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Abstract

We theoretically study decision-making behaviour in a model-based analysis related to binary choices with pulsed stimuli.

Assuming a strong coupling between external stimulus and its internal representation, we argue that the frequency of

external periodic stimuli represents an important degree of freedom in decision-making which may modulate behavioural

responses. We consider various different stimulus conditions, including varying overall magnitudes and magnitude ratios

as well as varying overall frequencies and frequency ratios, and different duty cycles of the pulsed stimuli. Decision time

distributions, mean decision times and choice probabilities are simulated and compared for two different models—a leaky

competing accumulator model and a diffusion-type model with multiplicative noise. Our results reveal an interplay between

the sensitivity of the model systems to both frequency and magnitude of the stimuli. In particular, we find that periodic

stimuli may shape the decision time distributions resulting from both models by resembling the frequencies of the pulsed

stimuli. We obtain significant frequency-sensitive effects on mean decision time and choice probability for a range of overall

frequencies and frequency ratios. Our simulation analysis makes testable predictions that frequencies comparable with

typical sensory processing and decision-making timescales may influence choice and response times in perceptual decisions.

A possible experimental implementation is proposed.

Keywords Binary decision-making · Behaviour · Computational modelling · Pulsed stimuli · Response times

Introduction

When the brain makes decisions, it accumulates evidence

to compute a decision variable that is evaluated against a

decision criterion (Gold and Shadlen 2007). This concept

has been tested and verified in binary decision-making tasks

in a variety of different settings: from perceptual decision-

making (Shadlen and Newsome 1996, 2001; Usher and

McClelland 2001; Ditterich et al. 2003; Bogacz et al. 2006;

Pirrone et al. 2018) to value-based decisions (Krajbich et

al. 2010, 2015; Basten etla. 2010; Hunt et al. 2012; Pirrone

et al. 2018), and choice behaviour when value and sensory

evidence are integrated together (Feng et al. 2009; Afacan-

Seref et al. 2018).

In perceptual decision-making, the computation of the

log-likelihood ratio between the probabilities of evidence
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(given two alternative hypotheses) to decide in favour of one

of the two available options is related to the optimal way to

trade-off between speed and accuracy, i.e. given a certain

required accuracy, the decision time is minimised (Bogacz

et al. 2006; Gold and Shadlen 2007). The sequential accu-

mulation of multiple pieces of evidence until a stop-and-

decide criterion is fulfilled can be realised by the sequential

probability ratio test (SPRT) (Wald and Wolfowitz 1948).

Making the transition from discrete to continuous time,

it has been shown that the drift-diffusion model (DDM)

(Ratcliff 1978; Ratcliff et al. 2016) resembles the SPRT,

where the decision variable in the DDM directly relates to

the sum of likelihood ratios computed consecutively over

discrete timesteps in the SPRT (Bogacz et al. 2006). Poten-

tial similarities between key factors in perceptual decisions

and value-based choices have been noted (e.g. see (Sugrue

et al. 2005; Gold and Shadlen 2007; Polanı́a et al. 2014;

Tajima et al. 2016; Pirrone et al. 2018)). In particular, it has

been shown that difference-based accumulation of evidence

is fundamental not only in perceptual but also in value-based

decisions (Basten et al. 2010, but see Pirrone et al. 2014).

Magnitude-sensitivity has emerged as a key feature

in perceptual decision-making (Pins and Bonnet 1996;

http://crossmark.crossref.org/dialog/?doi=10.1007/s42113-019-00031-4&domain=pdf
http://orcid.org/0000-0003-0014-4090
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Stafford and Gurney 2004; Palmer et al. 2005; Teodorescu

et al. 2016; Pirrone et al. 2018; Polanı́a et al. 2014; Ratcliff

et al. 2018; van Maanen et al. 2012) and in economic

choices (Hunt et al. 2012; Pirrone et al. 2014, 2018; Polanı́a

et al. 2014). This is characterised by decreasing decision

times for both increasing magnitude (value) differences and

increasing overall magnitudes (values) (Pins and Bonnet

1996; Stafford and Gurney 2004; Palmer et al. 2005; Hunt

et al. 2012; Teodorescu et al. 2016; Polanı́a et al. 2014;

Pirrone et al. 2014, 2018; Ratcliff et al. 2018; van Maanen

et al. 2012). Furthermore, this hallmark is also proposed to

be present in collective decision-making of social insects.

For example, sensitivity to the quality values of nest-sites in

the decision-making of house-hunting honeybees has been

found in mathematical analyses (Pais et al. 2013; Reina

et al. 2017; Reina et al. 2018) and has been discussed

theoretically (Pirrone et al. 2014; Bose et al. 2017).

When external stimuli enter the brain, they undergo a

transformation into corresponding internal representations

(Gold and Shadlen 2007). In recent brightness discrimina-

tion experiments and modelling studies, it has been shown

that assuming a strong coupling between external stimu-

lus and internal model dynamics could explain empirical

data (Teodorescu et al. 2016; Ratcliff et al. 2018). Both

studies focused on magnitude-sensitive effects where two

visual stimuli were sampled from Gaussian distributions

centred at a mean brightness (Teodorescu et al. 2016; Rat-

cliff et al. 2018). That is, the brightnesses of both stimuli

were allowed to vary randomly within a trial at a refresh

rate of 60 Hz. However, pulsed stimuli with well-defined

frequencies (i.e. clearly distinguishable low-magnitude and

high-magnitude phases) have not yet been studied in such a

scenario where external stimulus and internal variable may

be assumed to be strongly coupled. Given a strong direct

coupling of this type (see Eq. 2 below), we hypothesised

that the stimulus frequency, in addition to the stimulus mag-

nitude, could be another degree of freedom that influences

decision-making behaviour. To investigate this hypothesis

and to see what effects varying stimulus frequencies might

induce, we simulated a brightness discrimination experi-

ment similar to the ones previously studied by Teodorescu

et al. (2016) and Ratcliff et al. (2018), and analysed possible

behavioural responses employing sequential sampling mod-

els. We applied a DDM with multiplicative noise (denoted

mDDM in the following), where the input signal directly

enters the coefficient determining the noise strength (Brun-

ton et al. 2013; Teodorescu et al. 2016). Here, we included

multiplicative noise, as it has been shown that this modi-

fication of the canonical DDM gives a better account for

the magnitude-sensitive decision task we simulate in the

present paper (Teodorescu et al. 2016; Ratcliff et al. 2018).

We compared results obtained from the mDDM variant

with those from a leaky competing accumulator (LCA)

model (Usher and McClelland 2001), which has also been

shown to account for magnitude-sensitive data (Teodorescu

et al. 2016; Ratcliff et al. 2018), and, as a new aspect,

here, we analysed how both models perform under varia-

tion of overall frequency and frequency ratio of the two

stimuli presented periodically. In particular, our analysis

of the simulated behavioural data shows that, in addition

to sensitivity to the overall magnitude and the magnitude

ratio of the two stimuli, the computation of the decision

variable also exhibits sensitivity to the stimuli’s overall fre-

quency and frequency ratio. Our results demonstrate that,

under the assumption of a strong coupling between exter-

nal and internal stimulus, the LCA model and mDDM are

both magnitude-sensitive and frequency-sensitive, and qual-

itatively show largely similar behaviour. In particular, our

analysis indicates that the stimulus frequency may shape

the simulated decision time distribution by transferring the

periodicity of the input signal to the behavioural response.

Furthermore, we identify the numerical ranges where strong

frequency-sensitive effects are observed, given our particu-

lar model assumptions and propose a possible experimental

implementation to test our predictions.

Materials andMethods

In this study, we assumed that the decision-making process

is described by the temporal evolution of activity levels

of a decision variable governed by the LCA model and

the mDDM, respectively. In particular, we simulated the

evolution of the decision variable for both models until a

threshold, i.e. zLCA or zmDDM, was reached. If the threshold

criterion was not met within the maximum time tmax =

15 s, we excluded the result. However, indecision was

generally a rare event and in the majority of parameter

combinations, we achieved an exclusion rate which was far

below 1% or equal to zero. Only for low signal magnitudes,

we occasionally observed slightly higher exclusion rates

which however never exceeded 2%. In all simulations, we

used a Euler method with a timestep of dt = 0.001 in

the numerical integration, which gave a good compromise

between computation time and accuracy. In what follows,

we consider the employed stimulus conditions and both

models (mDDM and LCA) in more detail.

Input Signal and Stimulus Conditions We modelled the

input signals using periodic square wave functions Sj , j =

1, 2, which have the following form

Sj (t) = mj sj (2πfj t), j =1, 2

sj =

{
1, if n

fj
≤ t ≤

n+DCj

fj
0.2
mj

, otherwise
, n=0, 1, 2, 3, ... , (1)
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where t is the time and n is a positive integer used to

discriminate between high-magnitude and low-magnitude

intervals of the stimulus. Frequencies and magnitudes of the

two stimuli are denoted, fj and mj , respectively. The DCj

represent the duty cycles of the signals Sj and are further

explained below. Here, we assume that for both S1(t) and

S2(t), there is always a baseline signal present to provide

well-defined input signals (Teodorescu et al. 2016; Pirrone

et al. 2018).

The signal in Eq. 1 is purely deterministic. To account

for a more realistic stimulus, we add a small, normally

distributed random number to the signal, i.e. S̃j = Sj +

N (mean = 0, SD = 0.05) at each timestep. This stochastic

signal is then transformed into an internal representation of

the input, Ij (t), according to

Ij (t) = S̃
γ

j (t) , (2)

where γ is an exponent characterising the nonlinear rela-

tionship between S̃j and Ij . Again and for the same reasons

as discussed before for the stimulus signal Sj , we assume

a lower threshold for the transformed signal Ij , i.e. at each

point in time we use Ij ← max(0.1, Ij ). The transforma-

tion rule in Eq. 2 was considered previously by Teodorescu

et al. (2016) and was shown to provide reasonable fits to

data. The authors found values of γ for various models

roughly between 0.2 and 0.8 (Teodorescu et al. 2016). γ val-

ues in the LCA model employed in the study by Teodorescu

et al. (2016) had an average close to 0.3 and the mDDM

model studied there had a mean value near 0.7 (Teodorescu

et al. 2016). In our study, we used a fixed value of γ = 0.5,

which is well within the range observed by Teodorescu et al.

(2016) and should hence be appropriate for our modelling

purposes. Another reason for choosing the same γ for both

models is that the transformation rule in Eq. 2 does not

depend on the choice of the model to compute the decision

variable and may therefore be the same for both mDDM and

LCA model.

Besides altering magnitudes and frequencies of the input

signals, we also modified the duty cycle (DC) of the input

signals in Eq. 1, which, in our terms, quantifies the time the

signal is at its maximum value in relation to a reference time

unit. Specifically, we considered the case where the duty

cycles of both signals are 50%, i.e. DC1 = 0.5 = DC2. We

denote this stimulus condition SC1. In addition, we investi-

gate stimulus condition SC2, where DC2 = 0.5 and DC1 =

DC2 f1/f2, that is the duty cycle of signal 1 is proportional

to the ratio of the frequencies of both signals. Condition

SC2 is useful, as it allows to vary frequencies and duty

cycle simultaneously. In both stimulus conditions, pulse

widths are inversely proportional to the signal frequencies.

Duty cycles and pulse widths of both signals are equal if

f1 = f2. However, the difference between stimulus con-

ditions SC1 and SC2 is that in condition SC2, the pulse

width of S1 is smaller (bigger) than the pulse width of S2 if

f1 < f2 (f1 > f2). In condition SC1, the inverse applies, as

the duty cycle is kept constant at 50%. The different stimu-

lus conditions are summarised in Table 1 and illustrated in

the two upper panels in Fig. 1a and b, respectively.

Implementation of the mDDM Model The first model we

study is the mDDM, i.e. a diffusion-type model with

multiplicative noise (Brunton et al. 2013; Teodorescu et al.

2016), which is implemented according to

dx(t) = q (I1(t) − I2(t)) dt + Ŵ(I1, I2) dW(t) , (3)

where x represents the decision variable. I1 and I2 are the

transformed inputs introduced in Eq. 2, q is a transformation

rate, and dW is the increment of a Wiener process, which

is normally distributed, i.e. dW ∼ N (mean = 0, SD =

1). The Wiener process is included to model noise in the

decision-making process. Ŵ(I1, I2) is an input-dependent

coefficient of the noise term and has the form (Teodorescu

et al. 2016)

Ŵ(I1, I2) =

√
σ 2

mDDM + �
(
I 2

1 + I 2
2

)
, (4)

where σmDDM characterises a constant processing noise in

the decision variable x(t) and � quantifies the strength of

the multiplicative noise originating from the transformed

input signals.

Furthermore, we assume that the internal representation

of the drift term in Eq. 3, i.e. q (I1(t)−I2(t)), underlies trial-

to-trial variability. This means that we add a small, Gaussian

random number sampled from N (mean = 0, SD = 0.1) to

this term at the beginning of each trial. We also take into

account that the initial condition is not perfectly symmetric

by assuming a starting point variability (SPV) of 0.1 across

trials, and sample the starting value x(t = 0) from a uniform

distribution U(−SPV, SPV). The inclusion of across-trial

variability in drift rate and starting point values in diffusion

models have been shown to better explain behavioural

data (e.g. see Ratcliff and Rouder (1998) and Ratcliff and

Tuerlinckx (2002)).

Implementation of the LCA Model The second model we

apply in this paper is a mutual inhibition model, originally

introduced as the leaky competing accumulator model

Table 1 Overview of stimulus conditions

Stimulus condition Input I1(t) Input I2(t)

SC1 DC1 = 0.5 DC2 = 0.5

SC2 DC1 = f1/(2 f2) DC2 = 0.5

DC denotes the duty cycle of the signal and is given as a ratio. A duty

cycle of 50% (i.e. DC = 0.5), for example, means in our terms that a

signal is at its maximum 50% of the time
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Fig. 1 Simulations of the two different models (mDDM and LCA) for two different stimulus conditions (cf. Table 1). The models are integrated

until the threshold is reached. We used f1 = 6 Hz, f2 = 4 Hz, m1 = 3, m2 = 2 in the numerical integration

(Usher and McClelland 2001). In mathematical terms, this

is expressed as

dy1(t) = (−k y1(t) − β y2(t) + q I1(t)) dt

+σLCA dW1(t) ,

dy2(t) = (−k y2(t) − β y1(t) + q I2(t)) dt

+σLCA dW2(t) , (5)

where y1 and y2 describe the activity levels of the evidence-

integrating units, i.e. a decision variable comprised of two

elements. If either of the two integrators crosses a given

threshold, a decision is made. Again, q is the transfer rate

that scales original stimulus and internal representation of

that input, and I1 and I2 are the transformed input signals

according to Eq. 2. The activity level of each accumulator is

independently affected by fluctuations modelled by Wiener

processes with increments dW1 and dW2 and quantified by

σLCA, where we again have dWj ∼ N (mean = 0, SD = 1).

Information loss in the accumulators is characterised by

the leak rate k. Cross-inhibition is included by the terms

∝ β, where β denotes the inhibition strength. Models

featuring cross-inhibition have been studied frequently in

two alternative choice tasks both in nonlinear (Usher and

McClelland 2001; Brown and Holmes 2001; Brown et al.

2005; Wong and Wang 2006; Bogacz et al. 2007) and

linear versions (Bogacz et al. 2006; Marshall et al. 2015;

Teodorescu et al. 2016). Furthermore, it has been shown

previously that competitive models like the LCA account

better for magnitude-sensitive data compared with non-

competitive models (Teodorescu and Usher 2013). As in

the mDDM, in the LCA model in Eq. 5, we also take into

account starting point variability (SPV = 0.2) across trials

and sample initial conditions from uniform distributions, i.e.

yj (t = 0) ∼ U(0, SPV), j = 1, 2.

Model Parameters The following parameters are fixed

throughout the paper: k = 0.5, β = 0.25, q = 1, γ = 0.5,

� = 0.1, σLCA = 0.3, σmDDM = 0.1, zLCA = 1.2 and

|zmDDM| = 0.6. Frequencies f1,2 and magnitudes m1,2

are varied. For the following analysis, we introduce the

magnitude ratio as ρm = m1/m2, the overall magnitude as

ϒm = m1 + m2 and the magnitude difference as 
m =

|m1 −m2|. In the same way, we define the frequency ratio of

the two stimuli as ρf = f1/f2, the overall frequency as

ϒf = f1 + f2 and the frequency difference according to


f = |f1 − f2|. The relations between ρm (ρf ), ϒm (ϒf )

and 
m (
f ) are summarised in Table 2. In our theoretical

study, we were particularly interested in frequencies that

are well below the stimulus refresh rate used in the

related experiment (∼ 60 Hz in Teodorescu et al. 2016) to

Table 2 Overview of the relations between magnitude (frequency)

ratio, magnitude (frequency) difference and overall magnitude

(frequency)

Magnitude/frequency Expression

Of stimulus j : mj , fj

Overall value: ϒm = m1 + m2, ϒf = f1 + f2

Ratio: ρm =
m1
m2

, ρf =
f1

f2

Difference: 
m = |m1 − m2| = ϒm

∣∣∣ ρm−1
ρm+1

∣∣∣,

f = |f1 − f2| = ϒf

∣∣∣ ρf −1

ρf +1

∣∣∣
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discriminate effects of stimulus frequency from flickering

due to re-sampling of the external stimulus. Furthermore,

the frequencies used in our study (f1,2 ∼ 0.5 − 10 Hz),

correspond to timescales in the range of 100 ms − 2 s. This

interval includes the typical range for sensory processing

involved in cognitive tasks such as motion discrimination

and speech recognition (∼ 100 ms) (Mauk and Buonomano

2004; Kiebel et al. 2008) but also typical decision times

∼ 1 s obtained under laboratory conditions (e.g. see Ratcliff

et al. 2016, and references therein).

Results

Performance Under Stimuli with Constant
Magnitude

To get an overview of the performance of the mDDM and

the LCA model and to enable better comparability with

periodic stimuli, we first studied both models when the

stimulus magnitude is constant and not pulsed. In Fig. 2,

we show decision time distributions for varying overall

magnitudes with constant magnitude ratios (Fig. 2a–d) and

varying magnitude ratios with constant overall magnitudes

(Fig. 2e–h). A comparison of mDDM and LCA in Fig. 2

demonstrates that both models exhibit similar qualitative

behaviour. For increasing ϒm and constant ρm, the peak

of the decision time distribution moves towards smaller

decision times and the distribution becomes narrower

(Fig. 2a–d). In contrast, for increasing ρm and constant ϒm,

decision time distributions of both models do not show

such a significant effect (Fig. 2e–h). We also note that the

shape of the distribution for both models depends on the

parameter set chosen. In fact, parameters can be altered

such that the decision time distributions of both models

appear more similar. For example, it was shown that both

models the LCA and the mDDM could be used to fit the

same set of magnitude-sensitive data (Teodorescu et al.

2016). This, however, meant that γ values obtained from

the fitting were different for mDDM and LCA (Teodorescu

et al. 2016). Here, we applied a different approach by

using the same γ value for LCA and mDDM, following

our assumption that signal pre-processing is the same for

both models. Other important model parameters are the

multiplicative noise strength, �, in the mDDM and the

cross-inhibition strength, β, in the LCA. Those parameters

have fixed values in our study but we would expect some

changes in the decision time distribution when modifying

the values of these parameters, such as a shift of the peak

and a variation of the distribution width. Furthermore, in

case of � = 0, the mDDM would reduce to a model

similar to the standard DDM which could not fit related

Fig. 2 Decision time distribution for continuous constant stimuli,

keeping either ρm = 4/3 = const. a–d or ϒm = 4 = const. e–

f. a: ϒm = 1 (m1 ≈ 0.57, m2 ≈ 0.43); b: ϒm = 2 (m1 ≈ 1.14,

m2 ≈ 0.86); c: ϒm = 3 (m1 ≈ 1.71, m2 ≈ 1.29); d: ϒm = 4 (m1 ≈

2.29, m2 ≈ 1.71); e: ρm = 1 (m1 ≈ 2.0, m2 ≈ 2.0); f: ρm = 6/5

(m1 ≈ 2.18, m2 ≈ 1.82); g: ρm = 4/3 (m1 ≈ 2.29, m2 ≈ 1.71);

h: ρm = 3/2 (m1 ≈ 2.4, m2 ≈ 1.6). Each distribution is based on

the simulation of 105 trials of the LCA model (5) and the mDDM

(Eqs. 3 and 4). Distributions shown are normalised histograms, where

the coloured area under the curve equals 1. The bin-width is narrow

(0.025 =̂ 200 bins for the decision time interval shown). The curve

superposing the histogram goes through the centers of the bins and is

interpolated in between
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magnitude-sensitive empirical data (Teodorescu et al. 2016;

Ratcliff et al. 2018). Considering the LCA, in case of

β = 0, both accumulators would not interact in which case

the model would approximate an uncoupled race model.

In empirical studies, nonzero lateral inhibition has been

found to be a crucial model component to account for

magnitude-sensitive effects (Teodorescu et al. 2016).

In Fig. 3, we depict mean decision times, 〈DT〉, and the

probabilities of choosing option 1, Pr(opt1), that correspond

to the distributions in Fig. 2. This further underlines the

sensitivity of the LCA and mDDM to varying overall

magnitudes and varying magnitude ratios. In particular, we

can see that 〈DT〉 decreases for both increasing overall

magnitudes (Fig. 3a) as well as increasing magnitude ratios

Fig. 3b, although the effect of the latter is not as strong

as that of the former, which is in agreement with Fig. 2.

However, if we inspect the behaviour of Pr(opt1), we

recognise that Pr(opt1) increases with increasing ϒm for

the LCA model, whereas Pr(opt1) decreases with increasing

ϒm for the mDDM (Fig. 3a). The behaviour observed for

the mDDM is a consequence of the multiplicative noise,

which may cause the decision variable meet the decision

threshold faster while at the same time the increase of noise

also reduces accuracy. This qualitatively different behaviour

of LCA and mDDM is not present in Fig. 3b, where Pr(opt1)

increases with increasing ρm for both models. Furthermore,

correctly, we find that for ρm = 1, i.e. in case of two stimuli

with equal magnitudes, option 1 is chosen in 50% of all

trials (Fig. 3b).

We point out that increasing ϒm and keeping ρm constant

as well as increasing ρm and keeping ϒm constant increase

the magnitude difference 
m (see Table 2). Therefore, our

results are in qualitative agreement with findings reported

by Hunt et al. (2012), Polanı́a et al. (2014), Pais et al.

(2013), Reina et al. (2018), Ratcliff et al. (2018), Pirrone et

al. (2014, 2018) and van Maanen et al. (2012). A negative

correlation between input magnitude and decision time

is reminiscent of Piéron’s law according to which higher

stimulus magnitudes lead to faster decisions (e.g. see Pins

and Bonnet 1996; Stafford and Gurney 2004; van Maanen

et al. 2012; Reina et al. 2018).

After having established that the two models under

consideration (LCA and mDDM) both show magnitude-

sensitivity for the parameter sets employed here, in the next

section, we present our detailed results on the sensitivity

to the frequency of input signals (in conjunction with

magnitude-sensitivity) the LCA and mDDM exhibit.

Performance Under Periodic Signal Stimuli

Mean Decision Time and Choice Probability for Pulsed

Stimulus Condition SC1

Periodic signals were applied under the two stimuli

conditions SC1 and SC2, which are summarised in Table 1.

In Fig. 4a, we show mean decision times 〈DT〉 and

probabilities of choosing option 1, Pr(opt1), depending on

both varying magnitude ratios and varying frequency ratios

for SC1 when ϒf and ϒm are kept constant. In condition

SC1, both stimuli are in high-magnitude mode for 50% of

the time and the stimulus frequency determines the pulse

width and the width between two high-magnitude pulses

(see Fig. 1a).

The performance of the LCA model is illustrated in the

left column in Fig. 4a. If the frequency ratio is fixed whilst

the magnitude ratio varies, we see that 〈DT〉 has maxima

around ρm ≈ 1 (Fig. 4a, top-left). For larger as well as

smaller ρm, the mean decision time decreases. The reason

for this behaviour is that evidence accumulation takes longer

if the stimuli are equal, or almost equal, compared with

the case when stimuli may be easily discriminated. This

is further underlined by the plot of Pr(opt1) for the LCA

in the bottom-left panel in Fig. 4a. For magnitude ratios

ρm ≈ 1, we find that Pr(opt1) ≈ 0.5, i.e. option 1

and option 2 are both chosen in 50% of all trials. How-

ever, if instead we look at the effect of changing frequency

ratios when the magnitude ratio is fixed, we observe that

〈DT〉 (Fig. 4a, top-left) and Pr(opt1) (Fig. 4a, bottom-left)

Fig. 3 Mean decision time and

probability of choosing option 1

depending on the overall

magnitude (a) and depending on

the magnitude ratio (b). Results

shown relate to the distributions

in Fig. 2. LCA model (5) and

mDDM (Eqs. 3 and 4) are

compared, based on the

simulation of 105 trials for each

model and condition
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Fig. 4 Mean decision time and probability of choosing option 1

depending on magnitude ratios, frequency ratios, total magnitudes and

total frequencies under stimulus conditions SC1 and SC2 (see Table 1).

LCA model (5) and mDDM (Eqs. 3 and 4) are compared, based on the

simulation of 2000 trials for each model and data point. Colour bars for

Pr(opt1) are normalised such that 0 ≤ Pr(opt1) ≤ 1 for both models

and all conditions. Decision time plots are not normalised to improve

qualitative comparison between both models. 〈DT〉 is given in seconds

show less variation. Nevertheless, we find a significant

frequency ratio-dependent effect which is more clearly

demonstrated in Figs. 5a and 6a. Here, we plotted 〈DT〉

and Pr(opt1) for selected magnitude ratios and a smaller

range of frequency ratios. The behaviour of both quantities

is symmetric around ρf = 1 because of the fixed overall

frequency ϒf . This means that 〈DT〉 in Fig. 5a increases

(decreases) monotonously if ρf < 1 (ρf > 1), whereas

Pr(opt1) in Fig. 6a shows the inverse behaviour. Addition-

ally, we note that the two curves labelled ρm = 1/3 and

ρm = 3 in Figs. 5a and 6a, respectively, represent equiv-

alent cases (but with opposing response probabilities) for

constant ϒm and ϒf . Furthermore, the simultaneous occur-

rence of an increase of 〈DT〉 and a decrease of Pr(opt1)

indicate that a decrease of performance when alternatives

are presented more often but with shorter pulse widths (i.e.

less continuous) while maintaining identical duty cycles.

If we look at the corresponding results for the mDDM

in the right column in Fig. 4a, and Figs. 5d and 6d, we

see that the mDDM behaves similarly compared with the

results regarding the behaviour of the LCA model. Because

of this qualitative agreement, the same analysis applies to

the mDDM results.

To study the effect of varying overall frequencies and

magnitudes, ϒf and ϒm, under condition SC1 when

magnitude and frequency ratios remain constant, we refer

to Fig. 4b. Again, the results shown for LCA (Fig. 4b, left

column) and those relating to the mDDM (Fig. 4b, right

column) are qualitatively very similar. For fixed overall

frequencies in the range shown, an increase of ϒm leads to
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Fig. 5 Mean decision time depending on frequency ratio and overall

frequency under stimulus condition SC1 (see Table 1). The behaviour

for different values of overall magnitudes and magnitude ratios is

compared. a, d: ϒm and ϒf are fixed; b–c and e–f: ρm and ρf are

fixed. LCA model (a–c, Eq. 5) and mDDM (d–f, Eqs. 3 and 4) are

compared, based on the simulation of 2000 trials for each model and

data point

a decrease of 〈DT〉 which is an effect of the multiplicative

noise. Although less pronounced compared with the effect

of changing ϒm, a variation of ϒf when fixing the overall

magnitude shows a frequency-sensitive effect, which is

emphasised for LCA and mDDM in Fig. 5c, f. For both

models, we see that an increase of the overall frequency ϒf

causes an increase of the mean decision time. This effect is

stronger for smaller ϒf and becomes less pronounced for

larger ϒf . Quantitatively, we observe that the change of the

slope characterising the increase of 〈DT〉 with increasing

ϒf occurs at ϒf ≈ 2 Hz (LCA, Fig. 5c) and ϒf ≈ 5 Hz

(mDDM, Fig. 5f), respectively. We assume, however, that

these values most likely depend on the parameter set chosen.

The increase of 〈DT〉 further underpins our hypothesis that

having options presented more discontinuously (i.e. more

pulses with shorter pulse widths) whilst duty cycles are

maintained increases decision times, and therefore lowers

the decision-making performance.

In addition, Pr(opt1) shows only little variation for vary-

ing ϒf and fixed ϒm, as can been in Fig. 4b for the whole

range of absolute magnitudes used in our study, and in

Fig. 6c, f for selected ϒm. Here, Pr(opt1) seems to remain

almost constant under the variation of ϒf except for some

fluctuations due to the presence of noise. However, we can

also see that Pr(opt1) ≥ 0.52 for LCA (Fig. 4b, bottom-

left) and Pr(opt1) ≥ 0.54 for mDDM (Fig. 4b, bottom-right)

for all values of the overall magnitude and the overall

frequency, which results from option 1 being the higher-

magnitude option (ρm = 4/3 > 1). We also point out

that the magnitude-sensitive results for periodic stimuli are

in agreement with the magnitude-sensitive results obtained

for constant stimuli discussed in the “Performance Under

Stimuli with Constant Magnitude” section (see Fig. 3 for

comparison). Considering equal alternatives (ρm = 1, ρf =

1), we can see that results are similar to the unequal alter-

natives case, as shown in Figs. 5b, e and 6b, e. However, as

expected, we find that Pr(opt1) varies only slightly around

0.5 (Fig. 6b, e).

A comparison of LCA and mDDM for different sim-

ulated frequency and magnitude conditions under SC1 is

also presented in the quantile-probability plots in Fig. 7a, c.

Again, we see that qualitatively LCA and mDDM show sim-

ilar behaviour. In particular, for both models, there seems

to be little variation of the decision times with response

proportions under SC1. A similar behaviour in quantile-

probability plots has been observed by Ratcliff et al. (2018).
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Fig. 6 Probability of choosing option 1 depending on frequency ratio

and overall frequency under stimulus condition SC1 (see Table 1). The

behaviour for different values of overall magnitudes and magnitude

ratios is compared. a, d: ϒm and ϒf are fixed; b–c and e–f: ρm and ρf

are fixed. LCA model (a–c, Eq. 5) and mDDM (d–f, Eqs. 3 and 4) are

compared, based on the simulation of 2000 trials for each model and

data point

Mean Decision Time and Choice Probability for Pulsed

Stimulus Condition SC2

The behaviour of 〈DT〉 and Pr(opt1) relating to stimulus

condition SC2 is shown in Fig. 4c, d. Recall that under this

condition, the duty cycle of signal 1 is proportional to the

frequency ratio ρf = f1/f2, whereas the duty cycle of

signal 2 is held constant at 0.5 (see Table 1). In Fig. 4c,

where overall magnitudes and frequencies remain unaltered,

we see once more that the LCA model and mDDM behave

similarly. Therefore, we discuss them simultaneously. The

simulation of both models demonstrates that there is

a nonlinear relationship between magnitude ratios and

frequency ratios along which Pr(opt1) ≈ 0.5, i.e. both

alternatives are chosen equally often (Fig. 4c, bottom-left

and bottom-right). In terms of evidence accumulation, this

in turn indicates that there may be an equivalence between

varying frequencies and magnitudes of two options such

that it is hard to discriminate between them when they

are presented under stimulus condition SC2. In addition,

by inspecting the 〈DT〉-plots together with the Pr(opt1)-

plots (left column in Fig. 4c for LCA and right column

in Fig. 4c for mDDM), we can see that close to the area

where Pr(opt1) ≈ 0.5 the mean decision time increases, as

it becomes harder to distinguish both stimuli.

To better illustrate the behaviour of 〈DT〉 and Pr(opt1)

for varying frequency ratios, we depict both quantities for

selected ρm in Figs. 8a, c, and 9a, c, respectively. Comparing

the curves characterised by different ρm, we observe that an

increase of ρm leads to an increase of 〈DT〉 for ρf < 1, and

to a decrease of 〈DT〉 for ρf > 1, i.e. the order of the curves

for different ρm is inverted at ρf ≈ 1. Under SC2, ρf = 1

is the frequency ratio where the duty cycles of both input

signals are equal. All other frequency ratios lead to unequal

duty cycles, which explain the observed behaviour. A larger

ρf , and hence a larger duty cycle, is tantamount to increased

evidence, as is a larger magnitude ratio. Therefore, the

distinct behaviour observed below and above ρf ≈ 1 results

from the joint effect of varying frequency and magnitude

ratios on the evidence integrated. Inspecting the shape of

〈DT〉 depending on ρf , we see that the mean decision time

has a maximum which is shifted towards smaller ρf when

ρm is increased. This effect applies to both models, LCA

(see Fig. 8a) and mDDM (see Fig. 8c), although the mDDM

displays the maximum more clearly, which is probably

due to the specific parameter sets chosen for each model.
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Fig. 7 Plot of decision time

quantiles versus response

proportions for varying

frequency and magnitude

conditions, and different

stimulus conditions (SC1 and

SC2). LCA and mDDM

(encoded by grayscale and

linestyle) are compared based

on four different conditions

(encoded by symbol) as

indicated in the

model/conditions key (see top of

plot). For each condition,

response proportions are plotted

along the horizontal axis and

decision time quantiles (0.1, 0.3,

0.5, 0.7, 0.9) for both responses

in favour of option 1 and option

2 are plotted vertically. Choices

in favour of option 1 are shown

with response proportions

greater than 0.5. Both models

(LCA and mDDM) show similar

qualitative behaviour in each

stimulus condition. Varying the

stimulus condition changes the

shape of the decision time

quantiles plotted along response

proportions. An increase of the

overall magnitude leads to a

decrease of decision time

Furthermore, increasing either ρf or ρm, or both, increases

Pr(opt1) (see Figs. 4c and 9a, c), as increasing either of the

two ratios increases evidence for option 1 under SC2.

Mean decision time plots and corresponding choice

probabilities depending on ϒf are illustrated for constant

ρm = 4/3 and constant ρf = 3/2 in Figs. 4d, 8b, d and

9b, d. Comparing the behaviour of 〈DT〉 in Figs. 4d and 8b,

d with the equivalent plots obtained under condition SC1

(Figs. 4b and 5c, f), it becomes obvious that both models,

LCA and mDDM, show the same qualitative behaviour

under SC1 and SC2, that is 〈DT〉 increases with increasing

ϒf . Quantitatively, however, we find smaller values for

〈DT〉 if the pulsed stimuli are presented under SC2. This

effect can be attributed to the direct proportionality between

DC1 and ρf in SC2. This proportionality is not present

in SC1. If we compare the behaviour of Pr(opt1) obtained

under SC2 (Figs. 4d and 9b, d) with the results for condition

SC1 (Fisg. 4b and 6c, f), it becomes obvious that under

SC2, Pr(opt1) increases for smaller ϒf and seems to

saturate for larger ϒf . This increase of Pr(opt1) for small

ϒf is not present when the models are simulated under

SC1. We also note that assuming ρf = 1 = ρm makes

conditions SC1 and SC2 equivalent. Therefore, all results

discussed for Figs. 5b, e and 6b, e also apply to stimulus

condition SC2.

An overview of how decision time quantiles computed

under SC2 compare with those simulated under SC1 for

various conditions can be obtained by a comparison of

Fig. 7a, c with b, d. Response proportions corresponding

to different conditions become more separated along the

horizontal axis under SC2 and whereas the decision time

quantiles remained almost constant across conditions under

SC1 (Fig. 7a, c), we can notice increasing decision times if

response proportions move towards 0.5 under SC2 (Fig. 7b,

d).

Decision Time Distributions Under Periodic Stimuli

Decision time distributions which relate to condition SC1

are shown in Fig. 10 for varying ρf , ρm, ϒf and ϒm.

To create the distribution plots, we divided the simulated

data into bins and then connected the bin centres with

an interpolated function. Strikingly, we observe that the

frequency of the stimuli clearly shapes the decision time

distribution functions obtained from both LCA model and

mDDM. In Fig. 10a, c, i, k, we have f1 = f2 (ρf = 1) and
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Fig. 8 Mean decision time

depending on frequency ratio

and overall frequency under

stimulus condition SC2 (see

Table 1). The behaviour for

different values of overall

magnitudes and magnitude

ratios is compared. a, c: ϒm and

ϒf are fixed; b, d: ρm and ρf

are fixed. LCA model (a, b;

Eq. 5) and mDDM (c, d; Eqs. 3

and 4) are compared, based on

the simulation of 2000 trials for

each model and data point

m1 = m2 (ρm = 1). In these plots, it can most clearly be

seen that the signal frequency is reproduced in the response

times. Specifically, the frequencies used are f1 = f2 =

2 Hz (Fig. 10a, i) and f1 = f2 = 4 Hz (Fig. 10c, k) The

corresponding decision time distributions show exactly 2

peaks (Fig. 10a, i) or 4 peaks (Fig. 10c, k), respectively, per

second.

In case of ρf = 3/2, we see another direct effect on the

modulation of the distribution function. For example, the

simulation of the mDDM in Fig. 10l yields an additional

frequency pattern, which recurs every 0.625 s. This is

exactly equal to 1/|f1 − f2| = 1/1.6 s, i.e. given by the

difference of the frequency between both stimuli. Similarly,

we can also identify the signal frequency 9.6 Hz in the

decision time distribution plots for mDDM and LCA in

Fig. 10l, which is equal to 2 f1. These effects are most likely

due to the nonlinearity of the decision time distribution as a

function of the periodic inputs, I1(t) and I2(t), which may

lead to a modulation of the original inputs such that the

modified inputs may also contain sum and difference of the

original frequency. In case of the mDDM, the multiplicative

noise term in Eq. 4 may also contribute to the modulation

of the original inputs. Furthermore, increasing the overall

magnitude leads to an effect equivalent to our observation in

the constant, nonperiodic stimuli (cf. Fig. 2a–d). Higher ϒm

make the shape of the decision time distribution narrower

and shift it to lower decision times.

Equivalent decision time distributions that relate to

condition SC2 are shown in Fig. 11. Generally, we can make

similar observations compared with stimulus condition SC1

depicted in Fig. 10. Employing SC2, the periodic pattern

in the distribution also derives from the periodicity in the

pulsed stimuli for all combinations of ρf , ρm, ϒf and ϒm

plotted in Fig. 11. In particular, all plots with ρf = 1 in

Fig. 11 are identical to those with ρf = 1 in Fig. 10. This

was expected, as stimulus conditions SC1 and SC2 coincide

for frequency ratios ρf = 1. However, as the duty cycle

of signal 1 increases with ρf in SC2, we can also see that

for ρf = 3/2 decision time distributions derived under

SC2 in Fig. 11 are a bit narrower and shifted towards lower

decision times compared with the equivalent distributions

obtained for ρf = 3/2 under condition SC1 in Fig. 10. This

results from the duty cycle of signal 1 being proportional to

ρf = f1/f2 in condition SC2.
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Fig. 9 Probability of choosing

option 1 depending on frequency

ratio and overall frequency

under stimulus condition SC2

(see Table 1). The behaviour for

different values of overall

magnitudes and magnitude

ratios is compared. a, c: ϒm and

ϒf are fixed; b, d: ρm and ρf

are fixed. LCA model (a, b;

Eq. 5) and mDDM (c, d; Eqs. 3

and 4) are compared, based on

the simulation of 2000 trials for

each model and data point

Requirements to Observe Periodicities in Decision
Time Distributions Due to Periodic Stimuli

Analysis of Decision Time Distributions

An important requirement to observe periodicity in decision

time distributions concerns the choice of the bin width,

which should be small enough to detect the periodic pattern.

This is equivalent to the reconstruction of periodic signals

known from signal processing theory: the highest frequency

(Nyquist frequency) that can be detected in a periodic signal

is half the sampling rate. In our terms, we therefore require

sufficiently small bin-widths wb, such that 1/wb ≥ 2 fsignal,

to find the decision time distributions corresponding to the

periodic stimuli occurring with fsignal. This is demonstrated

in Fig. 12. If bin-widths are too large, we detect the wrong

frequency (Fig. 12a). When choosing 1/wb = fsignal

exactly, then no frequency can be detected at all, as shown

in Fig. 12b. This is a strong indication that the frequency of

the periodic stimulus directly translates into the periodicity

of the decision time distribution. We depict in Fig. 12c that

only if the bin-width is chosen sufficiently small, the correct

distribution may be reconstructed.

Possibility of Loss of Periodic Information of External

Stimulus

Our theoretical study makes the prediction that periodic

decision time distributions could possibly be observed in

real decision-makers. However, it may also be possible

that stimulus oscillations are smoothed when they are

transduced into evidence that is accumulated. It might as

well be the case that the periodic oscillations of the stimuli

are partly smoothed and partly transduced. The latter is the

more general scenario and to include it in the models used

in this paper we can replace S̃ in Eq. 2 with

S̃j (t) = κ Sj (t) + (1 − κ) 〈Sj (t)〉 + ǫ(t) , (6)

where κ is a smoothing factor, ǫ(t) is a normally distributed

variable sampled from N (mean = 0, SD = 0.05) at each

timestep, S(t) is the stimulus signal introduced in Eq. 1 and

〈Sj (t)〉 = 1/Tj

∫ Tj

0 Sj (t) dt , where Tj denotes the period

of stimulus signal j , is the averaged input, which can be

expressed as

〈Sj (t)〉 = mj DCj + 0.2 (1 − DCj ) , (7)
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Fig. 10 Decision time distribution (probability density) for periodic
stimulus condition SC1 (see Table 1), depending on ρm, ρf , ϒm

and ϒf (see Table 2). LCA model (5) and mDDM (Eqs. 3 and 4)

are compared, based on the simulation of 105 trials for each model
and condition. Distributions shown are normalised histograms, where

the coloured area under the curve equals 1. The bin-width is narrow

(0.025 =̂ 200 bins for the decision time interval shown). The curve

superposing the histogram goes through the centers of the bins and is

interpolated in between

where, as before, DCj is the duty cycle of stimulus j and

mj is its magnitude.

The introduction of the smoothing factor κ allows

describing the transition between complete transduction of

the external stimulus oscillations into the internal input sig-

nal (κ = 1) and smoothing of the input signal oscillations

(κ = 0), in which case the periodicity of the external stimu-

lus would be lost. For 0 < κ < 1, we have a superposition

of the effects of smoothing and transducing the oscillations

of the external stimulus into its internal representation.

The effect of varying κ on the shape of the decision time

distribution is shown in Fig. 13. We can see that for κ =

0 (Fig. 13a), the signal is smoothed and that there is no

periodicity observable in the decision time distribution.

Increasing κ introduces periodic patterns in the decision

time distribution (Fig. 13b–h). Furthermore, it seems to

be the case that, at least for the parameter configuration

studied here, rather small values of κ (e.g. see Fig. 13c,

d) are sufficient to induce periodic patterns in the decision

time distribution. How this may generalise to other param-

eter configurations, however, needs further investigation.

Proposal of an Experimental Design

As our study was motivated by brightness discrimination

tasks previously investigated by Teodorescu et al. (2016),
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Fig. 11 Decision time distribution (probability density) for periodic
stimulus condition SC2 (see Table 1), depending on ρm, ρf , ϒm

and ϒf (see Table 2). LCA model (5) and mDDM (Eqs. 3 and 4)

are compared, based on the simulation of 105 trials for each model
and condition. Distributions shown are normalised histograms, where

the coloured area under the curve equals 1. The bin-width is narrow

(0.025 =̂ 200 bins for the decision time interval shown). The curve

superposing the histogram goes through the centers of the bins and is

interpolated in between

Pirrone et al. (2018) and Ratcliff et al. (2018), we believe

that a similar experimental approach would be suitable to

test our predictions. In particular, we emphasise that the

presence of a strong coupling between external stimulus and

its internal representation (cf. Eq. 2) is a crucial assumption

in our modelling study and that empirical support for this

assumption was provided by Teodorescu et al. (2016) and

Ratcliff et al. (2018). For a detailed description of previous

implementations of this brightness discrimination task, we

refer to the articles by Teodorescu et al. (2016) and Ratcliff

et al. (2018); see also Pirrone et al. (2018) who implemented

a task similar to the one studied by Teodorescu et al. (2016).

In what follows, we adopt and summarise the key fea-

tures of the aforementioned brightness discrimination task,

including our assumption to present external stimuli peri-

odically with a well-defined frequency. The task comprises

the presentation of two homogeneous grey patches on a

black background (round patches with a diameter of 1.2 cm

and centre-to-centre distance of 6.2 cm in Teodorescu et al.

(2016) and Pirrone et al. (2018), and square patches pre-

sented at a standard viewing distance of 53 cm, each patch

being 3.24 degrees tall by 3.24 degrees wide with the two

arrays covering 8.64 degrees from edge to edge in Rat-

cliff et al. 2018). On each trial, the grey patches were
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Fig. 12 Decision time distribution (probability density) depending on

the bin-width (or number of bins, respectively) for magnitude ratio

ρm = 1 and frequency ratio ρf = 1, i.e. this figure applies to both

stimulus conditions SC1 and SC2 (see Table 1). The same distribution

is shown in Fig. 10k in Fig. 11k for distributing the data over 200 bins

(i.e. 40bins/s). The magnitudes are m1 = m2 = 2 and the frequencies

take values f1 = f2 = 4 Hz. LCA model (5) and mDDM (Eqs. 3 and

4) are compared, based on the simulation of 105 trials for each model.

Distributions shown are normalised histograms, where the coloured

area under the curve equals 1. The curve superposing the histogram

goes through the centers of the bins and is interpolated in between

fluctuating over time and individual patch grey-levels were

re-sampled from a normal distribution on each monitor

frame at a refresh rate of 60 Hz. The magnitude mean val-

ues of the corresponding distributions varied across trials

but where constant within a trial. Whereas Teodorescu et al.

(2016) and Ratcliff et al. (2018) studied various conditions

where the mean values of the normal distributions used

for brightness magnitude sampling were different for each

stimulus, Pirrone et al. (2018) also looked at several equal

alternative cases with equal mean values of the underlying

distributions. In our theoretical study, we observed fre-

quency effects in the decision time distribution in both cases

when external stimuli were presented periodically. Hence,

we think that both equal and unequal alternatives could

potentially be used to detect periodic patterns in the deci-

sion time distribution in empirical studies using periodically

pulsed stimuli. For an experimental implementation, the

choice of the brightness levels could be adopted from pre-

vious studies (Teodorescu et al. 2016; Pirrone et al. 2018;

Ratcliff et al. 2018).

Fig. 13 Effect of smoothing factor κ on the periodicity of decision

time distributions. A value of κ = 0 means that all periodicity is lost,

values in the range 0 < κ < 1 corresponds to a superposition of trans-

ducing oscillations of the external input signal and smoothing, and

κ = 1 represents the case when the periodicity of the external stimu-

lus is fully transduced into its internal representation. A small nonzero

value of κ should be sufficient to yield periodic patterns in the decision

time distribution following the presentation of periodic stimuli as dis-

cussed in the text. The chosen overall magnitudes and frequencies and

their respective ratios are: ϒm = 4, ϒf = 8, ρm = 1 = ρf . Distribu-

tions shown are normalised histograms, where the coloured area under

the curve equals 1. The bin-width is narrow (0.025 =̂ 200 bins for the

decision time interval shown). The curve superposing the histogram

goes through the centers of the bins and is interpolated in between
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Regarding the choice of the frequency, we propose to

use a suitable window for which it could be possible to

observe periodicities in decision time distribution due to

the periodic presentation of external stimuli. That is, the

stimulus frequency should neither be chosen too large,

as evidence integration may not be able to recognise the

frequency pattern, nor too small, as threshold conditions

may be met already before the brightness magnitude could

fluctuate for a sufficient number of times to be transduced

into the internal decision variable. Therefore, we propose

that a suitable frequency interval to test our prediction

should be in the range of 0.5 − 10 Hz, which we also used

in the present paper. This frequency window corresponds to

timescales in the range of 100 ms − 2 s, which covers the

typical range for sensory processing involved in cognitive

tasks (∼ 100 ms) (Mauk and Buonomano 2004; Kiebel

et al. 2008) but also typical decision times ∼ 1 s obtained

under laboratory conditions (e.g. see Ratcliff et al. 2016, and

references therein). In addition, this frequency range is well

separated from stimulus refresh rate of 60 Hz, which was

used in empirical studies (Teodorescu et al. 2016; Pirrone

et al. 2018; Ratcliff et al. 2018). This separation will allow

to clearly discriminate frequency effects discussed in this

paper from those that may arise from stimulus re-sampling.

For example, stimulus presentation in the time domain could

follow the temporal profiles shown in Fig. 1, i.e. employing

external stimuli with clearly recognisable deterministic

oscillations and random fluctuations added that have higher

frequency and significantly smaller magnitudes.

Based on our results discussed in the previous section,

an experimental realisation should also aim at yielding a

smoothing factor of κ > 0 in order to observe periodic

patterns in decision time distributions that result from

external periodic stimuli. A variation of the duty cycle might

help to achieve this. In other areas of neuroscience such as

the optogenetic investigation of neural circuits, for example,

the duty cycle of a stimulus has been identified as a relevant

parameter which may be varied to optimise stimulation (Tye

and Deisseroth 2012).

Discussion

Effects of VaryingMagnitude and Frequency
Conditions

Assuming a strong coupling between external stimulus

input and internal stimulus representation (see Eq. 2), we

have simulated and compared two decision-making models,

LCA and mDDM, under periodically oscillating stimuli.

Variants of both models are widely used to explain the

computation of a decision variable in the brain which

reflects choice behaviour in two alternative task settings

(e.g. see Shadlen and Newsome (1996, 2001), Usher

and McClelland (2001), Ditterich et al. (2003), Bogacz

et al. (2006) and Teodorescu et al. (2016) for perceptual

decisions, Krajbich et al. (2010, 2015), Basten et al. (2010)

and Hunt et al. (2012) for value-based decisions, and

Feng et al. (2009) and Afacan-Seref et al. (2018) where

perceptual decisions are based on the integration of rewards

associated with options presented). Although the stimulus

implementation in our model-based analysis is primarily

based on experimental and theoretical studies of perceptual

decision-making (Teodorescu et al. 2016; Pirrone et al.

2018; Ratcliff et al. 2018), fluctuating stimuli have also been

studied in other areas, such as collective behaviour of social

insects (Franks et al. 2015; Hübner and Czaczkes 2017).

Implementing the external stimulus as a periodic function

with alternating low and high amplitudes, we have shown

in our simulation analysis how the periodicity of a stimulus

may be transduced to the dynamic evolution of the decision

variable and the decision time distribution, which suggests

that periodic stimuli may be used to modulate and shape

behaviour.

The choice of the external stimuli and models applied

in our simulations is motivated by previous model fit-

ting analyses of experimental studies (Teodorescu et al.

2016; Ratcliff et al. 2018). In these studies, the bright-

ness stimuli varied from frame to frame within each trial

so that the resulting stimuli flickered (Teodorescu et al.

2016; Ratcliff et al. 2018). A corresponding model fit-

ting analysis showed that whereas mDDM and LCA fit

the data equally well in Teodorescu et al. (2016), Rat-

cliff et al. (2018) found in their study that mDDM fits

explained the data better than LCA model fits. In the latter

study, another DDM variant, which assumes that across-trial

variability in drift rate scales with stimulus strength, per-

formed equally well compared with the mDDM (Ratcliff

et al. 2018). In both studies, fits of the standard DDM to

the data were poor (Teodorescu et al. 2016; Ratcliff et al.

2018). Thus, we reasoned that the standard DDM is not

suitable for our model analysis, and that the mDDM and a

DDM where across-trial variability in drift rate varies with

input magnitude would produce very similar behaviour. The

comparison between mDDM and LCA, however, seemed

interesting to us as in a previous study, both models per-

formed equally well (Teodorescu et al. 2016) whereas in

another (but similar) investigation, the mDDM performed

better than the LCA (Ratcliff et al. 2018). Furthermore, we

preferred a comparison between these two models because

of the different properties and mechanics of mDDM (one-

dimensional model, multiplicative noise) and those of the

LCA (two-dimensional model, interacting accumulators). In

our study, we nevertheless find that magnitude-sensitivity

and frequency-sensitivity exhibited by mDDM and LCA

are largely similar. The magnitude-sensitive results are in
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agreement with those of (Teodorescu et al. 2016). Another

influential sequential sampling model is the linear ballistic

accumulator (LBA) (Brown and Heathcote 2008). However,

in a classification of decision models (Teodorescu and Usher

2013), it has been shown that models with independent accu-

mulators (such as the LBA) produce different behaviour

than models featuring competition (such as the LCA). Based

on these findings, we conjectured that the LBA model,

although applicable to a wide range of perceptual decision-

making tasks (Brown and Heathcote 2008), would not be

suitable for the particular assumptions made in our study.

Intriguingly, our analysis reveals an interplay between

the sensitivity of the model systems to frequency and

magnitude of periodically applied stimuli. With regard to

magnitude-sensitivity, our results (e.g. see Fig. 3 for contin-

uous stimuli, and Figs. 4, 5, 6, 7, 8 and 9 for pulsed stimuli)

are in line with previous findings (Pins and Bonnet 1996;

Stafford and Gurney 2004; Palmer et al. 2005; Teodorescu

et al. 2016; Pirrone et al. 2018; Hunt et al. 2012; Ratcliff

et al. 2018; van Maanen et al. 2012; Reina et al. 2018). In

particular, we observe a reduction of decision times with

increasing overall magnitudes and magnitude ratios (in our

study, the magnitude ratio was varied whilst the overall

magnitude was kept constant which simultaneously changes

the magnitude difference, cf. Table 2), as has been reported

previously for perceptual decisions (Pins and Bonnet 1996;

Stafford and Gurney 2004; Palmer et al. 2005; Teodorescu

et al. 2016; Pirrone et al. 2018; Ratcliff et al. 2018; Polanı́a

et al. 2014) and value-based decisions (Hunt et al. 2012;

Pirrone et al. 2018; Polanı́a et al. 2014; Reina et al. 2018).

Our simulations suggest that this magnitude-sensitive

behaviour may additionally be shaped by frequency-

sensitive effects which depend on frequency ratios, overall

frequencies and the choice of the stimulus condition (see

Figs. 4a, b, 5 and 6 for SC1, and 4c, d, 8 and 9 for SC2).

In particular, we obtained equivalent effects under variation

of magnitude ratios and frequency ratios when the pulsed

stimulus has been applied under stimulus condition SC2

(Fig. 4c). Increasing either of the two ratios may increase

evidence for one option, and therefore both quantities may

act as modulators of decision-making in a similar way.

Empirical Evidence of Periodic Patterns in Reaction
Time Distributions

Our finding that periodic stimuli may lead to periodicities

in the distribution of decision times (Figs. 10 and 11)

is a theoretical prediction of our model-based analysis.

We are not aware of an empirical data set that has been

obtained under conditions similar to those simulated in the

present study and tests for such periodicities in reaction

time distributions. However, in the context of rhythmic (or

cyclic) perception, which is explained in more detail below,

periodicities in reaction time distributions are observed

experimentally (e.g. see VanRullen and Dubois (2011)

and VanRullen (2016) for summaries of related empirical

observations). By making reference to empirical studies

on cyclic perception, in the following, we argue why our

predictions could possibly be also observed in suitably

designed experiments, such as the one proposed in the

“Proposal of an Experimental Design” section.

Rhythmic or cyclic perception indicates that cognition

and perception involve sampling rhythms; that is, the prob-

ability to detect perceptual stimuli is not constant over time

but rather oscillates with typical frequencies (VanRullen

2016). Regarding visual stimuli, for example, brain rhyth-

mic activity for frequencies around 7 Hz (theta-band) and

11 Hz (alpha-band) have been linked to cyclic perception

(VanRullen 2016). One possibility to think about rhythmi-

cally fluctuating perception is to consider perceptual thresh-

olds being periodically modulated over time, as suggested

by VanRullen (2016). This means that when the perceptual

threshold alternates between lower and higher values, it is

more likely that a perceptual stimulus which is integrated

sequentially meets the threshold criterion when the oscil-

lating perceptual threshold has momentary phase-dependent

lower values (VanRullen 2016). Hence, the probability of

perception will strongly depend on the phase of the stimulus

presentation relative to the phase of the internal sampling

rhythm of the brain.

Several more recent studies provide empirical evidence

that rhythmic sampling is present in perception and cog-

nition, such as the observation of theta-rhythmic reaction

times in monkeys (Kienitz et al. 2018) and humans (Helfrich

et al. 2018), and periodic detection accuracies in humans

(Landau and Fries 2012; Fiebelkorn et al. 2013) under

distributed attention when multiple stimuli are presented.

Previously, periodic reaction time histograms with multi-

ple equally spaced peaks have also been observed in visual

pursuit movements (Latour 1967), in responses to acous-

tic clicks and light flashes (Harter and White 1968; White

and Harter 1969) and in visual and auditory discrimina-

tion tasks (Dehaene 1993). From a more general point of

view, although presented in the context of cyclic perception,

these empirical findings provide strong evidence for the

possibility of observing periodic patterns in reaction time

distributions. Psychological data are however scarce, prob-

ably because of the challenges regarding the design of suit-

able experiments to enable the detection these periodicities

(VanRullen and Dubois 2011).

To use the findings on rhythmic perception to interpret

and support our results, we go back to the possible

interpretation involving periodically fluctuating perceptual

thresholds as introduced above. However, in our study, it

is the perceptual stimulus that oscillates. Using periodic

stimuli, evidence is presented with alternating high and low
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intensities. Thus, we can assume that in the high-intensity

phase, the decision variable experiences a steeper increase

compared with the low-intensity stimulus phase. As we

assumed a strong coupling between external stimulus and

internal representation via Eq. 2, this suggests that the

decision variable should increase rhythmically, i.e. a strong

increase will be followed by a weak increase or decrease

(depending on the information leak (as relevant in the LCA)

and/or presentation of alternative stimuli (as relevant in the

mDDM)) of the activity level, and so on. This should lead to

a transduction of the period of the perceptual stimulus to the

shape of the decision time distribution, which we observe

in our simulation study (Figs. 10 and 11). Hence, it is the

external frequency of the stimulus which should be obvious

in the reaction time distribution, in contrast to the example

with oscillating perceptual thresholds, where the internal

frequency describing cyclic perception should be visible in

the reaction time. However, in both cases (either oscillating

perceptual stimuli or oscillating perceptual thresholds), the

transfer of the frequency of the oscillating quantity to the

reaction time distribution could apply in a similar way.

We point out that rhythmic sampling is not a model

assumption in our study and that here the periodicity in the

reaction time distribution most likely arises from the strong

coupling of the perceptual stimulus to the decision variable

via the psychophysical transfer function in Eq. 2. This

means that in our study, cyclic perception can be assumed

to be averaged out over the large number of trials, in which

case our results do not depend on the presence or absence

of rhythmic perception (i.e. the perceptual threshold may

be assumed fixed rather than oscillating). Regarding the

effects of periodic stimuli, it could also be the case

that oscillating external input signals are smoothed when

evidence is accumulated (Fig. 13), so that they are masked

and not detectable in unsuitable experimental paradigms

(or not detectable at all). Although our simulation results

indicate the possibility that decision time distributions of

real decision-makers responding to periodically oscillating

stimuli might possibly show periodicities, whether or not

our predictions hold in empirical data remains an open

question. Finding a proper experimental set-up to test

our predictions will therefore require more experimental

and theoretical work to support or falsify our predictive

theoretical study. Our proposal of a possible experimental

approach discussed in the “Proposal of an Experimental

Design” section may be a good starting point.

Supplementary Material Computer code for data generation and data

analysis is open source and available under: https://github.com/DiODe

Project/Frequency-sensitivity-and-magnitude-sensitivity-in-decision-

making.
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