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ABSTRACT 
Video games routinely use procedural content generation, player modelling, and other forms of 
computational interaction that provide a good starting point for engaging computational 
interfaces. However, across these practices, games model environment (game content) and actor 
(player type) separately, which is out of tune with both basic and applied research. The ecological 
construct of motivational affordances, formalized as actor-environment system ratios, provides a 
promising alternative that could also prove fruitful for computational interaction in general.  

 
INTRODUCTION 
No matter if learning, productivity, behaviour change, wellbeing, or leisure: many interactive 
systems are tasked with reliably motivating their users. In response, HCI has developed theories 
and design formalizations for motivating interactions. From early work by Malone and Carroll on, 
one guiding intuition in this field is that video games form the practical avant-garde such 
motivating interactions, as they are purpose-built to afford enjoyable experiences [1]. And indeed, 
the intuition also holds for computational interaction, “the use of algorithms and mathematical 
models to explain and enhance interaction” [2]. Under the headers game analytics, player 
modeling, and procedural content generation (PCG), the video games industry routinely employs 
the mathematical analysis of large-scale user data, data-driven modelling of users, and artificial 
intelligence techniques to automatically generate and adapt interfaces and content [3,4].  

Arguably the fullest realization of computational interaction for motivation can be found in 
experience-driven PCG [5], such as generating optimally fun Super Mario Bros. levels. Here, a 
generator produces content items like levels. An assessor then evaluates the items based on a 
player model, which could be an a priori computational model of intrinsic motivation or a neural 
network trained on user data. The assessor selects the content items it evaluates to most fit the  
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desired user experience. Players’ actual engagement then is tracked and may in turn serve as input 
to the generator and/or update the player model.  

 
THE CHALLENGE: SPLITTING ENVIRONMENT AND ACTOR 
PCG, player modeling, and game analytics are not only instructive for any motivation-focused 
computational interaction: they also showcase a particular (and problematic) conceptual split: they 
model game content and player, actor and environment separately. On the one side stands 
gamification [1], trying to isolate motivationally ‘active ingredients’ –game design elements that 
reliably evoke the same motivational and behavioral response, irrespective of user or context. For 
instance, it tries to establish whether leaderboards reliably afford goal-setting. In contrast, player 
modeling [6] models traits or ‘player types’ as aggregate, cross-situational preferences for certain 
stimuli or behaviors. For instance, it tries to establish whether there is a “killer” player type that 
prefers to exert dominance over others, which a leaderboard may allow to. The two strands 
predictably meet in work on personalization that attempts to select game design elements that 
optimally fit the preferences of a given player (e.g. [7]). Yet as stated, gamification, player 
modeling, and game personalization all ultimately treat content and user as separable constructs. 

This separate modeling is arguably a conceptual heritage of classic cognitive science, which 
informs strong-going “paradigm 2” HCI [8]. Yet influential as it has been, the classic cognitive 
science story struggles to account for large bodies of empirical research that underwrite 
contemporary ecological, enactive, embodied accounts. These accounts see actor and environment 
not as sharply separate, but enmeshed in a continuous perception-action loop, where actors 
actively move through environmental media to reveal directly action-relevant information that 
comprises environmental and bodily states in their relation [9].  

Applied research concurrently suggests that decontextualized and on their own, neither 
environmental features (game design elements) nor user dispositions (player types) reliably predict 
motivational outcomes. Thus, we found that one and the same design element - a badge - would 
manifest different motivational functions and behavior depending on how users appraised them. 
This appraisal was afforded but not determined by the specifics of both usage context and design 
element [10]. Our work on contextual autonomy support in video game play showed that one and 
the same design and context feature could have diametrically opposed motivational outcomes 
depending on how it related to context and current user dispositions. To wit, a branching narrative 
could afford autonomy in leisurely play but thwart autonomy if part of a work task that involved 
methodically documenting the whole game. Pre-planned play time would only be perceived as 
autonomy-thwarting if the demanded play time window mismatched the player’s own 
spontaneous wants and situational opportunities [11]. 

 
THE ALTERNATIVE: MOTIVATIONAL AFFORDANCES 
One construct that spans the environment-actor divide is affordances. First developed by ecological 
psychologist J.J. Gibson, affordances capture directly perceivable actionable properties of the 
environment to an organism, such as the “sit-on-ability” of a chair (see [20] for a review).  
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Figure 1: Modelling affordances as actor-
environment ratios. Warren [14] 
modelled climb-ability as the ratio of leg 
length (L+L1-L2) to stair Riser height R, p 
= R/L. Individuals converge around p=0.24 
as the materially least energy-consuming 
and perceptually most ‘climbable’ ratio, 
and p=0.88 as the maximum climbable 
ratio. Figure taken from [14].  
 

Figure 2: Flow or “optimal experience” as 
a ratio of actor skill S and environmental 
challenge C, p = C/S, suggesting an 
optimum p=1, with p>1 causing anxiety 
and p<1 causing boredom. Figure adapted 
from [15].      
 

Importantly, affordances are conceived to exist only in relation to particular organisms: grass is and 
appears as edible to a cow, not a whale. It is simply meaningless to speak of the edibility or sit-on-
ability of an object without reference to a particular organism. Affordances are central to 
contemporary enactive, embodied, ecological accounts of action and perception, and have been 
actively adopted in HCI and design, albeit often parsed in cognitivist, paradigm 2 terms [12]. 

Taking a cue from this, researchers have suggested motivational affordances as a construct to 
capture the motivating qualities of interactive systems (again often in cognitivist terms) [13]. In 
previous work, I tried to articulate a fully ecological, relational conception of “situated 
motivational affordances” as “the opportunities to satisfy motivational needs provided by the 
relation between the features of an artifact and the abilities of a subject in a given situation” [13]. 
This conceptualization accounts for aforementioned findings that humans encounter a rich socio-
cultural world where objects have different uses and meanings depending on situational context. 

While the concept has found adoption and inspired design work, it does not readily indicate 
ways of formalizing motivational affordances, which is crucial for computational interaction. Here, 
ecological psychology can provide inspiration. Warren [14] notably operationalized affordances as 
system ratios of environmental to actor variables. He successfully predicted the perceived and actual 
climb-ability of stairs as a ratio of stair step height to an individual’s leg riser height: the 
metabolically optimal, least energy-consuming ratio was also freely chosen by participants on pure 
sight as the most desirable one (figure 1). 

This move to actor-environment system ratios may not be always readily apparent. (One refrain 
of ecological psychology has been that identifying the relevant actor and environment properties 
for the affordances of most tasks remains an open empirical task.) But logic suggests that where 
these are identified, an affordance-as-system-ratio model should be more predictive than modeling 
either side individually. To take the legs and stairs example: If we were to model climb-ability as a 
function of stair height alone, we would get people’s varying leg heights as noisy deviation around 
an aggregate mid-point. Similarly so if we were to model climb-ability as a function of leg height 
against the naturally occurring variance of step heights. 

To illustrate the practical applicability of this approach to motivational affordances within a 
broader project of computational interaction, I will give two examples of currently ongoing 
projects, one on difficulty balancing and one on novelty balancing. 

 
CASE 1: DIFFICULTY BALANCING 
Difficulty balancing is a well-established practice in game design [16], grounded largely in 
Csikszentmihalyi’s flow model [15] (figure 2). Following Csikszentmihalyi, activities tend to engage 
when their difficulty matches our skill. If difficulty is lower than our skill, the task is boringly easy. 
If difficulty exceeds our skill, the task induces anxiety and frustration. As people’s skill tends to 
improve with practice, task difficulty needs to increase in lockstep to keep people engaged. 
Informed by Csikszentmihalyi, game designers try sequence game tasks in a well-formed difficulty 
curve. Yet since players’ skills and learning speeds differ (one curve doesn’t fit all), designers use 
various means of difficulty adjustment [16], ranging from player options (e.g. selecting between  
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Figure 3: In the crowdsourcing game 
Paradox, players try to manipulate nodes 
in a visual network to reach a desired 
100% rate of satisfied edge requirements, 
covertly doing a software verification 
task [17]. We implemented the player 
rating system Glicko-2 to match players 
and crowdsourcing tasks/levels, using 
player winning odds Ep as our target 
affordance, which can be calculated from 
the relation of player and level rating, 
Ep(r,v) = 1/(1 + 10(v−r)/400), where r is the 
player and v is the level rating. Figure 
from [17]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

easy, medium, and hard mode) to systems automatically adapting difficulty in response to player 
performance.  

In prior work, we extended such dynamic difficulty adjustment to crowd work, specifically the 
crowdsourcing game Paradox [17] (figure 3). Crowdsourcing games and other crowdsourcing 
platforms are known to suffer from poor retention: the majority of volunteers leaves after a short 
engagement, never to return. One reason is that crowdsourcing platforms rarely provide any 
difficulty balancing. Tasks are served either at random, or to optimize informational gain on the 
task, not user engagement. As a result, users may be early on served far too difficult tasks, 
triggering frustration and abandonment [17].  

Unlike game content, crowdsourcing tasks pose the problem that tasks aren’t created or 
manipulated at will (they depend on the job to be done), nor is their individual difficulty known in 
advance. To circumvent this issue, we repurposed player ranking systems to select (not create or 
adapt) tasks with ‘fitting’ difficulty. Roughly, ranking systems like the ELO Chess ranking give 
each player a numerical rank, where the delta between two matched players can be used to 
calculate the winning odds of the match. The actual match outcome is then used to update the 
ranking score of each player. ELO derivatives like Glicko or Trueskill combine this with confidence 
ratings based on how many matches have informed each player rank. In our system, we treated 
tasks as players, banking on the fact that each task is usually solved by more than one player for 
verification purposes. Thus, we have a uniform variable – a rank – that expresses both player skill 
and task difficulty. The relation of both – the rank delta – allowed us to predict the difficulty level 
of each user-task match. We experimentally compared a system randomly serving tasks to one 
serving tasks in uniform increasing difficulty and one matching difficulty to skill, and found that 
the matchmaking system led users to solve more, and more high-difficulty tasks [17].  

 
CASE 2: NOVELTY BALANCING 
Curiosity has been long considered an important motive driving exploratory behavior, play, and 
learning. Early work established a range of stimulus features that stoke curiosity, such as novelty, 
complexity, uncertainty, or conflict [18]. As with flow, there is some of an optimal ‘goldilocks’ mid-
point for complexity and novelty [21]. Evidence also suggests that the effect of novelty and 
complexity charts a relation to the individual’s knowledge. People more knowledgeable in music or 
painting would voluntarily expose themselves longer to more complex visuals or melodies [18]. 

Current work in cognitive science is converging around the idea that curiosity is a crucial 
motive driving organisms to explore their environment to increase their ability to predict future 
internal and external states [9]. Actors aim to predict and realize desirable future states, which 
entails orienting themselves towards and collecting more input on instances where their prediction 
mismatches perception. The higher the prediction error or surprisal, the more unknown, uncertain, 
and curiosity-inducing a phenomenon is – which again traces a relation between actor (prediction) 
and environment (perceived reality). The optimal learning strategy is to actively seek out instances 
where the organism expects the steepest decline in prediction error [19]. 
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Figure 4: Kidd et al. [21] use a Markov 
Dirichlet-multinomial model to 
implement and test a simple Bayesian 
ideal observer model, predicting that the 
likelihood of looking away (as a 
behavioural expression of lost interest) is 
predicted by the expected (negative log) 
probability of the next presented 
stimulus. Empirical data with 7-8m old 
infants confirmed their model prediction 
of a ‘goldilocks’ midpoint. Again, the 
motivational affordance ‘interestingness’ 
(information content) is modelled as a 
relation of actor (prior belief) and 
environment (next event). Figure taken 
from [21].  
 

 
 
 
 

 
Conveniently, this model has been formalized in e.g. “active sampling” learning algorithms for 
artificial agents [19] and computational models of e.g. attention [21] (figure 4). In current work, we 
are trying to transfer these formal models of curiosity into computational interactions for novelty 
balancing. We plan to use PCG frameworks to generate Super Mario Bros. level sequences that are 
then played by artificial agents which will provide novelty ratings for each level and the overall 
sequence as an aggregate of prediction errors experienced across each level. We will then compare 
this rating with human player ratings of novelty and curiosity to see whether their experiences 
track the computational measure. 
 
CONCLUSION 
Video games feature rich precedents that can inspire computational interaction for motivational 
interfaces. Yet like computational interaction more broadly, games tend to model actor and 
environment as separate, which is contradicted by current cognitive science and produces 
unreliable systems. In this paper, I argued for affordances, modelled as actor-environment system 
ratios, as a possible alternative. I illustrated this alternative approach with two projects. While 
they leave many questions unanswered and may turn out impractical for many use cases, I believe 
they still give an important impulse to advance the wider discourse around computational 
interaction. 
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