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Abstract

We introduce a model of a preferential attachment based random graph which
extends the family of models in which condensation phenomena can occur. Each
vertex has an associated uniform random variable which we call its location. Our
model evolves in discrete time by selecting r vertices from the graph with replace-
ment, with probabilities proportional to their degrees plus a constant α. A new
vertex joins the network and attaches to one of these vertices according to a given
probability associated to the ranking of their locations. We give conditions for the
occurrence of condensation, showing the existence of phase transitions in α below
which condensation occurs. The condensation in our model differs from that in
preferential attachment models with fitness in that the condensation can occur at a
random location, that it can be due to a persistent hub, and that there can be more
than one point of condensation.

Keywords: Preferential Attachment, Fitness, Location, Random Graphs, Phase
Transition

1 Introduction

Preferential attachment graphs were developed as an extension of Erdős and Rényi’s
random graph model in order to model evolving networks that exhibited a power law in
their degree distributions. The standard preferential attachment method discussed by
Barabási and Albert [2] evolves from an initial graph G0 with n0 vertices v1−n0

, . . . , v0.
For each n ≥ 0 the graph Gn+1 is formed by a new vertex vn+1 joining Gn and attaching
to an existing vertex V ∈ {v1−n0

, . . . , vn} according to

P (V = vi) =
degGn

(vi) + α
∑n

j=1−n0
(degGn

(vj) + α)
, (1)
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for some α > −1. Equation (1) gives the form of preferential attachment developed by
Dorogovtsev, Mendes and Samukhin in [7] as a generalisation of the Barabási and Albert
model found in [2], and we shall use this more general form. However, several of the
papers referred to in this section, including [2], only consider the case α = 0.

It is clear to see from (1) that vertices with a higher degree have a higher probability
of attracting new edges. Some commonly mentioned applications of preferential attach-
ment graphs include the number of links to a website and the growth of the number of
connections on social networks.

It is observable in real world networks that the growth in influence of an individual vertex
is affected by more factors than just its degree. How attractive the vertex is by itself or in
comparison to the others also plays a large part. A model incorporating this notion was
introduced by Bianconi and Barabási in [3], where they gave each vertex a multiplicative
fitness value in their version of (1). They did this in order to add an extra dimension to
the competition between vertices that joined the vertex using a generalised preferential
attachment mechanism. As a consequence, new, fitter, vertices can still compete against
vertices which are well-established in the existing network. A particularly interesting
feature of preferential attachment with fitness is the so-called condensation phenomena,
where at time n a single vertex or a set of vertices of size o(n) (which vertices can depend
on time) can have a total degree of order n. Condensation for preferential attachment
with fitness is studied in detail by Borgs et al. [4], Dereich and Ortgiese [6] and Dereich,
Mailler and Mörters [5].

Another variant of preferential attachment is the choice model introduced by Malyshkin
and Paquette in [11, 12] and Krapivsky and Redner in [10]. Here when a new vertex
joins the network it first selects several candidate existing vertices at random using (1),
then attaches to one of the candidates according to a deterministic rule, such as always
attaching to the candidate of highest degree. In these papers, depending on the para-
meters, as the number of vertices increases linear or approximately linear growth can be
observed in the degree of the largest vertex. Preferential attachment with degree-based
choice was further studied by Haslegrave and Jordan [9], who showed that condensation
can also occur when choosing a lower-ranked vertex.

The choice model is combined with fitness in the model studied by Freeman and Jordan
[8] in which each vertex has its own fitness value; the new vertex joins the graph Gn

by using preferential attachment to select r vertices from Gn. The new vertex forms an
edge between itself and the vertex with the highest fitness of the r selections. It is shown
in [8] that again condensation can occur in this model.

In this paper we generalise the model of [8] to allow for choices other than the largest
or smallest, for example selecting the middle vertex of a selection of three. Informally,
an example of when the middle of three model might be appropriate is when voting for
a political candidate; one might prefer to avoid voting for a candidate is too far left or
right, and so decide to cast their vote in the middle. We will also allow for randomised
choice rules based on the ranking. Because we are no longer selecting the largest value,
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we will use the term location rather than fitness. In this paper the locations will be
uniform random variables on [0, 1]; note that as we are only using the order of locations,
this is equivalent to any measure without atoms.

Using stochastic approximation techniques, we will show that the normalised empirical
measure on the location space given by weighting the location of each vertex of the
graph by its degree plus α converges almost surely to a limit. In some cases, this limit
is random and has an atom, the emergence of the atom corresponding to condensation
occurring in the system. We will show that the atom appears at a random location, as
opposed to the results of [4, 8] where condensation can only occur at the supremum of
the fitness distribution. In addition we will show that condensation in our model can
be due to a single vertex which acts as a persistent hub, which is not possible in fitness
models. In fact, for some choices of our parameters, condensation has probability 1, but
persistent hub behaviour has probability strictly between 0 and 1, so condensation can
occur in at least two different ways, each with positive probability.

We will also show that in some cases condensation can occur simultaneously at more
than one point; again this is quite different behaviour from that seen in [4, 8]. Indeed,
there are situations where multiple condensation occurs almost surely, and others in
which it occurs with probability strictly between 0 and 1. When using a deterministic
choice rule, however, multiple condensation cannot occur and there is always a single
phase transition between condensation occurring with probability 0 and 1; we give an
exact expression for this phase transition for every deterministic rule.

The remainder of this article will start with a discussion of our model and a summary of
the main results in Section 2. Our proofs are in Section 3, and finally Section 4 includes
some specific examples that highlight some of the important aspects of our main results.

2 Our model and results

2.1 The model

Fix a parameter r ∈ N with r ≥ 2, a vector Ξ ∈ R
r such that Ξi ∈ [0, 1] and

∑r
i=1 Ξi = 1,

and a real number α > −1.

We start with a tree G0 containing n0 ≥ 2 vertices which we will denote by V (G0) =
{

v0, v−1, . . . , v−(n0−1)

}

. Every vertex vi in G0 has its own location xi in (0, 1); we will
assume that these locations are distinct. Given Gn, at time n + 1 we form Gn+1 by
adding a new vertex vn+1 to the network with a single edge. This vertex has its own
uniform random location xn+1 ∼ Uni[0, 1], which is independent of the other xi, and
chooses where to attach to at time n+ 1 by selecting a sample of r pre-existing vertices
in Gn with replacement with probabilities proportional to their degrees plus α as given
by equation (1).

Let the r selected vertices at time n+1 be denoted by V
(n+1)
1 , . . . , V

(n+1)
r with locations
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x
(n+1)
1 , . . . , x

(n+1)
r respectively, and renumber if necessary so that the locations satisfy

x
(n+1)
1 ≤ x

(n+1)
2 ≤ · · · ≤ x

(n+1)
r . For definiteness we specify that if two or more vertices

in the selection have the same location, we rank them in the order they were selected;
note, however, that with probability 1 the only way for this to occur is if the same

vertex is selected more than once. The probability that vn+1 attaches to vertex V
(n+1)
i

is then given by Ξi; this choice is independent of the vertices selected and of all choices
made at previous time steps. However, this choice need not be independent of xi; while
independence between these two variables may seem a natural assumption it is not
necessary, and relaxing this assumption may better fit some motivations.

For example if r = 3 and Ξ = (0, 1, 0) then the new vertex selects a sample of size 3,
and connects to the selected vertex of median rank. The model can be thought of as
generalising the case of the model of [8] with fixed sample size; that model is obtained
by taking our model with Ξr = 1 (or equivalently with Ξ1 = 1).

Throughout the paper, we shall assume that G0 is a tree. While this requirement is not
necessary, and does not change the results, trees are the most natural starting graphs
since the attachment process preserves the tree structure. With this assumption, we also
have

∑n
j=1−n0

(degGn
(vj) + α) = 2(n+ n0 − 1) + α(n+ n0) = (n+ n0 − 1)(2 + α) + α.

2.2 Results

We define Ψn(x) to be the probability that a vertex selected randomly from Gn according
to the law (1) has location less than or equal to x, that is

Ψn(x) =
1

(n+ n0 − 1)(2 + α) + α

∑

vi∈V (Gn):xi≤x

(degGn
(vi) + α).

Clearly Ψn(0) = 0, almost surely, and Ψn(1) = 1. We can think of Ψn as being the
distribution function of the normalised empirical measure on the location space given
by weighting the location of each vertex of the graph by its degree plus α; we will label
this measure νn.

Our first result is on the convergence of the measures νn. For a fixed x and choice of Ξ,
define

F1(y;x,Ξ) = x(α+ 1)− (2 + α)y +
r
∑

l=1

Ξl

r
∑

i=l

(

r

i

)

yi(1− y)r−i,

to be considered as a function of y for y ∈ [0, 1].

We will say that p ∈ (0, 1) is a stable zero of F1(y;x,Ξ) if F1(p;x,Ξ) = 0 where there
exists an ǫ such that for y ∈ (p− ǫ, p) we have F1(y;x,Ξ) > 0 and for y ∈ (p, p+ ǫ) we
have F1(y;x,Ξ) < 0. Similarly p ∈ (0, 1) is an unstable zero if F1(p;x,Ξ) = 0 and there
exists ǫ such that for y ∈ (p− ǫ, p) we have F1(y;x,Ξ) < 0 and for y ∈ (p, p+ ǫ) we have
F1(y;x,Ξ) > 0, and p ∈ (0, 1) is a touchpoint if F1(p;x,Ξ) = 0 and there exists ǫ such
that we have either F1(y;x,Ξ) < 0 for all y ∈ (p − ǫ, p + ǫ) \ {p} or F1(y;x,Ξ) > 0 for
all y ∈ (p− ǫ, p+ ǫ) \ {p}.
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Remark 2.1. Since F1(y;x,Ξ) is a polynomial, every root in (0, 1) is either a stable
zero, an unstable zero or a touchpoint. Also, for x ∈ (0, 1) we have F1(0;x,Ξ) > 0 >
F1(1;x,Ξ), so 0 and 1 are not roots.

Theorem 2.2. As n → ∞, the sequence of measures converges weakly, almost surely,
to a (possibly random) probability measure on [0, 1], whose distribution function we will
call Ψ. Furthermore, the following properties hold for any given x ∈ (0, 1).

1. Almost surely, Ψ(x) is a zero of the function F1(y;x,Ξ).

2. For any stable zero or touchpoint y of F1(y;x,Ξ), there is positive probability that
Ψ(x) = y.

3. Any unstable zero y of F1(y;x,Ξ) has probability zero that Ψ(x) = y.

Depending on the parameters of the model, the limit Ψ may be continuous or discon-
tinuous; for example in Section 4.1 we will show that the model mentioned above where
r = 3 and Ξ = (0, 1, 0) exhibits a phase transition where Ψ is almost surely continuous
for α ≥ −1

2 and almost surely has a discontinuity for α < −1
2 .

Discontinuity of Ψ implies that Ψn increases by Θ(1) on an interval of length o(1) as
n → ∞; this corresponds to a condensation phenomenon whereby a small number of
vertices with locations in a range of size o(1) have a Θ(1) probability of being selected.
A consequence of Theorem 2.2 is that where there is an interval of x values for which
F1(y;x,Ξ) has more than one stable root, the discontinuity occurs at a random location,
as any stable root has positive probability of being the limit for each x in the interval.

It does not immediately follow from discontinuity of Ψ that a single vertex has linear de-
gree; however, the next result shows that this occurs with positive probability. Without
loss of generality, we will focus on the vertex v0, present in the graph from the start,
and label its location as z. We define

Dn =
α+ degGn

(v0)

(n+ n0 − 1)(2 + α) + α
, (2)

which would be the probability of selecting v0 for attachment under the preferential
attachment rule.

Theorem 2.3. Let z be the location of vertex v0. If yi ≥ yj are two stable fixed points of
F1(y; z,Ξ), then there is positive probability that (Ψn(z), Dn) → (yi, yi − yj) as n→ ∞.

Theorem 2.3 shows that if there are two distinct stable fixed points of F1(y; z,Ξ) then
condensation can occur at a persistent hub in the sense that a vertex of the initial graph
with location z has its degree growing linearly with n with positive probability. The
condensation phenomenon that occurs in this case is thus different from that found for
preferential attachment with multiplicative fitness, where Dereich, Mailler and Mörters
[5] show that the maximum degree divided by n converges to zero in probability; it is
also distinct from that found by Freeman and Jordan [8] where, although the maximum
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degree is usually of linear order in n, any individual vertex only dominates for a finite
time before being displaced by fitter vertices.

However, the next result shows that for some choices of our parameters there is also
positive probability that the condensation phenomenon is not due to a persistent hub,
as it implies there is positive probability of the condensation occurring at a specific
location, where the probability of there being a vertex is zero. This suggests that in this
case the condensation phenomenon is more like one of those found in [5] or [8], in that
vertices whose location is close to the condensation location are replaced over time in
the condensate by those which are even closer.

Theorem 2.4. Let x ∈ (0, 1) and Ξ be such that there exists p ∈ (0, 1) which is a
touchpoint of F1(y;x,Ξ). Then there is positive probability that condensation occurs at
p in the sense that Ψ has a discontinuity at p.

One natural question is whether it is possible to have more than one discontinuity in Ψ,
implying more than one point of condensation. The following result shows that this is
not possible in the case where the same rank is always chosen.

Theorem 2.5. Whenever Ξk = 1 for some k ∈ {1, 2, . . . , r}, it is impossible to have
more than one point of condensation.

An example of a choice of Ξ for which more than one point of condensation is possible
appears in section 4.2.

In the case where the same rank is always chosen, we can give a precise description of
the phase transition.

Theorem 2.6. If Ξk = 1 then condensation almost surely occurs if α < αc and almost
surely does not occur if α ≥ αc, where αc = r − 2 if k = 1 or k = r, and

αc = r

(

r − 1

k − 1

)

(k − 1)k−1(r − k)r−k

(r − 1)r−1
− 2 (3)

otherwise.

In particular, αc > −1 for all values of r and k, meaning that there is always a genuine
phase transition. In fact αc > 0, giving condensation even for linear preferential at-
tachment, except in a few small cases: first (or second) of two choices; middle of three;
second (or third) of four; and middle of five.

3 Proofs

For the majority of this section we will restrict the model to the case where the choice
between the r selected vertices is deterministic, i.e. vn+1 always attaches to the selected
vertex with the kth lowest location for some fixed k. In the formal notation given above
this model can be written as Ξ = (0, 0, . . . , 1, . . . , 0, 0) where the 1 is in the kth position;

write e
(r)
k for this vector. We will deal with general Ξ in Section 3.2.
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A key technique we use in our proofs is that of of stochastic approximation algorithms,
originally developed by Robbins and Monro [15]. Stochastic approximation methods
appear naturally in preferential attachment models, and have been used, for example,
by Malyshkin and Paquette [11] and Dereich and Ortgiese [6]. Stochastic approximation
processes operate in discrete time with standard notation, based on Pemantle [14],

Xn+1 −Xn = γn(F (Xn) + ξn+1 +Rn), (4)

where {Xn, n ≥ 1} is a sequence of random variables on R
d, γn are step sizes satisfying

∑∞
n=1 γn = ∞ and

∑∞
n=1 γ

2
n < ∞, F is a function from R

d to itself, Rn are remainder
terms which must tend to zero and satisfy

∑∞
n=1 n

−1|Rn| <∞, and ξn+1 are noise terms
satisfying E(ξn+1 | Fn) = 0.

We will mainly use results found in Section 2 of [14], which show that under certain
conditions the process will converge almost surely to an equilibrium of F , that stable
equilibria have positive probability of being the limit and that unstable equilibria usually
do not.

3.1 Proofs of Theorems 2.2 to 2.4 for deterministic choice rules

Let Fn be the σ-algebra generated by the graphs Gn and the locations of their vertices
up until time n, i.e. Fn = σ(Gi, xi; i ≤ n). For x ∈ [0, 1], the probability of attaching to
a vertex with location in [0, x] at time n+ 1, conditional on Fn, is given by

g
(

Ψn(x); e
(r)
k

)

=
r
∑

i=k

(

r

i

)

Ψn(x)
i(1−Ψn(x))

r−i. (5)

We can now formulate the first stochastic approximation equation associated to our
model, which will allow us to show that as the network grows the total weight of vertices
with location in [0, x] grows linearly. If G0 has n0 vertices and e0 edges then Gn has n0+n
vertices and e0+n edges, giving the normalising constant γn = (2(e0+n)+α(n0+n))

−1.
Assuming G0 is a tree, we have the simpler form γn = ((n+ n0 − 1)(2 + α) + α)−1.

Lemma 3.1. For a fixed x ∈ [0, 1], we have the stochastic approximation equation

Ψn+1(x)−Ψn(x) = γn+1

(

F1

(

Ψn(x);x, e
(r)
k

)

+ ξn+1

)

, (6)

where F1

(

y;x, e
(r)
k

)

= g
(

y; e
(r)
k

)

− (2 + α)y + x(1 + α) and E(ξn+1 | Fn) = 0.

Proof. Equation (6) is in the form of (4) with F mapping y to F1

(

y;x, e
(r)
k

)

and Rn ≡ 0;

clearly γn has the required properties and so it suffices to show that a suitable ξn+1 may
be defined.

Note that γ−1
n Ψn(x) is the total weight at time n of all vertices located in [0, x], where

each vertex v has weight degGn
(v)+α. Thus we consider the change to this total weight

from the new vertex and edge; say that vn+1 attaches to wn+1.
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The vertex wn+1 has location at most x with probability g
(

Ψn(x); e
(r)
k

)

from (5) as the

probability of attaching to the vertex with rank k of r selections. The expected addition
to the total weight arising from the location of vn+1 is x(1 + α). Therefore

E(γ
−1
n+1Ψn+1(x) | Fn) = γ−1

n Ψn(x) + x(1 + α) + g
(

Ψn(x); e
(r)
k

)

= γ−1
n+1Ψn(x)− (2 + α)Ψn(x) + x(1 + α) + g

(

Ψn(x); e
(r)
k

)

= γ−1
n+1Ψn(x) + F1

(

Ψn(x);x, e
(r)
k

)

,

and so

E(Ψn+1(x) | Fn) = Ψn(x) + γn+1F1

(

Ψn(x);x, e
(r)
k

)

.

Defining ξn+1 as

ξn+1 =
Ψn+1(x)− E(Ψn+1(x) | Fn)

γn+1
,

we have (6) and clearly E(ξn+1 | Fn) = 0.

Before continuing, we summarise the necessary results on one-dimensional stochastic
approximations; recall the definitions of stable zeros, unstable zeros and touchpoints
from Section 2.2. [14, Corollary 2.7] and [14, Theorem 2.8] apply on the assumption
that F is bounded and continuous and E(ξ2n+1 | Fn) ≤ K for some finite K, and say,
respectively, that Xn converges almost surely to a zero of F and that any stable zero
has positive probability of being the limit. [14, Theorem 2.9] requires additionally that

E(ξ
+
n+1 | Fn) and E(ξ

−
n+1 | Fn) are bounded above and below by positive numbers in a

neighbourhood of p, and says that if p is an unstable zero then it is almost surely not
the limit. Finally, Theorem 2.5 of Antunović, Mossel and Rácz [1], based on work by
Pemantle in [13], requires that F is continuously differentiable and |ξn+1| ≤ K almost
surely, and says that each touchpoint has positive probability of being the limit.

Theorem 3.2. Let x ∈ (0, 1). The sequence of random variables Ψn(x) converges almost

surely to a zero of F1

(

y;x, e
(r)
k

)

. Any stable zero in [0, 1] or touchpoint in (0, 1) has

positive probability of being the limit, while any unstable zero has probability zero of
being the limit.

Proof. First we note that F1

(

0;x, e
(r)
k

)

> 0 and F1

(

1;x, e
(r)
k

)

< 0. Therefore there

must be at least one zero of F1

(

y;x, e
(r)
k

)

in the interval [0, 1].

Since y 7→ F1

(

y;x, e
(r)
k

)

is a polynomial, it is continuously differentiable. Consequently,

in order to apply the results detailed above, it suffices to check that ξn+1 has the required
properties.

Recall that γ−1
n+1Ψn+1(x) is the total weight of vertices in [0, x] at time n + 1, so ξn+1

is the difference between the actual value of this quantity and its expectation at time
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n. Recall that vn+1 has location xn+1, and write zn+1 for the location of its neighbour
in Gn+1. Given Fn, the total weight only depends on xn+1 and zn+1, and takes values
in [γ−1

n Ψn(x), γ
−1
n Ψn(x) + 2 + α]. Thus γ−1

n+1 E(Ψn+1(x) | Fn) is also in this interval,
meaning that |ξn+1| ≤ 2 + α, and so E(ξn+1 | Fn) ≤ (2 + α)2.

We now verify the conditions on ξ+n+1 and ξ−n+1. Since |ξn| = ξ+n + ξ−n , both of these
are also bounded above. Fix an unstable zero p ∈ (0, 1) and let ǫ be such that 0 <
p − ǫ < p + ǫ < 1. Provided Ψn(x) ∈ (p − ǫ, p + ǫ), we have P(xn+1, zn+1 ≤ x | Fn) =

xg
(

Ψn(x); e
(r)
k

)

is bounded away from 0, and similarly for P(xn+1, zn+1 > x | Fn). It

follows that E(γ
−1
n+1Ψn+1(x) | Fn) is bounded away from γ−1

n Ψn(x) but attains this value
with probability bounded away from 0, giving a lower bound on E(ξ

−
n+1 | Fn); similar

reasoning applies to ξ+n+1.

Thus all the results described above apply in this setting, giving almost sure convergence
to the zero set, positive probability of convergence to each stable zero or touchpoint, and
zero probability of convergence to each unstable zero.

The following result completes the proof of Theorem 2.2 in the case Ξ = e
(r)
k .

Corollary 3.3. The sequence of measures defined by Ψn converges weakly, almost surely,
to a limit defined by a (possibly random) distribution function Ψ : R → [0, 1].

Proof. By definition, we have that for each n Ψn is a non-decreasing cadlag function
with Ψn(1) = 1 and, almost surely, Ψn(0) = 0. We apply Theorem 3.2 to a countable
dense set of x ∈ (0, 1) and for x in this set we define Ψ̂(x) = limn→∞Ψn(x). We then
define a cadlag function Ψ by defining Ψ(x) = infy>x Ψ̂(y) for x ∈ [0, 1), Ψ(x) = 0 for
x < 0 and Ψ(x) = 1 for x ≥ 1. By this construction, the probability measure with
distribution function Ψ is a weak limit of the sequence of probability measures with
distribution functions Ψn.

We now move towards proving Theorem 2.3 in the case Ξ = e
(r)
k . To do this, we consider

a two dimensional stochastic approximation for (Ψn(z), Dn), where Dn is given by (2).
Let χn be the location of a selected vertex under preferential attachment from Gn.
Assuming that v0 is the only vertex at location z, which occurs almost surely, we have

P (χn = z | Fn) =Dn,

P (χn < z | Fn) =Ψn(z)−Dn,

P (χn > z | Fn) =1−Ψn(z).

The probability of the kth ranked location being z, and hence of selecting vertex v0 for
vn+1 to attach to is given by

h
(

Ψn(z), Dn; e
(r)
k

)

=
k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

(Ψn(z)−Dn)
jDi−j

n (1−Ψn(z))
r−i. (7)
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We can now form our two dimensional stochastic approximation.

Lemma 3.4. We have the stochastic approximation equation

Dn+1 −Dn = γn+1

(

F2

(

Ψn(z), Dn; e
(r)
k

)

+ ζn+1

)

, (8)

where F2

(

y, d; e
(r)
k

)

= h
(

y, d; e
(r)
k

)

− (2 + α)d and E(ζn+1 | Fn) = 0.

Proof. As in the proof of Lemma 3.1, (8) is a stochastic approximation with Rn ≡ 0
provided that a suitable ζn+1 may be defined. Writing wn+1 for the vertex vn+1 attaches
to, we have

E(Dn+1 | Fn) = γn+1

(

E

(

degGn+1
(v0)

)

+ α
)

= γn+1

(

degGn
(v0) + α+ P(wn+1 = v0 | Fn)

)

= γn+1

(

γ−1
n Dn + h

(

Ψn(z), Dn; e
(r)
k

))

,

using (7). Since γ−1
n γn+1 = 1− (2 + α)γn+1, it follows that

E(Dn+1 | Fn) = Dn + γn+1F2

(

Ψn(z), Dn; e
(r)
k

)

.

Defining

ζn+1 =
Dn+1 − E(Dn+1 | Fn)

γn+1
,

we have (8) with E(ζn+1 | Fn) = 0.

We have now formed a two dimensional system of stochastic approximation equations
represented by

(

Ψn+1(z)
Dn+1

)

−
(

Ψn(z)
Dn

)

= γn+1

(

F1(Ψn(z);x,Ξ)
F2(Ψn(z), Dn; Ξ)

)

+ γn+1

(

ξn+1

ζn+1

)

. (9)

The following relationship between F1 and F2 will be useful for identifying stationary
points of the vector field associated to our two dimensional stochastic approximation.

Theorem 3.5. We have that

F1

(

y − d;x, e
(r)
k

)

= F1

(

y;x, e
(r)
k

)

− F2

(

y, d; e
(r)
k

)

. (10)

Proof. We use induction on k. For k = 1,

F1

(

y − d;x, e
(r)
1

)

= 1− (1− y + d)r − (2 + α)(y − d) + x(1 + α)

= − (2 + α)(y) + x(1 + α) +

r
∑

i=1

(

r

i

)

yi(1− y)r−i

10



−
(

−(2 + α)d+
r
∑

i=1

(

r

i

)

di(1− y)r−i

)

= F1

(

y;x, e
(r)
1

)

− F2

(

y, d; e
(r)
1

)

Assuming (10) holds for k,

F1

(

y − d;x, e
(r)
k+1

)

=
r
∑

i=k+1

(

r

i

)

(y − d)i(1− y + d)r−i − (2 + α)(y − d) + x(α+ 1)

= F1

(

y − d;x, e
(r)
k

)

−
(

r

k

)

(y − d)k(1− y + d)r−k

= F1

(

y;x, e
(r)
k

)

− F2

(

y, d; e
(r)
k

)

−
(

r

k

)

(y − d)k(1− y + d)r−k

= F1

(

y;x, e
(r)
k+1

)

− F2

(

y, d; e
(r)
k

)

−
(

r

k

)

(y − d)k(1− y + d)r−k

+

(

r

k

)

yk(1− y)r−k

where in the last line we have separated out the first term in the sum in the definition of

F1

(

y;x, e
(r)
k

)

. By the definition of F2

(

y, d; e
(r)
k

)

and binomial expansion of (1−y+d)r−k

and yk = (y − d+ d)k, we get that F1

(

y − d;x, e
(r)
k+1

)

is equal to

F1

(

y;x, e
(r)
k+1

)

− (2 + α)d−
k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

−
r
∑

i=k

(

r

i

)(

i

k

)

(y − d)kdi−k(1− y)r−i +
k
∑

j=0

(

r

k

)(

k

j

)

(y − d)jdk−j(1− y)r−k.

Re-arranging the sums gives that

F1

(

y − d;x, e
(r)
k+1

)

=F1

(

y;x, e
(r)
k+1

)

−
k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

−
k
∑

j=k

r
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

+
k
∑

j=0

k
∑

i=k

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i − (2 + α)d

= F1

(

y;x, e
(r)
k+1

)

−
(

k
∑

j=0

r
∑

i=k+1

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i + (2 + α)d

)

= F1

(

y;x, e
(r)
k+1

)

− F2

(

y, d; e
(r)
k+1

)

,

11



completing the proof.

Let Y(z) be the set
{

y : F1

(

yi; z, e
(r)
k

)

= 0
}

, and write its elements y1, y2, . . . , y|Y(z)|.

It then follows from Theorem 3.5 that F2

(

yi, yi − yj ; z, e
(r)
k

)

= 0 and that the solutions

to F1

(

y; z, e
(r)
k

)

= F2

(

y, d; e
(r)
k

)

= 0 all take the form (y, d) = (yi, yi − yj) where

i, j ∈ {1, 2, . . . , |Y(z)|}. Note also that if y < (1+α)x
2+α

then F1

(

yi; z, e
(r)
k

)

> 0, and

similarly if y > 1− (1+α)(1−x)
2+α

then F1

(

yi; z, e
(r)
k

)

< 0, so any y ∈ Y(z) satisfies

(1 + α)x

2 + α
≤ y ≤ 1− (1 + α)(1− x)

2 + α
. (11)

To investigate the stability of the stationary points, we will now calculate the Jacobian
M of the two dimensional system. We can observe that M is an upper triangular matrix

because F1

(

y; z, e
(r)
k

)

does not depend on d so ∂F1

∂d
= 0. Therefore the eigenvalues of

our system are

λ1

(

y; e
(r)
k

)

=

r
∑

i=k

(

r

i

)

yi−1(1− y)r−i−1(i− ry)− (2 + α),

λ2

(

y, d; e
(r)
k

)

=
k−1
∑

j=0

r
∑

i=k

(

r

i

)(

i

j

)

Q
(r)
i,j (y, d)(y − d)j−1di−j−1(1− y)r−i−1 − (2 + α),

where Q
(r)
i,j (y, d) = (y − d)(i− iy + rd− id) + j(1− y)(2d− y).

Theorem 3.6. For any yi, yj ∈ Y(z) such that yi − yj ≥ 0 and

∂

∂y
F1

(

y; z, e
(r)
k

)

= λ1

(

y; e
(r)
k

)

< 0

is satisfied for both y = yi and y = yj, we have that (yi, yi − yj) is a stable equilibrium

of the vector field
(

F1

(

y; z, e
(r)
k

)

, F2

(

y, d; e
(r)
k

))

.

Proof. By rearranging (10) we can see that

F2

(

y, d; e
(r)
k

)

= F1

(

y; z, e
(r)
k

)

− F1

(

y − d; z, e
(r)
k

)

and can deduce that

λ2

(

y, d; e
(r)
k

)

=
∂

∂d

(

F1

(

y; z, e
(r)
k

)

− F1

(

y − d; z, e
(r)
k

))

.

12



Here F1

(

y; z, e
(r)
k

)

does not depend on d, giving ∂
∂d
F1

(

y; z, e
(r)
k

)

= 0. Consequently,

λ2

(

y, d; e
(r)
k

)

= − ∂
∂d
F1

(

y − d; z, e
(r)
k

)

= λ1

(

y − d; e
(r)
k

)

. All roots of F1

(

y; z, e
(r)
k

)

=

F2

(

y, d; e
(r)
k

)

= 0 are of the form (yi, yi− yj). Evaluating eigenvalues at this point gives

λ1

(

yi; e
(r)
k

)

and λ2

(

yi, di; e
(r)
k

)

= λ1

(

yj ; e
(r)
k

)

, which, referring to our initial conditions,

are both negative. Therefore the pair yi and yj form the possible limit (yi, yi − yj).

Corollary 3.7. If yi ≥ yj are two stable fixed points of F1

(

y; z, e
(r)
k

)

, then there is

positive probability of (Ψn(z), Dn) → (yi, yi − yj) as n→ ∞.

Proof. Theorem 3.6 shows that (yi, yi − yj) is a stable stationary point of the vector

field
(

F1

(

y; z, e
(r)
k

)

, F2

(

y, d; e
(r)
k

))

. The conclusion then follows from Theorem 2.16 of

Pemantle [14], as long as we can show that there is no t for which
(

Ψt+n(z), Dt+n

)

n≥0

almost surely avoids some neighbourhood of (yi, yi − yj). To see this, note that Dt+n

depends only on the number of vertices added up to time t + n which connect to the
vertex v0, and that Ψt+n(z) depends only on the number of vertices added up to time
t+ n which connect to vertices with location less than or equal to z and the number of
those vertices which have locations less than or equal to z themselves.

Any integer between degG0
(v0) and degG0

(v0)+t+n inclusive has positive probability as
a value with for degGt+n

(v0); by the definition of Dt+n this ensures that for sufficiently

large n there is positive probability of Dt+n being in any given subinterval of
[

0, 1
2+α

]

.

By similar arguments for Ψt+n(z),
(

Ψt+n(z), Dt+n

)

n≥0
can, with positive probability,

approach (yi, yi − yj) arbitrarily closely, as long as 0 ≤ yi ≤ 1 and 0 ≤ yi − yj ≤ 1
2+α

.
That these conditions are satisfied follows from (11) and the assumption that yi ≥ yj .

This completes the proof of Theorem 2.3 in the case Ξ = e
(r)
k .

To prove Theorem 2.4, we first note that where p is a touchpoint of F1

(

y;x, e
(r)
k

)

with

F1

(

y;x, e
(r)
k

)

non-positive in a neighbourhood of p there will be a neighbourhood of

p which contains no zeros of F1(y;x − u,Ξ) for positive u. Hence the probability of
Ψ(x− u) being in this neighbourhood of p is zero, but we know from Theorem 3.2 that
there is positive probability that limn→∞Ψn(x) = p. Hence there is positive probability

of a discontinuity at x. The same applies, with x− u replaced by x+ u, if F1

(

y;x, e
(r)
k

)

is non-negative in a neighbourhood of p, completing the proof.
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3.2 Proofs of Theorems 2.2 to 2.4 in the general case

We now extend the proofs of Theorems 2.2 to 2.4 in the case where Ξ is not necessarily

equal to e
(r)
k . We can derive

F1(y;x,Ξ) =

r
∑

l=1

ΞlF1

(

y;x, e
(r)
l

)

= x(α+ 1)− (2 + α)y +

r
∑

l=1

Ξl

r
∑

i=l

(

r

i

)

yi(1− y)r−i

and extend the definition of F2 from Lemma 3.4 as

F2(y, d; Ξ) =
r
∑

l=1

ΞlF2

(

y, d; e
(r)
l

)

=

(

r
∑

l=1

Ξl

l−1
∑

j=0

r
∑

i=l

(

r

i

)(

i

j

)

(y − d)jdi−j(1− y)r−i

)

− (2 + α)d.

We can see that Lemmas 3.1 and 3.4 still hold, and the arguments for Theorem 3.2 and

Corollary 3.3 work in the same way as for the case Ξ = e
(r)
k , completing the proof of

Theorem 2.2.

By considering the above expressions for F1(y;x,Ξ) and F2(y;x,Ξ) as weighted sums of

F1

(

y;x, e
(r)
l

)

and F2

(

y;x, e
(r)
l

)

respectively, we can see that Theorem 3.5 still holds,

so if we let Y(z) = {y1, y2, . . . , y|Y(z)|} be the set of zeros of F1(y; z,Ξ), the stationary
points are still of the form (yi, yi − yj). It is easy to see that the eigenvalues of the
Jacobian are now

λ1(y; Ξ) = −(2 + α) +

r
∑

l=1

Ξl

∂

∂y
F1

(

y; z, e
(r)
l

)

= −(2 + α) +

r
∑

l=1

Ξlλ1

(

y; e
(r)
l

)

;

λ2(y, d; Ξ) = −(2 + α) +

r
∑

l=1

Ξl

∂

∂d
F2

(

y, d; e
(r)
l

)

= −(2 + α) +

r
∑

l=1

Ξlλ1

(

y − d; e
(r)
l

)

.

Consequently Theorem 3.6 can also be extended to this case: if we have yi, yj ∈ Y(z)
with yi ≥ yj that satisfy λ1(yi; Ξ) < 0 and λ1(yj ; Ξ) < 0 then (yi, yi − yj) is a stable
equilibrium of the vector field given by F1(y; z,Ξ) and F2(y, d; Ξ). This completes the
proof of Theorem 2.3.

Finally, the proof of Theorem 2.4 is the same as for the case Ξ = e
(r)
k .
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3.3 Proofs of Theorems 2.5 and 2.6

Proof of Theorem 2.5. By differentiating F1

(

y;x, e
(r)
k

)

we show that for every x there

are at most two values of Ψ(x) which occur with positive probability, and where there
are two such values that they occur in two disjoint intervals which do not depend on x.
Thus a point of condensation must almost surely involve a jump between these regions.
Since Ψ(x) is increasing by definition, this can happen at most once.

We have

∂

∂y
g
(

y; e
(r)
k

)

=
∂

∂y

r
∑

i=k

(

r

i

)

yi(1− y)r−i

=

r
∑

i=k

i

(

r

i

)

yi−1(1− y)r−i −
r−1
∑

i=k

(r − i)

(

r

i

)

yi(1− y)r−i−1

=
r
∑

i=k

r

(

r − 1

i− 1

)

yi−1(1− y)r−i −
r−1
∑

i=k

r

(

r − 1

i

)

yi(1− y)r−i−1

= r

(

r − 1

k − 1

)

yk−1(1− y)r−k,

because all other terms cancel. So

∂

∂y
F1

(

y;x, e
(r)
k

)

= r

(

r − 1

k − 1

)

yk−1(1− y)r−k − (2 + α);

note that this does not depend on x.

If k = r then ∂2

∂y2
F1

(

y;x, e
(r)
k

)

is positive on (0, 1), and if k = 1 then it is negative on

(0, 1). Otherwise,

∂2

∂y2
F1

(

y;x, e
(r)
k

)

= r

(

r − 1

k − 1

)

(

(k − 1)(1− y)− (r − k)y
)

yk−2(1− y)r−k−1

= r

(

r − 1

k − 1

)

yk−2(1− y)r−k−1
(

(k − 1)− (r − 1)y
)

,

which is positive for y ∈
(

0, k−1
r−1

)

and negative for y ∈
(

k−1
r−1 , 1

)

. It follows that, for any
choice of k, the equation

r

(

r − 1

k − 1

)

yk−1(1− y)r−k − (2 + α) = 0 (12)

has at most two roots in (0, 1), and that if it has exactly two such roots z1 < z2 then
the left-hand side is positive for y ∈ (z1, z2).

Suppose (12) has two roots z1 < z2. Then for any x we have that F1

(

y;x, e
(r)
k

)

is

strictly decreasing on the intervals [0, z1) and (z2, 1], but strictly increasing on (z1, z2).
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Consequently, F1

(

y;x, e
(r)
k

)

= 0 has at most one root y1(x) ∈ [0, z1], at most one

root y2(x) ∈ (z1, z2) (which, if it exists, is an unstable zero), and at most one root
y3(x) ∈ [z2, 1]. Further, for each i, yi(x) is continuous on the range of x for which it exists.

Note that F1

(

0; 0, e
(r)
k

)

= F1

(

1; 1, e
(r)
k

)

= 0 and so y1(0) = 0 and y3(1) = 1 = Ψ(1).

By Theorem 2.2, almost surely for almost all x we have Ψ(x) ∈ {y1(x), y3(x)}. Let
x∗ = inf{x ∈ [0, 1] : Ψ(x) = y3(x)}; since Ψ is increasing and y1(x) and y3(x) are
continuous we have Ψ(x) = y1(x) for all x ∈ [0, x∗) and Ψ(x) = y3(x) for all x ∈ (x∗, 1].
It follows that Ψ is continuous everywhere except at x∗, as required.

If (12) has exactly one root, z, in (0, 1), then the equation F1

(

y;x, e
(r)
k

)

= 0 has at

most one root y1(x) ∈ [0, z] and at most one root y2(x) ∈ (z, 1] for every x ∈ [0, 1];
again we must have y1(0) = 0 and y2(1) = 1 = Ψ(1). Defining x∗ as above, almost
surely Ψ(x) = y1(x) for all x ∈ [0, x∗) and Ψ(x) = y2(x) for all x ∈ (x∗, 1], so again Ψ is
continuous except possibly at x∗. Finally, if (12) has no roots in [0, 1], then the equation

F1

(

y;x, e
(r)
k

)

= 0 has exactly one root y1(x) ∈ [0, 1] for every x ∈ [0, 1] and we must

have y1(0) = 0 and y1(1) = 1 = Ψ(1). Thus we almost surely have Ψ(x) ≡ y1(x), and
there are no points of condensation.

Proof of Theorem 2.6. First, suppose k = r (the case k = 1 is similar). Then

∂

∂y
F1

(

y;x, e
(r)
k

)

= ryr−1 − (2 + α),

and ryr−1 − (2 + α) = 0 has one root in (0, 1) if α > r − 2 and none otherwise. The
proof of Theorem 2.5 shows that almost surely condensation does not occur in the latter

case. In the former case, let the root be z. Then F1

(

y;x, e
(r)
k

)

is strictly increasing

on (z, 1) meaning that any root of F1

(

y;x, e
(r)
k

)

= 0 in this region is an unstable zero.

Consequently Theorem 2.2 implies that almost surely Ψ(x) ≤ z for all x < 1, i.e.
condensation occurs at 1.

Secondly, suppose 1 < k < r. Then the left-hand side of (12) is −(2 + α) < 0 for y = 0
and y = 1, and is strictly increasing on y ∈

(

0, k−1
r−1

)

and decreasing for y ∈
(

k−1
r−1 , 1

)

.

Thus if it is negative for y = k−1
r−1 then (12) has no roots in (0, 1), and, as before,

condensation almost surely does not occur. If the left-hand side is positive for y = k−1
r−1

then (12) has two roots z1 < z2 in (0, 1), and any root of F1

(

y;x, e
(r)
k

)

= 0 in (z1, z2) is

an unstable zero, meaning that almost surely Ψ(x) 6∈ (z1, z2) for any x, so condensation

occurs. If the left-hand side vanishes for y = k−1
r−1 then F1

(

y;x, e
(r)
k

)

is strictly decreasing

on [0, 1] and so F1

(

y;x, e
(r)
k

)

= 0 has a single continuously-varying root y1(x) satisfying

y1(0) = 0 and y1(1) = 1; almost surely Ψ(x) ≡ y1(x) and so there is no condensation.

Since the sign of the left-hand side of (12) changes precisely at αc, this completes the
proof.
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4 Examples

In this section we consider some examples of choices of Ξ which illustrate how the results
of Theorems 2.2 and 2.3 can apply to different cases.

4.1 Middle of three

As r = 1 gives standard preferential attachment, and the cases with r = 2 and either
Ξ = (0, 1) or Ξ = (1, 0) are equivalent to cases of the choice-fitness model of [8], which has
rather different behaviour, the simplest case which illustrates our results is the “middle
of three” model given by r = 3 and Ξ = (0, 1, 0). Here Theorem 2.6 predicts a phase
transition at αc = −1/2.

We can express our functions F1

(

y;x, e
(r)
k

)

and F2

(

y, d; e
(r)
k

)

as

F1

(

y;x, e
(3)
2

)

= −2y3 + 3y2 − (2 + α)y + x(α+ 1)

and
F2

(

y, d; e
(3)
2

)

= −2d3 + 6d2y − 3d2 − 6dy2 + 6dy − d(2 + α).

For x ∈ (0, 1), define {ψ1(x), ψ2(x), ψ3(x)} such that ψ1(x) ≤ ψ2(x) ≤ ψ3(x) as the three

real roots of F1

(

y;x, e
(3)
2

)

= 0 when three exist and ψ(x) as the single root when only one

exists. We have F ′
1

(

y;x, e
(3)
2

)

= −6y2+6y−(2+α), and so F1

(

y;x, e
(3)
2

)

is decreasing in

y whenever α ≥ −1
2 , but has turning points at y = 1

2±
√

−(1 + 2α)/12 for α ∈
(

−1,−1
2

)

.

At x = 1
2 we have F1

(

y;x, e
(3)
2

)

=
(

1
2 − y

)

(

F ′
1

(

y;x, e
(3)
2

)

+ 1 + 2α
)

/3. Consequently

the values of F1

(

y; 12 , e
(3)
2

)

at the turning points are ∓
√

−(1 + 2α)3/108, and the cor-

responding values of F1

(

y; 12 , e
(3)
2

)

are given by (1 + α)
(

x− 1
2

)

∓
√

−(1 + 2α)3/108. It

follows that there are multiple roots if and only if
∣

∣x− 1
2

∣

∣ ≤
√

−(1+2α)3

108(1+α) ; write s = s(α)

for this quantity. Note that s < 1
2 if and only if α > −7

8 .

Figure 1 plots F1

(

y;x, e
(3)
2

)

against y ∈ [0, 1] for the value α = −3
4 and x = 1

2 ± s, and

Figure 2 plots the roots of F1

(

y;x, e
(3)
2

)

against x ∈ [0, 1]. There is exactly one real root

when x ∈
{[

0, 9+
√
6

18

)

∪
(

9−
√
6

18 , 1
]}

and three real roots when x ∈
[

9−
√
6

18 , 9+
√
6

18

]

.

In this setting, Theorem 2.2 becomes the following.

Theorem 4.1. For a fixed location x ∈ (0, 1), the random variable Ψn(x) converges

17
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Figure 1: F1

(

y;x, e
(3)
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)

for α = −0.75 and x = 1
2 ± s.
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Figure 2: The roots of F1

(

y;x, e
(3)
2

)

for x ∈ [0, 1] and α = −0.75.

pointwise as n→ ∞ almost surely to the following limits.

lim
n→∞

Ψn(x) =























ψ(x), if α ≥ −1
2

ψ(x), if α ∈
(

−7
8 ,−1

2

)

and x 6∈
[

1
2 − s, 12 + s

]

ψ1(x) or ψ3(x), if α ∈
(

−7
8 ,−1

2

)

and x ∈
[

1
2 − s, 12 + s

]

ψ1(x) or ψ3(x), if α ≤ −7
8 .

We can see there is a phase transition at α = −1
2 : when α ≥ −1

2 , Ψ is almost surely
continuous, whereas when α < −1

2 , Ψ follows the lower root ψ1(x) until a random point
in
[

1
2−s, 12+s

]

at which it jumps to the upper root ψ3(x), giving a point of condensation.

18
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Figure 3: Results from simulations for α = −0.75

If −7
8 < α < −1

2 , Theorem 2.3 implies that this point of condensation is with positive
probability caused by a persistent hub occurring at a random location which has full
support on

(

1
2 − s, 12 + s

)

. However, Theorem 2.4 implies that the point of condensation
also has positive probability of occurring at each of the endpoints 1

2 − s and 1
2 + s; since

almost surely these values are not locations of any vertex, it follows that there is also a
positive probability that there is no persistent hub. Figure 3 shows the results of two
simulations for α = −0.75 with different behaviour: in the first simulation there is rapid
convergence of Ψn to a limit with condensation occurring via a persistent hub, whereas
in the second Ψn shows much slower convergence, apparently towards condensation at
1
2 + s. If α ≤ −7

8 , Theorem 2.3 implies that the location of the jump has full support on
(0, 1).

As we can now implement conditions on F1

(

y, x; e
(r)
k

)

using x and α to control whether

we have one or three real roots we can solve

F1

(

y, x; e
(r)
k

)

= F2

(

y, d, x; e
(r)
k

)

= 0

by assuming F1

(

y, x; e
(r)
k

)

= 0 has three real roots {ψ1(x), ψ2(x), ψ3(x)}. We therefore

can solve F2

(

y, d, x; e
(r)
k

)

= 0 to get δ1 = 0 and δ2 and δ3 given by 3
4(2ψi(x) − 1) ±

1
4

√

−12ψi(x)2 + 12ψi(x)− 7− 8α.

Figure 4 illustrates Theorem 3.6 in this case, showing the eigenvalues of the Jacobian at

the stationary points. The solid curves show F1

(

y;x, e
(3)
2

)

for y ∈ [0, 1] at x = 1
2 ±s, the

upper and lower limits of the region of x where there are three real roots. In this same

region are plotted λ1

(

y; e
(3)
2

)

(the parabola), λ2

(

y, δ2; e
(3)
2

)

and λ2

(

y, δ3; e
(3)
2

)

(dashed

and dotted lines respectively). The two regions where the eigenvalues are both negative
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Figure 4: Plot of eigenvalues of the Jacobian when α = −0.75

overlap with where the roots of F1

(

y;x, e
(r)
k

)

would be as x increases from the lower

limit to the upper limit.

4.2 Second or sixth of seven

The second example we will discuss makes use of the vector notation introduced in
Section 2. The “middle of three” model of Section 4.1 is an example of selecting the
kth highest location from r selections, and demonstrates a phase transition below which
condensation must occur at a single point. By Theorem 2.5, no such model can have
condensation occurring simultaneously at more than one point. We now consider whether
models in which more than one rank has positive probability of being selected can
demonstrate multiple points of condensation. If there are three (or more) stable roots of
F1(y;x,Ξ) for some range of x then by Theorem 2.3 there is a positive probability of a
jump from the first to the second in that range, and in this case since there are still higher
stable roots, another jump must occur. If there are two disjoint ranges with two or more
stable roots, separated by a range in which there is only one, then at least one jump must
occur in each of these ranges. In this section we give an example which (for different
values of α) demonstrates that both of these can occur, even for models where only two
ranks have positive probability. A real-life example of when two points of condensation
might be expected is that of a bipartisan election, where two candidates from different
regions of the location parameter (which might represent political position) may both
attract a given proportion of the votes.

The distribution we shall use is Ξ =
(

0, 12 , 0, 0, 0,
1
2 , 0
)

, that is, each new vertex is equally
likely to connect to the second or sixth rank of seven candidates; this was the simplest
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example we could find which allowed for two points of condensation. With the motivating
example above, it would be reasonable to suppose that vertices whose own location is
higher are more likely to choose the sixth rank of their candidate pool; recall that this
type of dependence is permitted in the model.

In this setting, (5) gives the following expression for F1(y;x,Ξ):

F1(y;x,Ξ) =
1

2
F1

(

y;x, e
(7)
2

)

+
1

2
F1

(

y;x, e
(7)
6

)

=
1

2

(

7
∑

i=2

(

7

i

)

yi(1− y)7−i

)

+
1

2

(

7
∑

i=6

(

7

i

)

yi(1− y)7−i

)

− (2 + α)y + x(α+ 1)

= −6y7 + 21y6 − 42y5 +
105

2
y4 − 35y3 +

21

2
y2 − (2 + α)y + x(α+ 1).

The middle of three model features two phase transitions, at α = −1
2 and α = −7

8 . To
discuss phase transitions in this model, we note that the derivative (with respect to y)
F ′
1(y;x,Ξ) does not depend on x and is decreasing in α for fixed y; we also note that the

symmetry in the system means that F ′
1(y;x,Ξ) = F ′

1(1− y;x,Ξ). We can thus define

α1 = inf{α : F ′
1(y;x,Ξ) ≤ 0 ∀ y ∈ (0, 1)};

for α ≥ α1, F1(y;x,Ξ) is a decreasing function of y and so for all x ∈ (0, 1) there is a
unique root of F1(y;x,Ξ) = 0 in (0, 1), whereas for α < α1 there is at least one interval of
values of x which have at least three roots of F1(y;x,Ξ) = 0 in (0, 1). Hence our results
show that condensation occurs almost surely if and only if α < α1. We can calculate α1

explicitly, since

F ′′
1 (y;x,Ξ) = −7

2(2y − 1)
(

6y2 − 6y + 4−
√
10
)(

6y2 − 6y + 4 +
√
10
)

does not depend on α. It is easy to verify that F ′
1(y;x,Ξ) is maximised at y = 1

2 ±
1
6

√

6
√
10− 15, and the maximum value is positive if and only if α < 35

√
10−116
9 .

For α ∈ (−1, α1) F1(y;x,Ξ) has, in (0, 1), two local minima at η1(α) and η3(α) and two
local maxima at η2(α) and η4(α), where η1(α) < η2(α) < η3(α) < η4(α); these values
depend on α but not on x. Set α2 = sup{α : F1(η2(α);x,Ξ) ≥ F1(0;x,Ξ)}; then the set
of values of x which have at least three roots includes 0 and 1 if and only if α ≤ α2. Next,
set α3 = sup{α : F1(η4(α);x,Ξ) ≥ F1(η1(α);x,Ξ)}; then for α < α3 there is a range of
values of x such that there are five roots of F1(y;x,Ξ) = 0 in (0, 1), whereas for α > α3

there are always at most three, and there are two disjoint intervals of x where there are
three. Hence for α ∈ (α3, α1) there will almost surely be two points of condensation,
whereas for α < α3 there will be positive probability of there being a single point of
condensation.

Finally, set α4 = sup{α : F1(η4(α);x,Ξ) ≥ F1(0;x,Ξ)}; then there are five roots of
F1(y;x,Ξ) = 0 in (0, 1) for all x ∈ (0, 1) if and only if α ≤ α4, and hence for this range
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of α a single point of condensation can occur at a location which is fully supported on
(0, 1).

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

y

(a) α = α1

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

y

(b) α = α2

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

y

(c) α = α3

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

y

(d) α = α4

Figure 5: F1(y;x,Ξ) evaluated at four different values of α corresponding to the phase
transitions that appear for this choice of Ξ, and at three different values of x: from top
to bottom, x = 1, x = 1

2 and x = 0.

The four transition points satisfy α1 = 35
√
10−116
9 ≈ −0.59114, α2 ≈ −0.87562, α3 ≈

−0.93144 and α4 ≈ −0.96842. Plots of F1(y;x,Ξ) for each of the transition points α1,
α2, α3 and α4 are shown in Figure 5, and plots showing the roots of F1(y;x,Ξ) = 0 for
two specific values of α (α = −0.85 ∈ (α2, α1) and α = −0.95 ∈ (α4, α3)) appear in
Figure 6.

For α = −0.85 the stable roots and touchpoints are given by three continuous partial
functions of x: ψ1 defined on (0, β2], ψ3 defined on [β1, 1 − β1], and ψ5 defined on
[1 − β2, 1), where 0 < β1 < β2 < 1/2. (In fact we have β1 ≈ 0.0492 and β2 ≈ 0.2721.)
Each function gives a stable root on the interior of its domain and a touchpoint on the
boundary. Consequently, by Theorem 2.2, almost surely Ψ(x) takes the value ψ1(x) on
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Figure 6: The roots of F1(y;x,Ξ) for α = −0.85 (left) and α = −0.95 (right).

some interval containing (0, β1), the value ψ3(x) on some interval containing (β2, 1−β2),
and the value ψ5(x) on some interval containing (1 − β1, 1). Thus there are almost
surely two points of condensation. By Theorem 2.3, each of these points of condensation
is caused by a persistent hub with positive probability. However, Theorem 2.4 implies
there is also a positive probability of condensation occurring without a persistent hub
at β1, β2, 1 − β2 or 1 − β1. Figure 7 shows the results of two simulations: in the
first simulation, both points of condensation arise from persistent local hubs, but in
the second the upper part of Ψn shows much slower convergence, apparently towards
condensation at 1− β2. Our results do not give any bounds on the relative probabilities
of these types of behaviour; however, simulations suggest that it is relatively uncommon
to have early hubs forming in both the feasible regions (β1, β2) and (1− β2, 1− β1).
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Figure 7: Results from simulations for α = −0.85
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For α = −0.95 the corresponding partial functions of x are ψ1 defined on (0, 1− β], ψ3

defined on (0, 1), and ψ5 defined on [1−β, 1), where β ≈ 0.3420. In this case Theorem 2.2
implies that there are nontrivial regions on which Ψ(x) takes the values ψ1(x) and ψ5(x),
but there need not be any x for which Ψ(x) = ψ3(x), since that is never the only stable
root. Consequently there may be two points of condensation if such an x exists, and
one point of condensation corresponding to a jump from ψ1 to ψ5 otherwise. Theorem
2.3 implies that each of these types of behaviour has positive probability, and Figure 8
shows the results of two simulations exhibiting the two types of behaviour. As before,
Theorem 2.4 implies that there is a positive probability of non-persistent condensation
occuring at β or 1− β.
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Figure 8: Results from simulations for α = −0.95
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