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Abstract

Paternal contributions to the zygote are thought to extend beyond delivery of the
genome and paternal RNAs have been linked to epigenetic transgenerational
inheritance in different species. In addition, sperm-egg fusion activates several
downstream processes that contribute to zygote formation, including PLC zeta-
mediated egg activation and maternal RNA clearance. Since a third of the
preimplantation developmental period in the mouse occurs prior to the first cleavage
stage, there is ample time for paternal RNAs or their encoded proteins potentially to
interact and participate in early zygotic activities. To investigate this possibility, a
bespoke next generation RNA sequencing pipeline was employed for the first time to
characterise and compare transcripts obtained from isolated murine sperm, MIl eggs
and pre cleavage stage zygotes. Gene network analysis was then employed to
identify potential interactions between paternally and maternally derived factors
during the murine egg to zygote transition involving RNA clearance, protein
clearance and post-transcriptional regulation of gene expression. Our in silico
approach looked for factors in sperm, eggs and zygotes that could potentially
interact co-operatively and synergistically during zygote formation. At least five
sperm RNAs (Hdac11, Fbxo2, Map1lc3, Pcbp4 and Zfp821) met these requirements
for a paternal contribution, which with complementary maternal co-factors suggest a

wider potential for extra-genomic paternal involvement in the developing zygote.
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Introduction

Assuming fertilisation is successful, spermatozoal entry into the egg triggers a series
of events that ends with the transformation of the terminally differentiated egg into
the totipotent zygote. Alongside the paternal genome, the sperm also delivers non-
genomic factors including the microtubule organising centre or centriole (excepting
rodents), the oocyte-activating factor, PLC-zeta (Saunders et al, 2002; Barroso, et al.
2009) and a complex repertoire of RNAs to the egg (Ostermeier, et al. 2004, Yuan, et
al. 2015). Both sperm and egg are transcriptionally silent (Braun 2000, Richter and
Lasko 2011) and the egg-to-zygote transition (EZT) occurs in the absence of
transcription (Evsikov, et al. 2006). While somatic nuclear cloning (Gurdon and
Melton 2008) and the generation of viable gynogenetic mice (Kono, et al. 2004)
suggest that maternal factors alone are sufficient to guide early embryo
development, these processes are grossly inefficient and structural or signaling
factors from the sperm may complement maternal factors that could participate in
and aid the early programming of embryonic development (Jodar, et al. 2015, Miller

2015).

Paternal RNAs can epigenetically affect transgenerational inheritance through
specific small non-coding RNAs (sncRNAs) and associated RNA-binding proteins
(Chen, et al. 2016, Rodgers, et al. 2015). In Caenorhabditis elegans, a hybrid strain
crossing showed that approximately 10% of embryonic RNA is of paternal origin with
functional importance during EZT and possibly embryogenesis (Stoeckius, et al.
2014b). An equivalent paternal contribution to the mammalian zygote will be small by
comparison, but evidence of the potential for sperm RNAs (or their translated
proteins) to contribute to and participate in zygote formation is strong and worthy of

further investigation.
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Early molecular processes in the zygote can be classified into three main categories
including maternal clearance, chromatin remodeling and eventually zygotic genome
activation (ZGA) (Lee, et al. 2013). Maternal clearance is the process of removing
maternal factors including RNAs and proteins essential for oogenesis that become
surplus to requirements after fertilisation (Tadros and Lipshitz 2009). Post-
transcriptional regulation plays a role during EZT and includes the destruction of
maternal mMRNAs guided by their 3’ untranslated (3' UTR) sequences (Giraldez
2010). Compared with approximately 2000 proteins reported in pre cleavage stage
zygotes of M. musculus, over 3500 proteins have been identified in metaphase |l
eggs (Wang, et al. 2010, Yurttas, et al. 2010). During the embryonic development,
this removal of maternal factors is guided mainly by ubiquitin-dependent degradation

pathways and by autophagy (Marlow 2010).

While transcriptionally inert, MIl eggs and zygotes are likely to be translationally
active (Fang, et al. 2014, Potireddy, et al. 2006), leaving open the possibility for
sperm RNAs to be translated into proteins following their introduction to the egg
(Fang, et al. 2014). We reasoned that a potential non-genomic paternal contribution
would most likely involve interactions with maternal factors responsible for the
regulation of gene expression prior to the EZT and the clearance of maternal factors
prior to embryonic genome activation. The main objective of the study, therefore was
to see if in silico analysis of RNA sequencing data obtained from sperm, MIl eggs
and pre cleavage stage zygotes (PCZ but henceforth referred to as zygotes) using
an identical bespoke protocol, could highlight potential interactions between paternal
and maternal cofactors brought together by fertilisation. Herein, we focus on five, full
length mRNAs present at high levels in murine sperm that with associated maternal
cofactors, fit the requirements for a potential paternal, non-genomic metabolic

contribution to the zygote.
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Materials and Methods

Study design

RNAs isolated from pooled murine spermatozoa, single MIl eggs and single zygotes
were sequenced and compared. To help identify paternal RNAs with the potential to
participate in EZT events, we looked firstly for candidate RNAs that were highly
represented in sperm, thus increasing the probability of being delivered to and
translated by the zygote or being translated into protein during the late stages of
spermatogenesis and delivered to the MIl egg at fertilisation. Secondly, considering
the highly fragmented nature of sperm RNA, no less than 80% of the exonic regions
of at least one gene isoform of a ‘candidate’ paternal cofactor had to be covered by
RNA-Seq reads, giving a greater potential for the RNA to be functional. Thirdly,
sperm RNAs with good sequence coverage were only considered further if their

ontological descriptions suggested functions other than spermatogenesis.

A bespoke identical library preparation method and sequencing pipeline was applied
to all samples allowing accurate comparative assessment of RNAs across the
different samples. The library kit used (Ovation single cell RNA-Sequencing system,
NuGEN, CA, USA), has a mix of oligo-dT and random primers targeting a wider
range of transcripts, including those with varying poly(A) tail lengths, typically
encountered in gamete and zygotic mMRNAs (Paranjpe, et al. 2013). Cytoscape’s
GeneMANIA module (see below) was then employed for the in silico analysis
investigating potential interactions between gene products of paternal and maternal

origin (Warde-Farley, et al. 2010).

Ethics
Experiments involving the use of animals were regulated under the Home Office, UK
Animals Scientific Procedures Act (ASPA) under license service PPL 40/3391

approved by the University of Leeds AWERC (Animal Welfare Ethical Review
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Committee). All animals were culled using cervical dislocation in accordance to

Schedule 1 of the ASPA.

Mouse gamete and zygote harvest

Groups of C57BL/6J females were super-ovulated with a 5 IU dose of pregnant
mares’ serum gonadotropin (PMSG) (Sigma Aldrich, MO, USA) injected
intraperitoneally (I/P) on day 1, followed at day 3 by a 5IU dose of human chorionic
gonadotropin (HCG) (Sigma Aldrich, MO, USA) I/P and mated with vasectomised
males to provide MIl eggs. The zygote groups were mated to proven C57BL/6J stud
males immediately after hCG dosing and checked the following day for post coital
plugs. Plugged females were pooled and used for zygote harvest. Both zygote and
MIl egg groups were sacrificed on day 4. Oviducts from the zygote and egg groups
were harvested separately and suspended in M2 media (Sigma Aldrich, MO, USA).
Dissected oviducts were placed into a pre-heated dish of synthetic Human Tubal
Fluid (HTF) media (Irvine scientific, CA, USA) with bovine serum albumin (BSA)
(Sigma Aldrich, MO, USA). Cumulus masses were released into the HTF/BSA
medium and transferred into a drop of hyaluronidase (Sigma Aldrich, MO, USA)
following which, a wide bore pipette was used to strip the eggs and zygotes of their
cumulus cells. These were in turn collected by mouth pipette and washed through

sequential drops of M2 media (Sigma Aldrich, MO, USA).

Sperm harvest

The epididymides of fertile C57BL/6J males were dissected out and transferred into
pre-warmed HTF (Irvine Scientific, CA, USA). Using a sterile 26G needle, small
incisions were made in the cauda and sperm were allowed to swim out before
collection by gentle aspiration. Spermatozoa were washed in HTF (Irvine, CA, USA),
filtered through an 80-micron mesh (Sigma Aldrich, MO, USA) and centrifuged at

500xg prior to resuspension and centrifugation through a two-layer (65%-50%)
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discontinuous percoll gradient (GE Healthcare Biosciences, Uppsala, Sweden) at
300xg, employing the Prolnsert technology (Nidacon International AB, Gothenburg,
Sweden) to facilitate the selective isolation of pelleted spermatozoa while preventing
possible contamination by somatic cells (Fourie, et al. 2012). Spermatozoa were
pelleted at 500xg and washed twice in Dulbecco’s phosphate-buffered saline (DPBS)
(Thermo Scientific, MA, USA) Approximately 1 million spermatozoa were harvested
before the second wash and Giemsa stained (Sigma Aldrich, MO, USA) to visually
confirm lack of other cell types using a Leica Leitz DMRB microscope (Mazurek

Optical Services, Southam, UK).

RNA isolation and library construction

Sperm RNA was extracted using the method described by Goodrich (Goodrich, et al.
2013) with modifications. Briefly, 10’ spermatozoa were placed in RLT buffer
(Qiagen, Hilden, Germany) with 1.5% B-mercaptoethanol (Sigma Aldrich, MO, USA)
and 0.5mm nuclease free stainless steel beads. Following homogenisation with a
DisruptorGenie™ cell disruptor (Thermofisher Scientific, MA, USA), an equal volume
of chloroform was added followed by centrifugation at 12,000xg (4°C), allowing
recovery of the RNA. Prior to library construction, any residual genomic DNA was
removed from the samples by digestion with Turbo DNase (Thermofisher Scientific,
MA, USA) following the manufacturer’'s instructions. Quantitative Real-Time PCR
(qRT-PCR) using Prm2 and Map1ic3a intron spanning primers with SybrGreen PCR
mastermix (Applied Biosystems, CA, USA) was employed to monitor for DNA

contamination.

Sperm RNA quality assessment was carried out using the RNA-6000 pico assay
(Agilent, CA, USA) on a 2100 Bioanalyzer (Agilent, CA, USA), where the absence of
clearly defined peaks from 18S and 28S ribosomal RNAs (low RIN score) indicates

corresponding absence of contaminating somatic cell RNA (supplementary Figure 1).
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As additional QC, Real-Time qPCR primers for the Melanoma-Associated Antigen
D2 (Maged?) were used to confirm potential contaminating somatic cell RNA in these
preparations (principally from Leydig and Sertoli cells; Chalmel, et al. 2007). Only
spermatozoal cDNAs shown to be free of genomic DNA and somatic RNA

contamination were used for library construction.

Mouse eggs and zygotes were processed at the single cell level. Each cell was
transferred by mouth pipette into lysis buffer, after being immersed in DPBS (LIFE
Technologies, USA) in a washing step containing 0.1% BSA (Sigma-Aldrich, MO,
USA). Following first and second strand synthesis and processing using the Ovation
single cell RNA-Seq system (NuGEN, USA), lllumina adaptor sequences were
ligated to the sperm, egg and zygote cDNAs. Two rounds of library amplification
were carried out and the fragment distribution was checked using the Agilent high
sensitivity DNA assay on the 2100 Bioanalyser (Agilent Technologies, CA, USA).
The libraries were quantified using Picogreen assay (Thermo Scientific, MA, USA) on
a FLUOstar Galaxy plate reader (MTX Lab Systems, USA) and pooled. The lllumina

HiSeq 2500 and 3000 platforms were employed for RNA-Seq.

Bioinformatics Analysis

Spermatozoa, MIl eggs and zygotes from a minimum of three biological replicates
each were sequenced using either 50bp (single-ended) or 150bp paired-end reads.
RNA-Seq data underwent automated adapter and quality trimming using Trim
Galore! v0.4, ignoring reads with MAPQ<20 (Krueger 2015). The reads above this
threshold were mapped to the Mus musculus reference genome (mm10) using the
subjunc function of the Rsubread package version 1.20.3 (Liao, et al. 2013b). The
output BAM format files were sorted using Samtools version 1.3 (Li, et al. 2009) and
duplicate reads removed using the Picard MarkDuplicates tool version 2.1.1 (Broad

Institute. (2010), available online at http://broadinstitute.github.io/picard). BedGraph
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and bigwig files were generated using Bedtools version 2.25.0 (Quinlan and Hall
2010), and the function bedGraphToBigWig
(http://hgdownload.soe.ucsc.edu/admin/exe/macOSX.x86_64/bedGraphToBigWig).

After removal of duplicate unmapped and incorrectly paired reads using Samtools
version 1.3 (Li, et al. 2009), the reads were visualized on the UCSC genome browser
(Kent, et al. 2002). The numbers of reads assigned to genomic features were
counted using the featureCounts function of Rsubread (Liao, et al. 2013a). For
paired-end libraries, we required both read mates to be uniquely mapped in the
correct orientation. All remaining options were set to featureCounts default.
Differential RNA representation in Mll egg and zygote RNA-Seq libraries was tested
using the edgeR exact test (Robinson, et al. 2010) and only genes represented at
levels 210 counts-per-million reads (CPM) in at least 6 out of 7 MIl and zygote
libraries were included in the downstream analysis. The only exception to this rule
was for five maternal transcripts with reads just below 10 CPM, represented across
all exons, that were also included. Data normalisation was based on the trimmed
mean of M value (TMM) using the calcNormFactorsfunction (Robinson and Oshlack

2010).

Ontological analysis, gene networks and molecular interactions

Ontological descriptions of RNAs from sperm, MIl eggs and zygotes were derived by
DAVID v6.8 (Huang, et al. 2009), with a subsequent focus on biological processes.
Gene networks involving candidate spermatozoal and maternal factors were
identified by the Cytoscape module GeneMANIA v.3.4.1; (Warde-Farley, et al. 2010).
GeneMANIA uses publically available data sets, encompassing physical and

molecular interactions, co-expression, co-localisation and molecular pathways.

NGS validation using quantitative real-Time PCR
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Following first-strand cDNA synthesis, the cDNA of mouse MIl egg, zygote,
spermatozoal and testicular RNA (positive control) was amplified by long distance
PCR, using the SMART-Seq v4 ultra low input RNA kit (Clontech, USA). Validatory
quantitative real-time PCR was carried out as required using gene-specific primers
(supplementary Table 1) and SYBR green on an ABI 7900HT Real-time PCR system
(Applied Biosystems, CA, USA) over 40 cycles according to the manufacturer’s
instructions. The annealing temperature per primer pair ranged between 59°C and

62°C.

Results

1. RNA characterisation and ontological profiles

The average correctly paired and mapped reads per sperm RNA sample was
calculated at 20 + 2 x 10°. The average number for MIl eggs was 18 + 1.5 x 10° and
for the zygotes 20 + 1.5 x 10° per sample. RefSeq IDs for sperm, MIl eggs and
zygotes, alongside differentially expressed RNAs using EdgeR for MIl eggs and
zygotes are listed in the supplementary info (RNA lists). While we cannot be certain
that RNAs common to sperm and zygotes originated in the fertilising sperm, our
initial approach was to look for sperm RNAs that were absent in MIl eggs but present
in zygotes. Figure 1A shows Venn diagrams for overlaps between sperm, MIl egg
and zygote RNAs =10 CPM. In aggregate, 5,368, 5,148 and 1,918 RNAs were
reported, respectively from MIl eggs, zygotes and sperm with 75 shared between
sperm and zygotes that were either absent altogether or present in MIl eggs at well
below threshold reporting levels. The same sperm list compared with EdgeR
normalised reads for MIl egg and zygote RNAs yielded 56 RNAs shared between
sperm and zygotes (Figure 1B). Closer scrutiny of the read data, however, showed

all but four of these ‘shared’ RNAs were detected in MIl eggs albeit at low levels of
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expression (<10 CPM). The four absent in MIl eggs were more fragmented in sperm

than in zygotes, suggesting they were not sperm-specific.

An alternative approach focused simply on highly abundant sperm RNAs with good
exon coverage that were essentially absent in both MIl eggs and zygotes. To help
narrow down the list of hundreds of possible RNAs to pursue in this regard,
functional annotation clustering (supplementary info; FAC sheets) was employed to
provide a general overview of MIl egg and zygote RNAs using the lists of
differentially expressed MIl egg and zygote RNAs generated by EdgeR alongside the
list of sperm RNAs selected on the basis of high representation and good exon
coverage. A graphical representation of the numbers of genes in the main ontological
annotations (biological processes) for sperm, MIl eggs and zygotes is shown in

supplementary Figure 2.

As shown in Table 1 and in supplementary info (BP; EdgeR sheet), the expected top
sperm annotation related to spermatogenesis as a differentiation process, with
associated weaker enrichments in processes associated with lipid metabolism and
DNA condensation. Enrichment for annotation relating to the control of transcription
dominated the ontological descriptions for both MIl eggs and zygotes, which was
expected considering the similarity between them (Table 1 and supplementary info;
BP EdgeR sheet). Focusing on differential expression between the two, however,
revealed interesting differences (supplementary info; BP EdgeR MIl or PCZ Up
sheet). MIl eggs showed specific enrichments in activities relating to mRNA
processing, while the cell cycle showed the strongest enrichment in zygotes.
Processes relating to ubiquitination and transcription were more apparent in
differentially up-regulated RNAs from zygotes but not MIl eggs, suggesting that
clearance activity and perhaps renewed RNA processing triggered by fertilisation

may have already commenced in zygotes at the time of harvesting.

1 reproduction@bioscientifica.com
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Using the functional annotation of highly expressed RNAs as guidance alongside
closer inspection of the selected gene lists from sperm, MIl eggs and zygotes,
potential interacting partners relating to clearance of maternal factors were revealed.
Considering the RNAs’ high expression in sperm compared with MIl eggs and
zygotes, their exclusion from the dominant spermatogenesis ontology and their
relative freedom from fragmentation as assessed by exon coverage, five sperm
RNAs were selected for follow up (Table 2). These include the histone deacetylase
11 (Hdac11), the Rbx1-SCF E3 ubiquitin-ligase component F-box protein 2 (Fbxo2),
the microtubule-associated protein 1A/1B light chain 3A (Map1ic3a), the poly (rC)-
binding protein 4 (Pcbp4) and the zinc finger protein 821 (Zfp821). These five sperm
RNAs were in turn interrogated using GeneMANIA for all known interacting partners,
which returned approximately 100 genes of which 37 were either present in the up-
regulated zygotic transcripts or in the list of shared (MIl & zygote) maternal RNAs
(Table 2). Together, these paternal and maternal RNAs comprise the gene network
profile shown in Figure 2. The network’s functional annotation was dominated by
strong enrichment in processes related to ubiquitin-mediated degradation pathways
(supplementary info; BP EdgeR sheet), reflecting the ontology of up-regulated

transcripts in zygotes.

2. Predicting and providing evidence for potential parental interactions

Network analysis (Figure 2) suggested that paternal (4') and maternal (?) cofactors
could interact in pathways leading to EZT. An example is illustrated in Figure 3 for
the gamete-specific cofactors of the multiple component SCF E3 ubiquitin ligase
complex which includes Fbxo2 (also known as Fbs1d; A) alongside Cullin 1 (Cul1%;
B), Ring Box 1 (Rbx1?2; C) and S-Phase Kinase-Associated Protein 1A (Skp1a%; D).
These genes are indicated in Figure 2 by boxes. Note that reads covering all exons
for Fbxo2, were strongly represented in the sperm RNA libraries but with few or no

reads from either MIl egg or zygote libraries. In contrast, with the exception of Fbxo2,
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RNAs encoding the other cofactors of the SCF-E3 ubiquitin ligase complex were
highly represented in both MIl eggs and zygotes but not in sperm. Additional
predicted interactions between Fbxo2J3 and the maternally expressed Fbxo59 and
Fbxo349 were also suggested (Table 2 and Figure 2; boxes). Real-time qPCR
confirmed the expression of paternal factors in sperm and testis (Figure 4) and
although products were generated for Map1ic3a from all sources (panel A), Ct data
confirmed that the RNA was considerably more abundant in sperm (see panel B). A
142bp product from Maged 2 was only detected in RNA from eggs and testis,
indicating that sperm libraries were free of contamination by RNAs from testis-
derived somatic cells. All PCR products were obtained from samples after 40 PCR
cyles and so the products shown in panel A are only qualitative. The corresponding

Ct values give more quantitative assessments.

UCSC tracks are shown in supplementary Figure 3 for a number of additional,
GeneMANIA suggested potential paternal-maternal interacting cofactors. Hdac113
(A), which was highly expressed in sperm, could interact withthe Mitotic Checkpoint
Serine/Threonine Kinase B, (Bub1?Q; B) and cell division cycle protein 20 (Cdc209;
Figure 2; ovals). GeneMANIA also suggested potential co-localisation and co-
expression between Hdac113, Hdac2? and Hdac8 (Figure 2; ovals) with Hdac113
and Hdac2? having shared protein domains. Predicted interactions with the Nelfcd?
and Aamp? were also highlighted (Figure 2; ovals). Reads from a long terminal
repeat (LTR&) region located within the 8" intron of Hdac71, which could potentially
be expressed independently of Hdac173 RNA were also noted (supplemental Figure

3A).

The ubiquitin-like protein Microtubule Associated protein 1, light chain 3 alpha
(Map1ic3ad; C) is involved in autophagosome formation and GeneMania indicated

functional interactions with several maternal factors, including Map1b?Q (D), Atg3%
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(E) and Atg10% (Figure 2, boxes with course dashed lines) of which Af{g39 and
Map1b?Q showed high levels of expression in MIl eggs and zygotes with good exonic
representation and were absent in sperm. In addition, Pcbp43 (F), which may
complement the heterogeneous nuclear ribonucleoprotein K (Hnrnpk®; G) and
Quaking (Qk?; H; and Figure 2, pentangles) were highly represented in MIl eggs and
zygotes but not in sperm. The corresponding maternal proteins are involved in post-
transcriptional regulation of gene expression, protein degradation and the cell cycle.
Pcbp4 & also has predicted interactions with Pcbp1? and co-localises with the
Pcbp2? isoform. Finally, GeneMANIA reported predicted interactions between
Zfp8213 (1), which may be involved in transcriptional regulation, Fchsd29 and
Rimlkb® (Figure 2; boxes with fine dashed lines). Zpf8217 is highly expressed in

sperm but not MIl eggs and zygotes.

Discussion

Existing sequencing germ line and zygote datasets are not fully complementary and
are therefore difficult to compare (they either omit sperm or MIl eggs or zygotes from
their analysis) and are derived from library construction methods that differ between
the various cell types (Johnson, et al. 2015, Tang, et al. 2010, Xue, et al. 2013). To
avoid introducing methodological effects and bias, we used a bespoke pipeline that
included construction of our own libraries for sequencing and analysis. Sperm
contain far less RNA than either MIl eggs or zygotes; therefore, sperm libraries were
unavoidably derived from sperm-specific pooled samples while MIl egg and zygote
libraries were from individual cells. The equivalent read counts obtained from the
three sources demonstrate the care taken to assure quantitative equivalence of input
RNA. We found, however, that relying on comparisons between the three to select
sperm-specific factors were problematic, because although representation may have
been too low to report the RNA as present in MIl eggs or zygotes (for example), we

frequently encountered reads indicating fragmented RNA in both regardless. We
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focused, therefore, on highly abundant RNAs with full-length transcripts in sperm, Ml
eggs and zygotes and with demonstrably reciprocal representation (in sperm but not
MII eggs or zygotes and the reverse) following inspection of RNA-Seq tracks on the

UCSC browser and where necessary, confirming by qRT-PCR.

In silico analysis of our RNA sequencing data supports the possible complementation
of maternal with paternal factors introduced at fertilization. Five highly expressed
sperm RNAs were considered based on their relative low abundance or absence in
MII eggs or zygotes. All factors potentially interacting with translated products from
these RNAs were mapped out using the pathway and network analyses tools in
GeneMANIA. These factors were then matched to corresponding maternal cofactors
to help identify those with a greater potential to participate in EZT pathways. As the
predicted interactions were more likely to be between proteins, where possible we
checked for a corresponding proteomic record of the RNAs in question (Skerget, et
al. 2015, Wang, et al. 2013, Wang, et al. 2010). Sperm RNAs could either be
translated into proteins during late spermatogenesis or if delivered to the MIl egg, in
the pre cleavage stage zygote (Fang, et al. 2014). We also searched for reproductive
effects of existing knockout models for the corresponding genes of parental factors

where available (supplementary Table 2).

The current study provides evidence of a novel role for paternally introduced factors
in murine zygotic RNA/protein clearance (Sato and Sato 2013, Stitzel and Seydoux
2007). The RBX1-SCFE3 ubiquitin ligase complex, for example, plays an important
role during gametogenesis and mouse embryogenesis, catalysing the ubiquitination
of proteins during cytoplasmic turnover, which are then destined for proteasomal
degradation (Jia and Sun 2009, Sato and Sato 2013). The F-box family includes
FBXO2, which is an E3 ligase adaptor protein targeting glycosylated proteins for

degradation. Our network analysis, showed that all RBX1-SCF E3 ubiquitin ligase
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components but one (Fbxo2J) were maternally expressed (McCall, et al. 2005) and
on fertilisation, FBXO2J could complete the complex and be active in the EZT. The
FBXO2 protein is also present in mature sperm (Wang, et al. 2013) and has been
linked to idiopathic male infertility (Bieniek, et al. 2016). Similarly, MAP1LC3AJ is a
ubiquitin-like modifier (Cherra, et al. 2010) with potential autophagic interactions with
ATG3? and MAP1B%. MAP1B protein is also present in eggs and zygotes. Both
Atg3 and Map1b KO studies show lethality one day after birth (supplementary Table

2).

Quaking (QK)?, HNRNPK? and PCBP1/2/42/3 showed predicted in silico
interactions as part of the post-transcription regulatory process. In C. elegans, the
first wave of degradation of egg factors involves PES4 (Stoeckius, et al. 2014a), a
member of the PCBP family of RNA-binding proteins that post-transcriptionally
regulate alternative polyadenylation at a global level (Ji, et al. 2013). Both members
of the Poly-(rC) binding protein family, PCBP4J and PCBP1/229, detected in our
analysis, are mammalian orthologues of the nematode PES4 protein. Potential
interactions between HDAC113, BUB1BQ and CDC20% were predicted by our
analysis and both Hdac11 and Bub1b were detected in high levels in sperm and
eggs/zygotes, respectively. HDAC114 is involved in epigenetic repression,
transcriptional regulation and embryonic development (Bagui, et al. 2013, Haberland,
et al. 2009, Sahakian, et al. 2015). HDAC11 activates BUB1B by deacetylation,
which in turn lifts the inhibition of the CDC20/APC complex, activating its ubiquitin
ligase activity (Watanabe, 2014). Although the fertility rate of mice homozygous for
Hdac11 deletion has not been reported, Cdc20 KO mice showed 2-cell embryo arrest
and Bub1b KO mice show developmental arrest in early gestation (E8.5)

(supplementary Table 2).
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A particularly interesting finding was the expression of a long terminal repeat (LTR)
transposable element, located entirely within the 8" intron of Hdac11 (intragenic) in
sperm, which was absent in both MIl eggs and zygotes. LTR RNAs are expressed
abundantly in mouse eggs and zygotes where they are thought to augment the
regulation of host gene expression (Goke, et al. 2015, Peaston, et al. 2004).
Spermatozoal LTRs transferred into the oocyte during fertilization, could lead to new
retrotransposition events and possibly genetic alterations (Kitsou, et al. 2016).
Paternally derived Hdac11 LTRs may have maternal targets that together participate

in the regulation of zygotic gene expression.

In conclusion, our data supports the argument favouring extra-genomic contributions
by the fertilising sperm to the zygote. In addition to the inheritance of acquired traits
propagating transgenerationally via sperm RNA (Chen, et al. 2016, Gapp, et al.
2014), our data and its analysis provides evidence for a role of paternal RNAs or
proteins in maternal clearance during EZT. Sperm may deliver signals or factors that
can potentially interact locally with maternal cofactors and act, perhaps as a ‘last
minute’ checkpoint or gateway for embryonic genome activation (EGA). The
hypothesis of confrontation and consolidation with regard to the uniquely invasive
nature of sperm entry to the egg falls into this latter category (Bourc’his and Voinnet
2010, Miller 2015). Figure 5 shows a model for how a sperm factor introduced at
fertilisation might complement a maternal cofactor or pathway required for the EZT.
At least one such sperm-borne factor, PLC zetad is already known to activate the
oocyte (Saunders, et al. 2002). A similar approach to ours could be employed to
investigate paternal/maternal interactions in humans. However, to confirm the
potential biological relevance of the suggested interacting cofactors reported in this
study, additional work such as RNA knock down upon or conditional gene knock out
prior to fertilization would require the mouse model. In view of the renewed concern

over rising human male infertility (Levine 2017) and the rapid rise and expansion of
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using model systems is fully justified.
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Figure legends

Figure 1. Venn diagrams for the cross-representation of sperm, Mil egg and
zygote RNAs. Panel A shows the overlaps between all RNAs, aggregated from all
biological replicates at = 10 CPM from each of the three sources. Panel B shows
similar overlaps, except that the selected lists for MIl eggs and zygotes were
obtained after testing with Edge R, which normalises the data and identifies
differentially expressed RNAs that are significantly ‘up’ in MIl eggs or in zygotes.
These over-represented RNAs are then added to the list of RNAs common to both
MIl eggs and zygotes. Complete RNA lists are provided in the supplementary

information.

Figure 2. GeneMANIA network nodes. The nodes represent paternal (blue) and
maternal (black) factors and their predicted interactions (interconnecting lines).
Colours signify the interaction type including co-expression (purple), physical
interactions (red), shared protein domains (green), co-localisation (blue) and all
predicted interactions (orange). Nodes with boxes around them belong to the E3
ubiquitin ligase complex. Other encircling borders indicate additional inter-parental

interactions supported by the RNA-seq data (see text for details).

Figure 3. Alignment of RNA sequencing reads (pile ups) across representative
components of the E3 ubiquitin ligase complex. As tracked on the UCSC
genome browser for all spermatozoal (sperm 1-3), egg (MIl 1-4) and zygote (PCZ 1-
3) biological replicates, reads for components of the E3 ubiquitin ligase complex are
shown for Fbxo23 (A) alongside Cul1? (B), Rbx12 (C) and Skp1a? (D). Genes are

depicted at the foot of each diagram with exons shown as filled blocks.

Figure 4. Real-time qPCR. Real-time qPCR was carried out on 400 pg of cDNA
using primers for the five RNA-seq predicted paternal factors Hdac11, Fbxo2,
Zfp821, Pcbp4 and Map1ic3a, the maternal Hdac2 and the testis-expressed somatic
cell RNA control Maged2. QPCR products are shown for sperm (S), MIl eggs (M),
Zygotes (Z) and Testis (T) cDNAs in panel A with corresponding Ct values shown in
panel B. A DNA ladder is shown for gel calibration with 100 bp and 500 bp markers
indicated. Note that very high Ct values (>37) corresponding with samples not

supporting specific PCR products and assumed to be PCR artifacts are plotted as 0.
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Figure 5. Alternative potential pathways for a paternal contribution to the
zygote. The first panel (A) depicts the MIl egg and the spermatozoon just before
fertilisation with i, a metabolic pathway that needs one or more paternal factors to be
fulfilled (either RNA or protein); ii, a protein complex that needs a paternal factor to
be functional; iii, the incoming fertilizing spermatozoon. The second panel (B) depicts
the MIl egg and spermatozoon after fertilization with, i a functional metabolic pathway
following the insertion of a paternal factor; ii, an activated protein complex due to the
addition of the missing paternal factor, such as Fbxo2 in the Rbx1-E3 ubiquitin
ligase. The disintegrating sperm membrane with arrows illustrating the released

sperm-borne factors into the MIl ooplasm is also shown (iii).

Supplementary Figure 1. Bioanalyser traces for the three sperm RNA pools are
shown. Note the absence of 28S and 18S rRNA peaks, low R.I.N. and the generally
short RNAs that make up the profile, all typical of sperm RNA and showing no

evidence of contamination from other (somatic) cell sources.

Supplementary Figure 2. Gene ontology descriptions for parent bioprocesses
derived from all RNAs (=10 CPM) reported in sperm (green), MIl eggs (blue) and
zygotes (orange). The general similarity between MIl eggs and zygotes compared
with sperm is clear. This figure is best downloaded for onscreen viewing and

magnification.

Supplementary Figure 3. Alignment of RNA sequencing reads (pile ups) across
other paternally and maternally expressed components. As tracked on the
UCSC genome browser for all spermatozoal (sperm 1-3), egg (Mll 1-4) and zygote
(PCZ 1-3) biological replicates, reads are shown for Hdac113 (A), Bub1b? (B),
Maplic3ad (C), Map1b? (D), Atg3? (E), Pcbp4d(F), Hnrpk? (G), Qk? (H) and
Zfp8213 (1) are shown. Genes are depicted at the foot of each diagram with exons
shown as filled in blocks. A box indicates the LTR in Hdac11
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Table 1. Top biological processes for source and differentially expressed
RNAs. RNA lists from each source (sperm, MIl eggs and zygotes) and differentially
expressed MIl-Zygote genes flagged by EdgeR analysis (Ml up and PCZ UP) were
submitted to DAVID for ontological analysis. Bioprocesses are reported alongside
uncorrected p values, Benjamini corrected p values and False Discovery Rates
(FDRs).

Table 2. Paternally-derived factors and their potential maternal cofactors in
Mus musculus. Column 1 shows spermatozoal factors with good exonic
representation as revealed by RNA-seq and UCSC browsing. Column 2 gives the
associated gene name and MGI accession number. Column 3 briefly depicts their
functionality as described in UniProt. Column 4 shows the potentially interacting

maternal factors as predicted by GeneMANIA.

Supplementary Table 1. Primer names, oligonucleotide sequences, annealing

temperatures and expected product sizes for real-time qPCR.

Supplementary Table 2. Paternally-derived factors and their Mus musculus
knock-out phenotypes. Column 1 shows spermatozoal genes with good exonic
representation as revealed by RNA-seq and UCSC browsing. Column 2 indicates
any available KO studies for the paternally-derived factors. Column 3 shows the
maternal factors that may have potential interactions with the paternal cofactors
based on GeneMANIA. Column 4 shows KO studies reported for maternal factors

listed in column 3, with some conclusions for each study.

Full supporting supplementary information.xlsx (supplementary info). Details
of original RefSeq accession numbers for the most highly expressed RNAs (=10
CPM) in sperm, MIl eggs and zygotes (RNA Lists (All) sheet). The gene ontology
data for these lists is listed in the BP All sheet. The RNA Lists (EdgeR) sheet
includes the most highly represented sperm RNAs with good exon coverage (column
A) and lists of Edge R-determined more highly represented RNAs in MIl eggs
(column C), zygotes (column D) or not differentially represented in either (column E).
The RNAs participating in the GeneMania network (Figure 2) are listed in column G.
Column B indicates the sperm-specific RNAs chosen for further study. Other sheets
contain more complete lists of functional annotation clustering and enrichment for
sperm (FAC_Sperm), Mll eggs (FAC_MII) and zygote (FAC_Zygote), RNAs common
to MIl egg and zygotes (FAC_MII&Zygote). The BP EdgeR sheet includes
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755  bioprocesses for the selected sperm, MIl egg and zygote RNA lists and RNAs in the
756  GeneMANIA network. The BP EdgeR MIl or PCZ Up sheet includes lists of
757  differentially expressed RNAs higher in Mll eggs or Zygotes.
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