), λ1m× (∆m(t) − φ′(m))

− λ2m× (m× (∆m(t) − φ′(m)))〉H

= −λ2‖m× (∆m(t) − φ′(m))‖2
H
≤ 0.

So (2.14) is proved.

Definition 2.12. We say that a weak solution m of the LLG system (2.7)-(2.9)

is a strong solution iff

m ∈ L2(0, T ;D(A)) ∩H1(0, T ; H).

3. Existence and uniqueness of solution

We will prove the existence and uniqueness of a strong global solution of the

system (2.7)-(2.9). The results of this section are summarized in the Theorem

3.37.115
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3.1. Existence of a weak solution

To prove Theorem 3.37, we first prove the following theorem about the ex-

istence of a weak solution.

Theorem 3.1. For any T > 0, h ∈ L2(0, T ; H) and φ ∈ C2
0 (R3;R+), there

exists a weak solution m ∈ L∞(0, T ;H1) ∩H1(0, T ; H) of equation (2.7).120

We use 3 steps, which is similar as in [19] to prove Theorem 3.1.

Step 1: Galerkin Approximation. We first consider a n dimensional system.

We have the following result similar as explained in ([9], p.355, Thm 6.5.1):

Proposition 3.2. [9] There exists a countable ONB {en}
∞
n=1 of H, consisting of

eigenvectors of A1 such that en ∈ C∞(O)∩D(A). The corresponding eigenvalues

{γn}
∞
n=1 satisfies

0 < γ1 ≤ γ2 ≤ · · · ≤ γn ≤ γn+1 ≤ · · · and γn → ∞ as n→ ∞.

Next, let us define the orthogonal projection

πn : H → Hn := linspan{e1, . . . , en},

and let us consider the following finite dimensional problem in H
n:

m′
n = λ1πn

(

mn × (∆mn − πn[φ′(mn)] + hn)
)

−λ2πn
(

mn × (mn × (∆mn − πn[φ′(mn)] + hn))
)

, (3.1)

mn(0) = m0,n := πnm0, (3.2)

where hn(t) := πnh(t), for t ∈ [0, T ]. About the finite dimensional system (3.1)125

and (3.2), we have the following result:

Lemma 3.3. The system (3.1) and (3.2) has a unique global solution mn ∈

C1([0,∞); Hn).

Proposition 3.4. There is a constant C > 0 such that for all n ∈ N, we have

|m0,n(x)| ≤ C‖m0‖H1 , for a.e. x ∈ O. (3.3)

10



Proof. By the Sobolev imbedding and (2.1), it follows that there exists a con-

stant C > 0 such that

‖m0,n‖L∞ ≤ C‖m0,n‖H1 = C‖A
1
2

1 πnm0‖H ≤ C‖A
1
2

1m0‖H = C‖m0‖H1 .

Step 2: A’priori Estimates. About the solution of n-dimensional system mn,130

we have the following results:

Proposition 3.5. For all n ∈ N, we have

‖mn(t)‖H = ‖mn(0)‖H, ∀t ∈ [0, T ]. (3.4)

Proof. By the equation (3.1) and since we have (A.3), one has

d

dt
‖mn(t)‖2H = 2 〈m′

n(t),mn(t)〉H = 0.

Therefore the proof is complete.

Let us define the n-dimensional total energy En : Hn → R by

En(u) =

∫

O

φ(u(x)) dx+
1

2
‖∇u‖2H, u ∈ Hn. (3.5)

In addition, let us define for the solution mn of the n-dimensional system (3.1)

and (3.2),

ρn := −∇mEn(mn) = −πnφ
′(mn) + ∆mn ∈ Hn. (3.6)

Then the equation (3.1) can be written as follows

m′
n = λ1πn

(

mn × (ρn + hn)
)

− λ2πn
(

mn × (mn × (ρn + hn))
)

. (3.7)

Theorem 3.6. There exists a constant C > 0 which may depend on ‖φ‖L∞(R3),

‖m0‖H1 and ‖h‖L2(0,T ;H), such that for all n ∈ N, we have

‖mn‖L∞(0,T ;H1) ≤ C, (3.8)
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‖mn × ρn‖L2(0,T ;H) ≤ C, (3.9)

and

‖mn × (mn × ρn)‖L2(0,T ;H) ≤ C. (3.10)

Proof of Theorem 3.6. Firstly, we will show the proof of (3.8) and (3.9).135

For simplicity, we may use C to denote different constants. By the n-

dimensional equation (3.1), one has

d

dt

(

En(mn)
)

(t) =

〈

dmn
En(mn),

dmn

dt

〉

H

=
〈

−ρn, λ1πn(mn × (ρn + hn) − λ2πn
(

mn × (mn × (ρn + hn))
)〉

H

= λ1 〈−ρn, πn(mn × hn)〉H − λ2‖mn × ρn‖
2
H − λ2

〈

−ρn, πn
(

mn × (mn × hn)
)〉

H
.

Integrating both sides of the equation above over [0, t], we get

En(t) − En(0) = λ1

∫ t

0

〈−ρn(s), πn(mn(s) × hn(s))〉H ds− λ2

∫ t

0

‖mn(s) × ρn(s)‖2H ds

−λ2

∫ t

0

〈

−ρn(s), πn
(

mn(s) × (mn(s) × hn(s))
)〉

H
ds, t ∈ [0, T ].

Note that

〈ρn, πn(mn × hn)〉H = −〈mn × ρn, hn〉H ,

and

〈ρn, πn(mn × (mn × hn))〉H = −〈mn × ρn,mn × hn〉H .

Therefore by the Young’s inequality, we have for all ε > 0

∫

O

φ(mn(t)) dx+
1

2
‖∇mn(t)‖2H + λ2

∫ t

0

‖mn(s) × ρn(s)‖2H ds (3.11)

=

∫

O

φ(m0,n(x)) dx+
1

2
‖∇m0,n‖

2
H + λ1

∫ t

0

〈mn(s) × ρn(s), hn(s)〉H ds

+λ2

∫ t

0

〈mn(s) × ρn(s),mn(s) × hn(s)〉H ds

≤

∫

O

φ(m0,n(x)) dx+
1

2
‖m0‖

2
H1 +

λ1ε

2

∫ t

0

‖mn(s) × ρn(s)‖2H ds+
λ1

2ε

∫ t

0

‖hn(s)‖2H ds

+
λ2ε

2

∫ t

0

‖mn(s) × ρn(s)‖2H ds+
λ2

2ε

∫ t

0

‖mn(s) × hn(s)‖2H ds.

12



Now let us consider the last term of the right hand side of the inequality above.

λ2

2ε

∫ t

0

‖mn(s) × hn(s)‖2H ds ≤
λ2

2ε

∫ t

0

‖mn(s)‖2
L∞‖hn(s)‖2H ds.

By the interpolation inequality,

‖u‖2
L∞ ≤ C‖u‖H‖u‖H1 , u ∈ H

1, (3.12)

and making use of (3.4), we have140

‖mn(s)‖2
L∞ ≤ C‖mn(s)‖H‖mn(s)‖H1

≤ C‖m0‖H1(‖m0‖H + ‖∇mn(s)‖H) ≤ C + C‖∇mn(s)‖H.

So

λ2

2ε

∫ t

0

‖mn(s) × hn(s)‖2H ds ≤
λ2

2ε

∫ t

0

‖mn(s)‖2
L∞‖hn(s)‖2H ds

≤
λ2

2ε

∫ t

0

(C + C‖∇mn(s)‖H) ‖hn(s)‖2H ds ≤
λ2

2ε

(

C + C‖∇mn(s)‖L∞(0,T ;H)

)

‖h‖2L2(0,T ;H)

≤
λ2

2ε

(

ε2C + ε2C‖∇mn‖
2
L∞(0,T ;H) +

1

ε2
‖h‖4L2(0,T ;H)

)

.

Hence, by the inequality (3.11), we have

(

1

2
−
λ2εC

2

)

‖∇mn(t)‖2L∞(0,T ;H) +

(

λ2 −
ε(λ1 + λ2)

2

)∫ t

0

‖mn(s) × ρn(s)‖2H ds

≤ C +
1

2
‖m0‖

2
H1 +

λ1

2ε
‖h‖2L2(0,T ;H) +

λ2εC

2
+

λ2

2ε3
‖h‖4L2(0,T ;H).

Next we choose ε such that λ2 −
ε(λ1+λ2)

2 > 0 and 1 − λ2εC > 0. It is easy to

see that such an ε > 0 exists. Then the estimates (3.8) and (3.9) are following145

by Proposition 3.5.

Finally, we will prove (3.10).

Since H
1 →֒ L

∞, one has

‖mn × (mn × ρn)‖L2(0,T ;H) ≤ ‖mn‖L∞(0,T ;L∞)‖mn × ρn‖L2(0,T ;H)

≤ ‖mn‖L∞(0,T ;H1)‖mn × ρn‖L2(0,T ;H).

By (3.8) and (3.9), we have proved (3.10).
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Theorem 3.7. There is a constant C > 0 which may depend on ‖φ‖L∞(R3),

‖m0‖H1 and ‖h‖L2(0,T ;H), such that for all n ∈ N,

‖mn‖H1(0,T ;H) ≤ C. (3.13)

Proof. We have150

∥

∥πn
(

mn × (mn × (ρn + hn))
)∥

∥

2

L2(0,T ;H)
≤

∫ T

0

‖mn × (mn × (ρn + hn))‖
2
H

dt

≤ 2

∫ T

0

(

‖mn × (mn × ρn)‖
2
H

+ ‖mn × (mn × hn)‖
2
H

)

dt

≤ 2

∫ T

0

∫

O

(

|mn|
2|mn × ρn|

2 + |mn|
4|hn|

2
)

dx dt

≤ 2‖mn‖
2
L∞(0,T ;L∞)‖mn × ρn‖

2
L2(0,T ;H) + 2‖mn‖

4
L∞(0,T ;L∞)‖hn‖

2
L2(0,T ;H)

≤ C
(

‖mn‖
2
L∞(0,T ;H1)‖mn × ρn‖

2
L2(0,T ;H) + ‖mn‖

4
L∞(0,T ;H1)‖h‖

2
L2(0,T ;H)

)

.

Similarly, we also have

∥

∥πn
(

mn × (ρn + hn)
)∥

∥

2

L2(0,T ;H)
≤ C

(

‖mn × ρn‖
2
L2(0,T ;H) + ‖mn‖

2
L∞(0,T ;H1)‖h‖

2
L2(0,T ;H)

)

.

Therefore the result follows from (3.7), (3.8), (3.9) and (3.10).

We have the following corollary of Theorem 3.6 and Theorem 3.7:

Corollary 3.8. There existm ∈ L∞(0, T ;H1)∩H1(0, T ; H) and P ∈ L2(0, T ; H)

such that

mn −→ m weakly∗ in L∞(0, T ;H1) and weakly in H1(0, T ; H), (3.14)

and

mn × ρn −→ P weakly in L2(0, T ; H). (3.15)

From now on all the m below are the same one as in Corollary 3.8.

Proposition 3.9.

∇mn −→ ∇m weakly∗ star in L∞(0, T ; H). (3.16)
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Proof. By the estimate (3.8), there exists some v ∈ L∞(0, T ; H) such that

∇mn −→ v weakly∗ star in L∞(0, T ; H).

Note that by (3.14), for any u ∈ L1(0, T ; H), one has155

L∞(0,T ;H) 〈v −∇m,u〉L1(0,T ;H) = lim
n→∞

L∞(0,T ;H) 〈∇mn −∇m,u〉L1(0,T ;H)

= − lim
n→∞

L∞(0,T ;H1) 〈mn −m,∇u〉L1(0,T ;(H1)∗) = 0.

So v = ∇m in L∞(0, T ; H).

Step 3: Proof that the limit function m is a weak solution.

Lemma 3.10 (See [18],Th 3.2.1). Let X0, X,X1 be three Banach spaces such

that X0 →֒ X →֒ X1, where the embeddings are continuous. In addition X0, X1

are reflexive and the embedding X0 →֒ X is compact. Let T > 0 be a fixed finite

number, and let α0, α1 be two finite numbers such that αi > 1, i = 0, 1. We

consider the space

Y =

{

v ∈ Lα0(0, T ;X0), v′ =
dv

dt
∈ Lα1(0, T ;X1)

}

,

with the norm

‖v‖Y = ‖v‖Lα0 (0,T ;X0) + ‖v′‖Lα1 (0,T ;X1).

Then Y ⊂ Lα0(0, T ;X) and the embedding Y →֒ Lα0(0, T ;X) is compact.

Theorem 3.11. For all α0 ∈ (1,∞), we have

lim
n→∞

‖m−mn‖Lα0(0,T ;C(Ō)) = 0. (3.17)

Proof. Let X0 = H
1, X = C(Ō) and X1 = H. Then by [1] Theorem 6.3, it160

follows that X0 →֒ X compactly and X →֒ X1 continuously. By the estimates

(3.8) and (3.13), mn is bounded in the space Y as in the Lemma 3.10 for any

α0 > 1 and α1 = 2. By Lemma 3.10, Y →֒ Lα0(0, T ;C(Ō)) is compact. So

there exists an element m̃ ∈ Lα0(0, T ;C(Ō)) such that there is a subsequence

of {mn} (still denoted by {mn}) converges to m̃ in Lα0(0, T ;C(Ō)).165

15



Note that

‖m− m̃‖2
L2(0,T ;H) = 〈m− m̃,m− m̃〉

L2(0,T ;H)

= lim
n→∞

〈m−mn,m− m̃〉
L2(0,T ;H)

= lim
n→∞

L∞(0,T ;H1) 〈m−mn,m− m̃〉L1(0,T ;(H1)∗) = 0.

Therefore, we have m = m̃ a.e. and they are both in Lα0

(

0, T ;C(Ō)
)

, so

m = m̃ in Lα0

(

0, T ;C(Ō)
)

. This completes the proof.

We have the following corollary of Theorem 3.11,

Corollary 3.12. For all α0 > 1,

m(·, 0) = m(·, 2π) in Lα0(0, T ;R3), (3.18)

and

m(t, 0) = m(t, 2π) for a.e. t ∈ [0, T ] . (3.19)

Proof. By the convergence (3.17), one has170

∫ T

0

|m(t, 0) −m(t, 2π)|α0

R3 dt

≤ C

∫ T

0

|m(t, 0) −mn(t, 0)|α0 + |mn(t, 2π) −m(t, 2π)|α0 dt

≤ C

∫ T

0

sup
x∈Ō

|m(t, x) −mn(t, x)|α0 dt = C

∫ T

0

‖m(t) −mn(t)‖α0

C(Ō)
dt→ 0,

as n→ ∞.

Since α0 > 1, the equality (3.19) follows from (3.18) immediately.

Proposition 3.13.

mn × (mn × ρn) −→ m× P weakly in L2(0, T ; H). (3.20)

Proof. Let u ∈ C∞
0 ([0, T ] ×O), then we have

〈mn × (mn × ρn) −m× P, u〉L2(0,T ;H)

= 〈(mn −m) × (mn × ρn), u〉L2(0,T ;H) + 〈m× (mn × ρn − P ), u〉L2(0,T ;H)

= 〈mn × ρn, u× (mn −m)〉L2(0,T ;H) + 〈mn × ρn − P, u×m〉L2(0,T ;H)

≤ ‖mn × ρn‖L2(0,T ;H)‖u‖L∞(0,T ;L∞)‖mn −m‖L2(0,T ;H) + 〈mn × ρn − P, u×m〉L2(0,T ;H) .

16



By (3.17) and (3.15) and since u×m ∈ L2(0, T ; H), we infer that

〈mn × (mn × ρn) −m× P, u〉L2(0,T ;H) → 0, n→ ∞.

Since C∞
0 ([0, T ]×O) is dense in L2(0, T ; H) and by (3.10) ‖mn×(mn×ρn)‖L2(0,T ;H)

is uniformly bounded, mn × (mn × ρn) −→ m× P weakly in L2(0, T ; H).175

Proposition 3.14.

πn
(

mn × (mn × ρn)
)

−→ m× P weakly in L2(0, T ; H). (3.21)

Proof. Let u ∈ L2(0, T ; H),

〈

πn
(

mn × (mn × ρn)
)

−m× P, u
〉

L2(0,T ;H)

= 〈mn × (mn × ρn) −m× P, πnu− u〉L2(0,T ;H)

+ 〈mn × (mn × ρn) −m× P, u〉L2(0,T ;H) + 〈πn(m× P ) −m× P, u〉L2(0,T ;H) .

By (3.10) and since πnu→ u strongly in L2(0, T ; H), the first term on the right

hand side of the equation above tends to 0, by (3.20) the second term tends to

0, and since πn(m× P ) → m× P strongly, the third term also tends to 0. The

proof is complete.180

Similarly we can prove:

Proposition 3.15.

πn(mn × hn) −→ m× h weakly in L2(0, T ; H). (3.22)

Corollary 3.16. For t ∈ [0, T ], u ∈ H,
∫

O

〈m(t)−m0, u〉 dx = λ1

∫ t

0

∫

O

〈m×h−P, u〉 dx ds−λ2

∫ t

0

∫

O

〈m×(m×h−P ), u〉 dx ds.

(3.23)

Proof. By (3.14), (3.7), (3.15), (3.21) and (3.22), we have
∫

O

〈m(t) −m0, u〉 dx = lim
n→∞

∫

O

〈mn(t) −mn,0, u〉 dx

= lim
n→∞

∫ t

0

∫

O

〈

λ1πn(mn × (hn + ρn)) − λ2πn
(

mn × (mn × (hn + ρn))
)

, u
〉

dx ds

= λ1

∫ t

0

∫

O

〈m× h− P, u〉 dx ds− λ2

∫ t

0

∫

O

〈m× (m× h− P ), u〉 dx ds.
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The proof is complete.

Theorem 3.17. m satisfies the equation (2.10).

Proof. By (3.17), mn(t, x) converges to m(t, x) almost everywhere in [0, T ]×O.

By our assumption, φ′ : R3 → R is continuous, so φ′(mn(t, x)) also converges to

φ′(m(t, x)) almost everywhere in [0, T ] × O. Since φ′ and the integral domain

[0, T ]×O are both bounded, by the Lebesgue’s dominated convergence theorem,

one has

φ′(mn) −→ φ′(m) strongly in Lp(0, T ;Lp) for all p ≥ 1. (3.24)

So one has

πn[φ′(mn)] −→ φ′(m) strongly in L2(0, T ; H). (3.25)

Therefore, since185

〈mn × πn[φ′(mn)] −m× φ′(m), u〉L2(0,T ;H)

=
〈

mn ×
(

πn[φ′(mn)] − φ′(m)
)

, u
〉

L2(0,T ;H)
+ 〈(mn −m) × φ′(m), u〉L2(0,T ;H)

≤ ‖πn[φ′(mn)] − φ′(m)‖L2(0,T ;H)‖u‖L2(0,T ;H)‖mn‖L∞(0,T ;L∞)

+‖mn −m‖L2(0,T ;H)‖u‖L2(0,T ;H)‖φ
′(m)‖L∞(0,T ;L∞) −→ 0,

and

〈mn × hn −m× h, u〉L2(0,T ;H)

= 〈mn × (hn − h), u〉L2(0,T ;H) + 〈(mn −m) × h, u〉L2(0,T ;H)

≤ ‖hn − h‖L2(0,T ;H)‖mn‖L∞(0,T ;L∞)‖u‖L2(0,T ;H)

+‖mn −m‖L2(0,T ;L∞)‖h‖L2(0,T ;H)‖u‖L∞(0,T ;H) −→ 0,

we have

mn×(−πn[φ′(mn)]+hn) −→ m×(−φ′(m)+h) weakly in L2(0, T ; H). (3.26)

So by (3.15),

mn × ∆mn −→ P −m× (−φ′(m)) weakly in L2(0, T ; H). (3.27)
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Therefore for u ∈ L2(0, T ; V) , one has

lim
n→∞

〈∇mn ×mn,∇u〉L2(0,T ;H) = lim
n→∞

〈mn × ∆mn, u〉L2(0,T ;H)

= 〈P −m× (−φ′(m)), u〉L2(0,T ;H) . (3.28)

On the other hand, for u ∈ L2(0, T ; H) one has

〈∇mn ×mn −∇m×m,u〉L2(0,T ;H)

= 〈∇mn × (mn −m), u〉L2(0,T ;H) + 〈(∇mn −∇m) ×m,u〉L2(0,T ;H)(3.29)

≤ ‖∇mn‖L∞(0,T ;H)‖mn −m‖L2(0,T ;L∞)‖u‖L2(0,T ;H)

+ L∞(0,T ;H) 〈∇mn −∇m,m× u〉L1(0,T ;H) → 0, as n→ ∞.

The convergence to 0 above follows from (3.8), (3.17) and (3.16). Therefore

lim
n→∞

〈∇mn ×mn, u〉L2(0,T ;H) = 〈∇m×m,u〉L2(0,T ;H) . (3.30)

By (3.28) and (3.30), for u ∈ L2(0, T ; V), one has

〈P, u〉L2(0,T ;H) = 〈∇m×m,u〉L2(0,T ;H) + 〈m× (−φ′(m)), u〉L2(0,T ;H) . (3.31)

By (3.14) and (3.18), for u ∈ L2(0, T ; V), one has u×m ∈ L2(0, T ; V). Therefore

by (3.31), one also gets

〈P, u×m〉L2(0,T ;H) = 〈∇m×m,∇(u×m)〉L2(0,T ;H)+
〈

m×
(

m× (−φ′(m))
)

, u
〉

L2(0,T ;H)
.

(3.32)

Hence by (3.31), (3.32) and (3.23), we deduce (2.10). So the proof is complete.

190

Remark 3.18. So far we have proved that there exists an elementm ∈ L∞(0, T ;H1)∩

H1(0, T ; H) satisfying the equation (2.10). So Theorem 3.1 has been proved.

Hence from now on we can use (2.12). Later on we will prove that our weak

solution is in fact a strong solution.

3.2. Further regularity and existence of a strong solution195

Remark 3.19. By the proof of Theorem 3.17, we also have following three results:
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There exists a constant C independent of n, such that

‖mn × ∆mn‖L2(0,T ;H) ≤ C, (3.33)

and hence

‖mn ×∇mn‖L2(0,T ;H1) ≤ C. (3.34)

We also have

∇mn ×mn −→ ∇m×m weakly in L2(0, T ; H). (3.35)

Proof of (3.34). Note that mn(t) ∈ C∞(O) for every t ∈ [0,∞), so we have

∇(mn(t) ×∇mn(t)) = ∇mn(t) ×∇mn(t) +mn(t) × ∆mn(t)

= mn(t) × ∆mn(t).

Hence

‖∇(mn ×∇mn)‖2L2(0,T ;H) =

∫ T

0

‖∇(mn(t) ×∇mn(t))‖2H dt

=

∫ T

0

‖mn(t) × ∆mn(t)‖2H dt = ‖mn × ∆mn‖
2
L2(0,T ;H).

By (3.33), it follows that there exists some C > 0 such that

‖∇(mn ×∇mn)‖L2(0,T ;H) ≤ C, n ∈ N

On the other hand, by (3.8), one has

‖mn ×∇mn‖L2(0,T ;H) ≤ ‖mn‖L∞(0,T ;L∞)‖∇mn‖L2(0,T ;H) ≤ C.

Therefore ‖mn ×∇mn‖L2(0,T ;H1) is bounded by some constant independent of

n.200

Proof of (3.35). It follows from (3.29) in the proof of Theorem 3.17.

Corollary 3.20. ∇m×m belongs to L2(0, T ;H1) and

∇mn ×mn −→ ∇m×m weakly in L2(0, T ;H1). (3.36)
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Proof. By (3.34) and the Banach-Alaoglu Theorem, there exists some Q ∈

L2(0, T ;H1) such that

∇mn ×mn −→ Q weakly in L2(0, T ;H1). (3.37)

By (3.35) and (3.37), one has

‖∇m×m−Q‖2L2(0,T ;H) = 〈∇m×m−Q,∇m×m−Q〉L2(0,T ;H)

= lim
n→∞

〈∇mn ×mn −Q,∇m×m−Q〉L2(0,T ;H)

= lim
n→∞

L2(0,T ;H1) 〈∇mn ×mn −Q,∇m×m−Q〉L2(0,T ;(H1)∗) = 0.

The proof is complete.

Corollary 3.21. For almost every t ∈ [0, T ],

∇mn(t) ×mn(t) −→ ∇m(t) ×m(t) in C(Ō). (3.38)

Proof. By (3.34), for almost every t ∈ [0, T ], there exists C(t) independent of

n, such that

‖∇mn(t) ×mn(t)‖H1 ≤ C(t).

By (3.36) and since the embedding H
1 →֒ C(Ō) is compact, we get (3.38).

Corollary 3.22.

∇m(t, x) ⊥ m(t, x), a.e. (t, x). (3.39)

Proof. By (2.12) and by the chain rule of weak derivative we have

0 =
1

2
∇|m(t, x)|2 = 〈∇m(t, x),m(t, x)〉, a.e. (t, x).

The proof is complete.205

Lemma 3.23.

(∇m×m) ×m = −∇m ∈ L2(0, T ; H). (3.40)

Proof. Let us consider the following train of equalities:

‖(∇m×m) ×m+ ∇m‖2L2(0,T ;H)

= ‖(∇m×m) ×m‖2L2(0,T ;H) + 2 〈∇m, (∇m×m) ×m〉L2(0,T ;H) + ‖∇m‖2L2(0,T ;H)

= ‖(∇m×m) ×m‖2L2(0,T ;H) − 2‖∇m×m‖2L2(0,T ;H) + ‖∇m‖2L2(0,T ;H),
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where we used (A.2) for the second “=”.

Since by the property of cross product, ∇m(t, x) × m(t, x) ⊥ m(t, x) and

by (2.12) |m(t, x)| = 1, one has |
(

∇m(t, x) ×m(t, x)
)

×m(t, x)| = |∇m(t, x) ×

m(t, x)|. Therefore210

‖(∇m×m) ×m+ ∇m‖2L2(0,T ;H)

= ‖∇m×m‖2L2(0,T ;H) − 2‖∇m×m‖2L2(0,T ;H) + ‖∇m‖2L2(0,T ;H)

= ‖∇m‖2L2(0,T ;H) − ‖∇m×m‖2L2(0,T ;H).

Similar as before, since by (3.39) ∇m(t, x) ⊥ m(t, x) and |m(t, x)| = 1, one has

|∇m(t, x) ×m(t, x)| = |∇m(t, x)|. Hence

‖(∇m×m) ×m+ ∇m‖2L2(0,T ;H) = 0.

The proof is complete.

Proposition 3.24.

m ∈ L2(0, T ;H2) (3.41)

Proof. By (3.36) and (3.14), ∇m × m ∈ L2(0, T ;H1) and m ∈ L∞(0, T ;H1).

Hence

(∇m×m) ×m ∈ L2(0, T ;H1).

Indeed, since H
1 is an algebra, we get

(∇m(t) ×m(t)) ×m(t) ∈ H
1, for a.e. t ∈ [0, T ].

Thus by (3.8) we also have (∇m×m)×m ∈ L2(0, T ; H), hence (∇m×m)×m ∈

L2(0, T ;H1).

On the other hand, we have (3.40), i.e.

(∇m×m) ×m = −∇m ∈ L2(0, T ; H).

Therefore ∇m ∈ L2(0, T ;H1), and so since m ∈ L2(0, T ; H), m ∈ L2(0, T ;H2)

and the proof is complete.215
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Corollary 3.25. m satisfies the following equation in L2(0, T ; H) (i.e. m sat-

isfies the following equation and all the terms in the following equation are in

L2(0, T ; H)),

∂m

∂t
= λ1m× (∆m− φ′(m) + h) − λ2m×

(

m× (∆m− φ′(m) + h)
)

. (3.42)

Corollary 3.26. For almost every t ∈ [0, T ] and all x ∈ Ō, ∇m(t, x) exists (in

strong sense) and

∇m(t, x) ⊥ m(t, x) in R
3. (3.43)

Proof. By (3.41) and since H
2 →֒ C1(Ō), ∇m(t, x) exists in strong sense for

almost every t ∈ [0, T ] and all x ∈ Ō.

Moreover, by (2.12),

〈∇m(t, x),m(t, x)〉 =
1

2
∇|m(t, x)|2 = 0.

So the proof complete.

Lemma 3.27. For a, b, c ∈ R
3 and a 6= 0, if a× b = a× c and a ⊥ b and a ⊥ c,

then b = c.220

Theorem 3.28.

∇m(t, 0) = ∇m(t, 2π), for a.e. t ∈ [0, T ]. (3.44)

Proof. Since mn(t) ∈ D(A), we infer that

∇mn(t, 0) ×mn(t, 0) = ∇mn(t, 2π) ×mn(t, 2π),

for all t ∈ [0, T ]. And by (3.38), one has

∇mn(t, x) ×mn(t, x) −→ ∇m(t, x) ×m(t, x) in R
3

for almost all t ∈ [0, T ] and all x ∈ Ō. Therefore

∇m(t, 0) ×m(t, 0) = ∇m(t, 2π) ×m(t, 2π),

for almost all t ∈ [0, T ]. Then by (3.43) and (3.19) and Lemma 3.27, we get

(3.44). The proof is complete.
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Corollary 3.29.

m ∈ L2(0, T ;D(A)). (3.45)

Proof. This is a direct result from (3.41), (3.19) and (3.44).

Remark 3.30. By the following imbedding

L2(0, T ;D(A)) ∩H1(0, T ; H) →֒ C([0, T ]; V),

(see [13], Theorem 3.1, p.19), we have

m ∈ C([0, T ]; V). (3.46)

Proposition 3.31.

|m(t, x)| = 1, for all (t, x) ∈ [0, T ] × Ō. (3.47)

Proof. By (2.12), |m(t, x)| = 1 for a.e. t ∈ [0, T ] and x ∈ Ō, and by (3.46) and

since C([0, T ]; V) →֒ C([0, T ] × Ō), we get (3.47).225

Proposition 3.32.

〈m(t, x),∆m(t, x)〉
R3 = −|∇m(t, x)|2

R3 , a.e. (t, x). (3.48)

Proof. By (2.12), |m(t, x)|R3 = 1. So by the chain rule of the weak derivative,

we infer that

0 = ∇|m(t, x)|2
R3 = 2 〈∇m(t, x),m(t, x)〉

R3 .

Therefore, by the chain rule used again

0 = ∇〈∇m(t, x),m(t, x)〉
R3 = 〈∆m(t, x),m(t, x)〉

R3 + |∇m(t, x)|2
R3 .

The proof is complete.

Proposition 3.33.

m ∈ L4(0, T ;W1,4). (3.49)
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Proof. By (2.12) and (3.41),

∫ T

0

∫

O

|〈m(t, x),∆m(t, x)〉
R3 |

2
dx dt

≤

∫ T

0

∫

O

|m(t, x)|2
R3 |∆m(t, x)|2

R3 dx dt = ‖∆m‖2L2(0,T ;H) <∞.

So the result followed by (3.48).

Remark 3.34. Our proof of (3.41) and (3.49) is different from the proof of the

one in a similar case given in ([6], Thm 5.2).230

Proposition 3.35. m satisfies the following equation in L2(0, T ; H):

m′ = λ2∆m+ λ1m× (∆m− φ′(m) + h) + λ2m|∇m|2 (3.50)

−λ2m 〈m,−φ′(m) + h〉 − λ2φ
′(m) + λ2h.

Proof. This follows from (3.42), the equality a × (b × c) = b〈a, c〉 − c〈a, b〉 and

(3.48).

3.3. Uniqueness of a weak solution

Theorem 3.36. If m1 and m2 are both weak solutions of equation (2.7)-(2.9)235

with m0 ∈ V∩M and if mi ∈ L4(0, T ;H1) for i = 1, 2, then m1(t, x) = m2(t, x)

for all (t, x) ∈ [0, T ] × Ō.

Proof. By Proposition 2.9, Theorem 3.36 can be proved similar as in the proof

of Theorem 4.1 in [6] by using the formula (3.50).

Since all the previous results hold for all T > 0, so the m in Corollary 3.8 is240

actually a global solution, we summarize the previous results by the following

theroem:

Theorem 3.37. For h ∈ L2
loc(0,∞; H) and φ ∈ C2

0 (R3;R+), there exists a

unique strong global solution m of equation (2.7) satisfy (3.47) with the initial

condition (2.9) and the periodic boundary condition (2.8), such that

m ∈ L2(0, T ;D(A)) ∩ C([0,∞); V) ∩H1(0, T ; H) ∩ L4(0, T ;W1,4), T > 0.

(3.51)
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4. Convergence towards minimum of the energy

In this section, we only consider the case h = 0 and

φ(u) =
1

2
|u− ζ+|

2
R3 , u ∈ R

3, (4.1)

where ζ+ = (0, 0, 1).

Let us observe that in this case we also have

φ′(u) = u− ζ+, u ∈ R
3. (4.2)

In this case the equation (2.7) can be also written as:

∂m

∂t
= λ1m×

(

∆m− φ′(m)
)

+ λ2Πm

(

∆m− φ′(m)
)

, (4.3)

where Πm = Πm(t,x) is the orthogonal projection from R
3 to the tangent space245

at m(t, x) for (t, x) ∈ [0, T ] ×O.

Suppose m0 ∈ M+, i.e. m0,3(x) > 0 for almost all x ∈ O, where m0 =

(m0,1,m0,2,m0,3), we want to prove that the solution m = (m1,m2,m3) of

equations (2.7)-(2.9) satisfy m(t) → ζ+ as t→ ∞ exponentially.

Remark 4.1. Note that the restriction of φ to S2 satisfies

φ(u) = 1 − u3, u ∈ S2. (4.4)

Remark 4.2. Let us point out that if φ is defined in (4.1), then

E(u) =
1

2
‖u− ζ+‖

2
H1 , u ∈ H

1. (4.5)

Moreover, if m is a solution of of equations (2.7)-(2.9), then

1

2

d

dt
‖m(t) − ζ+‖

2
H1 = −λ2‖Πm∇mE(m(t))‖2

H
. (4.6)

Proof of (4.6).

1

2

d

dt
‖m(t) − ζ+‖

2
H1 = −λ1

〈

ζ+,m×
(

∆m− φ′(m)
)〉

H
− λ1

〈

∆m,m×
(

∆m− φ′(m)
)〉

H

−λ2
〈

∆m,Πm

(

∆m− φ′(m)
)〉

H
− λ2

〈

ζ+,Πm

(

∆m− φ′(m)
)〉

H

= −λ1
〈

∆m− φ′(m),m×
(

∆m− φ′(m)
)〉

H
− λ2

〈

∆m− φ′(m),Πm

(

∆m− φ′(m)
)〉

H

= −λ2
∥

∥Πm

(

∆m− φ′(m)
)∥

∥

2

H
≤ 0.

250
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Lemma 4.3. If m is the solution of the system (4.3), (2.8) and (2.9) satisfies

inf
x∈O

m3(t, x) > δ, (4.7)

for some t ≥ 0, δ > 0. Then

d

dt
‖m(t) − ζ+‖

2
H1 ≤

d

dt
‖m(t) − ζ+‖

2
H ≤ −λ2 min

{

δ,
1

2

}

‖m(t) − ζ+‖
2
H1 . (4.8)

Proof. Let m be the global solution to the system (4.3), (2.8) and (2.9), let us

fix t ≥ 0 and δ > 0 such that (4.7) holds.

Firstly, we have

1

2

d

dt
‖m(t) − ζ+‖

2
H = 〈m(t) − ζ+,m

′(t)〉H = −〈ζ+,m
′(t)〉H

= −λ1
〈

ζ+,m(t) ×
(

∆m(t) − φ′(m(t))
)〉

H
− λ2

〈

ζ+,Πm

(

∆m(t) − φ′(m(t))
)〉

H
.

By (4.2), (A.2), (A.3), (A.4) and (A.6), we get

1

2

d

dt
‖m(t) − ζ+‖

2
H = −λ1

〈

ζ+,m(t) ×
(

∆m(t) + ζ+
)〉

H
− λ2

〈

ζ+,Πm

(

∆m(t) + ζ+
)〉

H

= λ1 〈m(t) × ζ+,∆m(t)〉H − λ2 〈ζ+,Πm∆m(t)〉H − 〈ζ+,Πmζ+〉H =: λ1I1 − λ2I2 − I3.

By integration by parts, we have255

I1 = 〈m(t) × ζ+,∆m(t)〉H = −〈∇m(t) × ζ+ +m(t) ×∇ζ+,∇m(t)〉H = 0,

By the equality (3.48) and (4.7), we have

I2 = 〈ζ+,Πm∆m(t)〉H =
〈

ζ+,∆m(t) +m(t)|∇m(t)|2
〉

H

= 〈ζ+,∆m(t)〉H +
〈

ζ+,m(t)|∇m(t)|2
〉

H
=

∫

O

m3(t, x)|∇m(t, x)|2 dx ≥ δ‖∇m‖2
H
,

which is dissiptivity of projected Laplacian.

Since m3(t, x) ∈ (0, 1], m2
3(t, x) ≤ m3(t, x) and therefore by the equality

(4.4), we have

I3 = 〈ζ+,Πmζ+〉H = 〈ζ+, ζ+ −m〈m, ζ+〉〉H

=

∫

O

(1 − |m3(x)|2) dx ≥

∫

O

(1 −m3(x)) dx =
1

2
‖m− ζ+‖

2
H
.

Therefore we have260

1

2

d

dt
‖m(t) − ζ+‖

2
H ≤ −λ2δ‖∇m‖2

H
− λ2

1

2
‖m− ζ+‖

2
H
≤ −λ2 min

{

δ,
1

2

}

‖m(t) − ζ+‖
2
H1 .
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So we get the second half of the inequality (4.8).

Secondly, by integration by parts, (4.2), (A.3) and since Πm is a self-adjoint

operator, we have

1

2

d

dt
‖∇m(t)‖2H = −〈∆m,m′(t)〉H

= −λ1
〈

∆m,m×
(

∆m− φ′(m)
)〉

H
− λ2

〈

∆m,Πm

(

∆m− φ′(m)
)〉

H

= −λ1 〈∆m,m× ζ+〉H − λ2‖Πm∆m‖2
H
− λ2〈∆m,Πmζ+〉H

= −λ1I1 − λ2‖Πm∆m‖2
H
− λ2I2 ≤ 0.

So we have proved the inequality (4.8).

Theorem 4.4. If m is the solution of the system (4.3), (2.8) and (2.9) with

the initial m0 ∈ V ∩M satisfies

‖m0 − ζ+‖
2
H1 <

2

k2
(2 − 2δ) = 1 − δ, (4.9)

for some δ ∈ (0, 1), where

k = 2 max

(

1,
1

√

|O|

)

.

then m(t) → ζ+ in H
1 exponentially as t→ ∞.265

Proof. Let us fix δ ∈ (0, 1), m0 ∈ V ∩M satisfy (4.9) and let m be the global

solution of the system (4.3), (2.8) and (2.9).

Let us define:

τ = inf

{

t ≥ 0 : ‖m(t) − ζ+‖H1 ≥
2

k2
(2 − 2δ)

}

. (4.10)

Note that by Theorem 3.37, m ∈ C([0,∞); V), so the set

{

t ≥ 0 : ‖m(t) − ζ+‖H1 ≥
2

k2
(2 − 2δ)

}

is closed, hence if it is not empty, the infimum will be the minimum.

Again since m : [0,∞) → H
1 is continuous, by (4.9), we infer that τ > 0.

We will prove that τ = ∞. Suppose by contradiction that τ <∞.270
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By the following interpolation inequality:

‖m‖2
L∞ ≤ k2‖m‖H · ‖∇m‖H, ∀m ∈ H

1, (4.11)

we have, for all t < τ ,

sup
x∈O

|m(t, x) − ζ+|
2
R3 ≤ k2‖m(t) − ζ+‖H‖∇m(t)‖H

≤
k2

2

(

‖m(t) − ζ+‖
2
H + ‖∇m(t)‖2H

)

<
k2

2

2

k2
(2 − 2δ) = 2 − 2δ.

We infer that

m3(t, x) > δ, x ∈ O, t < τ. (4.12)

Therefore by Lemma 4.3, we have

‖m(t) − ζ+‖
2
H1 ≤ ‖m0 − ζ+‖

2
H1 <

2

k2
(2 − 2δ), t < τ.

Since m ∈ C([0,∞);H1) and τ <∞, we infer that

‖m(τ) − ζ+‖
2
H1 ≤ ‖m0 − ζ+‖

2
H1 <

2

k2
(2 − 2δ),

which contradicts the definition of τ . Therefore τ = ∞. Hence we can use

Lemma 4.3 for all time t ≥ 0.

Next by Lemma 4.3, and by Gronwall inequality, we get

‖m(t) − ζ+‖
2
H1 ≤ ‖m0 − ζ+‖

2
H1 exp

(

−λ2 min

{

δ,
1

2

}

t

)

, t ≥ 0.

In particular, this implies that ‖m(t) − ζ+‖
2
H1 → 0 as t → ∞ exponentially.

Hence the proof is complete.275

Remark 4.5. If m0 satisfies the condition (4.9), then we say that m0 is in the

basin of attraction of ζ+. Moreover ζ+ is an asymptotically stable equilibrium

position of the system (4.3), (2.8) and (2.9).
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5. The quasi-potential of LLG system

From now on we will only consider the function φ such that there exist a280

basin of attraction of ζ+, if m0 is in the basin of attraction, then the solution

m of the system (4.3), (2.8) and (2.9) will converge to ζ+ as t→ ∞, e.g. the φ

as in (4.1).

Definition 5.1. For a ∈ V ∩M+, we define the quasipotential U(a) of system

(2.7)-(2.9) as follows:

U(a) = inf

{

λ21 + λ22
4λ2

∫ 0

−∞

‖h(t)‖2H dt :

∃m ∈ C((−∞, 0]; V), a weak solution of

(5.1)























∂m

∂t
= λ1m× (∆m− φ′(m) + h) − λ2m×

(

m× (∆m− φ′(m) + h)
)

,

m(t, 0) = m(t, 2π), ∇m(t, 0) = ∇m(t, 2π), a.e. t ∈ (−∞, 0],

m(−∞, ·) = ζ+, m(0, ·) = a

}

(5.2)

The following theorem show that the quasipotential in Definition 5.1 is

well defined in both mathematic sense and physical sense. Mathematically the285

qusipotential would not be infinite and physically it is just the potential energy

of the system without external force.

Theorem 5.2. If a is in the basin of attraction of ζ+ (see Remark 4.5), then

U(a) = E(a),

where the energy E(a) is defined in (2.13).

Proof. Let us fix a ∈ V∩M and a be in the basin of attraction of ζ+. We prove

the theorem by three steps:290

Step 1: We show that for some particular h ∈ L2(−T, 0; H) for all T > 0, there

exists a solution m ∈ C((−∞, 0]; V) for the system (5.2).
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To do this, let us consider the following system:



































m′(t) = λ1m(t) × (∆m(t) − φ′(m(t)))

+ λ2m(t) ×
(

m(t) × (∆m(t) − φ′(m(t)))
)

, t ∈ (−∞, 0)

m(t, 0) = m(t, 2π), ∇m(t, 0) = ∇m(t, 2π), for a.e. t ∈ (−∞, 0],

m(0) = a.

(5.3)

Let us define v(t) = m(−t), then in formal way v′(t) = −m′(−t), hence solving

the above system is equivalent to solve the following:



































v′(t) = −λ1v(t) × (∆v(t) − φ′(v(t)))

− λ2v(t) ×
(

v(t) × (∆v(t) − φ′(v(t))
)

, t ∈ (0,∞)

v(t, 0) = v(t, 2π), ∇v(t, 0) = ∇v(t, 2π), for a.e. t ∈ [0,∞),

v(0) = a.

(5.4)

This is LLGE for v with v(0) = a as in the system (2.7)-(2.9) with coefficients

−λ1, λ2 and h = 0. By theorem 3.37, there exists a unique strong solution

v ∈ L2(0, T ;D(A)) ∩ C([0,∞); V) ∩H1(0, T ; H) ∩ L4(0, T ;W1,4), T > 0,

and v also satisfies the following property:

|v(t, x)| = 1, for all (t, x) ∈ [0,∞) × Ō.

Since a satisfies the conditions in Theorem 4.4, we infer that v(∞) = ζ+.

Therefore there exists a unique solution m of the system (5.3) such that



































m ∈ L2(−T, 0;D(A)) ∩ C((−∞, 0]; V) ∩H1(−T, 0; H)

∩ L4(−T, 0;W1,4), for everyT > 0.

|m(t, x)| = 1, for all (t, x) ∈ (−∞, 0] × Ō,

m(−∞) = ζ+.

(5.5)

For such m, let us choose h by

h = λ1m× (∆m− φ′(m)) + λ2m×
(

m× (∆m− φ′(m))
)

= m′. (5.6)
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Next we claim this m defined above is also the solution of equation (5.2) with

the h just chosen in (5.6). Note that by (5.5) and the meaning of cross product

×, one has

m× h = m×
(

m× (∆m− φ′(m))
)

−m× (∆m− φ′(m)),

and

m× (m× h) = −m× (∆m− φ′(m)) −m×
(

m× (∆m− φ′(m))
)

.

So if we substitute this h into the right hand side of the first equation of (5.2),

we get:295

λ1m× (∆m− φ′(m)) + λ2m×
(

m× (∆m− φ′(m))
)

− λ1m× (∆m− φ′(m))

−λ2m×
(

m× (∆m− φ′(m))
)

+ λ1m× (∆m− φ′(m)) + λ2m×
(

m× (∆m− φ′(m))
)

= λ1m× (∆m− φ′(m)) + λ2m×
(

m× (∆m− φ′(m))
)

= h = m′,

where m′ is the left hand side of the first equation of (5.2). Hence the claim

follows.

Step 2: We show that if m ∈ C((−∞, 0]; V) is a weak solution of system (5.2)

for some h ∈ L2(−T, 0; H) for all T > 0, then U(a) ≥ E(a).

Let us assume m ∈ C((−∞, 0]; V) is a weak solution of system (5.2) for some

h ∈ L2(−T, 0; H) for all T > 0. By the same way as in the proof of Proposition

2.9, one can show that |m(t, x)| = 1 for all (t, x) ∈ (−∞, 0] ×O. Hence by the

meaning of the cross product “×”, one has

m(t, x) × h(t, x) ⊥ m(t, x) × (m(t, x) × h(t, x)), (t, x) ∈ (−∞, 0] ×O

and

|m(t, x) × h(t, x)| = |m(t, x) × (m(t, x) × h(t, x))|, (t, x) ∈ (−∞, 0] ×O.

Therefore one has

(λ21 + λ22)‖Πmh(t)‖2H = ‖λ1m(t) × h(t) − λ2m(t) × (m(t) × h(t))‖2H, t ≤ 0,
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where Πm was explained at beginning of Section 4. Moreover, we can prove300

that m has the regularity of as in Theorem 3.37 by truncate a finite time and

then make a change of time variable to positive by add a finite number on it.

Next by the first equation in (5.2) one has

‖λ1m(t) × h(t) − λ2m(t) × (m(t) × h(t))‖2H

=
∥

∥m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))) + λ2m(t) ×
(

m(t) × (∆m(t) − φ′(m(t)))
)∥

∥

2

H

= ‖m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))) + λ2Πm(−∆m(t) + φ′(m(t)))‖
2
H

= ‖m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))) − λ2Πm(−∆m(t) + φ′(m(t)))‖
2
H

+4 〈m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))), λ2Πm(−∆m(t) + φ′(m(t)))〉H .

Since 〈a× b,Πa(b)〉 = 0 for a, b ∈ R
3, one has

〈m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))), λ2Πm(−∆m(t) + φ′(m(t)))〉H

= 〈m′(t), λ2Πm(−∆m(t) + φ′(m(t)))〉H .

Therefore we get305

(λ21 + λ22)‖Πmh(t)‖2H (5.7)

= ‖m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))) − λ2Πm(−∆m(t) + φ′(m(t)))‖
2
H

+4 〈m′(t), λ2Πm(−∆m(t) + φ′(m(t)))〉H .

Note that by integration by parts, one has

d

dt
E(m(t)) =

d

dt

(

1

2
‖∇m(t)‖2H +

∫

O

φ(m(t, x)) dx

)

= 〈m′(t),−∆m(t)〉H +

∫

O

〈φ′(m(t, x)),m′(t, x)〉 dx (5.8)

= 〈m′(t),−∆m(t) + φ′(m(t))〉H = 〈m′(t),Πm(−∆m(t) + φ′(m(t))〉H .

The last equality above is from m′(t, x) ∈ Tm(t,x)S
2.

Hence by (5.7) and (5.8) we have
∫ 0

−∞

‖Πmh(t)‖2H dt ≥
4λ2

λ21 + λ22

∫ 0

−∞

d

ds
E(m(s)) ds

=
4λ2

λ21 + λ22

(

E(a) − E(ζ+)
)

=
4λ2

λ21 + λ22
E(a).

Therefore U(a) ≥ E(a).
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Step 3: We show that h defined by (5.6) is in L2(−∞, 0; H) and

∫ 0

−∞

‖h(t)‖2H dt =
4λ2

λ21 + λ22
E(a),

and therefore U(a) = E(a).310

By (5.3), the solution m of (5.2) with h defined in (5.6) satisfies

‖m′(t) − λ1m(t) × (∆m(t) − φ′(m(t))) − λ2Πm(−∆m(t) + φ′(m(t)))‖
2
H = 0.

So by (5.7) and (5.8),

∫ 0

−∞

‖Πmh(t)‖2H dt =
4λ2

λ21 + λ22
E(a).

Note that h(t, x) = m′(t, x) ⊥ m(t, x), therefore h(t, x) = Πmh(t, x) for

almost all t < 0 and x ∈ O. Hence actually we have

∫ 0

−∞

‖h(t)‖2H dt =
4λ2

λ21 + λ22
E(a).

Therefore h ∈ L2(−∞, 0; H) and by the result of Step 2,

U(a) = E(a).

The proof of Theorem 5.2 is complete.

Appendix A. Some frequently used equalities

For a, b, c ∈ R
3, we have the following equalities

a× (b× c) = b〈a, c〉 − c〈a, b〉 (A.1)

〈a× b, c〉R3 = 〈a, b× c〉R3 . (A.2)

〈a× b, a〉R3 = 0. (A.3)

a× a = 0. (A.4)
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For |a| = 1,

Πa(b) = −a× (a× b), b ∈ R
3. (A.5)

Πaa = 0. (A.6)

Appendix B. Discussion on other φ

Appendix B.1. φ1(m) = 1
2 (m2

1 +m2
2)

Now let us consider the function φ used in [6], which we denote by:

φ1(m) =
1

2
(m2

1 +m2
2) =

1

2
(1 −m2

3), m ∈ S2. (B.1)

So

φ′1(m) = −m3ζ+.

Some of our results in this section are formulated for φ = φ1, but some for a315

general φ.

Let us formulate, for the future reference, three useful identities.

Lemma Appendix B.1. If m is the solution of the system (4.3), (2.8) and

(2.9) with φ = φ1, then one has the following equalities:

1

2

d

dt
‖m(t) − ζ+‖

2
H = −〈ζ+,m

′(t)〉H

= −λ1
〈

ζ+,m×
(

∆m− φ′1(m)
)〉

H
− λ2

〈

ζ+,Πm

(

∆m− φ′1(m)
)〉

H
, (B.2)

= −λ2
〈

ζ+,Πm

(

∆m− φ′1(m)
)〉

H
.

320

1

2

d

dt
‖∇m(t)‖2H = −〈∆m,m′(t)〉H

= −λ1
〈

∆m,m×
(

∆m− φ′1(m)
)〉

H
− λ2

〈

∆m,Πm

(

∆m− φ′1(m)
)〉

H
,(B.3)

and

1

2

d

dt
‖m(t) − ζ+‖

2
H1 = −λ1

〈

∆m+ ζ+,m×
(

∆m− φ′1(m)
)〉

H

−λ2
〈

∆m+ ζ+,Πm

(

∆m− φ′1(m)
)〉

H
. (B.4)
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Proof. The equality (B.2) follows from d
dt‖m(t)− ζ+‖

2
H = −2〈ζ+,m

′(t)〉H. The

equality (B.3) follows from d
dt‖∇m(t)‖2H = −2〈∆m,m′(t)〉H. And so the equal-

ity (B.4) follows from the equalities (B.2) and (B.3).

Lemma Appendix B.2. If φ = φ1 and infx∈Om3(x) > 0, then for every

m ∈ M,

4E(m) ≥ ‖m− ζ+‖
2
H1 , (B.5)

E(m) ≤ ‖m− ζ+‖
2
H1 , (B.6)

where E is defined in (2.13).325

Proof. Let us fix m ∈ M with infx∈Om3(x) > 0 and assume φ = φ1.

Firstly, we prove (B.5). Since

|m− ζ+|
2 = 2(1 −m3) ≤ 2(1 −m2

3) = 4φ1(m),

by (2.13), we have

4E(m) ≥ ‖m− ζ+‖
2
H

+ 2‖∇m‖2
H
≥ ‖m− ζ+‖

2
H1 .

Secondly, we prove (B.6). Since

|m− ζ+|
2 = 2(1 −m3) ≥ (1 −m3)(1 +m3) = 1 −m2

3 = 2φ1(m),

we have

2E(m) ≤ ‖m− ζ+‖
2
H

+ ‖∇m‖2
H

= ‖m− ζ+‖
2
H1 .

Hence the proof is complete.

Lemma Appendix B.3. If m is the solution of the system (4.3), (2.8) and

(2.9) with φ = φ1, and for some δ > 0 and some t ≥ 0, one has

m3(t, x) > δ, x ∈ O. (B.7)

Then
1

2

d

dt
‖m(t) − ζ+‖

2
H ≤ −

1

2
λ2δ‖m(t) − ζ+‖

2
H1 . (B.8)

Moreover if λ1 = 0, then

d

dt
‖m(t) − ζ+‖

2
H1 ≤ 0. (B.9)
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Proof. Let m be the global solution to the system (4.3), (2.8) and (2.9) with

φ = φ1, let us fix t ≥ 0 and δ > 0 such that (B.7) holds.

We first prove (B.8).330

By (B.2) and (A.5) and integration by parts, one has

1

2

d

dt
‖m(t) − ζ+‖

2
H = −λ2

〈

ζ+,Πm

(

∆m− φ′(m)
)〉

H

= −λ2 〈Πmζ+,∆m〉H + λ2 〈Πmζ+, φ
′(m)〉H

= λ2 〈m× (m× ζ+),∆m〉H − λ2 〈m× (m× ζ+), φ′(m)〉H

= −λ2 〈m× (∇m× ζ+),∇m〉H − λ2 〈m× (m× ζ+), φ′(m)〉H .

By the formula (A.1), one has

1

2

d

dt
‖m(t) − ζ+‖

2
H = −λ2

〈

ζ+,Πm

(

∆m− φ′(m)
)〉

H
(B.10)

= −λ2

∫

O

|∇m(t, x)|2m3(t, x) − 〈ζ+,∇m(t, x)〉〈m(t, x),∇m(t, x)〉 dx

−λ2

∫

O

〈m(t, x), φ′(m(t, x))〉m3(t, x) − 〈ζ+, φ
′(m(t, x))〉 dx

= −λ2

(

∫

O

|∇m(t, x)|2m3(t, x) dx+

∫

O

〈m(t, x), φ′(m(t, x))〉m3(t, x)

−〈ζ+, φ
′(m(t, x))〉 dx

)

.

For φ = φ1, one has

φ′1(m) = (m1,m2, 0),

so that

〈m,φ′(m)〉 = m2
1 +m2

2 and 〈ζ+, φ
′(m)〉 = 0.

Therefore

1

2

d

dt
‖m(t)−ζ+‖

2
H = −λ2

(∫

O

|∇u(t, x)|2m3(t, x) dx+

∫

O

(1 −m3(t, x)2)m3(t, x) dx

)

.

We also have

1 −m2
3 ≥ 1 −m3 =

1

2
|m− ζ+|

2
R3 , for m3 ≥ 0, m ∈ S2. (B.11)
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Hence

1

2

d

dt
‖m(t) − ζ+‖

2
H

≤ −λ2

(∫

O

|∇m(t, x)|2m3(t, x) dx+
1

2

∫

O

|m(t, x) − ζ+|
2
R3m3(t, x) dx

)

≤ −
1

2
λ2δ

(∫

O

|∇m(t, x)|2 dx+

∫

O

|m(t, x) − ζ+|
2
R3 dx

)

= −
1

2
λ2δ‖m(t) − ζ+‖

2
H1 ≤ 0.

So we get the inequality (B.8).335

Next we assume λ1 = 0 and prove (B.9).

Now let us consider d
dt‖m(t) − ζ+‖

2
H1 . By (B.4), one has

1

2

d

dt
‖m(t) − ζ+‖

2
H1 = −λ2

〈

∆m,Πm

(

∆m− φ′(m)
)〉

H
− λ2

〈

ζ+,Πm

(

∆m− φ′(m)
)〉

H

= −λ2

(

〈

∆m,Πm

(

∆m− φ′(m)
)〉

H
−
〈

φ′(m),Πm

(

∆m− φ′(m)
)〉

H

+
〈

φ′(m),Πm

(

∆m− φ′(m)
)〉

H
+
〈

ζ+,Πm

(

∆m− φ′(m)
)〉

H

)

= −λ2
(

‖Πm(∆m− φ′(m))‖2H +
〈

φ′(m) + ζ+,Πm

(

∆m− φ′(m)
)〉

H

)

.

Now we only need to consider
〈

φ′(m) + ζ+,Πm

(

∆m− φ′(m)
)〉

H
.

Using the equality a× (b× c) = b〈a, c〉 − c〈a, b〉 and |m(t, x)| = 1, one has

〈

φ′(m),Πm

(

∆m− φ′(m)
)〉

H

= −〈m× (m× (φ′(m))),∆m〉H + 〈m× (m× (φ′(m))), φ′(m)〉H

= 〈m× (∇m× (φ′(m))),∇m〉H + 〈m× (m×∇φ′(m)),∇m〉H

+

∫

O

〈m,φ′(m)〉〈m,φ′(m)〉 dx− 〈φ′(m), φ′(m)〉H

=

∫

O

|∇m|2〈m,φ′(m)〉 dx−

∫

O

〈∇φ′(m),∇m〉 dx

+

∫

O

〈m,φ′(m)〉〈m,φ′(m)〉 dx−

∫

O

〈φ′(m), φ′(m)〉 dx.

For φ = φ1 and by (B.10), one has340

〈

φ′(m) + ζ+,Πm

(

∆m− φ′(m)
)〉

H

=

∫

O

|∇m|2m3(1 −m3) dx+

∫

O

|∇m3|
2 dx+

∫

O

m3(1 −m3)(1 −m2
3) dx ≥ 0.

38



Therefore
d

dt
‖m(t) − ζ+‖

2
H1 ≤ 0.

This completes the proof.

Lemma Appendix B.4. Let m be the solution of the system (4.3), (2.8) and

(2.9) with φ = φ1. If for some t ≥ 0, one has

‖m(t) − ζ+‖H1 <
1

2k2
√

|O|

λ2

λ1 + 2λ2
, (B.12)

then
d

dt
‖∇m(t)‖2

H
≤ 0. (B.13)

Moreover, in the particular case λ1 = −1 and λ2 = 1, we have

m3(t, x) ≥
1

2
, x ∈ O.

Proof. Let m be the solution of the system (4.3), (2.8) and (2.9) with φ = φ1.

Let us fix t ≥ 0 such that (B.12) holds.

Let us first figure out if ‖∇m(t)‖H is decreasing. (The following calculation

corresponds to equation (7.9) in [6].)345

1

2

d

dt
‖∇m(t)‖H = −λ1 〈∆m(t),m(t) × (−φ′1(m(t))〉H − λ2 〈∆m(t),Πm(∆m(t) − φ′1(m(t))〉H

= −λ1

∫

O

(m1(t)∇m2(t, x) −m2(t, x)∇m1(t, x))∇m3(t, x) dx

−λ2 〈m(t) × ∆m(t),m(t) × (∆m(t) − φ′1(m(t)))〉H

= −λ1

∫

O

(m1(t)∇m2(t, x) −m2(t, x)∇m1(t, x))∇m3(t, x) dx− λ2‖m(t) × ∆m(t)‖2
H

−λ2 〈m(t) × ∆m(t),m(t) ×m3(t)ζ+〉H

= −λ1

∫

O

(m1(t)∇m2(t, x) −m2(t, x)∇m1(t, x))∇m3(t, x) dx− λ2‖m(t) × ∆m(t)‖2
H

−λ2

∫

O

m2
3(t, x)|∇m(t, x)|2 dx+ λ2

∫

O

|∇m3(t, x)|2 dx

= −λ2‖m(t) × ∆m(t)‖2
H

+

∫

O

R(t, x) dx,

where we define

R := −λ1(m1∇m2 −m2∇m1)∇m3 + λ2|∇m3|
2 − λ2m

2
3|∇m|2.
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Therefore by using m1∇m1 +m2∇m2 +m3∇m3 = 0, we have (corresponds to

(7.10) in [6])

R = λ1(m1∇m2 −m2∇m1)
m1∇m1 +m2∇m2

m3
(B.14)

+λ2(1 −m2
3)

(

m1∇m1 +m2∇m2

m3

)2

− λ2m
2
3

(

(∇m1)2 + (∇m2)2
)

By the Cauchy-Schwartz inequality, we obtain (corresponds to (7.11) in [6])

R ≤

(

λ1
1 −m2

3

m2
3

+ λ2
(1 −m2

3)2

m2
3

− λ2m
2
3

)

(

(∇m1)2 + (∇m2)2
)

. (B.15)

By (B.12), we have (the following corresponds to (7.5) in [6])

‖m(t) − ζ+‖
2
L∞ ≤ k2‖m(t) − ζ+‖H‖m(t) − ζ+‖H1 (B.16)

≤ k22
√

|O|
1

2k2
√

|O|

λ2

λ1 + 2λ2
=

λ2

λ1 + 2λ2
.

So (corresponding to (7.6) in [6])

m3(t, x)2 = 1−(m1(t, x)2+m2(t, x)2) ≥ 1−|m(t, x)−ζ+|
2 ≥

λ1 + λ2

λ1 + 2λ2
, x ∈ O.

(B.17)

Therefore

λ1
1 −m2

3

m2
3

+ λ2
(1 −m2

3)2

m2
3

− λ2m
2
3

=
1

m2
3

(

λ1(1 −m2
3) + λ2(1 − 2m2

3 +m4
3) − λ2m

4
3

)

=
1

m2
3

(

λ1 − λ1m
2
3 + λ2 − 2λ2m

2
3

)

=
1

m2
3

(

−(λ1 + 2λ2)m2
3 + λ1 + λ2

)

≤ 0.

Hence by (B.15), we have (corresponding to (7.11) in [6])

R(t, x) ≤ 0 x ∈ O.

Therefore we proved that ‖∇m(t)‖H is nonincreasing.350

Moreover, by (B.16), in the particular case λ1 = −1 and λ2 = 1, we have

sup
x∈O

(2 − 2m3(t, x)) = ‖m(t) − ζ+‖
2
L∞ ≤ 1.

So we have

m3(t, x) ≥
1

2
, x ∈ O.
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Theorem Appendix B.5. Let m be the solution of the system (4.3), (2.8) and

(2.9) with φ = φ1. If for some 0 < δ < 1, we have

‖m0 − ζ+‖
2
H1 <

2

k2
(2 − 2δ) = 1 − δ, (B.18)

where

k = 2 max

(

1,
1

√

|O|

)

.

Then

(i) m(t) → ζ+ in H as t→ ∞ exponentially.

(ii)
∫∞

0
E(m(t)) dt <∞.

(iii) E(m(t)) → 0 as t→ ∞.355

(iv) m(t) → ζ+ in H
1 as t→ ∞.

Furthermore, if λ1 = −1, λ2 = 1 and

‖m0 − ζ+‖H1 <
1

2k2
√

|O|

λ2

λ1 + 2λ2
=

1

2k2
√

|O|
, (B.19)

then one has m(t) → ζ+ in H
1 as t→ ∞ exponentially.

Proof. Let m be the solution of the system (4.3), (2.8) and (2.9) with φ = φ1.

By the same method as in the proof of Theorem 4.4, we can see (B.18) implies

that (B.7) is true for all t ≥ 0.360

We will prove the general result for λ1 ∈ R and λ2 > 0 in four steps:

(i) By (B.8), we have

1

2

d

dt
‖m(t) − ζ+‖

2
H ≤ −

1

2
λ2δ‖m(t) − ζ+‖

2
H.

So by Gronwall’s inequality, we have

‖m(t) − ζ+‖
2
H ≤ ‖m0 − ζ+‖

2
H exp

(

−
1

2
λ2δt

)

, t ≥ 0.

So m(t) → ζ+ in H as t→ ∞ exponentially.

41



(ii) By (B.8) and (B.6), we have

E(m(t)) ≤ −
1

λ2δ

d

dt
‖m(t) − ζ+‖

2
H, t ≥ 0.

So by (i),

∫ ∞

0

E(m(t)) dt ≤ −
1

λ2δ

∫ ∞

0

d

dt
‖m(t) − ζ+‖

2
H dt =

1

λ2δ
‖m0 − ζ+‖

2
H <∞.

(iii) Hence (ii) and (2.14) implies that E(m(t)) → 0 as t→ ∞.

(iv) Moreover, by (B.5) and (iii), we also have m(t) → ζ+ in H
1 as t→ ∞.

Now let us assume (B.19) is true and assume λ1 = −1 and λ2 = 1.365

By Lemma Appendix B.4 and by the same method as in the proof of Propo-

sition 7.2 in [6], we can see ‖∇m(t)‖H is decreasing and m3(t, x) ≥ 1
2 for all

t ≥ 0 and x ∈ O. Hence

1

2

d

dt
‖m(t) − ζ+‖

2
H1 ≤

1

2

d

dt
‖m(t) − ζ+‖

2
H = −〈ζ+,m

′(t)〉H

= −λ1 〈ζ+,m(t) × (∆m(t) +m3(t)ζ+)〉H − λ2 〈ζ+,Πm(∆m(t) +m3(t)ζ+)〉H

= −λ2 〈ζ+,Πm(∆m(t) +m3(t)ζ+)〉H .

By (B.10), we have

‖m(t) − ζ+‖
2
H1

≤ ‖m0 − ζ+‖
2
H1 − 2λ2

∫ t

0

∫

O

|∇m(s, x)|2〈m(s, x), ζ+〉 dx ds

−2λ2

∫ t

0

∫

O

(〈m(s, x), φ′(m(s, x))〉 〈m(s, x), ζ+〉 − 〈ζ+, φ
′(m(t, x))〉) dx ds

Note that370

−2λ2

∫ t

0

∫

O

(〈m(s, x), φ′(m(s, x))〉 〈m(s, x), ζ+〉 − 〈ζ+, φ
′(m(t, x))〉) dx ds

= −2λ2

∫ t

0

∫

O

(−m3
3(s, x) +m3(s, x)) dx ds

= −2λ2

∫ t

0

∫

O

m3(s, x)(1 +m3(s, x))(1 −m3(s, x)) dx ds

≤ −λ2
1

2

∫ t

0

∫

O

(2 − 2m3(s, x)) dx ds = −λ2
1

2

∫ t

0

∫

O

|m(s, x) − ζ+|
2
R3 dx ds.
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Therefore

‖m(t) − ζ+‖
2
H1

≤ ‖m0 − ζ+‖
2
H1 − λ2

1

2

∫ t

0

∫

O

|∇m(s, x)|2 dx ds− λ2
1

2

∫ t

0

∫

O

|m(s, x) − ζ+|
2
R3 dx ds

= ‖m0 − ζ+‖
2
H1 − λ2

1

2

∫ t

0

‖m(s) − ζ+‖
2
H1 ds ≤ ‖m0 − ζ+‖

2
H1 exp

{

−
1

2
λ2t

}

.

Hence m(t) → ζ+ in H
1 as t→ ∞ exponentially.

This completes the proof.

Appendix B.2. φ2 = 1
2 − φ1

Now let us consider φ2 = 1
2 − φ1 in the system (4.3), (2.8) and (2.9), in this375

example the poles are no longer attractors.

Theorem Appendix B.6. The function

m(t, x) = m̄(x) =
(

m̄1(x), m̄2(x), m̄3(x)
)

=
(√

1 −m2
0,3 cosx,

√

1 −m2
0,3 sinx,m0,3

)

(B.20)

is the unique global solution of the system (4.3), (2.8) and (2.9) with φ = φ2

and m0 = m̄, where m0,3 is a constant.

Proof. Let us fix m0,3 ∈ (−1, 1) as a constant. Then by (B.20),

∆m(t, x) = −
(√

1 −m2
0,3 cosx,

√

1 −m2
0,3 sinx, 0

)

= −(m1(t, x),m2(t, x), 0) = φ′2(m(t, x)),

so ∆m(t, x) − φ′2(m(t, x)) = 0. Hence the right hand side of (4.3) is 0. On

the other hand, since m does not depend on t, so m′(t) = 0. Therefore (4.3)380

is satisfied. Since cos(2π) = cos(0) and sin(2π) = sin(0), m also satisfy the

periodic boundary condition (2.8). Therefore the proof is complete.

Corollary Appendix B.7. For all ρ > 0, there exist m0 ∈ V ∩M such that

‖m0 − ζ+‖
2
H1 < ρ, (B.21)

but there exists ε > 0 such that the solution m of the system (4.3), (2.8) and

(2.9) with φ = φ2 satisfies

‖m(t) − ζ+‖
2
H > ε, t ≥ 0. (B.22)
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Proof. Let us fix ρ > 0. For any m̄ defined as in (B.20), we have

‖m̄− ζ+‖
2
H1 = ‖m̄− ζ+‖

2
H + ‖∇m̄‖2

H
= 4π(1 −m0,3) + 2π(1 −m2

0,3).

So we can choose m0 = m̄ as defined in (B.20) such that the constant m0,3 ∈

(0, 1) satisfies

4π(1 −m0,3) + 2π(1 −m2
0,3) < ρ,

then (B.21) would be satisfied. Let

ε = 2π(1 −m0,3),

then by Theorem Appendix B.6,

‖m(t) − ζ+‖
2
H =

∫

O

|2 − 2m3(t, x)|2 dx = 4π(1 −m0,3) > ε, t ≥ 0.

So (B.22) is satisfied. Hence the proof is complete.

Appendix C. The connection between Definition 5.1 and the notions

of quasipotential used in stochastic problems385

According to the monograph [10] by Freidlin and Wentzell (from line 11 at

page 90), given a system

∂m

∂t
= b(m), u(0) = u0, (C.1)

We have the following definition of quasipotential.

Definition Appendix C.1. [10] The quasipotential of the system C.1 with

respect to a point ζ was defined as

V (ζ, a) = inf {ST1T2
(ϕ) : ϕ ∈ C([T1, T2]), ϕ(T1) = ζ, ϕ(T2) = a, T1 ≤ T2} ,

(C.2)

where

ST1T2
(ϕ) =

1

2

∫ T2

T1

|ϕ′(s) − b(ϕ(s))|2 ds.
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The connection of Definition 5.1 and the version of quasipotential now com-

monly used in stochastic problems is that they are both closely connected with

the Definition Appendix C.1. Since the connection between the stochastic ver-

sion of quasipotential and Definition Appendix C.1 is well known, we will only390

explain the connection between Definition 5.1 and Definition Appendix C.1.

Appendix C.1. The connection between Definition 5.1 and Definition Appendix

C.1

The system (C.1) corresponds to our system (2.7) but with h = 0 and (2.9)

with m0 = ζ+ and (2.8), thus in our case

b(m) = λ1m× (∆m− φ′(m)) − λ2m× (m× (∆m− φ′(m))).

Now let us consider m′ − b(m). As explained in Section 4, if m′ − b(m) = 0,

then m will stay at ζ+ and will never reach a 6= ζ+. So we can assume (with

(t, x) omitted) m′ − b(m) = u 6= 0 for some u ∈ TmS2, it is easy to check that

for

h =
1

λ22 + λ21
(λ1m× u− λ2u) ∈ TmS2,

m is the solution of our system of (2.7), (2.9) with m0 = ζ+ and (2.8). Therefore

|m′ − b(m)|2 = |λ1m× h− λ2m× (m× h)|2 = |λ1m× h+ λ2h|
2

= λ21|m× h|2 + 2λ1λ2 〈m× h, h〉 + λ22|h|
2 = (λ21 + λ22)|h|2.

Hence we can see that the Definition Appendix C.1 in our case can be written395

in the following way:

Definition Appendix C.2. The quasipotential with respect to the point ζ+

is defined as

V (a) = inf

{

λ21 + λ22
4λ2

∫ T

0

‖h(t)‖2H dt : T > 0,

∃m ∈ C([0, T ]; V), a weak solution of

(C.3)
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





















∂m

∂t
= λ1m× (∆m− φ′(m) + h) − λ2m×

(

m× (∆m− φ′(m) + h)
)

,

m(t, 0) = m(t, 2π), ∇m(t, 0) = ∇m(t, 2π), a.e. t ∈ [0, T ],

m(0, ·) = ζ+, m(T, ·) = a

}

.

(C.4)

By setting m̄(t) = m(t+T ), h̄(t) = h(t+T ) for T > 0, we have the following

result:

Proposition Appendix C.3.

V (a) = inf

{

λ21 + λ22
4λ2

∫ 0

−T

‖h̄(t)‖2H dt : T > 0,

∃m̄ ∈ C([−T, 0]; V), a weak solution of

(C.5)























∂m̄

∂t
= λ1m̄× (∆m̄− φ′(m̄) + h̄) − λ2m̄×

(

m̄× (∆m̄− φ′(m̄) + h̄)
)

,

m̄(t, 0) = m(t, 2π), ∇m̄(t, 0) = ∇m(t, 2π), a.e. t ∈ [−T, 0],

m̄(−T, ·) = ζ+, m̄(0, ·) = a

}

.

(C.6)

Next we will use a similar procedure as in [4] to show that V (a) = U(a),

which means that Definition Appendix C.2 and Definition 5.1 are equivalent.400

Notation Appendix C.4. For simplicity, we denote

Φ(m) := m′ −m× (∆m− φ′(m)) − Πm(∆m− φ′(m)) ∈ L2(0, T ;H). (C.7)

Remark. ζ+ is an asymptotically stable equilibrium position of the system (4.3),

(2.8) and (2.9). So if m(0, ·) = ζ+, then m = ζ+ would be the solution of the

system (4.3), (2.8) and (2.9). Hence we have

Φ(ζ+) = 0. (C.8)

Proposition Appendix C.5. For a ∈ V ∩M+, we have V (a) <∞.
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Proof. Let us fix T > 0. We construct a continuous map

R : V −→ L2(0, T ;D(A)) ∩H1(0, T ;H)

a 7−→ m

such that m(T ) = a, m(0) = ζ+ and R(ζ+) = ζ+.

As explain in §1.2.3 of [13], we have the Hilbert space

H =

{

f :

∫ ∞

λ0

‖f(λ)‖2H(λ) dµ(λ) <∞

}

,

and an unitary operator U : H −→ H which is an isomorphism of [D(A),H]θ

onto H1−θ for θ ∈ [0, 1]. For some ϕ ∈ C∞([0, T ];R+) such that ϕ(0) = 1, we

construct a map w(a) : [0, T ] × [λ0,∞) −→ R by

w(a)(t, λ) =
T − t

T
U(ζ+) +

t

T
U(a)(λ)ϕ (‖a− ζ+‖V(T − t)λ) . (C.9)

(Since we assumed that a ∈ M+, w(a)(t, λ) 6= 0 for all (t, λ). ) We can see

that w(a) ∈ L2(0, T ;H1) ∩ H1(0, T ;H), w(ζ+) = U(ζ+), w(a)(0) = U(ζ+),

w(a)(T ) = U(a). Next we define

R̃(a) := U−1(w(a)),

and

R(a) :=
R̃(a)

|R̃(a)|
.

(Note that divided by the norm “increase the smoothness” of a function.) It is

not difficult to see this map R is the one we need.405

Then we define m := R(a).

Hence m(0) = ζ+ and m(T ) = a and m ∈ L2(0, T ;D(A))∩H1(0, T ;H). And

so m ∈ C([0, T ]; V) (see [13], Theorem 3.1, p.19). Hence we have

Φ(m) ∈ L2(0, T ;H).

Next we find h such that m is a weak solution of equation (C.4).

If such h exists, then

Φ(m) = λ1m× h+ λ2Πm(h).
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Note that m(t, x)×h(t, x) ⊥ Πm(h)(t, x) and |m(t, x)×h(t, x)| = |Πm(h)(t, x)|,

we have

Πm(h) =
1

λ2 +
λ2
1

λ2



Φ(m) +

√

λ21 +
λ4
1

λ2
2

√

λ21 + λ22
Φ(m) ×m



 .

Therefore, let

h :=
1

λ2 +
λ2
1

λ2



Φ(m) +

√

λ21 +
λ4
1

λ2
2

√

λ21 + λ22
Φ(m) ×m



 ∈ L2(0, T ;H),

then our m satisfies the first equation in (C.4) in L2(0, T ;H).

And since m ∈ L2(0, T ;D(A)) ∩ H1(0, T ;H), the other conditions in (C.4)

are also satisfied.410

Proposition Appendix C.6. If (m,h) satisfies the equation (2.7), then (m,Πmh)

also satisfies (2.7). Moreover, if (m,h1) and (m,h2) both satisfy (2.7), then

Πmh1 = Πmh2.

Proof. We only prove the second statement here. If (m,h1) and (m,h2) are

both satisfy (2.7), then by (2.7), one has

m× (h1 − h2) = m× (m× (h1 − h2)).

But

m(t, x)×(h1(t, x)−h2(t, x)) ⊥ m(t, x)×(m(t, x)×(h1(t, x)−h2(t, x))) ∈ R
3, ∀t, x.

therefore

m(t, x) × (h1(t, x) − h2(t, x)) = 0.

Hence Πmh1(t, x) = Πmh2(t, x), for all t, x.

Notation Appendix C.7. For T1, T2, T ∈ [0,∞), a ∈ V ∩M+, we denote415

XT (a) :=

{

m ∈ L2(0, T ;D(A)) ∩H1(0, T ;H) ∩ C([0, T ];M) :

m(0, ·) = ζ+ and m(T, ·) = a

}

,
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X−T (a) :=

{

m ∈ L2(−T, 0;D(A)) ∩H1(−T, 0;H) ∩ C([−T, 0];M) :

m(−T, ·) = ζ+ and m(0, ·) = a

}

,

X−∞(a) :=

{

m− ζ+ ∈ L2(−∞, 0;D(A)) ∩H1(−∞, 0;H) ∩ C((−∞, 0];M) :

m(−∞, ·) = ζ+ and m(0, ·) = a

}

,

X−T1,−T2
(a) :=

{

m ∈ L2(−T1,−T2;D(A)) ∩H1(−T1,−T2;H) ∩ C([−T1,−T2];M) :

m(T1, ·) = ζ+ and m(T2, ·) = a

}

.

ST (m) :=
1

4

∫ T

0

‖Φ(m(t))‖2
H

dt, S−T (m) :=
1

4

∫ 0

−T

‖Φ(m(t))‖2
H

dt,

S−∞(m) :=
1

4

∫ 0

−∞

‖Φ(m(t))‖2
H

dt, S−T1,−T2
(m) :=

1

4

∫ −T2

−T1

‖Φ(m(t))‖2
H

dt.

Proposition Appendix C.8. For a ∈ V ∩M, one has

V (a) = inf

{

ST (m) : T > 0,m ∈ XT (a)

}

,

Proof. For simplicity, we will only consider the case λ1 = λ2 = 1, it is not420

difficult to generalize to the case λ1 ∈ R and λ2 > 0.

By (3.51), if m is a weak solution of equation (C.4), then

m ∈ L2(0, T ;D(A)) ∩H1(0, T ;H) ∩ C([0, T ];M),

and

Φ(m) = m× h−m× (m× h) = m× h+ Πmh.
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So m ∈ XT (a) and |Φ(m)|2 = 2|Πmh|
2. By Proposition Appendix C.6, m is also

a solution of equation (C.4) with Πmh instead of h. Therefore

U(a) ≥ inf

{

ST (m) : T > 0,m ∈ XT (a)

}

.

On the other hand, if m ∈ XT (a), one can construct h as in the proof of

Proposition Appendix C.5, such that m is the solution of equation (C.4) and425

|Φ(m)|2 = 2|h|2. Hence

U(a) ≤ inf

{

ST (m) : T > 0,m ∈ XT (a)

}

.

The proof is complete.

By Proposition Appendix C.3, we also have the following result:

Proposition Appendix C.9. For a ∈ V ∩M, one has

V (a) = inf

{

S−T (m) : T > 0,m ∈ X−T (a)

}

,

Finally, we can show that430

Proposition Appendix C.10. For a ∈ V ∩M+, we have

U(a) = V (a).

We need following two Lemmata to prove Proposition Appendix C.10.

Lemma Appendix C.11. For all T > 0, ε > 0, there exists η > 0 such that for

all a ∈ V with ‖a−ζ+‖V < η, there exists m ∈ XT (a) and such that ST (m) < ε.

Proof. It can be seen that the map ST : L2(0, T ;D(A)) ∩H1(0, T ;H) −→ R is

continuous and Φ(ζ+) = 0 (by (C.8)). Moreover, as constructed in the proof of435

Proposition Appendix C.5, there exists a continuous map

R : V −→ L2(0, T ;D(A)) ∩H1(0, T ;H)

a 7−→ m

such that m(T ) = a, m(0) = ζ+ and R(ζ+) = ζ+. Hence the map ST ◦R : V −→

R is also continuous and (ST ◦R)(ζ+) = 0. Therefore the proof is complete.
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Lemma Appendix C.12. Assume that m ∈ X−∞(a) for some a ∈ V ∩ M.

Then for all ε > 0, there exists Tε > 0 and mε ∈ X−Tε
(a), such that

S−Tε
(mε) ≤ S−∞(m) + ε.

Proof. Let us fix ε > 0 and assume that S−∞(m) < ∞. Since m ∈ X−∞(a),

m ∈ C((−∞, 0]; V) and m(−∞) = ζ+. So

‖m(t) − ζ+‖V −→ 0, t→ −∞.

Hence for η > 0, there exists Tη > 0 such that

‖m(t) − ζ+‖V < η, t ≤ −Tη.

Therefore by Lemma Appendix C.11 (with T = 1, a = m(−Tη)), there exists

w ∈ X−Tη−1,−Tη
(m(−Tη)) such that

S−Tη−1,−Tη
(w) < ε.

Let

mε(t) =







w(t), t ∈ [−Tη − 1,−Tη];

m(t), t ∈ [−Tη, 0].

Then mε ∈ X−Tη−1 and

S−Tη−1(mε) = S−Tη−1,−Tη
(w) + S−Tη

(m)

= S−Tη−1,−Tη
(w) + (S−∞(m) −

1

4

∫ −Tη

−∞

‖Φ(m(t))‖2
H

dt) ≤ S−∞(m) + ε.

Let Tε = Tη + 1, then the proof is complete.440

Proof of Proposition Appendix C.10. We first prove that

V (a) = inf {S−∞(m) : m ∈ X−∞(a)} . (C.10)

For T > 0 and m ∈ X−T (a), we define

m̄(t) =







m(t), t ∈ [−T, 0];

ζ+, t ≤ −T.
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Then m̄ ∈ X−∞(a). ∆ζ+ = φ′(ζ+) = dζ+
dt = 0, so Φ(m) = Φ(m̄). Therefore

S−∞(m̄) = S−T (m). Hence by Proposition Appendix C.9, we have

V (a) ≥ inf {S−∞(m) : m ∈ X−∞(a)} .

On the other hand, we can assume inf {S−∞(m) : m ∈ X−∞(a)} <∞, so there

exists m ∈ X−∞(a) such that S−∞(m) < ∞. By Lemma Appendix C.12, one

has

inf {S−T (m) : m ∈ X−T (a)} ≤ S−∞(m) + ε, ε > 0.

Since ε is arbitrary, by Proposition Appendix C.9 again,

V (a) ≤ inf {S−∞(m) : m ∈ X−∞(a)} .

Hence (C.10) has been proved.

Then the rest part of the proof of Proposition Appendix C.10, i.e. prove

that

U(a) = inf {S−∞(m) : m ∈ X−∞(a)}

can be done by the same way as in the proof of Proposition Appendix C.8.
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[5] Z. Brzeźniak, B. Goldys and T. Jegaraj: Weak solutions of a stochas-

tic Landau-Lifshitz-Gilbert Equation, Applied Mathematics Re-

search eXpress, Volume 2013, Issue 1, 1 January 2013, Pages 1-33,

https://doi.org/10.1093/amrx/abs009460
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