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A B S T R A C T

A model has been developed to simulate fractures which are pressurised using a non-Newtonian (power-law)

fluid. The flow in the surrounding, deformable porous medium is described with a non-Newtonian fluid as well.

The resulting model can represent the propagation of pressurised fractures, leak-off and the interstitial fluid

pressure in a saturated porous medium. The resulting equations have been discretised using Non-Uniform

Rational B-Splines (NURBS), cast into a traditional finite element datastructure using Bézier extraction. It is

shown that lumped integration of the fracture inflow terms is needed to obtain non-oscillatory results for the

fluid velocity normal to the discontinuity, and an integration scheme has been derived to prevent non-physical

fluid leak-off from the fracture tips. Simulations have been carried out for a typical hydraulic fracture problem.

The results show the dependence of the fluid leak-off and the fracture tip pressure on the power-law fluid index.

Shear-thinning fluids result in a larger amount of fluid leak-off compared to Newtonian fluids, but their lower

effective viscosity results in a higher pressure at the fracture tip. These effects influence the propagation velocity

of the pressurised fracture, and thus demonstrate the importance of properly modelling the non-Newtonian

character of pressurising fluids.

1. Introduction

Fracture in porous materials saturated with non-Newtonian fluids

occurs in many applications including hydraulic fracturing, con-

taminant transport, geothermal energy storage, biological tissues etc.

Modelling fluid-driven fractures is a challenging problem because of the

strong coupling between the mechanical deformation and the fluid

pressure, which results in a strongly nonlinear response. Fluid flow

inside fractures and the exchange between the fluid in the fracture and

the interstitial fluid in the surrounding porous medium further increase

the coupling and nonlinearity. An additional challenge is the fact that in

many applications the fluid is non-Newtonian, resulting in fluid velo-

cities being non-linearly dependent on the pressure gradients.

One of the first simulations in which fluid-driven fracture propa-

gation was modelled successfully combined finite elements for the

poroelastic medium with a finite difference method to capture the fluid

flow inside the fracture [1]. Later, more advanced discretisation tech-

niques were proposed to model fracture propagation in saturated

porous media. Hydromechanical interface elements, which are rela-

tively simple to implement, were introduced within the setting of a

standard finite element approach [2]. This approach can be very ef-

fective when the crack path is known beforehand. For freely

propagating cracks, remeshing [3,4] or the extended finite element

method (XFEM) are appropriate solutions [5–9] to overcome this lim-

itation by decoupling the crack path from the original mesh. Recently,

phase-field methods have also successfully incorporated fluid transport

inside fractures, paving the way for smeared approaches [10].

Recent advances allow Non-Uniform Rational B-Splines (NURBS) to

use standard finite element data structures through Bézier extraction

[11]. The use of NURBS has the advantage of higher-order continuity

and therefore more accurately captures stress and pressure gradients at

the fracture tip. The formulation using NURBS was extended to inter-

face elements, but a lumped integration scheme appeared necessary to

prevent traction oscillations [12]. NURBS were used to model frac-

turing poroelastic media [13], and were used also to simulate fluid

transport inside fractures using a subgrid scale model [14].

Pressurised fractures have been simulated assuming a continuous

pressure across the fracture [15]. Assuming a continuous pressure in-

side the fracture necessarily leads to a small boundary layer within the

porous medium at the crack face with a reduced permeability. Indeed,

numerical solutions use very dense meshes [15]. Another solution is to

consider a discontinuous pressure model with independent pressure

degrees of freedom on each of the crack faces and for the fluid within

the fracture [8,16,17]. This three degree of freedom pressure model is
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capable of successfully simulating the propagation of fluid-pressurised

fractures [18,19].

The above-mentioned results are for modelling fracture propagation

in porous media saturated with Newtonian fluids. For flow of non-

Newtonian fluids in porous media, however, numerical simulations are

very rare. Simulations which include a rigid, non-deformable porous

material have been described without fractures [20,21], and with

fractures [22]. Non-Newtonian (power-law) flow inside rough-walled

fractures has been simulated using a finite volume method [23], and

show that shear-thinning power law fluids flow faster through the

fractures compared to Newtonian fluids, but that shear-thickening

fluids flow considerably slower. Furthermore, it has been shown that

the power-law index in power-law fluids has large effects on the flow

direction inside fractures [24]. Semi-analytical solutions for time-de-

pendent inflows showed similar trends, with shear-thinning fluids

flowing faster than Newtonian fluids [25,26].

Previously, a model has been proposed which can capture flow of

non-Newtonian fluids in deformable, poroelastic media in the presence

of cracks [27]. Therein, the pressure across the fracture was assumed to

be continuous, thus effectively precluding the modelling of fluid-pres-

surised fracture propagation. We now propose a formulation for frac-

ture propagation in a saturated poroelastic medium induced by a

pressurised non-Newtonian fluid. In line with the discussion before, we

use an independent pressure degree of freedom to model the fluid

pressure inside the discontinuity. We show that a lumped integration

scheme is beneficial in removing spurious velocity oscillations at the

fracture tip. Furthermore, an integration scheme is described which

prevents the independent fluid pressure inside the fracture from being

coupled to the independent fluid pressure inside hydromechanical in-

terface elements where fracture has not yet started. This avoids non-

physical fluid leak-off.

In the remainder of this paper, we first briefly summarise the gov-

erning equations for non-Newtonian fluid flow in a deformable, porous

medium, and a model is derived to simulate fractures pressurised with a

non-Newtonian power-law fluid (Section 2). These models are dis-

cretised using NURBS shape functions and cast in standard finite ele-

ment format using Bézier extraction (Section 3). The discontinuity is

represented by a hydromechanical interface element. Attention is given

to the integration of the interface elements, resulting in a scheme which

prevents pressure oscillations in the inflow. In Section 4, an example

shows the effect of this integration scheme. Finally, Section 5 presents a

simulation of a typical hydraulic fracturing problem to demonstrate the

effect of non-Newtonian fluids.

2. Governing equations

We consider a domain Ω which consists of a porous material and is

split into two parts, −Ω and +Ω , by a discontinuity Γd, see Fig. 1. To

represent a fracture, Γd must be −C 1 discontinuous in the displacements.

For the pressure of the interstitial fluid, several models exist [16,17]. To

enable pressurising a crack, there must be a difference between the

fluid pressure in the crack and that in the surrounding porous medium,

necessitating a jump in the pressure between the fluid in the fracture

and the fluid pressure in the surrounding porous medium. This means

that at each crack face we have a −C 1 discontinuity in the fluid pressure

[8], and a separate permeability can be assigned to each crack face.

2.1. Bulk

2.1.1. Deformations of the porous solid

In most poroelastic systems, the deformations of the solid occur fast

compared to the pressure changes of the interstitial fluid. Therefore, the

deformations can be considered the result of a quasi-static process. This

assumption allows the solid deformations to be governed by the hydro-

static momentum balance:

= ∈σ x· 0 Ω (1)

subject to the external and internal boundary conditions:

= ∈u u x Γu (2a)

= ∈n σ t x· Γt (2b)

= ∈n σ t x· Γd dΓd (2c)

with u the displacement of the porous material, u the displacement

prescribed at Γu, and t and tΓd the traction at Γt and Γd, respectively.
The total stress σ in a saturated porous medium is defined as:

= −σ σ Iαps (3)

with α the Biot coefficient, p the pressure of the interstitial fluid and I

the second-order unit tensor. It is assumed that the stress inside the

solid material σs is linearly related to the strain by:

=σ D ε:s (4)

with D the fourth-order elastic stiffness tensor. The infinitesimal strain

ε is obtained from =ε us , using the symmetrised gradient operator s .

2.1.2. Interstitial fluid pressure

The pressure in the interstitial fluid can be computed from the mass

balance of the mixture, which is obtained by adding the equations for

mass conservation of the fluid and solid phases:

∂
∂ + + = ∈u q x

M

p

t
α

1
· ̇ · 0 Ω 

(5)

with the appropriate internal and external boundary conditions:

= ∈xp p Γp (6a)

= ∈n q xq· Γq (6b)

= ∈n q n q x· · Γd d d d (6c)

where p is the prescribed pressure at qΓ ,p is the prescribed fluid inflow

in the direction of surface normal n, n q·d d is the inflow resulting from

the fracture, and M is the Biot modulus. The fluid flux q is defined as

= −q v un ( ̇)f , with nf the porosity of the medium, and v and u̇ the

velocity of the fluid and solid respectively.

The power-law model is used widely for non-Newtonian fluids. It

relates the shear stress τ to the shear rate ∂
∂
v

y
by:

⎜ ⎟= ⎛
⎝
∂
∂ ⎞
⎠τ µ

v

y

n

0
(7)

with v the fluid velocity, µ0 the base viscosity or the consistency factor,

and n the power-law fluid index. An index <n 1 represents shear-

thinning fluids, for =n 1 a Newtonian fluid is obtained, and >n 1

Fig. 1. Overview of the domains +Ω and −Ω with the discontinuity Γd. The local

s n, coordinate system and fracture opening height h used for the analysis of the

fracture are also shown.
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represents shear-thickening fluids. This fluid model can be used inside

porous media for fluids with <n 2, via a generalised Darcy relation:

= − ∗ −q k p p| |f n
1 1  (8)

with the effective permeability ∗kf a constant defined as [28,29]:

= + ⎛⎝ ⎞⎠
∗

+
− −

k
n

n
k Cµ n

3 1

50

3
(2 )f

n
n

n f

n
n

1
2

0

1 1
2

(9)

with k the intrinsic permeability of the porous medium and C is a

constant, normally taken as 50

24
[29].

2.2. Fractures

2.2.1. Interface traction

The total traction for a fully saturated fracture at Γd is given by:

= −t t npd dΓd (10)

The traction which stems from the fracture opening, td, is modelled

using a cohesive zone model. In a local coordinate system, the cohesive

tractions td
loc are related to the jump in displacement u  through a non-

linear relation:

=t t u κ( , )d d
loc loc   (11)

where κ is a history parameter. The traction vector td
loc can be related to

the tractions in the global coordinate system using the rotation matrix

=R s n(¯, ¯) in a two dimensional configuration (Fig. 1):

=t Rtd d
loc

(12)

In this paper, an exponential traction-separation law is used, defining

the traction in the normal direction as:

⎜ ⎟= ⎛
⎝
− ⎞

⎠
t f

f

G
uexpn t

t

Ic n








 (13)

with ft the tensile strength of the material and GIc the mode-I fracture

toughness. The traction in the tangential direction is assumed to be

zero.

For use in a Newton-Raphson iterative procedure, the constitutive

relation can be linearised as:

=t D ud dd d
loc   (14)

with d denoting a small increment and

= ∂
∂D
t

u
d

d
loc

  (15)

The limiting case =t 0d
loc represents a traction-free crack.

In the case study, interface elements were inserted for fractured and

non-fractured parts. To prevent the part of the interface which has not

yet fractured from opening, a finite stiffness is assigned to these inter-

face elements prior to crack initiation:

= ⎡
⎣⎢

⎤
⎦⎥D

d

d

0

0d
n

s (16)

where dn and ds are dummy stiffness values in the normal and tan-

gential directions, respectively. These values must be chosen suffi-

ciently high to prevent any additional deformations due to the presence

of the interface elements in the pre-cracking phase.

2.2.2. Fluid pressure

The fluid inside the fracture adapts fast to changes in the pressure

compared to the interstitial fluid in the surrounding porous medium.

Therefore, inertial effects are neglected in the formulation for the fluid

in the fracture. It is furthermore assumed that the compressibility of the

fluid within the fracture is small, and that effects of density gradients

are negligible. The pressure inside the fracture is therefore obtained

from the mass balance of an incompressible fluid:

∂
∂ + ∂

∂ =w

n

v

s
0

(17)

with w the fluid velocity in fracture normal direction, and v the velocity

in the tangential direction of the fracture. Integrating Eq. (17) over the

fracture height results in:

∫− = − ∂
∂

+ −
−w w

v

s
nd

h

h

/2

/2

(18)

with +w and −w the fluid velocity at the top and bottom of the fracture.

These velocities are determined using an interface permeability:

= − + ∂
∂

+ +w k p p
h

t
( )

1

2
i d (19a)

= − − ∂
∂

− −w k p p
h

t
( )

1

2
i d (19b)

and the corresponding terms for the boundary conditions in Eq. (6c) by:

− = − +n q k p p· ( )d d i d (20a)

= −−n q k p p· ( )d d i d (20b)

with ki the interface permeability, pd the pressure inside the dis-

continuity, and −p and +p the interstitial fluid pressures at the inter-

faces inside the porous medium. While time-dependent relations for the

interface permeability exist [8], a constant value for this permeability

has been taken here to focus on the effect of the non-Newtonian fluid

index n.

It is assumed that the tangential fluid velocity inside the fracture is

high compared to the velocity normal to the fracture. Since the height

of the fracture is small compared to its length, it is furthermore assumed

that the pressure inside the fracture is constant in the normal direction.

Using these assumptions, the balance of momentum in the tangential

direction becomes:

= − ∂
∂ + ∂

∂
p

s

τ

n
0 d

(21)

and after substitution of the constitutive relation for the power-law

fluid, Eq. (7), we obtain:

⎜ ⎟= − ∂
∂ + ∂

∂ ⎛
⎝

⎛
⎝
∂
∂ ⎞

⎠
⎞
⎠

p

s n
µ

v

n
0 d

n

0
(22)

Solving this equation with no-slip boundary conditions at = ±n h/2
results in an expression for the fluid velocity inside the fracture:

= +
∂
∂

∂
∂

⎛
⎝⎜

− ⎛⎝ ⎞⎠
⎞
⎠⎟

− −
+ +

v n
n

n
µ

p

s

p

s
n

h
( )

1
| |

2
n d

n
d

n
n

0

1
1 1

1 1

1 1

(23)

Substituting this expression for the tangential fluid velocity and that for

the inflow velocity, Eq. (19), into Eq. (18) results in the following

equation for the pressure pd in the fracture:

− − + ∂
∂ = ∂

∂
⎛
⎝
⎜ −

+
∂
∂

∂
∂ ⎛⎝ ⎞⎠

⎞
⎠
⎟

∈

+ − − − +
xk p p p

h

t s

n

n
µ

p

s

p

s

h
(2 )

‾

2

2 1 ‾ ‾ 2

Γ

i d
n d

n
d n

d

0

1
1 1 1 2

(24)

with the boundary conditions

= ∈ ∂xq Q Γd tip Q (25a)

= ∈ ∂xp p Γd d pd (25b)

Qtip being the inflow imposed on the points ∂Γd, and pd being the

pressure imposed on ∂Γpd.
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3. Discretisation

The weak form of the momentum balance, Eq. (1), is obtained

through multiplication by the test function η and using the divergence

theorem:

∫ ∫ ∫⎜ ⎟⎛
⎝

− ⎞
⎠

− − =σ I t n tη αp η p η: dΩ ·( )dΓ · dΓs d d d
Ω Γ Γd t


(26)

The weak form of the mass balance of the mixture, Eq. (5), is obtained

through multiplication by the test function for the interstitial pressure,

ζ . Using the divergence theorem and substituting the boundary condi-

tions at the discontinuity, Eq. (20), results in:

∫ ∫ ∫
∫ ∫

+ +
+ − = −

∗ −uαζ k p ζ p
M
ζp

ζk p p ζq

· ̇ dΩ | | · dΩ
1

̇ dΩ

( ) dΓ ‾ dΓ

f
n

i d

Ω Ω

1/ 1

Ω

Γ Γd q

   

(27)

Finally, the expression for the fluid pressure in the crack, pd, is obtained

by multiplying Eq. (24) by a test function for the discontinuous pres-

sure, ξ , and again using the divergence theorem:

∫
∫ ∫⎜ ⎟

+ − − ∂
∂

+ − +
∂
∂

∂
∂ ⎛

⎝
∂
∂ ⎞

⎠
⎛⎝ ⎞⎠ = ∂

+ −

− − +
∂

k ξ p p p ξ
h

t

n

n
µ

ξ

s

p

s

p

s

h
ξQ

( 2 ) dΓ

2

2 1 2
dΓ d Γ

i d d

n d
n

d n

d d d

Γ

Γ
0

1
1 1 1 2

Γ

d

d d

(28)

Eqs. (26)–(28) have been discretised using Non-Uniform Rational B-

Splines (NURBS), which are commonly used in IsoGeometric Analysis

(IGA). In order to use NURBS in the same manner as the shape functions

in standard finite element analysis, Bézier extraction has been used

[11]. This allows for the deformations and pressures to be determined

on a per element basis, while preserving the inter-element continuity.

Using the Bézier extracted shape functions for the solid displacement

Ns, the interstitial fluid pressure Nf , and the pressure inside the dis-

continuity Nd, the displacements and pressures are discretised as:

∑=
=

u N u
e

n

s
el el

1

el

(29)

∑=
=

N pp
e

n

f
el el

1

el

(30)

∑=
=

N ppd
e

n

d
el

d
el

1

el

(31)

Whereas standard Lagrangian shape functions always have a C0 inter-

element continuity, NURBS of order p have a continuity of −Cp 1 be-

tween elements. This allows for continuous solutions for the stresses

and fluid velocities. Since Eq. (24) contains second derivatives of the

pressure, cubic NURBS were used for the interstitial and fracture

pressures (Nf and Nd). To prevent spurious pressure oscillations, the inf-

sup condition has to be fulfilled [30]. This requirement can be met

using p-refinement [14], resulting in quartic shape functions for the

solid displacement (Ns).

It is noted that the pressure and displacements are −C 1 dis-

continuous at the interface. Furthermore, degrees of freedom for pd are

inserted in both the fractured and non-fractured interface elements, as

can be seen in Fig. 2. To couple this pressure to the pressures inside the

surrounding porous medium, a dummy permeability ki d, has been used

for non-fractured elements, in a similar manner as a dummy stiffness is

used for the displacements in interface elements. This dummy perme-

ability has been combined with Eq. (20) to allow for fluid flow between
+Ω and −Ω .

Using the shape functions of Eqs. (29)–(31) to discretise the weak

form of Eq. (26) results in:

− − =f f f 0ext int d (32)

with the external force f ext defined in a standard manner as:

∫=f N t dΓext s
T

Γt (33)

The force resulting from the interior of +Ω and −Ω , fint , is given by:

∫ ∫= −f B σ B mN pαdΩ dΩint
T

s
T

f
el

Ω Ω (34)

with =m [1 1 0]T and B the strain-nodal displacement operator, used to

map the element displacements to the strains:

=ε Buel (35)

For the forces at the interface, it is convenient to introduce a matrix

that maps the displacements to the jumps in displacement across the

interface:

=u N uel
ds

el  (36)

This mapping matrix is used to define the forces acting at the dis-

continuity, f d as:

∫ ∫= −f N R D RN u N n N pdΓ dΓd ds
T T

d ds
el

ds
T

d d
el

Γ Γ
Γ

d d
d (37)

The mass conservation for the bulk and fracture contains time de-

rivatives, which are discretised using a backward finite difference

scheme. Hence, the terms of Eq. (32) are computed at time +t tΔ , and

the time derivatives in the mass conservation equations are discretised

as:

□ = □ − □+
t

̇
Δ

t t tΔ

(38)

The weak form of the mass conservation, Eq. (27), is discretised using

the shape functions of Eqs. (29)–(31) and the time discretisation given

in Eq. (38) as:

− − =q q q 0ext int d (39)

with the external flux qext defined as:

∫=q Nt qΔ dΓext f
T

Γq (40)

and the internal flux qint as:

∫
∫
∫

= − −
−
− −

+

∗ + − +

+

q N m B u u

N p N N p

N N p p

α

tk

M

( ) dΩ

Δ | | ( ) dΩ

1
( ) dΩ

int f
T T t t t

f f
t t n f

T
f

t t

f
T

f
t t t

Ω

Δ

Ω

Δ 1 1 Δ

Ω

Δ

  

(41)

The fluid fluxes due to the fracture are given by:

∫= −+ +±q N N p N pk tΔ ( )dΓd i
el

f
T

d d
t t

f
t t

Γ

Δ Δ

d (42)

with ∫±Γd
indicating that the integral is performed twice, separately for

the pressures at the top and at the bottom. The interface permeability of

the element ki
el is given by:

Fig. 2. Overview of the locations of the degrees of freedom for the interface

elements. The pressures and displacement degrees of freedom are shown for the

centre element. The vertical distance between the top and bottom has been

added for visual purposes, since in reality the top and bottom of the interface

coincide.
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= ⎧⎨⎩k
k

k

for non-fractured elements

for fractured elementsi
el i d

i

,

(43)

The weak form for the fluid pressure inside the fracture, Eq. (28), is

discretised as:

− − =q q q 0d ext d int d d, , , (44)

with the external flux defined as:

∫= ∂∂q Nt QΔ d Γd ext d
T

tip, ΓQ (45)

The internal flux of the fracture reads:

∫ ⎜ ⎟= − +
⎛
⎝

⎞
⎠

− + − + +

+

q

N N p
n N u

N

p

t
n

n
µΔ

2

2 1
( ) | |

2

dΓ

d int

n
d
T

d d
t t n

ds
t t n

d

d
t t

,

Γ
0

1
Δ 1 1 Γ

Δ
1 2

Δ

d

d  

(46)

and the fluxes due to the coupling between the bulk and fracture are

given by:

∫
∫

= + −
− −

+ + − + +

+
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While most terms in Eqs. (32), (39) and (44) can be integrated with

a Gauss integration scheme, this will result in traction oscillations for

the interface stiffness term of Eq. (37) for non-fractured elements

[13,31]. These oscillations can be prevented by using lumped integra-

tion [12], in which the internal force due to the tractions at the inter-

face is determined per set of co-located control points instead of per

element:

∫ ∑= =−
=

f N R D RN u M R D RM u AdΓd
non frac

ds
T T

d ds
el
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l
T T

d l
cp
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Γ
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d
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(48)

with ncp the number of control-point sets for the interface element, and

ucp the displacements of the control-point set. The lumped integration

matrix Ml is defined by:
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(49)

and the weighting factor Acp corresponding to the control-point set is

given by:

∫= NA dΓcp s
Γd (50)

It is emphasised that lumped integration is only carried out for non-

fractured elements.

It was observed that oscillations also occurred in the fracture inflow

velocity, +w and −w . These oscillations are caused by the coupling

between the fracture pressure pd and interstitial fluid pressure in the

bulk material, Eqs. (42) and (47). To prevent these oscillations, Eq. (42)

and the first term of Eq. (47) have also been integrated using lumped

integration. Since the interface permeability ki can be of the same order

of magnitude as the dummy permeability ki d, for near-continuous

pressures at the interface, lumped integration was now used for the

fractured as well as for the non-fractured interface elements.

The pressure inside the discontinuity, pd, is coupled to the inter-

stitial pressure by ki for fractured elements, and by ki d, for non-fractured

elements. This coupling leads to problems around the fracture tips,

where pressure degrees of freedom receive fluid due to the flow inside

the fracture, and would be linked to the interstitial fluid by the dummy

permeability. It would result in large amounts of outflow at the fracture

tips, due to the fluid flow normal to the fracture being influenced by the

large dummy permeability forcing equal pressures. To prevent these

non-physical outflows, the non-fractured elements around the fracture

tips have been integrated with a modified lumped integration scheme.

Instead of forcing +p to be equal to pd, and pd to be equal to −p , +p and
−p are directly linked, as shown in Fig. 3. This is done by replacing Eq.

(42) by:

∫= ∓ −+ −±q N N p N pk t
1

2
Δ ( ) dΓd i d f

T
f f

Γ
,

d (51)

This allows the continuous pressure to be enforced across the dis-

continuity without influencing the pressure inside the discontinuity.

The effect of using this fracture tip integration will be shown in Section

4.

A Newton-Raphson iterative scheme has been used to solve Eqs.

(32), (39) and (44) in a fully coupled manner, resulting in:
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The tangent stiffness submatrices are given in Appendix A. It is noted

that the history variable used for the cohesive zone model is updated

after each converged time step. The fracture propagation criterion is

also checked after each converged time step. This results in the fracture

only propagating based on an equilibrium state.

We have verified the implementation of the non-Newtonian fluid

flow inside the bulk by a comparison with the MATLAB partial differ-

ential equation solver. Results obtained for Newtonian fluids, including

flow inside the fracture, have been compared with an example of a

curved beam [14] and were also in good agreement. Unfortunately, due

to the absence of analytical solutions for non-Newtonian fluids in

fractured poro-elastic media, no verification was possible of the im-

plementation of the non-Newtonian flow terms in the fracture.

Fig. 3. Schematic overview of the control-point sets integrated with lumped integration, and the corresponding ki
el used per control-point set.
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4. The effect of lumped integration

To illustrate the effect of the fracture tip integration scheme de-

scribed in Fig. 3 and the effect of using lumped integration compared to

a Gauss integration scheme, a typical boundary value problem has been

simulated [14]. This problem, shown in Fig. 4, consists of a square plate

of ×10 10 m with the centre 4 m fractured under a °30 angle. The left

and right edges are constrained in the horizontal direction, while the

bottom is constrained in the vertical direction. A pressure difference of

0.5 MPa is applied between the top and bottom edges.

The simulations have been carried out using the following proper-

ties of the solid: Young’s modulus =E 9 GPa, Poisson ratio =ν 0.4, Biot
modulus =M 1·10 MPa18 , Biot coefficient =α 1.0, porosity =n 0.3f ,

intrinsic permeability = −k 1·10 m12 2 and an interface permeability of

= −k 1·10 m/Pa si
10 . The properties of the fluid were: Fluid index =n 1.0

(a Newtonian fluid) and base viscosity =µ 1.0 mPa s0 .

The domain was discretised using ×80 40 Bézier extracted ele-

ments. A time-step size =tΔ 1 s has been used. The simulations reached

a steady state at =t 40 s. A dummy permeability for the unfractured

elements of = −k 0.5·10 m/Pa si d,
3 and a dummy stiffness

= =d d 10 GPan s
3 have been used.

The fluid velocity normal to the discontinuity is shown in Fig. 5.

Large oscillations arise when a Gauss integration scheme is used. In

contrast, when using a lumped integration scheme these oscillations do

not occur. Looking at the difference between the top and bottom

velocities through the interface, Fig. 6, similar oscillations are observed.

This indicates that the oscillations at +Γ and −Γ do not cancel each

other. The result is small amounts of fluid being absorbed and released

at different locations for the non-fractured interface elements when a

Gauss integration scheme is used.

The result using lumped integration without the tip integration

shows a large peak in the fracture inflow, Fig. 6, which does not occur

when using the fracture tip integration. A large (positive) peak also

occurs near the right fracture tip (not shown). This indicates that large

amounts of fluid enter at the left tip, and leave the fracture at the right

tip. This is confirmed by the pressure inside the discontinuity shown in

Fig. 7. The slope of the pressure without tip integration pressure is steep

compared to that with tip integration. This indicates that more fluid is

being transported inside the fracture when no tip integration is used.

We therefore conclude that crack tip integration is necessary to

prevent a non-physical inflow at the fracture tips. It is noted that this

inflow problem at the tip is solely caused since the interface elements

have also been inserted at places where fracture does not occur, or has

not yet occurred. When interface elements are placed only where

fracture has actually occurred, for instance adaptively using remeshing

for propagating cracks, no dummy permeability is needed. This re-

moves the coupling between the interior of the fracture and the inter-

stitial fluid pressure using the dummy permeability, and therefore re-

moves the non-physical fluid leak-off from the fracture tips and the

need for the special fracture tip integration.

5. Case study of hydraulic fracturing

To analyse the influence of non-Newtonian fluids on the fracture

propagation speed, a typical hydraulic fracturing problem has been

simulated. The problem consists of a square plate of ×0.25 m 0.25 m,

with a horizontal discontinuity through the centre of the plate, shown

in Fig. 8. The first 5 mm of the discontinuity are pre-fractured, and an

inflow of = −Q 1·10 m / stip
5 2 is imposed on the left end of this fracture.

The top, bottom and right edges are fully constrained in the horizontal

and vertical directions, and a constant pressure of 0 MPa is imposed on

these edges. The left edge is constrained horizontally, and no flow is

allowed through this edge.

The simulations have been carried out using the following material

properties: Young’s modulus =E 25.85 GPa, Poisson ratio =ν 0.18, bulk
modulus =K 13.46 GPas , Biot coefficient =α 1.0, tensile strength of the

material =f 1.7 MPat , and a mode-I fracture toughness =G 0.1 kN/mIc .

The bulk modulus of the fluid has been taken as =K 0.2 GPaf and the

porosity as =n 0.2f .

The non-Newtonian fluids have been simulated with a constant base

Fig. 4. Geometry and boundary conditions of the example used to illustrate the

effects of lumped integration.

Fig. 5. Fluid velocity through the bottom interface ( −Γ ) of the discontinuity

( −w ) with and without lumped integration and special treatment of the fracture

tips. Results are shown for the left fracture tip.

Fig. 6. Difference between fracture inflow and outflow ( −+ −w w ) with and

without lumped integration and special treatment of the fracture tips. Results

are shown for the left fracture tip.
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viscosity =µ 0.5 mPa sn0 , and five different power-law fluid indices

have been adopted: Shear-thinning fluids with =n 0.8 and =n 0.9, a
Newtonian fluid with =n 1.0, and shear-thickening fluids with =n 1.1
and =n 1.2. The amount of fluid leaking from the fracture into the

surrounding porous medium has been varied by using three different

permeabilities: = =− −k k1·10 m , 1·10 m16 2 17 2 and = −k 1·10 m18 2. The

interface permeability has been assumed as = −k 1·10 m/Pa si
10 , and the

interface permeability of the cohesive zone has been assumed to be

equal to that of a fully open crack. The amount of fluid leaking from the

fracture was influenced by varying the permeability of the porous

medium, rather than the interface permeability, since the dependence

of the effective permeability ∗kf on the fluid index and viscosity were

known, whereas no relation was available for the dependence of the

interface permeability on these properties.

The simulations have been carried out using a dummy interface

permeability = −k 1·10 m/Pa si d,
3 and dummy stiffnesses

= =d d 5·10 GPas n
3 . The domain has been discretised using ×250 20

Bézier extracted elements. The horizontal element size was constant at

=dx 1 mm, while the vertical elements were taken smaller near the

fracture, ranging from =dy 3 mm close to the discontinuity till

=dy 55 mm for the elements near the top and bottom. A constant time-

step size of =tΔ 1 ms has been used, for the total simulation time of

0.5 s.
The fluid pressure inside the porous medium is shown in Fig. 9,

where a low and a high value of the permeability have been considered.

Clearly, the differences in pressure contours are much bigger for the

shear-thinning fluids, with also more fluid flowing from the fracture to

the surrounding porous medium. Further, a clear difference is observed

between the cases of low and high values of the permeability, and is

more pronounced for the shear-thinning fluid.

The fracture length for a permeability = −k 1·10 m16 2 is given in

Fig. 10a. The results show that the larger leak-off for shear-thinning

fluids significantly decreases the propagation length compared to the

Newtonian fluid. Conversely, the smaller leak-off for shear-thickening

Fig. 7. Pressure inside the discontinuity, pd, with and without lumped integration and special treatment of the fracture tips. The lumped integration without fracture

tip integration matches the Gauss integration scheme.

Fig. 8. Geometry and boundary conditions used for the hydraulic fracturing

example.

Fig. 9. Fluid pressure inside the porous medium for = −k 1·10 m16 2 (displayed in the lower part of each figure) and = −k 1·10 m18 2 (displayed in the upper part of each

figure) at =t 0.25 s.
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fluids results in a faster fracture propagation. This also comes out in

Fig. 11c, which shows large differences in the fracture outflow velocity

between Newtonian, shear-thinning and shear-thickening fluids. The

lower amount of fluid flowing from the fracture to the porous medium

for shear-thickening fluids results in higher pressures inside the frac-

ture, as shown in Fig. 11b. But while the pressure of the shear-thick-

ening fluid is much higher near the inlet, this pressure becomes nega-

tive near the fracture tip. This negative pressure is a result of the shear-

thickening fluid having a high effective viscosity due to the small

fracture opening height, and therefore flowing rather slowly towards

the fracture tip. Since the effective viscosity of shear-thinning fluids is

much lower than the shear-thickening fluids, this negative pressure

near the fracture tip does not occur. Finally, the higher pressure inside

the fracture for shear-thickening fluids results in a larger fracture

opening, see Fig. 11a.

The fracture propagation for = −k 1·10 m18 2, Fig. 10c, shows the

opposite behaviour from that observed before, with the fracture pro-

pagating faster for shear-thinning fluids. The difference in fracture

length between =n 0.8 and =n 0.9 is rather small, whereas the fracture

length difference between =n 1.1 and =n 1.2 is much larger. Looking

Fig. 10. Fracture length.
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at the pressure inside the fracture, Fig. 13b, large differences can be

observed. Whereas the fracture opening results in a locally negative

pressure for shear-thickening fluids, no such negative pressure occurs

for the shear-thinning fluids. This pressure is more negative than for the

= −k 1·10 m16 2 case, explaining the slower fracture propagation com-

pared to that for the Newtonian fluid. This negative pressure also causes

fluid to flow from the porous medium into the fracture near the fracture

tip, Fig. 13c. Somewhat further away from the fracture tip large out-

flows occur. These outflows are caused by the low diffusion inside the

porous medium, resulting in large pressure differences between the

recently pressurised fracture and the interstitial fluid. These outflows

are further increased by the fracture having absorbed fluid from the

porous medium at the fracture tip in the case of shear-thickening fluids.

The outflow is also significantly higher for =n 0.8, compared to

=n 0.9. This explains the limited difference in fracture propagation

length between these two cases: Even though the pressure near the

fracture tip is slightly higher, the effect on the propagation speed is

mostly offset by the increased leak-off, resulting in a lower pressure

inside the fracture.

The effects of a decreased fracture propagation due to leak-off for

shear-thinning fluids, and negative fracture tip pressures for shear-

thickening fluids are also seen in the results for = −k 1·10 m17 2. In this

case, for the shear-thinning and for the shear-thickening fluids propa-

gation is slower than for the Newtonian fluid, see Fig. 10b. The pressure

at the crack tip in Fig. 12b is indeed negative for shear-thickening

fluids, and positive for shear-thinning fluids. Furthermore, the shear-

thinning fluids have significantly more leak-off from the fracture, as

seen in Fig. 12c. It is observed that for the shear-thinning fluids

Fig. 11. Results for = −k 1·10 m16 2 at =t 0.25 s along the first 0.2 m of the discontinuity.
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propagation is faster than for a Newtonian fluid and only slows down

when the fracture has propagated further. This is because leak-off be-

comes more important for longer fractures.

It is finally noted that Fig. 10 shows some stepwise fracture pro-

pagation. This is caused by the finite mesh size (250 elements in the

horizontal direction) in combination with the fact that the fracture is

allowed to propagate only on a per-element basis. The stepwise pro-

pagation of Fig. 10 therefore does not have a direct physical basis.

Nevertheless, stepwise fracture propagation of internally pressurised

cracks has been observed experimentally [32]. Numerical models have

been shown capable of capturing this effect, for instance when the solid

is modelled using a lattice [33].

6. Concluding remarks

We have presented a model to simulate non-Newtonian (power-law)

fluid flows inside pressurised fractures and deformable porous media.

The discretisation has been done using Non-Uniform Rational B-Splines

(NURBS), which have been cast in a standard finite element format

using Bézier extraction. A major advantage of this isogeometric analysis

approach is that the stresses, and the fluid pressures and velocities re-

main continuous at element boundaries, inside the porous medium as

well as within the fracture. The fracture has been discretised using

isogeometric interface elements, and an independent pressure degree of

freedom was added into these elements to allow for the simulation of

internally pressurised fractures.

It has been shown that the use of a lumped integration scheme is

Fig. 12. Results for = −k 1·10 m17 2 at =t 0.25 s along the first 0.2 m of the discontinuity.
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necessary, not only to prevent traction oscillations in interface elements

that have not yet fractured, but also to obtain oscillation-free velocity

profiles for the fracture inflow. At the fracture tips, a special integration

scheme was applied to avoid high amounts of non-physical fluid leak-

off. Results with and without this scheme have shown its importance in

avoiding non-physical local fluid leak-off, and for the pressure inside

the fracture.

Simulations have been carried out using different values of the

index of a power-law fluid and the permeability of the surrounding

porous medium. The simulations show differences in fracture propa-

gation speed between the Newtonian and non-Newtonian fluids. Shear-

thinning fluids yielded more fluid leak-off, while resulting in higher

pressures near the fracture tip compared to Newtonian fluids. In con-

trast, shear-thickening fluids showed less fluid leak-off from the

fracture, but their higher effective viscosity inside the fracture resulted

in negative pressures close to the fracture tip.

The result is that shear-thinning fluids give rise to a faster fracture

propagation in case of low permeabilities of the surrounding porous

medium. On the other hand, shear-thickening fluids yield faster crack

propagation when the permeability in the surrounding porous medium

is high. Conversely, both shear-thickening and shear-thinning fluids can

experience a slower fracture propagation compared to Newtonian

fluids, depending on the porosity of the surrounding medium.
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Appendix A. Tangential stiffness matrices

The tangential stiffness submatrices used in Eq. (52) reads as follows:
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