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SAT-Encodings for Treecut Width and Treedepth

Robert Ganian∗ Neha Lodha∗ Sebastian Ordyniak† Stefan Szeider∗

Abstract

The decomposition of graphs is a prominent algorithmic task

with numerous applications in computer science. A graph

decomposition method is typically associated with a width

parameter (such as treewidth) that indicates how well the

given graph can be decomposed. Many hard (even #P-hard)

algorithmic problems can be solved efficiently if a decom-

position of small width is provided; the runtime, however,

typically depends exponentially on the decomposition width.

Finding an optimal decomposition is itself an NP-hard task.

In this paper we propose, implement, and test the first practi-

cal decomposition algorithms for the width parameters tree-

cut width and treedepth. These two parameters have recently

gained a lot of attention in the theoretical research commu-

nity as they offer the algorithmic advantage over treewidth

by supporting so-called fixed-parameter algorithms for cer-

tain problems that are not fixed-parameter tractable with re-

spect to treewidth. However, the existing research has mostly

been theoretical. A main obstacle for any practical or exper-

imental use of these two width parameters is the lack of any

practical or implemented algorithm for actually computing

the associated decompositions. We address this obstacle by

providing the first practical decomposition algorithms.

Our approach for computing treecut width and treedepth

decompositions is based on efficient encodings of these de-

composition methods to the propositional satisfiability prob-

lem (SAT). Once an encoding is generated, any satisfiability

solver can be used to find the decomposition. This allows

us to leverage the surprising power of todays state-of-the

art SAT solvers. The success of SAT-based decomposition

methods crucially depends on the used characterisation of

the decomposition method, as not every characterisation is

suitable for that task. For instance, the successful leading

SAT encoding for treewidth is based on a characterisation

of treewidth in terms of elimination orderings. For treecut

width and treedepth, however, we propose new characterisa-

tions that are based on sequences of partitions of the vertex

set, a method that was pioneered for clique-width. We imple-

mented and systematically tested our encodings on various

benchmark instances, including famous named graphs and
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random graphs of various density. It turned out that for the

considered width parameters, our partition-based SAT en-

coding even outperforms the best existing SAT encoding for

treewidth.

We hope that our encodings—which we will make

publicly available—will stimulate the experimental research

on the algorithmic use of treecut width and tree depth,

and thus will help to bride the gap between theoretical

and experimental research. For future work we propose

to scale our approach to larger graphs by means of SAT-

based local improvement, a method that have been recently

shown successful for the width parameters treewidth and

branchwidth.

1 Introduction

Graph decompositions have been a central topic in the area

of combinatorial algorithms, with applications in many areas

of computer science. A graph decomposition method is typ-

ically associated with a width parameter that indicates how

well the given graph can be decomposed. Tree decomposi-

tions, for instance, give rise to the width parameter treewidth.

In most cases, finding an optimal decomposition, i.e., one

of smallest width, is an NP-hard task, so that for practical

purposes one often relies on heuristics that compute subopti-

mal decompositions. However, there are several reasons why

one is interested in optimal decompositions. If the purpose

of the decomposition is to facilitate the solution of a hard

problem by means of dynamic programming, then a subop-

timal decomposition may impose an exponential increase on

time and space requirements for the dynamic programming

algorithm, and therefore may render the approach infeasible

for the instance under consideration. For instance. Kask et

al. [22] noted about inference on probabilistic networks of

bounded treewidth: “[. . . ] since inference is exponential in

the tree-width, a small reduction in tree-width (say even by

1 or 2) can amount to one or two orders of magnitude re-

duction in inference time.” Besides such algorithmic appli-

cations, optimal decompositions are also useful for scientific

purposes, for instance to evaluate a heuristic method that pro-

vides an upper bound on the decomposition width, or to sup-

port theoretical investigations by facilitating the construction

of gadgets for hardness reductions.

An appealing approach to finding optimal decompo-

sitions are SAT-encodings, where one translates a given

graph G and an integer w into a propositional formula
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F (G,w) whose satisfying assignments correspond to a de-

composition of G of width at most w. The satisfiabil-

ity of the formula can then be checked by a state-of-the

art SAT-solver [27, 28]. This approach was pioneered by

Samer and Veith [34] for treewidth. Their encoding was

further expanded on in subsequent works [1, 2] and today

it still remains one of the most efficient methods for com-

puting optimal tree decompositions. SAT-encodings have

also been developed for other graph parameters, including

clique-width [18], branchwidth [25], as well as pathwidth

and special treewidth [26]. This line of research revealed

that the efficiency of the SAT-encoding based approach cru-

cially depends on the underlying characterisation of the con-

sidered decompositional parameter. Whereas for treewidth

the elimination-ordering based characterisations have been

shown to be best suited for SAT-encodings, other decom-

position parameters require other characterisations. A very

efficient SAT-encoding for clique-width was based on the

newly developed partition-based characterisation of clique-

width [18]. Partition-based encodings have also been shown

to be efficient for other width parameters [25, 26].

In this paper we develop SAT-encodings for the width

parameters treecut width and treedepth. These two param-

eter are both less general than treewidth, i.e., any graph

class where either of these two parameters is bounded, is

also of bounded treewidth, but there exist graph classes of

bounded treewidth where neither of these two parameters are

bounded. Neither of the two parameters (treecut width and

treedepth) is more general than the other, though. The pa-

rameters are of interest as they offer certain algorithmic ad-

vantages over treewidth; in particular, they support so-called

fixed-parameter algorithms for certain problems that are not

fixed-parameter tractable with respect to treewidth (see any

of the handbooks on parameterized complexity [7, 5, 10]), as

well as having a significantly lower parameter dependency

than treewidth for certain problems [13, 8].

So far, both parameters have mainly been the subject

of theoretical investigations. By our encodings we provide

the first practical methods for computing the associated

decompositions and therefore provide a first step of bridging

theoretical with experimental research.

1.1 Treecut Width The parameter treecut width was in-

troduced by Wollan [36]. Treecut width is an edge-separator

based decompositional parameter whose relationship to the

fundamental notion of graph immersions is analogous to the

relationship between treewidth and graph minors [29]. Kim

et al. [23] gave a linear time 2-approximation algorithm for

treecut width, however, such an error factor is prohibitive for

practical use. Ganian et al. [14, 15] provided the first algo-

rithmic results for treecut width, and pointed out that sev-

eral problems that are not fixed-parameter tractable for the

parameter treewidth are fixed-parameter tractable for the pa-

rameter treecut width.

Given that treecut width arguably has the most com-

plicated and unintuitive characterisation among all studied

width parameters, our first step was to find a way to simplify

the definition of treecut width. Such a simplification has re-

cently been proposed by Kim et al. [23], showing that the

definition of treecut decompositions becomes significantly

more manageable on 3-edge-connected graphs and that com-

puting decompositions for general graphs can be reduced

to the 3-edge-connected case. Using this simpler definition

together with an explicit preprocessing procedure for gen-

eral graphs (presented in Section 2.3), we introduce a SAT-

encoding for 3-edge-connected graphs based on a partition-

based characterisation of treecut width in Section 3. As

our experiments show, the encoding performs extraordinary

well; outperforming even our arguably much simpler en-

coding for treedepth and the current best-performing SAT-

encoding for treewidth [1, 2, 34].

1.2 Treedepth The parameter treedepth was introduced

by Nešetřil and Ossona de Mendez [30] in the context of their

graph sparsity project [31]. This parameter has been shown

to have algorithmic applications for a number of problems

where treewidth cannot be used. For instance, Gutin et

al. [17] showed that the Mixed Chinese Postman problem

is fixed-parameter tractable for treedepth, but W[1]-hard for

treewidth and even pathwidth. Several further algorithmic

results on treedepth have been presented recently by Iwata et

al. [21], Koutecký et al. [24], Ganian and Ordyniak [16], and

Gajarský and Hliněný [12]. Exact algorithms for computing

treedepth are known, e.g., the problem is known to be fixed-

parameter tractable [33] and can be solved slightly faster

than O(2n) [11], however, until now no implementation of

an exact algorithm for treedepth was available.

We introduce and implement two SAT-encodings for

treedepth. The first one explicitly guesses the tree-structure

of a treedepth decomposition and the second one is based on

a novel partition-based characterisation of treedepth. Since

the partition-based encoding greatly outperformed our first

encoding, we mostly focus on the partition-based encoding

and provide the first encoding only in the the full version of

the paper. The experimental results for our partition-based

encoding are very promising, showing an extraordinarily

good performance on sparse classes of graphs such as paths,

cycles, and complete binary trees. We also introduce three

novel preprocessing and symmetry breaking procedures for

treedepth.

Statements whose proofs are located only in the full version

are marked with ⋆.

1.3 Related Work We have already mentioned the suc-

cessful application of SAT-encodings for graph decomposi-

tions above [1, 2, 18, 25, 34]. At this juncture we would
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like to briefly give some further context on SAT-encodings.

While every problem in NP admits a polynomial-time SAT-

encoding, it is well known that different encodings can be-

have quite differently in practice [32]. There are some formal

criteria which indicate whether an encoding will behave well

or not. However, only by an experimental evaluation one can

see what really works well and what does not [4]. For in-

stance, while encoding size is certainly a factor to take into

consideration, larger encodings can work better if they allow

a fast propagation of conflicts, so that the power of state-of-

the art SAT-solvers which are based on the conflict-driven

clause learning paradigm (CDCL) [27, 28] can be harvested.

SAT-encodings are not only useful for the solution of hard

combinatorial problems in industry, such as the verification

of hardware and software [3], but are increasingly often used

in the context of Combinatorics, for instance in the context

of Ramsey Theory [37]. A very recent highlight is the cele-

brated solution to the Pythagorean Triples Problem [20, 19].

Lastly, we would like to mention that developing

partition-based encodings comes with challenges that are

specific to each width parameter, as it almost always requires

the development of a novel characterization that is compati-

ble with such an encoding. Indeed, the existence of such an

encoding for the probably most prominent width parameter,

treewidth, remains open.

2 Preliminaries

We use [i] to denote the set {0, 1, . . . , i}. A weak partition

of a set S is a set P of nonempty subsets of S such that any

two sets in P are disjoint; if additionally S is the union of all

sets in P we call P a partition. The elements of P are called

equivalence classes. Let P, P ′ be partitions of S. Then P ′

is a refinement of P if for any two elements x, y ∈ S that

are in the same equivalence class of P ′ are also in the same

equivalence class of P (this entails the case P = P ′).

2.1 Formulas and Satisfiability We consider proposi-

tional formulas in Conjunctive Normal Form (CNF formu-

las, for short), which are conjunctions of clauses, where a

clause is a disjunction of literals, and a literal is a proposi-

tional variable or a negated propositional variable. A CNF

formula is satisfiable if its variables can be assigned true or

false, such that each clause contains either a variable set to

true or a negated variable set to false. The satisfiability prob-

lem (SAT) asks whether a given formula is satisfiable.

We will now introduce a few general assumptions and

notation that is shared among our encodings. Namely, for our

encodings we will assume that we are given an undirected

graph G = (V,E) and an integer ω, which represents the

width that we are going to test. Moreover, we will assume

that the vertices of G are numbered from 1 to n and similarly

the edges are numbered from 1 to m.

For the counting part of our encodings we will employ

the sequential counter approach [34] since this approach has

turned out to provide the best results in our setting. To

illustrate the idea behind the sequential counter consider the

case that one is given a set S of (propositional) variables and

one needs to restrict the number of variables in S that are

set to true to be at most some integer k. For convenience, we

refer to the elements in S using the numbers from 1 to |S|. In

this case one introduces a counting variable #(s, j) for every

s ∈ S and j with 1 ≤ j ≤ k, which is true whenever there

are at least j variables in { s′ | s′ ≤ s and s, s′ ∈ S } that

are set to true. Then this can be ensured using the following

clauses. A clause ¬s ∨ #(s, 1) for every s ∈ S, a clause

¬#(s − 1, j) ∨ #(s, j) for every s ∈ S and j with s > 1
and 1 ≤ j ≤ k, a clause ¬s∨¬#(s− 1, j− 1)∨#(s, j) for

every s ∈ S and j with s > 1 and 1 < j ≤ k, and a clause

¬s ∨ ¬#(s− 1, k) for every s ∈ S with s > 1. This adds at

most O(|S|k) variables and clauses to the original formula.

2.2 Graphs We use standard terminology for graph the-

ory, see for instance [6]. All graphs in this paper are undi-

rected and may contain multiedges. Given a graph G, we

let V (G) denote its vertex set and E(G) its (multi-) set of

edges. The (open) neighbourhood of a vertex x ∈ V (G) is

the set {y ∈ V (G) : xy ∈ E(G)} and is denoted by NG(x).
For a vertex subset X , the neighbourhood of X is defined

as
⋃

x∈X NG(x) \ X and denoted by NG(X); we drop the

subscript if the graph is clear from the context. For a vertex

set A (or edge set B), we use G − A (G − B) to denote the

graph obtained from G by deleting all vertices in A (edges in

B), and we use G[A] to denote the subgraph induced on A,

i.e., G− (V (G) \ A). Let T be a rooted tree and t ∈ V (T ).
We write Tt to denote the subtree of T rooted in t, i.e., the

component of T \{{t, p}} containing t, where p is the parent

of t in T . We denote by hT (t), the height of t in T , i.e., the

length of the path between the root of T and t in T plus one,

and we denote by h(T ) the height of T , i.e., the maximum

of hT (t
′) over all t′ ∈ V (T ). Let G be a graph. We say that

two vertices u and v of G are 3-edge-connected in G if there

are at least 3 pairwise edge disjoint paths between u and v

in G. We say a subset C of V (G) is a 3-edge-connected

component of G if every pair of distinct vertices in C is 3-

edge-connected and C is maximal w.r.t. this property. For a

graph G and a subset V ′ ⊆ V (G), we denote by δG(V
′) the

(multi-)set of edges of G having one endpoint in V ′ and one

endpoint in V (G) \ V ′ and omit the subscript G if it can be

inferred from the context. An apex vertex is a vertex adjacent

to all other vertices in the graph.

2.3 Treecut Width The notion of treecut width and tree-

cut decomposition was originally introduced for general

graphs [29, 36]. Here we use a simpler definition, which

allows for an easier encoding, and only applies for 3-edge-

connected graphs. Using known results [23], we will then
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show that the treecut width for general graphs can be defined

in terms of the treecut widths of its 3-edge-connected com-

ponents.
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Figure 1: A width-6 treedepth decomposition (top right) and

a width-5 treecut decomposition (bottom) of the Petersen

graph (top left). The treecut decomposition lists the adhesion

(left value) and torso-width (right value) of each node.

Let G be a 3-edge connected undirected graph (possibly

with multi-edges and loops). A treecut decomposition of G

is a pair (T, χ), where T is a rooted tree and χ : V (T ) →
2V (G) such that {χ(t) | t ∈ V (T ) } forms a near partition

of V (G), i.e., a partition of V (G) allowed to contain the

empty set. For a subgraph T ′ of T , we denote by χ(T ′) the

set
⋃

t∈V (T ′) χ(t). Let t ∈ V (T ). We denote by Vt the set

χ(Tt). The adhesion of t, denoted by ad(t), is the (multi-)set

δG(Vt). Moreover, the torsowidth of t, denoted by tor(t), is

equal to |χ(t)| plus the number of neighbours of t in T . The

width of (T, χ) is the maximum width of any of its nodes t ∈
V (T ), which in turn is equal to max{|ad(t)|, tor(t)}. The

height of (T, χ) is simply the height of T . Finally, the treecut

width of G, denoted by tcw(G), is the minimum width of any

of its treecut decompositions. Figure 1 illustrates a treecut

decomposition for the Peterson graph.

The following lemma shows that if a graph is not

3-edge-connected, then it can be modified and split into

parts in such a way that its treecut width can be computed

from the treecut width of the (modified) parts. Since a

recursive application of this lemma eventually results in 3-

edge-connected graphs, the lemma allows us to apply our

encoding for 3-edge-connected graphs to arbitrary graphs.

LEMMA 2.1. Let G be a multigraph, C be a minimal cut of

size at most two resulting in the partition (A,B) of V (G),
and let AC and BC be the endpoints of the edges in C in A

and B, respectively. If C contains two edges and |AC | =
|BC | = 1, then tcw(G) = max{2, tcw(G[A]), tcw(G[B])}.

Otherwise, tcw(G) = max{tcw(GA), tcw(GB)}, where

GA (GB) is obtained from G[A] (G[B]) after adding an edge

between the vertices in AC (BC); note that an edge is only

added if |AC | = 2 or |BC | = 2, respectively.

Proof. The proof is closely based on the ideas in [23, Sec-

tion 3]. Namely, in the case that C does not contain two

edges sharing the same endpoints, the proof follows imme-

diately from [23, Lemma 3 and 4]. Moreover, if C con-

tains two edges sharing the same endpoints, say a ∈ A

and b ∈ B, it follows from [23, Lemma 3] that tcw(G) =
max{tcw(G[A ∪ {b}]), tcw(G[B ∪ {a}]). Moreover, using

the definition of treecut width for arbitrary graphs and re-

calling that b has precisely 2 neighbours in A (and similarly

a has precisely 2 neighbours in B), it is then easy to see

that tcw(G[A ∪ {b}]) = max{2, tcw(G[A])} and similarly

tcw(G[B ∪ {a}]) = max{2, tcw(G[B])}, from which the

lemma follows. More precisely, this follows immediately by

observing that (1) tcw(G[{a, b}]) = 2 and (2) a treecut de-

composition (T, χ) of G[A] (G[B]) of width w can be turned

into a treecut decomposition of G[A ∪ {b}] (G[B ∪ {a}]) of

width max{2, w} by adding a leaf l containing b (a) as a leaf

to an arbitrary node of T . Note that l has torsowidth at most 2
and the torsowidth of the neighbor of l in T is not increased;

to see this one needs to use the definition of treecut width on

general graphs and the fact that l is a thin node [14]. �

We also give the known relations between treecut width,

treewidth, and maximum degree.

LEMMA 2.2. ([14, 29, 36]) For every graph G, tw(G) ≤
2tcw(G)2 +3tcw(G) and tcw(G) ≤ 4∆(G) · tw(G), where

∆(G) and tw(G) denote the maximum degree and treewidth

of G, respectively.

We close this section by showing explicit values of tree-

cut width for complete graphs (Kn) and complete bipartite

graphs (Kn,n), which we later employ to verify the correct-

ness of our encoding.

LEMMA 2.3. (⋆) For every n ≥ 3, it holds that

tcw(Kn+1) = n+ 1 and tcw(Kn,n) = 2n− 2.

2.4 Treedepth The second decompositional parameter for

which we will introduce a SAT-encoding is treedepth [31].

Treedepth is closely related to treewidth, and the structure

of graphs of bounded treedepth is well understood [31]. A

useful way of thinking about graphs of bounded treedepth is

that they are (sparse) graphs with no long paths.
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The treedepth of an undirected graph G, denoted by

td(G), is the smallest natural number k such that there is

an undirected rooted forest F with vertex set V (G) of height

at most k for which G is a subgraph of C(F ), where C(F )
is called the closure of F and is the undirected graph with

vertex set V (F ) having an edge between u and v if and only

if u is an ancestor of v in F . A forest F for which G is a

subgraph of C(F ) is also called a treedepth decomposition,

whose depth is equal to the height of the forest. Informally

a graph has treedepth at most k if it can be embedded in the

closure of a forest of height k. Note that if G is connected,

then it can be embedded in the closure of a tree instead of a

forest. A treedepth decomposition of the Peterson graph is

illustrated in Figure 1.

We conclude with some useful facts about treedepth.

LEMMA 2.4. ([31]) For every graph G, tw(G) ≤ td(G)
and pw(G) ≤ td(G), where pw(G) is the pathwidth of G.

3 Treecut Width

In this section we will introduce our encoding for treecut

width. The encoding is based on a different characterisation

of treecut width, one that is well-suited for SAT-encodings.

3.1 Partition-Based Formulation Here we present a

partition-based characterisation of treecut width, in terms

of what we call derivations, which is well-suited for an en-

coding into SAT. Let G be a graph. A derivation P of G

of length l is a sequence (P1, . . . , Pl) of weak partitions of

V (G) such that:

D1 P1 = ∅ and Pl = {{V (G)}} and

D2 for every i ∈ {1, . . . , l}, Pi is a refinement of Pi+1.

We will refer to Pi as the i-th level of the derivation P
and we will refer to elements in

⋃

1≤i≤l Pi as sets of the

derivation. Let p ∈ Pi for some level i with 1 ≤ i ≤ l. We

say that a set c ∈ Pi−1 is a child of p at level i if c ⊆ p

and denote by ciP(p) the set of all children of p at level i.

Moreover, we denote by χi
P(p) the set p\(

⋃

c∈c
i

P
(p) c). Then

the width of p at level i is equal to the maximum of |δG(p)|
and tor

p
P(i), where tor

p
P(i) is equal to |χi

P(p)|+ |ciP(p)|+1
if i 6= l and equal to |χi

P(p)| + |ciP(p)| otherwise. We

will show that any treecut decomposition can be transformed

into a derivation of the same width, and vice versa. The

following example illustrates the close connection between

treecut decompositions and derivations.

Example: The treecut decomposition given in Fig. 1 of the

Petersen graph can be translated into the derivation P =
(P1, . . . , P3) defined by:

P1 = ∅, P2 =
{

{

0, 5, 6
}

,
{

1
}

,
{

2, 4, 7
}

,
{

3, 8, 9
}

}

,

P3 =
{

{

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
}

}

.

As can be verified easily, the width of P is equal to 5.

We show that derivations provide an alternative charac-

terisation of treecut decompositions.

THEOREM 3.1. (⋆) Let G be a graph and ω and d two

integers. G has a treecut decomposition of width at most

ω and height at most d if and only if G has a derivation of

width at most ω and length at most d+ 1.

3.2 Encoding Let G be a graph with m edges and n

vertices, and let ω and d be positive integers. We will assume

that the vertices of G are represented by the numbers from 1
to n and the edges of G by the numbers from 1 to m. The

aim of this section is to construct a formula F (G,ω, d) that

is satisfiable if and only if G has a derivation of width at

most ω and length at most d. Because of Theorem 3.1 (after

setting d to n) it holds that F (G,ω, d) is satisfiable if and

only if G has treecut width at most ω. To achieve this aim we

first construct a formula F (G, d) such that every satisfiable

assignment encodes a derivation of length at most d and then

we extend this formula by adding constrains that restrict the

width of the derivation to ω.

3.2.1 Encoding of a Derivation The formula F (G, d)
uses the following variables. A set variable s(u, v, i), for

every u, v ∈ V (G) with u ≤ v and every i with 1 ≤ i ≤ d.

Informally, s(u, v, i) is true whenever u and v are contained

in the same set at level i of the derivation. Note that s(u, u, i)
is true whenever u is contained in some set at level i.

Furthermore, the formula contains a leader variable l(u, i),
for every u ∈ V (G) and every i with 1 ≤ i ≤ d. Informally,

the leader variables will be used to uniquely identify the

sets at each level of a derivation (using the smallest vertex

contained in the set as the unique identifier), i.e., l(u, i) is

true whenever u is the smallest vertex in a set at level i of the

derivation.

We now describe the clauses of the formula. The

following clauses ensure (D1) and (D2).

¬s(u, v, 1) ∧ s(u, v, d) for u, v ∈ V (G), u ≤ v

¬s(u, v, i) ∨ s(u, v, i+ 1)
******* for u, v ∈ V (G), u ≤ v, 1 ≤ i < d

The following clauses ensure that if a vertex v is in some set

with at least one other vertex at level i, then s(v, v, i) is true.

(¬s(u, v, i) ∨ s(u, u, i)) ∧ (¬s(u, v, i) ∨ s(v, v, i))
******* for u, v ∈ V (G), u < v, 2 ≤ i ≤ d

The following clauses ensure that the relation of being in the

same set is transitive.

(¬s(u, v, i) ∨ ¬s(u,w, i) ∨ s(v, w, i))
∧(¬s(u, v, i) ∨ ¬s(v, w, i) ∨ s(u,w, i))
∧(¬s(u,w, i) ∨ ¬s(v, w, i) ∨ s(u, v, i))
******* for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ d
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The following clauses ensure that l(u, i) is true if and only if

u is the smallest vertex contained in some set at level i of a

derivation.

(A) (l(u, i) ∨ ¬s(u, u, i) ∨
∨

v∈V (G),v<u

s(v, u, i))∧

(B) (¬l(u, i) ∨ s(u, u, i)) ∧
∧

v∈V (G),v<u

(¬l(u, i)∨

(*) ¬s(v, u, i))

for u ∈ V (G), 1 ≤ i ≤ d

Part A ensures that if u is contained in some set at level i and

no vertex smaller than u is contained in a set with u at level i,

then u is a leader. Part B ensures that if u is a leader at level

i, then u is contained in some set at level i and furthermore

no vertex smaller than u at level i is in the same set as u.

The formula F (H, d) contains at most O(n2d) variables and

O(n3d) clauses.

3.2.2 Encoding of a Derivation of Bounded Width

Next, we describe how F (G, d) can be extended to restrict

the width of the derivation. Towards this aim we first need

new variables allowing us to define adhesion and torsowidth.

Namely, for every u ∈ V (G), e ∈ E(G) such that at

least one of the endpoints of e is larger or equal to u, and

i ∈ {2, . . . , d − 1}, we use the variable ad(u, e, i), which

will be true if u is a leader of some set V ′ at level i and

e ∈ δG(V
′). This is ensured by the following clauses.

¬l(u, i) ∨ ¬s(u, v, i) ∨ s(u,w, i) ∨ ad(u, e, i)

for u, v, w ∈ V (G), e = {v, w} ∈ E(G), u ≤ v,

u ≤ w, and 1 < i < d.

¬l(u, i) ∨ ¬s(u, v, i) ∨ ad(u, e, i)

for u, v, w ∈ V (G), e = {v, w} ∈ E(G), u ≤ v,

w < u, and 1 < i < d.

Note that we do not require the reverse direction here

since the sole purpose of the variables ad(u, e, i) is to ensure

that the adhesion never exceeds the width.

Towards defining torsowidth, we introduce the variable

tor(u, v, i) for every u, v ∈ V (G), u ≤ v, and 1 ≤ i ≤ d,

which will be true, whenever u is a leader of a set V ′ at level

i, v is in V ′, and either v is a leader at level i − 1, or v is

not in a set at level i − 1. This is ensured by the following

clauses.

¬l(u, i) ∨ ¬s(u, v, i) ∨ ¬l(v, i− 1) ∨ tor(u, e, i)
** for u, v ∈ V (G), u ≤ v, and 2 < i ≤ d

¬l(u, i) ∨ ¬s(u, v, i) ∨ ¬s(v, v, i− 1) ∨ tor(u, e, i)
** for u, v ∈ V (G), u ≤ v, and 1 < i ≤ d

Finally, we use the sequential counter introduced in

Section 2.1 to ensure that both the adhesion as well as the

torsowidth do not exceed the given width. Namely, for every

u ∈ V (G) and i with 1 < i < d, we ensure that the number

of variables in {ad(u, e, i) | e ∈ E(G) } that are set to true

does not exceed ω. Similarly for every u ∈ V (G) and i

with 1 < i < d, we ensure that the number of variables

in { tor(u, v, i) | v ∈ V (G) ∧ u ≤ v } that are set to true

does not exceed ω − 1 and that the number of variables in

{ tor(u, v, d) | v ∈ V (G) ∧ u ≤ v } does not exceed ω.

This completes the construction of F (G,ω, d). By

construction, F (G,ω, d) is satisfiable if and only G has a

derivation of width at most ω and length at most d. Due to

Theorem 3.1, we obtain:

THEOREM 3.2. The formula F (G,ω, d) is satisfiable if and

only if G has a treecut decomposition of width at most ω and

depth at most d. Moreover, such a treecut decomposition can

be constructed from a satisfying assignment of F (G,ω, d) in

linear time w.r.t. the number of variables of F (G,ω, d).

4 Treedepth

In this section we introduce a SAT-encoding for treedepth,

which is also based on partitions. We also developed an

encoding for treedepth that is based on guessing the tree of

the treedepth decomposition, however, the encoding has, to

our surprise, performed much worse than the partition-based

encoding. Namely, the encoding, which we introduce for

completeness in the full version of the paper, only terminated

on 17 out of the 39 famous graphs.

4.1 Partition-Based Formulation Let G be a graph. We

will base our definition of derivations for treedepth on the

derivations defined for treecut width in Section 3.1. A

derivation P of G of length l is a sequence (P1, . . . , Pl)
of weak partitions of V (G) satisfying (D1) and (D2) and

additionally the following properties:

(D3) for every p ∈ Pi, |χ
i
P(p)| ≤ 1, and

(D4) for every edge {u, v} ∈ E(G), there is a p ∈ Pi such

that {u, v} ⊆ p and χi
P(p) ∩ {u, v} 6= ∅.

It will be useful to recall the notions defined for derivations in

Section 3.1. We will show that any treedepth decomposition

of depth ω can be transformed into a derivation of length

ω + 1, and vice versa. The following example illustrates the

connection between treedepth and such derivations.

Example: The treedepth decomposition given in Fig. 1 of

the Petersen graph can be translated into the derivation P =
(P1, . . . , P7) defined by:

P1 = ∅, P2 =
{

{

4
}

,
{

8
}

,
{

5
}

}

,

P3 =
{

{

2, 4
}{

3, 8
}

,
{

5, 6
}

}

,

P4 =
{

{

1, 2, 3, 4, 5, 6, 8
}

}

,

P5 =
{

{

0, 1, 2, 3, 4, 5, 6, 8
}

}

P6 =
{

{

0, 1, 2, 3, 4, 5, 6, 7, 8
}

}

,
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P7 =
{

{

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
}

}

.

The next theorem shows that such derivations provide an

alternative characterisation of treedepth.

THEOREM 4.1. (⋆) Let G be a connected graph and ω an

integer. G has a treedepth decomposition of depth at most ω

if and only if G has a derivation of length at most ω + 1.

4.2 Encoding of a Derivation Here we construct the for-

mula F (G,ω) that is satisfiable if and only if G has a deriva-

tion of length at most ω, which together with Theorem 4.1

implies that G has treedepth ω− 1. Since we are again using

derivations, the formula F (G,ω) is relatively similar to the

formula F (G, d) introduced in Section 3.2.1. In particular,

we again have a set variable s(u, v, i), for every u, v ∈ V (G)
with u ≤ v and every i with 1 ≤ i ≤ ω, which has the

same semantics as before. It also contains all the clauses

introduced in Section 3.2.1 apart from the clauses restrict-

ing the leader variables. Additionally, we have the following

clauses, which ensure that (D3) holds, i.e., that there is at

most one vertex in χi
P(p).

¬s(u, v, i) ∨ s(u, u, i− 1) ∨ s(v, v, i− 1)
*** for all u, v ∈ V , u < v, and 2 ≤ i ≤ ω

Finally, the following clauses ensure (D4).

¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(u, u, i− 1) ∨ s(u, v, i)
¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(v, v, i− 1) ∨ s(u, v, i)
*** for uv ∈ E, u < v, and 2 ≤ i ≤ ω

This completes the construction of the formula F (G,ω).
By construction, F (G,ω) is satisfiable if and only G has a

derivation of length at most ω. Because of Theorem 4.1, we

obtain:

THEOREM 4.2. The formula F (G,ω) is satisfiable if and

only if G has a treedepth at most ω − 1. Moreover, a

corresponding treedepth decomposition can be constructed

from a satisfying assignment of F (G,ω) in linear time in

terms of the number of variables of F (G,ω).

4.3 Preprocessing and Symmetry Breaking To increase

the efficiency of our encoding, we implemented a number of

preprocessing procedures and symmetry breaking rules. Our

first symmetry breaking rule is based on the next lemma.

LEMMA 4.1. (⋆) Let G be a graph and let u and v be two

adjacent vertices in G such that NG(u)\{v} ⊆ NG(v)\{u}.

Then there is an optimal treedepth decomposition F of G

such that v is an ancestor of u in F .

To employ the above lemma in our encoding, we iterate over

all edges of G and whenever we find an edge {u, v} ∈ E(G)
such that NG(u) \ {v} ⊆ NG(v) \ {u}, we add the clause

¬s(u, u, i) ∨ s(v, v, i) for every i with 2 ≤ i ≤ ω. We also

introduce two preprocessing procedures, whose correctness

is shown the lemma below. One allows us to remove certain

vertices of degree one and the other allows us to remove

apex vertices, i.e., vertices (whose) closed neighborhood is

the whole vertex set.

LEMMA 4.2. (⋆) Let G be a graph. If v is a vertex of G

incident to two vertices l and l′ of degree one, then td(G) =
td(G − {l′}). Moreover, if v is an apex vertex of G, then

td(G) = td(G− {v}) + 1.

The following lemma allows us to remove certain ver-

tices of degree 1 from the graph.

LEMMA 4.3. Let G be a graph and let v be a vertex of

G incident to two vertices l and l′ of degree one. Then

td(G) = td(G− {l′}).

Proof. Because G \ {l′} is a subgraph of G, we obtain that

td(G) ≥ td(G − {l′}). Towards showing that td(G) ≤
td(G − {l′}), let F be an optimal treedepth decomposition

of G \ {l′}. Because of Lemma 4.1, we can assume that v is

an ancestor of l in F . Consequently, the forest F ′ obtained

from F after adding l′ as a leaf to v has the same depth as F

and is a treedepth decomposition of G. �

Our final lemma allows us to remove all apex vertices.

LEMMA 4.4. Let G be a graph and let a be an apex vertex

of G. Then td(G) = 1 + td(G \ {a}).

Proof. Towards showing that td(G) ≤ 1 + td(G \ {a}), let

F be an optimal treedepth decomposition of G \ {a}. Then,

F ′, which is obtained from F by simply adding a, making

it adjacent to all roots of F , and setting it to be the new root

of F ′, is a treedepth decomposition of G of width at most

1 + td(G− {a}), as required.

Towards showing that td(G) ≥ 1 + td(G− {a}), let F

be an optimal treedepth decomposition of G. By Lemma 4.1,

we can assume that a is a root of F . Moreover, because a is

adjacent to every vertex in G, it follows that a must be the

only root of F . Hence F ′ obtained from F \{a} after making

all children of a in F to roots is a treedepth decomposition

of G− {a} of depth at most td(G)− 1, as required.

5 Experiments

We implemented the SAT-encoding for treecut width and the

two SAT-encodings for treedepth and evaluated them on var-

ious benchmark instances; for comparison we also computed

the pathwidth and treewidth of all graphs using the currently

best performing SAT-encodings [34, 25]; note that [34] is

still the best-known SAT-encoding for treewidth, since the

performance gains of later algorithms [2, 1] are almost en-

tirely due to preprocessing, whereas the employed SAT-

encoding is virtually identical. Our benchmark instances in-
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clude 39 famous named graphs from the literature [35], var-

ious standard graphs such as complete graphs (Kn), com-

plete bipartite graphs (Kn,n), paths (Pn), cycles (Cn), com-

plete binary trees (Bn), and grids (Gn,n) as well as random

graphs. To test the correctness of our encodings, we com-

pared the obtained values to known values (the treedepth of

standard graphs is known or easy to compute; in the case of

treecut width, the values for complete and complete bipar-

tite graphs are given in Lemma 2.3). We also compared the

obtained values to related parameters such as maximum de-

gree, pathwidth, and treewidth (using Lemmas 2.2 and 2.4)

and verified that the decompositions obtained from the en-

codings are well-formed.

Throughout we used the SAT-solver Glucose 4.0 (with

standard parameter settings) as it performed best in our initial

tests. We ran the experiments on a 4-core Intel Xeon CPU

E5649, 2.35GHz, 72 GB RAM machine with Ubuntu 14.04

with each process having access to at most 8 GB RAM. In

case of acceptance we will make our implementation, which

which was done in python 2.7.3 and networkx 1.11, available

on github as well as the ACM Journal of Experimental

Algorithmics Research Code Repository.

Table 1: Experimental results for standard graphs. A “P ”

indicates that the instance is solved by preprocessing.

graph class
treecut width treedepth

|V | |E| |V | |E|

paths (Pn) P P 255 254

cycles (Cn) P P 255 255

complete binary trees (Bn) P P 255 254

n× n grids (Gn,n) 49 84 36 60

complete bip. graphs (Kn,n) 30 225 22 121

complete graphs (Kn) 30 435 P P

5.1 Results and Discussion Our experimental results for

the standard, random, and famous graphs are shown in

Tables 1, 2, and 3, respectively. Throughout we use |V |,
|E|, ∆, pw, tw to denote the number of vertices, the number

of edges, the maximum degree, the pathwidth, and the

treewidth of the input graph, respectively. We employed a

timeout per SAT call of 2000 seconds and an overall timeout

of 6 hours for our experiments with the famous and random

graphs. Moreover, we used 900 seconds per SAT call and an

overall timeout of 3 hours for the standard graphs.

As can be seen in Table 3, we were able to compute the

exact treecut width and treedepth for almost all of the famous

graphs; specifically 37 out of 39 instances for treecut width

and 35 out of 39 instances for treedepth. For the remaining

two respectively four instances, we were able to obtain rel-

atively tight lower and upper bounds. Even though we are

Table 2: Percentage of random graphs solved within the

timeout for treecut width and treedepth for combinations

of |V | (represented by the rows) and p (edge probability;

represented by the columns).

treecut width

|V | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 100 100 100 100 100 100 100 100 100

25 100 100 75 90 100 100 100 100 100

30 100 25 10 55 85 100 100 100 100

40 50 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0

treedepth (partition-based encoding)

|V | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 100 100 100 100 100 100 100 100 100

15 100 100 100 100 100 100 100 100 100

20 100 100 100 45 10 0 0 0 15

30 100 0 0 0 0 0 0 0 0

40 10 0 0 0 0 0 0 0 0

50 0 0 0 0 0 0 0 0 0

treedepth (tree-structure based encoding)

|V | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 100 100 100 100 100 100 100 100 100

15 100 85 35 10 0 5 10 50 100

20 75 5 0 0 0 0 0 0 30

25 25 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0

aware that encodings for different width measures are not di-

rectly comparable, it is interesting to note that our encodings

outperform the currently best performing SAT-encoding for

treewidth [34], which solves only 26 out of 39 instances, and

are in line with the currently best performing SAT-encoding

for pathwidth [26], solving 37 out of 39 instances. It is also

worth mentioning that the surprisingly strong performance

of our encodings is not due to preprocessing; indeed, none

of the preprocessing or symmetry-breaking rules for treecut

width nor treedepth were applicable for the famous graphs.

Finally, we would like to mention that our second encoding

for treedepth could only solve 17 out of 39 instances. This

further underlines the strength of partition-based encodings

for computing decomposition-based parameters.

Table 1 shows the scalability of our encodings for the

standard graphs. Namely, for each of the standard graphs

and both of our encodings, the table gives the maximum

number of vertices and edges for which the encoding was

Copyright c© 2019 by SIAM

Unauthorized reproduction of this article is prohibited



Table 3: Experimental results for the famous graphs. “cpu” denotes the overall CPU time in seconds including preprocessing

and verification of the computed decomposition. An asterisk (∗) in the cpu column indicates that the given instance could

not be solved within the timeout; in this case the width column gives the lower bound and upper bound obtained within the

timeout.

Instance |V | |E| ∆
treecut width treedepth

pw tw
width cpu width cpu

Diamond 4 5 3 2 0.00 4 0.15 2 2

Bull 5 5 3 2 0.00 3 0.07 2 2

Butterfly 5 6 4 2 0.00 4 0.06 2 2

Prism 6 9 3 4 0.13 5 0.10 3 3

Moser 7 11 4 4 0.12 5 0.15 3 3

Wagner 8 12 3 4 0.21 6 0.26 4 4

Pmin 9 12 3 4 0.13 5 0.14 4 3

Petersen 10 15 3 5 0.71 6 0.34 5 4

Herschel 11 18 4 5 0.86 5 0.13 4 3

Grötzsch 11 20 5 6 1.07 7 0.29 5 5

Goldner 11 27 8 7 2.12 5 0.25 4 3

Dürer 12 18 3 4 0.85 7 0.37 4 4

Franklin 12 18 3 4 0.71 7 0.34 5 4

Frucht 12 18 3 4 0.83 6 0.23 4 3

Tietze 12 18 3 5 1.20 7 0.39 5 4

Chvátal 12 24 4 6 1.85 8 0.68 6 6

Paley13 13 39 6 10 6.31 10 4.60 8 8

Poussin 15 39 6 9 22.36 9 2.64 6 6

Sousselier 16 27 5 6 6.31 8 1.20 5 5

Hoffman 16 32 8 4 8.83 8 1.74 7 6

Clebsch 16 40 5 8 7.68 10 18.41 9 8

Shrikhande 16 48 6 10 18.86 11 49.77 9 7-10

Errera 17 45 6 9 17.84 10 19.93 6 6

Paley17 17 68 6 14 51.20 14 7569.02 12 11

Pappus 18 27 3 6 35.26 8 1.92 7 5-7

Robertson 19 38 4 8 42.64 10 63.01 8 7-9

Desargues 20 30 3 6 56.18 9 12.36 7 5-7

Dodecahedron 20 30 3 6 87.05 9 10.84 6 5-7

FlowerSnark 20 30 3 6 76.37 9 17.45 7 5-7

Folkman 20 40 4 8 78.64 9 11.77 7 6

Brinkmann 21 42 4 8 75.38 11 838.41 8 7-10

Kittell 23 63 7 10 65.11 12 2422.53 7 7

McGee 24 36 3 6 71.78 11 2825.19 8 5-8

Nauru 24 36 3 6 52.68 10 158.20 8 5-8

Holt 27 54 4 [7-9] * [11-13] * 9 7-10

Watsin 50 75 3 5 202.49 [10-13] * 7 5-8

B10Cage 70 106 3 [5-11] * [10-23] * [11-16] 5-17

Ellingham 78 117 3 6 15002.47 [10-14] * 6 5-7
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able to compute the exact width within the timeout. Note

that not all of the standard graphs are interesting for both

treecut width and treedepth (indicated by a “P ” in the table).

This is because some of the graphs can be solved entirely by

preprocessing; for instance the treedepth of complete graphs

can be computed using Lemma 4.2. Moreover, the treecut

width of paths, cycles, and trees can be computed using

Lemma 2.1. As one can see, our treecut width encoding

is able to solve Kn, Kn,n, and Gn,n up to n = 30,

n = 15, and n = 7, respectively. Similarly, our treedepth

encoding is able to solve Bn, Kn,n, Cn, Gn,n, and Pn up

to n = 8, n = 11, n = 255, n = 6, and n = 255,

respectively. Given the simplicity of the treedepth encoding

it is surprising that it performs slightly worse than the treecut

width encoding on complete bipartite graphs and grids.

However, its extraordinary performance on paths, complete

binary trees and cycles seems to indicate that the encoding is

well suited for sparse graphs.

Finally, Table 2 provides the scalability of our three en-

codings for uniformally generated random graphs for vary-

ing edge densities and number of vertices. In line with our

previous observations the encoding for treecut width scales

significantly better than our two encodings for treedepth

(solving almost all random graphs upto 30 instead of 15 ver-

tices) and both encodings show a slight preference for very

sparse graphs. For the case of treedepth, the results once

again show a significant advantage for our partition-based

encoding over the tree-structure based encoding.

6 Conclusion and Future Work

We implemented the first practical algorithms for comput-

ing the algorithmically important parameters treecut width

and treedepth. Our experimental results show that due to

our novel partition-based characterisations for the consid-

ered width parameters, our algorithms perform very well

on small to medium sized graphs. In particular, our algo-

rithms perform better than the current best SAT-encoding for

treewidth, which even though not directly comparable serves

as a good reference point. We would also like to point out

that our algorithms will be very helpful in the future to eval-

uate the accuracy of heuristics for the considered decompo-

sition parameters and can be scaled to larger graphs if the

aim is just to compute lower bounds and upper bounds for

the parameters. We see our algorithms as a first step towards

turning the yet mostly theoretical applications of both pa-

rameters into practice.

Extending the scalability of our algorithms to even

larger graphs can be seen as the main challenge for fu-

ture work. Here, SAT-based local improvement approaches

such as those that have recently been developed for branch-

width and treewidth [25, 9], provide an interesting venue for

future work. In fact, the work on local improvement for

treewidth [9] showed that, compared to other exact meth-

ods, SAT-encodings are particularly suitable for this ap-

proach, hence it can be expected that our SAT-encodings

for treedepth and treecut width will serve well in a local im-

provement approach. Other promising directions include the

development of more efficient preprocessing procedures, or

splitting the graph into smaller parts by using, e.g., balanced

cuts or separators.
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