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Abstract 

Pattern mining is a powerful tool for analysing big datasets. Temporal datasets include 
time as an additional parameter. This leads to complexity in algorithmic formulation, 
and it can be challenging to process such data quickly and efficiently. In addition, errors 
or uncertainty can exist in the timestamps of data, for example in manually recorded 
health data. Sometimes we wish to find patterns only within a certain temporal range. 
In some cases real-time processing and decision-making may be desirable. All these 
issues increase algorithmic complexity, processing times and storage requirements. In 
addition, it may not be possible to store or process confidential data on public clusters 
or the cloud that can be accessed by many people. Hence it is desirable to optimise 
algorithms for standalone systems. In this paper we present an integrated approach 
which can be used to write efficient codes for pattern mining problems. The approach 
includes: (1) cleaning datasets with removal of infrequent events, (2) presenting a new 
scheme for time-series data storage, (3) exploiting the presence of prior information 
about a dataset when available, (4) utilising vectorisation and multicore parallelisation. 
We present two new algorithms, FARPAM (FAst Robust PAttern Mining) and FARPAMp 
(FARPAM with prior information about prior uncertainty, allowing faster searching). The 
algorithms are applicable to a wide range of temporal datasets. They implement a new 
formulation of the pattern searching function which reproduces and extends existing 
algorithms (such as SPAM and RobustSPAM), and allows for significantly faster calcula-
tion. The algorithms also include an option of temporal restrictions in patterns, which 
is available neither in SPAM nor in RobustSPAM. The searching algorithm is designed to 
be flexible for further possible extensions. The algorithms are coded in C++, and are 
highly optimised and parallelised for a modern standalone multicore workstation, thus 
avoiding security issues connected with transfers of confidential data onto clusters. 
FARPAM has been successfully tested on a publicly available weather dataset and on a 
confidential adult social care dataset, reproducing results obtained by previous algo-
rithms in both cases. It has been profiled against the widely used SPAM algorithm (for 
sequential pattern mining) and RobustSPAM (developed for datasets with errors in time 
points). The algorithm outperforms SPAM by up to 20 times and RobustSPAM by up to 
6000 times. In both cases the new algorithm has better scalability.
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Introduction
Many datasets are produced in science and technology these days. Thus there is demand 
to efficiently extract useful information from these data and be able to predict certain 
events in the future. This may help a person, organisation or society to optimise their 
time and resources. Statistical methods can provide solutions in many cases. But when 
the quantity of data is too large, they may become too slow to be used in practical appli-
cations. In this case data mining methods are used. Data mining includes many fields, 
such as clustering, classification, outlier analysis and frequent pattern mining. As data-
sets become ever larger and new computing architectures emerge, researchers need to 
adapt existing algorithms to be used in a more efficient way.

A particular problem arises with datasets related to personal data such as health 
records [1, 2]. Great care in processing of sensitive data is imperative. In some cases, 
when use of a network is unavoidable, a combination of isolating the network and data 
analysis of previous cyber-attacks can be a good solution [3]. While modern remote 
supercomputers allow rapid solution of problems, their use may be prohibited where 
data confidentiality is paramount. Therefore it is important to develop software utilising 
all the available resources of a standalone (and not necessarily high-end) workstation. 
To achieve that, two main issues should be addressed: (1) efficient methods of database 
storage (see, for example, [4]) and (2) algorithm optimisation.

In this paper we focus on the problem of frequent pattern mining, which was first for-
mulated in the early 1990s [5, 6]. It includes several classes of mining problems applied 
to sequential or temporal patterns, frequent itemset mining, and association rules. Min-
ing through sequential datasets and itemsets, the corresponding problem of association 
rules, are relatively straightforward to implement. Such problems have been well studied 
and include algorithms developed for serial implementation (sequential pattern min-
ing (SPADE, SPAM, FreeSpan, PrefixSpan) [7–10], constraint-based sequential pattern 
mining (CloSpan, Bide) [11, 12] and mining for frequent itemsets and for association 
rules [5, 13]). Most of the serial algorithms mentioned above have been modified to run 
on high performance computers. For example, pSPADE [14] is a parallelised version of 
SPADE with the use of a shared memory interface, and PrefixSpan has been parallelised 
using MPI instructions [15]. In other cases, new parallel algorithms have been proposed, 
for example using hybrid OpenMP-MPI [16], and parallel sequential pattern mining 
applied to so-called massive trajectory data [17]. For more examples of pattern mining 
algorithms and a list of platforms for which they have been adapted see [18–22].

Particular problems in pattern mining arise with temporal data, which are widely col-
lected for various purposes in social, health, consumer, environmental, and medical 
areas, communications, and financial monitoring [2, 23–32]. These data include time as 
a parameter, either as a set of discrete time points or, in more sophisticated problems, 
timestamps. Timestamps could include either instantaneous events, such as temperature 
measurements, or events which happen over a period of time.

Existing temporal pattern mining algorithms usually include either interval based rep-
resentations (which typically exploit Allen-type relationships, e.g. [25]) or time-point 
representations, reducing an interval between start and end time-point events. The 
first approach more fully describes frequent patterns, but is very expensive in CPU time 
and storage space due to the large number of relations that need to be checked for each 
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candidate pattern. Temporal reasoning may help to optimise performance and reduce 
storage requirements [25]. An example of a method for discovering frequent tempo-
ral interval arrangements is presented in [33], and mining for association rules in [34]. 
Unfortunately, these algorithms are not publicly available. The second approach allows 
to apply sequential pattern mining, or time series pattern mining techniques (for exam-
ple SPAM). This approach has the advantages of using less storage space and being easier 
to implement, e.g. [34–37]. Another approach to mining through timestamped events 
is relevance weight pattern mining [38]. This has been applied to building an activity 
detection model, based on assigning relevance weights to the recorded activities.

It is often desirable to put additional constraints on patterns to be found. For exam-
ple, if a pattern is met more frequently than a predefined threshold it is called frequent. 
Another example is considering patterns which took place in the last n years, and have 
good predictivity [2]. Other examples of possible constraints include item constraints, 
model-based constraints, length or temporal length constraints. For example, an abnor-
mal blood pressure measurement can be associated with a stroke that took place in the 
following week but it might be hard to associate it with a stroke taking place a decade 
later. Examples of constrained pattern mining can be found in [2, 35, 39–44].

In time-series datasets and streamed data the time of the recorded event can often 
contain an error. This may happen due to faults in sensors, errors in signal sampling, 
etc. The use of standard algorithms designed for error-free data may lead to incorrect 
results, therefore an appropriate probabilistic model as well as suitable pattern mining 
algorithm should be used. A sliding window algorithm has been proposed in [45]. In [29, 
46] a model assigns a certain probabilities to the events.

There also can be uncertainty with regards to the time stamps of temporal data, and 
hence the sequence of events. For example, suppose we have two events A and B which 
are likely to happen during time intervals [tsA, t

e
A] and [tsB, t

e
B] . If these intervals overlap, 

it means that there could be a probability of event A happening before event B as well 
as event B happening before event A. If this possibility is not taken into account a min-
ing algorithm will mine this record only for one type of pattern. This will lead to incor-
rect estimates of how frequent the patterns AB and BA are in the dataset. For example, 
the algorithm RobustSpam [37] takes into account the possibility of inaccuracies in the 
way timestamps are recorded. This approach is focused on using time points instead of 
intervals and fitting probabilistic models for the errors in the time stamps around these 
time points. Intervals were represented as a start and end points with the possibility of 
different errors around those points. RobustSpam also allows for deliberate introduction 
of uncertainty to protect patient confidentiality. Other examples of mining datasets with 
uncertainties can be found in [47–49].

In this paper we present an integrated approach to the optimisation of pattern 
mining. After data cleaning, we first remove infrequent events, then arrange 
data storage to optimise searching, use prior information where possible, and 
optimise calculation speeds using OpenMP and vectorisation. We present two new 
algorithms, FARPAM (FAst Robust PAttern Mining) and FARPAMp (when prior 
information is used), which are applicable to a wide range of datasets recorded with 
time stamps. A new formulation of the pattern searching function is implemented 
which reproduces and extends the outputs of existing algorithms (such as SPAM 
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and RobustSPAM), and also allows significantly faster calculation. The algorithms 
also include the option of temporal restrictions in patterns, which is included 
neither in SPAM nor in RobustSPAM. In practice, uncertainty intervals for event 
time-stamps are estimated using field expertise and are, in general, different for 
different events. The algorithm FARPAM covers such a general case. However, in 
some cases there is prior information allowing us to reduce the number of possible 
pairwise relations between uncertainty intervals. For instance, we may know that 
uncertainty intervals for all events are identical. In this case the searching function 
can be further optimised resulting in faster computing times. This is implemented 
in the algorithm FARPAMp. Both algorithms include a full range of optimisation 
measures (removing infrequent events, a new way of efficiently storing datasets, 
using binary ID lists and multithreading). The algorithms are coded in C++, and are 
highly optimised and parallelised for a modern standalone multicore workstation, 
thus avoiding security issues with transfer of confidential data onto a cluster. They 
are profiled for applications to (1) itemsets using the existing and highly optimised 
SPAM code, (2) time-series recorded with errors in timestamps using RobustSPAM. 
We show that they are both faster and better scalable than SPAM and RobustSPAM. 
Table  1 presents a summary of the algorithms we have developed (FARPAM 
and FARPAMp), their intermediate versions (Apriori, Apriori+ bitmap and 
Apriori+ bitmap+ openMP ) and the methods we used for profiling and verifying 
outputs (RobustSPAM and SPAM). Table 2 shows the levels of optimisation used in 
the algorithms (fully described in “Steps in constructing and optimising FARPAM” 
section). All algorithms presented in the table produce identical outputs (the list 
of frequent patterns found for a given level of support, and the frequency and ID 

Table 1  Algorithms tested in the paper

Name Language Source Algorithm

Apriori C++ Present paper PM with uncertainty intervals 
and temporal length restric-
tion

Apriori+ bitmap

Apriori+ bitmap+ openMP

FARPAM

FARPAMp

RobustSpam Java [37] PM with uncertainty intervals

SPAM Java [8] SPAM

Table 2  Optimisation details of the tested algorithms

Name Bitmap ID lists OpenMP New way 
of storage

Prior 
knowledge

Apriori No No No No

Apriori+ bitmap Yes No No No

Apriori+ bitmap+ openMP Yes Yes No No

FARPAM Yes Yes Yes No

FARPAMp Yes Yes Yes Yes

RobustSpam No No No No

SPAM Yes No No No
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of entries where they have been found) for the same problems. The algorithms 
are applied to a confidential social care dataset and to a publicly accessible 
meteorological dataset.

Methodology
Definitions and notations

Suppose we have m unique items and denote them as ij , j = 1, . . . ,m . According to 
[6] an itemset is a non-empty set of items and a sequence is an ordered list of item-
sets. We may denote an itemset I by (i1, i2, . . . , in) , where ij is an item, and a sequence 
S by 〈s1, s2, . . . , sk〉 , where sj is an itemset. If a sequence consists of n itemsets we call 
it sequential pattern of length n or n-pattern. It is possible that the same itemset may 
appear several times in a pattern, e.g. 〈s1, s2, s1, s3, s1, s1〉 . Note that the order of items 
within an itemset is not important while the order of itemsets matters and sequences 
〈s1, s2, s1, s3, s1, s1〉 and 〈s1, s1, s1, s1, s3, s2〉 are different.

A database D is formed of several records (sets of sequences). Each record is 
allowed to have a different number of sequences. All these records can be enumer-
ated as ρk , k = 1, . . . , r . For the k-th record of D we can check if a given pattern p is 
a subpattern of ρk . In such a way we may count the number of records containing 
the given pattern p. This number divided by the total number of records in the data-
base is called the support for the pattern p. By a frequent pattern we mean a pattern 
whose support is not less than a given threshold σ (minimum support). Our problem 
is to find all possible frequent patterns in the database D.

In this paper we consider datasets consisting of events rather than items or 
sequences of itemsets. Each event is a triple {e, ts, te} , where e is a coded item, [ts, te] 
is an interval during which the event is equally probable to occur (uncertainty 
interval).

Let a customer regularly buy grocery in a supermarket. Each transaction contains 
a set of purchased items and represents a single row in the dataset. If the exact time 
of purchase is not relevant we can apply a standard sequential pattern algorithm like 
SPAM to search for frequent patterns. However, in some problems the time relation 
between the transactions can be important.

A sequence 〈ej1 , ej2 , . . . , ejs〉 of s events from database D is called ordered if

An ordered sequence 〈ej1 , ej2 , . . . , ejs〉 of s events from D is called a pattern of length s or 
s-pattern if

In the case of no uncertainty, the size of interval [tjs , t
j
e] is reduced to 0. Therefore 

t
j
s = t

j
e ≡ tj and pattern can be defined as an ordered sequence of events 〈ej1 , ej2 , . . . , ejs〉 . 

If the exact time tj is not important we can sort the events in each row (see Definition 1)  
and apply traditional SPAM. FARPAM and FARPAMp suggested in this work are also 
applicable.

(1)∀i = 1, . . . , s t
ji
s ≤ t

ji+1
s

(2)∀i = 2, . . . , s τ ≡ sup
k=1,...,i−1

t
ji−1
s ≤ t

ji
e .
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Sequential patterns

There are two main groups of sequential pattern mining algorithms: breadth first 
search (BFS) and depth first search (DFS). They come from methods used in artificial 
intelligence, e.g. [50], and depend on how a search tree is constructed. To explain the 
difference we consider an example in Fig. 1.

BFS methods suppose that all frequent patterns of a given length k are known, includ-
ing where k = 0 . We then search for (k + 1)-patterns and once all those frequent pat-
terns are found we search for (k + 2)-patterns, and so on until all frequent patterns have 
been found. Classical examples of BFS methods can be Apriori-like algorithms first sug-
gested in [5, 6] and based on ideas from the so-called Apriori Principle [51]: “All non-
empty subsets of a frequent itemset must also be frequent”. BFS-like algorithms generate 
all k-patterns in each k-th iteration and move to the next k + 1 step only after exploring 
the entire k-th search space. This idea was later extended for the frequent itemset algo-
rithm in [52–54] and for the case of constrained itemsets, in [55–57].

DFS methods, in contrast, construct the search tree by finding all frequent extensions 
of the current pattern before exploring other frequent patterns at the same level of the 
search tree, i.e. of the same length. The first DFS-like algorithm was suggested by intro-
ducing the FP-grow method [13]. Subsequently, several improvements have been devel-
oped, for example vertical representation of the database, or introduction of so called 
“TID-array” to link frequent itemsets to arrays of transaction IDs [58, 59]. In applica-
tion to sequential pattern mining problems similar ideas were suggested in SPADE [7], 
SPAM [8], FreeSpan [9] and PrefixSpan [10]. Generally DFS methods are more difficult 
to parallelise.

The main disadvantage of BFS methods is related to memory usage, as a user needs to 
store all frequent k-patterns if any (k + 1)-pattern is to be found. While memory require-
ments for DFS algorithms can be less demanding compared to BFS, we may still need 
to store data related to all previous patterns, which can be challenging, especially when 
patterns are long. In this paper we only consider BFS methods.

Temporal data

It is often important to know not only the fact that an event ej took place but also the time 
tj at which it happened. We talk about a time series database when a sequence of events 
{ej} is ordered according to their times tj . Temporal data may also have an interval-based 
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Fig. 1  Depth first search and breadth first search



Page 7 of 34Titarenko et al. J Big Data            (2019) 6:37 

structure when an event happens between start ts and end te time points. Naturally, there 
may be other types of temporal datasets, for example continuous functions of time. 
There are several ways to convert those functions into temporal datasets.

The following conversion procedure was used to generate events for the weather data-
set (see “Evaluation” section for a full description). Suppose a variable F from the data-
base can be written as a function F(t) of time. If the function is known at discrete time 
points only, e.g. as shown in Fig. 2a, we can use various interpolation techniques such as 
cubic spline interpolation. Let there be n time points ti , i = 1, . . . , n , with known values 
of F(t). We may use a cubic spline approximation F̂(t) of F(t) given by functions Fi(t) for 
each t ∈ [ti, ti+1] , i = 1, . . . , n− 1:

As the values of F(t) are known at ti , we get F̂i(ti) = F(ti) and F̂i(ti+1) = F(ti+1) , 
i = 1, . . . , n− 1 . We also require F̂(t) to have its first and second derivatives continuous 
at ti , i = 1, . . . , n− 2 : F̂ ′

i (xi+1) = F̂ ′
i+1(xi+1) , F̂ ′′

i (xi+1) = F̂ ′′
i+1(xi+1) . To have a unique 

solution we also put the following condition at the endpoints F̂ ′′
1 (x1) = F̂ ′′

n−1(xn) = 0 . 
Solving the system of linear equations we find the approximation F̂(t) everywhere on 
[t1, tn].

It is often necessary to preprocess the original data by some procedure. For instance, 
each patient may have their unique normal/abnormal values depending on their gender, 
age, or race. Therefore the original function should be scaled in order to get meaningful 
functions across many patients. In other cases we may use some values derived from the 

(3)F̂i(t) ≡ ai(t − ti)
3 + bi(t − ti)

2 + ci(t − ti)+ di.
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Fig. 2  Conversion of the continuous function F(t) into a time series of pointwise or interval based events. 
a Interpolation from a set of time points, b a derived function F ′(t) with a set of levels important for the 
problem (red lines), c pointwise and d interval-based discretisation
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original function. As an illustration, we may measure wind speed at several locations. 
Clearly, some locations may be very windy, there can be strong seasonal variations and 
each place has its own wind rose showing how wind speed and direction are usually dis-
tributed. So a normalisation procedure should be applied to the data, in order to know if 
wind speed has normal or extreme values for the chosen place and season. If we process 
temperature records, then it may be better to consider the first derivative F ′(t) rather 
than absolute values F(t), see Fig. 2b. Now we need to convert the derived function into 
a set of temporal events, which can be done by introducing specific level values for the 
derived function [60]. We find time points when F ′(t) intersects the given levels and take 
into account if the function is decreasing or increasing at those time points. Thus for 
5 levels shown in Fig. 2b we get 2 · 5 = 10 events (5 for decreasing and 5 for increas-
ing values) in Fig. 2c. On the other hand, we may also have interval based events when 
the function is between two levels (or above the highest/below the lowest levels), see 
5+ 1 = 6 events in Fig. 2d.

Interval pattern mining problems can be challenging and take up a lot of time and data 
storage resources to solve, as various relations between any two time intervals should be 
considered. A simplified approach is to convert any interval-based event ej taking place 
within an interval [tjs , t

j
e] into two events {ejs, t

j
s} and {eje, t

j
e} , where the superscripts s and e 

denote synthetic events corresponding to the beginning and end of the interval for event 
ej . In this way we should solve a the problem of pointwise time series events, see exam-
ples in [34–37]. A required sequential or time series pattern mining algorithm can be 
applied afterwards.

Uncertainty in data

There may be cases when we are not sure when a given event took place. For example, 
some health related measurements concerning a patient may be taken several times per 
day, while other procedures like CT/MRI/ultrasound can be performed less frequently 
due to their potential health hazards, costs or availability. The time taken to process and 
record results processing results may also differ, meaning that they may not be recorded 
in the order the actual measurements took place. Finally, there may simply be errors in 
transcribing manually collected data. All these issues introduce time uncertainty into 
the record. In the case of weather data some weather stations may have older equip-
ment and report only daily values. These daily values allow us to roughly estimate when 
a given event took place, e.g. gale force winds started at 9 p.m., however there will be 
some uncertainty in our estimation, e.g. 3 h. Therefore we are given an approximate time 
tj with some uncertainty β j ≥ 0 , so we are sure the event took place between tjs and tje 
time points where tjs ≡ tj − β j and tje ≡ tj + β j . Parameter β j is allowed to be zero when 
we know precisely when an event took place. Examples of databases with uncertainties 
can be found in [29, 37, 47].

Steps in constructing and optimising FARPAM
In this paper, we present a novel fast algorithm that enables classical temporal pattern 
mining, but can also accommodate much more complicated problems like patterns 
with temporal length constraints. It can potentially be used to solve problems when 
the uncertainty interval depends on a particular event. The efficiency of the proposed 
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approach is based on a number of algorithmic advances (bitmap ID-lists, a special way 
of database representation, etc.) as well as multi-thread processing. To the best of our 
knowledge there is currently no parallelised algorithm that takes into account complex-
ity introduced by uncertainty in datasets and temporal length restrictions on patterns.

We test our algorithms on two datasets: a weather dataset and an adult social care 
dataset. In the application to the adult social care dataset, we may want to look for fre-
quent patterns where events happen over a certain period of time (for example, a few 
years). This restriction may help to reduce the number of frequent patterns used for the 
future classification or predictive models.

This section shows in details the modification steps we apply to the Apriori algorithm 
to achieve the final highly optimised FARPAM and FARPAMp. “Apriori principle” sec-
tion describes the main principles of the Apriori algorithm (Algorithm 1). “Binary vec-
tors” section shows modifications needed in order to achieve first-step optimisation. 
“Sorting frequent patterns” section talks about the way to accelerate the searching func-
tion by sorting found frequent patterns. The implementation of “ordering” the array of 
frequent s-patterns is described in “Forming a list of candidate patterns” section (Algo-
rithm 2), its parallel implementation is shown on Fig. 4 and discussed in “Multithread-
ing” section. “Events with uncertainty intervals” section explains our approach to storing 
data and demonstrates how it works if applied to the datasets with uncertainty intervals. 
This is a universal method and can be applied to any dataset. Algorithms 4 and 5 present 
the method for searching for patterns in a dataset recorded in the our new format. This 
can be especially efficient for datasets with many repeated events. “Data with the same 
uncertainty for alike events” section shows how prior information can be used for fur-
ther optimisation (implemented in FARPAMp). The searching function algorithm is pro-
vided in Algorithms 6. “Time restriction” section explains how time restriction is put on 
a frequent pattern (Algorithm 7). The time restriction condition is implemented in both 
FARPAM and FARPAMp.

Apriori principle

For a standard Apriori-like approach each (s − 1)-pattern p is extended by one event e, 
so a new candidate s-pattern 〈p, e〉 is formed (see for example [5]). Then for each record 
in the database D we check if the given s-pattern is a subpattern of the record. See Algo-
rithm 1 as an example algorithm to find frequent patterns. One can see that to find new 
patterns of length s we need to consider ns−1 · n1 combinations, and for each combina-
tion, all r records from database D should be considered. This can be time-consuming, so 
we want to use the Apriori Principle in order to reduce the number of checks. Suppose 
a candidate s-pattern is a sequence 〈ej1 , ej2 , . . . , ejs〉 . This pattern can be a subpattern of a 
given i-th record only when all its subpatterns are also subpatterns of the i-th record. By 
removing one event from the pattern 〈ej1 , ej2 , . . . , ejs〉 we may form s subpatterns of length 
(s − 1) , i.e. 〈ej2 , ej3 , . . . , ejs〉 , 〈ej1 , ej3 , . . . , ejs〉 , �ej1 , ej2 , ej4 , . . . , ejs�, . . . , �ej1 , ej2 , ej3 , . . . , ejs−1� . 
According to the Apriori Principle all these (s − 1)-patterns must be subpatterns of the 
i-th record and also belong to the set Fs−1 in order for the candidate s-pattern to be a 
subpattern of the i-th record and have a chance of being frequent.
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input : A database D
input : A set Fs−1 of (s− 1)-patterns, ns−1 patterns in total
input : A set F1 of 1-patterns, n1 patterns in total
input : The minimum support σ
output: A set Fs of s-patterns, ns patterns in total
set Fs to the empty set;
ns ← 0;
foreach pattern p from Fs−1 do

foreach element e from F1 do
newCandidatePattern p, e ;
κ ← findSupport(newCandidatePattern,D);
if κ ≥ σ then

add newCandidatePattern to Fs;
ns ← ns + 1;

end
end

end
Algorithm 1: Apriori algorithm for breadth first search

Binary vectors

In order to use the Apriori principle we introduce a binary vector v of length r for 
each pattern p. An i-th element of this vector is 1 when the pattern p is a subpattern 
of the i-th record, otherwise vi = 0 . Suppose a new candidate s-pattern p is given. By 
pk , k = 1, . . . , s we denote all its s subpatterns of length (s − 1) and the corresponding 
binary vectors are vk . If p is a subpattern of an m-th record of database D , then all 
elements pmk  must be 1. Therefore we form a candidate binary vector ṽ such that 
ṽm = vm1 ∧ vm2 ∧ . . . vms  where ∧ is the binary AND operator, see Fig. 3 for an example.

If the number of non-zero elements of vector ṽ is less than the minimum support σ , 
then the candidate pattern p will not be a frequent one. However, if the number of non-
zero elements of ṽ is greater or equal to σ , then we need to check all records correspond-
ing to ṽm = 1 . For example, pattern 〈b, a, c, d, a, b, d, c〉 contains subpatterns 〈b, c, d〉 , 
〈a, c, d〉 , 〈a, b, d〉 and 〈a, b, c〉 , i.e. 〈b, a, c,d, a, b, d, c〉 , 〈b, a, c,d, a, b, d, c〉 , 〈b, a, c, d, a,b,d, c〉 
and 〈b, a, c, d, a,b,d, c〉 , however it does not contain pattern 〈a, b, c, d〉.
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bcd acd abd abc

0 & & & =

1
0

0

0

0

0

0

0

1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1

1

1
1

1

1
1
1
1

1

1

1
1

1

1
1

1

1

1
1

1 0

0

0

0

0

srotcev
yranib

candidate
pattern
abcd

Fig. 3  Binary candidates for sequence 〈a, b, c, d〉 as a product of binary vectors for sequences 〈b, c, d〉 , 〈a, c, d〉 , 
〈a, b, d〉 and 〈a, b, c〉
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Suppose we have N candidate records, i.e. records with ṽm = 1 . We start processing 
them and count the number µ of records where p is not a subpattern of the record. Once 
1− µ/N < σ , then there is no need to check the remaining records as the total number 
of records with p as a subpattern will be less than σN  and the candidate pattern p is not a 
frequent one. Otherwise, after checking all the records we form the new binary vector v.

For numerical implementation it is important to remember that a logical variable usu-
ally requires at least 1 byte (8 bits) of memory. The use of logical variables for the vector 
v will require 8 times more memory than is really needed. Therefore for a given number 
r of records we can always assume that r is divisible by 32, otherwise we may create extra 
empty records to fulfil this assumption. So we can store a binary vector v in an r/32 long 
vector of 32-bit numbers. If m = 32 ·M + i , where 0 ≤ i < 32 , then the element vm is 
the i-th bit of the M-th 32-bit element in a storage system (we use C/C++ notations 
where the first element of a vector is stored at the 0-th position in memory). Then a 
bitwise AND operator can be applied to the corresponding M-th elements of vectors 
v1, . . . , vs . The use of bitwise operators for 32-bit numbers instead of a logical operator 
for 8-bit variables helps us not only to reduce the size of memory for data storage but 
also allows a CPU to issue 32 times less instructions. This idea resembles the bitmap 
ID list storage idea, first proposed in [8], and can be easily extrapolated to the case of 
sequential pattern mining.

If the number of records is large, then further steps for optimisation can be used. For 
instance, so called SIMD intrinsics (Single Instruction for Multiple Data) can be called 
when the same bitwise AND operator can be applied to an 128-, 256- or 512-bit number 
in one instruction

thus possibly saving processing time by up to a further 4, 8 or 16 times depending on 
the CPU type. However, in many cases there may be no need for low level optimisation 
as modern C/Fortran compilers may optimise a code themselves if they are aware of the 
number r of records for each vector v and the alignment of the vector in global memory.

Sorting frequent patterns

Suppose we have constructed the set Fs−1 of frequent patterns and a new candidate pat-
tern p of length s is formed. By pk , k = 1, . . . , s we denote subpatterns of p such that 
pk is a pattern p without the k-th element. To apply the procedure described above we 
need to find the corresponding binary vectors for all s subpatterns pk . If at least one of 
the subpatterns does not belong to Fs−1 the candidate pattern p does not belong to Fs . 
It may happen that in a real application the number of patterns in Fs−1 is relatively large, 
i.e. thousands or millions of patterns. Therefore we need a smarter approach to finding 
the position of pk within the set Fs−1.

We aim to order patterns in Fs using lexicographical ordering. If s = 1 , then all pat-
terns can be ordered according to the index of each event, i.e. ei < ej if i < j . For s > 1 
two different patterns p = �ei1 , ei2 , . . . , eis� and q = �ej1 , ej2 , . . . , ejs� can also be ordered. 

(4)
_mm_and_si128 (__m128i a, __m128i b),

_mm256_and_si256 (__m256i a, __m256i b),

_mm512_and_si512 (__m512i a, __m512i b),
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We denote p < q if there is a number m ≥ 1 such that eik = ejk for k = 1, . . . ,m− 1 
and eim < ejm (or in an equivalent manner im < jm ). Suppose all patterns in the origi-
nal sets F1 and Fs−1 are ordered in Algorithm 1. Then the search for a pattern p in 
Fs−1 can be significantly accelerated if bisection-type algorithms are used. Other 
types of searching algorithms which can also be used are described in [61].

Multithreading

Modern CPUs offer the possibility to run on several threads at a time in parallel. To 
adapt the above algorithm to this situation, we propose two steps to find a new set 
Fs of frequent s-patterns. Firstly we generate possible candidate patterns and corre-
sponding binary vectors as shown in Fig.  3. Secondly we check if a given candidate 
pattern is really a frequent pattern. The reason for splitting the original algorithm is 
to allow all threads to have a roughly uniform load for the search and checking steps. 
It may happen that some events occur more often than others, therefore a new candi-
date 〈p, e〉 formed from a “more frequent” pattern p (with higher support values) may 
have a greater chance to be also a frequent pattern compared to a “less-frequent” pat-
tern p (with values close the minimum support σ).

The simplest way to achieve multithreading is to give each thread a pattern p 
from Fs−1 and allow it to form all various combinations 〈p, e〉 where e is a frequent 
1-pattern from F1 . Once a thread has processed all these possible patterns 〈p, e〉 , then 
a new (s − 1)-pattern p is taken from the ordered set Fs−1 (see an example in Fig. 4 
and details in Algorithm 2). As result each thread forms an ordered subset of Fs of 
candidate patterns. Due to parallel jobs we cannot put the candidate patterns in one 
set as this set may not be the ordered one. However, merging the resulting subsets 
into one can be done easily after all the threads finish their jobs because the subsets 
are ordered (see Algorithm 3).

aab aad aba
bcd bdd dba

dbd dca

existing 3-patterns

thread #1 thread #2 thread #3

random selection of
existing patterns

forming candidates
based on binary vectors

ordered list

ordered list

aaba aabd aada abaa abad

bddc dbdddbacbcda

aab
bdd
dbd

a
b
c
d

×

12 4-patterns

aaba
aabd
bddc
dbdd

aad
dba
dca

a
b
c
d

×

12 4-patterns

aada
dbac

aba
bcd

a
b
c
d

×

8 4-patterns

abaa
abad
bcda

merging in one ordered list

Fig. 4  Searching for candidate patterns in parallel
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Once the final set of candidate patterns has been formed, the process of checking if a 
given pattern is a frequent one is straightforward to parallelise by giving each thread one 
or several patterns from the set of candidate patterns.

Events with uncertainty intervals

Suppose that each event is equally likely to happen in time interval [ts, te] , where ts and 
te are start and end points of the interval respectively. Thus each record becomes a list 
of triples {ek , tks , tke } (in the interests of brevity we denote them as Ek ). We may say that 
a list {ek , tks , tke } , k = 1, . . . , n forms an interval based sequence if there are n time points 
tk ∈ [tks , t

k
e ] such that tk ≤ tk+1 , k = 1, . . . , n− 1.

If there are two triples Ek ≡ {ek , tks , t
k
e } and Em ≡ {em, tms , tme } , we may order these 

events:

For our algorithms (FARPAM and FARPAMp) we decided to reorder all records accord-
ing to the above definition. An example of such reordering is shown in Fig. 5. So 9 triples

can be reordered to form {a, 14.3, 18.4} < {a, 14.9, 20.6} < {a, 15.5, 17.6} < {a, 16.5, 24.0}

< {b, 15.6, 23.4} < {b, 16.4, 20.8} < {c, 15.2, 20.3} < {c, 15.9, 19.4} < {c, 17.2, 21.9}. For 
the implementation of the algorithm we store the following data for each record:

1.	 A total number of different events n (for the above example we have three different 
events ej , i.e. a, b and c);

2.	 A list of ordered events or their indexes, i.e. (a, b, c) or (1, 2, 3);
3.	 An array of start times, i.e. (14.3, 14.9, 15.5, 16.5, 15.6, 16.4, 15.2, 15.9, 17.2);
4.	 An array of end times, i.e. (18.4, 20.6, 17.6, 24.0, 23.4, 20.8, 20.3, 19.4, 21.9);

(5)Ek < Em if





ek < em,

ek = em and tks < tms ,

ek = em and tks = tms and tke < tme .

(6){b, 15.6, 23.4}, {c, 17.2, 21.9}, {b, 16.4, 20.8}, {c, 15.2, 20.3}, {a, 14.3, 18.4},
{a, 15.5, 17.6}, {c, 15.9, 19.4}, {a, 14.9, 20.6}, {a, 16.5, 24.0}

a
a

a
a

b

b

c

c

c

timetime

a
a

a
a

b
b

c

c
c

Fig. 5  Reordering sequences of events with uncertainty intervals
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5.	 An (n+ 1)-array ξ k of indexes to know what elements of start/end times are related 
to a given event (in our case it is ξ = (1, 5, 7, 10) ; so times for the second event 
(which is b) are from ξ2 = 5 and till ξ3 − 1 = 7− 1 = 6).

Data with the same uncertainty for alike events

Suppose a given pattern contains n alike events (events, which are coded by the same 
symbol or number) and a given record has m entries (for example, in Fig.  5 shows 4 
events a, 3 events c and 2 events b). The procedure above requires us to check n per-
mutations of m, i.e. m!/(m− n)! . For long records with many entries of same elements 
this can be very time-consuming. However, for some problems we may have extra prior 
information about time intervals. Suppose that for each event e any two time intervals 
[tis , t

i
e] and [tjs , t

j
e] related to this event are ordered in the following way:

For example if alike events have the same uncertainty β , then we know for sure an event 
takes place in the interval [t̃ i − β , t̃ i + β] , so if we set tis ≡ t̃i − β and tie ≡ t̃i + β , then 
any two alike events can be reordered so to fulfil statement (7).

Assumption (7) leads to the fact that only permutations with tjs > tis for j > i should 
be considered. Suppose we considered only ordered time intervals (i.e. satisfying 7) and 
have tried and failed to find a pattern in a record. If we permute any two entries of the 
alike event, then τ [as defined in (2)] for the new combination will be greater for some 
elements than τ found for the original combination and the requirement for τ ≤ t

j
e may 

not be true.
In the case of ordered events we need to check m!/((m− n)!n!) patterns, i.e. the num-

ber of n combinations from a set of m elements. Thus we need to process n! times less 
patterns compared to a general case. The procedure is shown in Algorithm 6.

Time restriction

For some practical problems it is important to not only find a given pattern for each 
client but also to be sure that all these events took place within a given time interval. 
This may help to exclude distant events which are not related to each other. If we set 
a time restriction interval �T  , then a list {ek , tks , tke } , k = 1, . . . , n forms an interval 
based sequence with time restriction �T  if there are n time points tk ∈ [tks , t

k
e ] such 

that tk ≤ tk+1 , k = 1, . . . , n− 1 and tn − t1 ≤ �T  . Only small modifications of general 
and ordered events in Algorithms 5 and 6 are required, see for instance Algorithm 7 for 
ordered events.

Main algorithms used in FARPAM
Forming a list of candidate patterns

Let there be a database with n1 records. Suppose on a previous (s − 1)-step we have 
found r frequent patterns of length (s − 1) . We keep these frequent patterns in 
r × (s − 1)-matrix allPreviousPatterns. In fact this 2D matrix is stored as a 1D 
array by concatenating neighbouring rows of the matrix.

(7)if tis > t
j
s, then tie > t

j
e.
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input : r: number of (s− 1)-patterns found on the previous step
input : n: number of frequent events
input : σ: minimum support
input : allPreviousPatterns: an array storing all (s− 1)-patterns
input : tempPattern: an s× (s− 1)-matrix to store (s− 1)-subpatterns of a temporary pattern

for the given thread
input : indexOfPreviousPatterns: an s-array to store position of (s− 1)-subpatterns
input : binPrevious: an array with all binary vectors found on the previous step
input : binTemp: a temporary array to store binary vectors for the given thread
output: q: number of candidate patterns found for the given thread
output: binCandidate: an array with all new binary vectors found for the given thread
output: candPattern: an array with candidate patterns found for the given thread
q ← 0;
for i from 1 to r do

/* all numbers from 1 to r are distributed between all threads */
/* Prefilling tempPattern array */
copy i-th (s− 1)-array from allPreviousPatterns to the last row of tempPattern;
for k from 1 to s− 1 do

copy 1, . . . , k − 1, k + 1, . . . s− 1 elements of the last row of tempPattern to 1, . . . s − 2
elements of k-th row respectively;

end
/* by the above procedure we have filled in all elements of tempPattern matrix

except last in row elements for the top s− 1 /*swor
for j from 1 to n do

/* considering all frequent events */
set all last in row elements (for the top (s-1) rows) of tempPattern to j;
for m from 1 to s do

indexOfPreviousPatterns[m] ← position of m-th row of tempPattern within
allPreviousPatterns;
if indexOfPreviousPatterns[m] = 0 then

/*deredisnocebottnemeletneuqerftxeneht*/
break m-loop and go the j-loop;

end
end
copy indexOfPreviousPatterns[1]-th binary vector from binPrevious to binTemp;
for m from 2 to s do

binTemp ← bitwise AND for binTemp and indexOfPreviousPatterns[m]-th binary
vector from binPrevious;
nb ← numberOfNonZeroBits(binTemp);
if nb < σr then

break m-loop and go the j-loop;
end

end
end
/* The new candidate pattern is found */
q ← q + 1;
save the last row of tempPattern as the q-th pattern of candPattern;
save binTemp to q-th vector of binCandidate;

end
Algorithm 2: Forming a list of candidate patterns (parallel implementation)

For each pattern we keep a binary vector of length n1 , so each for each i-th record the 
corresponding element of the binary vector is 1 when the given pattern is present in the 
record, otherwise we set it to 0. In order to exploit SIMD features of modern processors 
it is better to assume that the number n1 of records is divisible by 32. We may always 
do so by adding extra (empty) records in the database. If we denote n32 = n1/32 , then 
each binary vector can be stored as an n32-vector of 32-bit unsigned integer numbers. 
We place all binary vectors for r patterns in an array binPrevious of 32-bit unsigned 
integer numbers. The size of the array is n32 × r.

Now we want to find all possible candidate patterns of length s. For this purpose we 
take each frequent patterns of length (s − 1) and add an extra event to it. In order to 
the new s-pattern to be frequent all its s subpatterns of length (s − 1) should also be 
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frequent. Therefore we create a template s × (s − 1)-matrix with each row consisting of 
elements of those (s − 1)-subpatterns. In this matrix only the last element of first (s − 1) 
rows are changed when we vary the extra event.

Once the template matrix is filled in for a given extra event, we check if all rows of 
the matrix are among the frequent patterns found on the previous step. If at least one 
of the patterns is missed, then the new s-pattern cannot be frequent and we should take 
another extra element and reiterate the procedure. In case of all rows of the matrix to 
be frequent, we find the corresponding binary vectors in binPrevious array. Those 
s binary vectors are logically multiplied and the new binary vector for the candidate 
s-pattern is formed. By counting the number of non-zero elements of the new binary 
vector we check if it is more or equal to σ r where σ is the minimum support. Otherwise 
the candidate pattern cannot be frequent.

If there are several threads available, then all r patterns from the previous steps can be 
processed concurrently, e.g. with parallel for loop from OpenMP. The algorithm 
and its example diagram are presented in Fig. 6 and Algorithm 2.

We store (s − 1)-subpatterns to form a candidate pattern in s × (s − 1)× t-matrix 
tempPattern, where t is the number of threads. Every subpattern of a candidate can 
be described by its position in allPreviousPatterns. We store these positions in 
matrix indexOfPreviousPatterns. The size of matrix is t × s . When calculating 
the binary vector for a candidate we store it in binTemp. The size of it is n32 . After doing 
all the steps in Algorithm 2 we store the binary vector of a candidate and the candidate 
pattern itself in matrices binCandidate and candPattern. The size of binCandi-
date is n32 × 100, 000 . Size of candPattern is (s − 1)× 100, 000 . We chose 100, 000 
as an upper limit of maximum number of candidates (can be changed if it is needed).

1
2

r

threads
(s-1)-patterns

a
b
c
d

...
...

...

...
...

...

frequent elements

a b c d

a b c d
b ca

a b
a c

subpatterns of
a candidate

find index of subpattern

b c d
d
d

a b c d
b ca

a b
a c
b c d

d
d

e

in (s-1)-patterns

orezfi

if not zero
bcde acde abde abce abcd

0

0

1

1

1

1

0

1

1

1

0

0

1

1

1

0

1

1

1

0

1

0
0

1

1

1

0

0

1

1

1 1

0 0

0& & & &

if > support

save candidate pattern

save binary vector

e
e
e

e

allPreviousPatterns

tempPattern

indexOfPreviousPatterns

binPrevious binTemp

0
0
1
0
1
0
0

nb

binCandidate
binTemp

Fig. 6  Diagram for Algorithm 2
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Merging candidate patterns

Suppose that n OpenMP threads are used and m frequent candidate s-patterns are 
found. Each thread stores all candidate patterns it has found in its own block of mem-
ory. In principle, the corresponding binary vectors can be stored in a common block of 
memory thus avoiding extra data copying. In our algorithm we prefer to store all pat-
terns as a lexicographically ordered list. This type of storage allows us to check in a faster 
way if a given pattern belongs to the list. Otherwise one needs to check all patterns in 
the list when searching for (s − 1)-patterns. As each thread processes (s − 1)-patterns 
from the ordered list by concatenating with single events also from the lexicographically 
ordered list of 1-patterns, then the candidate patterns found by this thread will also form 
a lexicographically ordered list of s-patterns. Thus we just need to merge n ordered lists 
found by n threads.

input : s: size of patterns
input : n: number of arrays of s-patterns
input : vk: the k-th ordered array of s-patterns
input : qk: size of vk
input : Ψ: a large integer number (more than the number of frequent events)
output: w: output ordered array of s-patterns
output: m: size of the output array
m ← 0;
for k from 1 to n do

m ← m+ qk; ηk ← 1; /* index of the current pattern in the k-array */
end
for p from 1 to m do

µ ← 0;
for i from 1 to s do

ui ← Ψ; /* set all elements of the ‘‘smallest’’ pattern to the largest
number */

end
for j from 1 to n do

if ηj > qj then
/* all elements from the j-th array have been considered; we should

consider the next array */
continue;

end
isBetter ← true;
β ← the pointer to the qj-th pattern of the j-th array;
for l from 1 to s do

if βl > ul then
isBetter ← false;
break;

end
if βl < ul then break;

end
if isBetter = false then continue;
µ ← j;
for l from 1 to s do

ul ← βl;
end

end
add u to the array w;
ηµ ← ηµ + 1;

end
Algorithm 3: Merging n ordered lists of s-patterns without common s-patterns
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We define an array of frequent patterns found by a single OpenMP k-th thread as vk 
and the corresponding size of the array as qk . Algorithm 3 shows how found frequent 
patterns are merged into output array ω of frequent s-patterns (all resultant patterns 
become sorted).

The total number of candidate patterns is m =
∑n

k=1 qk . For each n list of ordered 
patterns we store the index of the smallest pattern (not yet merged to the final list), we 
denote it as ηk and set to 1 initially.

We introduce a working s-vector u. For each new ordered s-pattern to be found from 
the given n lists we initially set all elements of u to � (a number larger than the number 
of events). Then for each n lists we consider smallest patterns not yet merged, i.e. ηk-th 
pattern for the k-th list. By comparing the working vector u with corresponding n small-
est patterns we find the index µ of the smallest of them. Then we put the found pattern 
to the merged list and increment ηµ by 1.

Note that due to the process of formation of candidate patterns each n lists of patterns 
does not have any common s-patterns with the other n− 1 lists. This allows us to slightly 
reduce the number of checks compared to a general case of merging patterns with pos-
sibly common patterns.

Checking if a subpattern belongs to a record (initialisation step)

The Algorithm 4 shows the initialisation part of a searching function (used in FARPAM). 
Each event is defined as a triple of event index, start and end times. Suppose a record 
consists of m events. All those events can be sorted according to rule (5). Therefore we 
get n distinctive events ( n ≤ m ) and two m-arrays for the start/end times of the events. 
We may introduce an (n+ 1)-vector of start positions for the events, i.e. the data related 
to the first distinctive event are for indices from ξ1 till ξ2 − 1 . Then for each i-th ele-
ment of the given pattern p we find its first and last occurrence within the record and 
denote them as vFirst[i] and vLast[i] respectively. This means that for that ele-
ment pi we should only check start/end times for the indices between vFirst[i] and 
vLast[i]. For example, we have a record aabbbc and want to find patterns {abbcb} in 
it, then we get vFirst = {1,3,3,6,3}, vEnd = {2,5,5,6,5}.
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input : p: the given s-pattern
input : n: number of distinctive events in a record
input : q: an array of the distinctive events
input : ξk: an array of start positions for all events related to qk event
input : ts/te: an array of start/end times for each event
output: true/false: true if the given pattern is found
for i from 1 to s do

τ ← false;
for j from 1 to n do

if pi = qj then continue;
τ ← true;
vFirst[i] ← ξj ; vLast[i] ← ξj+1 − 1;
/* start/end positions of data related to pi event in the given record */
break;

end
if τ = false then return false;

end
/* setting the start position for each event */
for i from 1 to s do

vCurrent[i] ← vFirst[i];
end
/* finding the index of same previous/next events if they exist, otherwise 0 */
for i from 1 to s do

previousIndex[i] = 0;
nextIndex[i] = 0;

end
for i from 2 to s do

for j from i− 1 to 1 by −1 do
if vFirst[i] = vFirst[j] then

previousIndex[i] = j; nextIndex[j] = i; break;
end

end
end
/* in case of several same events we need to adjust start positions */
for i from 2 to s do

if previousIndex[i] = 0 then continue;
vCurrent[i] = vCurrent[previousIndex[i]] + 1;
if vCurrent[i] > vEnd[i] then return false;

end
Algorithm 4: Checking if a given pattern is a subpattern for a given record
(initialisation step)

We aim to consider all possible combinations of events. For the event pi we keep its 
position within the record as an index vCurrent[i] which can have values between 
vFirst[i] and vLast[i]. It is clear that in case of two same events pi and pj they 
cannot point to the same event in the record. Therefore we want to avoid cases when 
two positions vCurrent[i] and vCurrent[j] are the same. Therefore in the 
example above we cannot set vCurrent = {1,3,3,6,3} as the second, third and 
fifth events point to the third element. Thus for the initialisation step in this algorithm 
for each element we first find previous/next alike elements previousIndex and 
nextIndex if they exist and reset current values based on values of previous elements. 
It is clear that the index vCurrent[i] should not exceed the index of the last alike 
element. The algorithm takes into account cases when there are more alike events in a 
given pattern than in a record (and returns false).

Consider an example. Suppose we search for pattern 〈c, c, c〉 in the record from Fig. 5. 
We aim to check all possible patterns. We get vFirst = {7, 7, 7} and vLast = {9, 9, 9} . 
During the initialisation step shown in Algorithm  4 we get vCurrent = {7, 8, 9} . Let 
us see what possible sequences of vectors vCurrent should be considered during the 
iteration step.
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•	 Initial values: {7, 8, 9}.
•	 Now we increment the third element by one and get {7, 8, 10} , this element is greater 

than vLast[3] = 9 , so we set {7, 9, 7} . The first and the last elements are the same, 
so we set {7, 9, 8}.

•	 By incrementing the third element by one we get {7, 9, 9} , so by cor-
recting out-of-range and identical values we get this procedure 
{7, 9, 9} → {7, 9, 10} → {7, 10, 7} → {8, 7, 7} → {8, 7, 8} → {8, 7, 9}.

•	 In a similar way {8, 7, 10} → {8, 8, 7} → {8, 9, 7}.
•	 {8, 9, 8} → {8, 9, 9} → {8, 9, 10} → {8, 10, 7} → {9, 7, 7} → {9, 7, 8}.
•	 And the final vector {9, 7, 9} → {9, 7, 10} → {9, 8, 7}.

So we have to check 3!/(3− 3)! = 3!/0! = 6/1 = 6 patterns.
Of course, checking all m!/(m− n)! is the worst case scenario and is not always the 

case (since all our events are rearranged according to rule 5). However, pattern 〈cacc〉 in 
the record

will require to check all the possible combinations, starting from vCurrent = {2, 1, 3, 4} , 
and ending with vCurrent = {4, 1, 3, 2} as a solution.

Checking if a subpattern belongs to a record (iteration step)

For the second (iteration) step we suppose a valid combination of vCurrent[i] 
is given, i.e. vCurrent[i]  = vCurrent[j] for any i  = j (for example, 
vCurrent = {1, 1, 1} is not valid while vCurrent = {1, 3, 2} is). Let us have a record 
with Ei ≡ {ei, tis , t

i
s} and Ej ≡ {ej , t

j
s , t

j
s} , and want to check if pattern (ei, ej) can be a sub-

pattern in the record. We need that ti ≤ tj where ti ∈ [tis , t
i
e] and tj ∈ [t

j
s , t

j
e] . This may 

happen only if tis ≤ t
j
e . The minimum possible value of ti is then tis and tj may vary from 

max(tis , t
j
s) to tje . So if we introduce τ = t1s  for the first element in the pattern, then we 

should check that for each following element of the pattern τ ≤ t
j
e and re-define τ as 

max(τ , t
j
s) . If we succeed to fulfil these requirements for a given s-vector of indexes 

vCurrent[i], then the subpattern is found, otherwise we need to check the next per-
mitted combination of indexes vCurrent[i], see Algorithm 5.

{a, 5, 6}, {c, 1, 8}, {c, 2, 7}, {c, 3, 4}
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repeat
τ ← vStartTime[vCurrent[1]]; J ← 0;
for i from 2 to s do

I ← vCurrent[i];
if τ > vTimeEnd[I] then

J ← I; break;
end
τ ← max(τ, vStartTime[I]);

end
if J = 0 then return true;
is ← vFirst[J ]; ie ← vLast[J ];
/* create a list of previous alike events */
u ← previousIndex[J ]; numberOfPreviousEvents ← 0;
while u > 0 do

poistionOfPrevious[numberOfPreviousEvents] ← vCurrent[u];
numberOfPreviousEvents ← numberOfPreviousEvents + 1;
u ← previousIndex[u];

end
N ← 1;
repeat

b = false;
vCurrent[J ] ← vCurrent[J ] + 1;
if vCurrent[J ] > ie then

if previousIndex[J ] = 0 then return false;
J ← previousIndex[J ]; N ← N + 1; b ← true;

else
for i from N to numberOfPreviousEvents do

if vCurrent[J ] = positionOfPrevious[i] then
b ← true; break;

end
end

end
until b = false;
u ← previousIndex[J ];
N ← 1;
positionOfPrevious[1] ← vCurrent[J ];
while u > 0 do

positionOfPrevious[N ] ← vCurrent[u];
N ← N + 1; u ← positionOfPrevious[iu];

end
u ← nextIndex[J ];
while u > 1 do

vCurrent[u] ← is;
repeat

b ← false;
for i from 1 to N do

if vCurrent[u] = poistionOfPrevious[i] then
vCurrent[u] ← vCurrent[u] + 1; b ← true;
break;

end
end

until b = false;
positionOfPrevious[N ] ← vCurrent[u];
N ← N + 1; u ← nextIndex[u];

end
until true;
return false;
Algorithm 5: Checking if a given pattern is a subpattern for a given record
(iteration step)

Ordered events

Suppose we have prior information for alike events, i.e. they are ordered according to 
(7). Then the corresponding algorithms can be simplified as it was discussed in “Data 
with the same uncertainty for alike events” and “Time restriction” section, see Algo-
rithms 6 and 7.
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/* finding the index of the same previous event if it exists, otherwise 0 */
for i from 1 to s do

previousIndex[i] ← 0;
end
for i from 2 to s do

for j from i− 1 to 1 by −1 do
if vCurrent[i] = vCurrent[j] then

previousIndex[i] ← j; break;
end

end
end
τ ← vTimeStart[vCurrent[1]];
for i from 2 to s do

b ← false;
if previousIndex[i] > 0 then vCurrent[i] ← vCurrent[previousIndex[i]] + 1;
repeat

J ← vCurrent[i];
if vTimeEnd[J ] ≥ τ then

τ ← max(τ, vTimeStart[J ]);
b ← true; break;

end
vCurrent[i] ← vCurrent[i] + 1;
if vCurrent[i] ≤ vLast[i] then break;

until b = true;
end
return true;
Algorithm 6: Checking if a given pattern is a subpattern for a given record
(iteration step) for ordered events

while vCurrent[1] ≤ vLast[1] do
τ1 = vTimeStart[vCurrent[1]];
τ2 = vTimeEnd[vCurrent[1]];
for i from 2 to s do

vCurrent[i] ← vFirst[i];
end
for i from 2 to s do

b ← false;
if previousIndex[i] > 0 then vCurrent[k] ← vCurrent[previousIndex[i]] + 1;
while vCurrent[i] ≤ vLast[i] do

J ← vCurrent[i];
if vTimeEnd[J ] > τ1 then

τ1 ← max(τ1, vStartTime[J ]);
τ2 ← min(τ2, vEndTime[J ]);
t ← true;
break;

end
vCurrent[i] ← vCurrent[i] + 1;

end
if τ1 > τ2 +∆T then break;
if b = false then return false;
if i = s then return true;

end
vCurrent[1] ← vCurrent[1] + 1;

end
return false;
Algorithm 7: Checking if a given pattern is a subpattern for a given record
(iteration step) for ordered events with time restriction

Evaluation
The algorithms have been evaluated on two datasets: an adult social care database (data 
provided by a large local authority) and a weather temperature measurements dataset 
(open access).
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Adult social care database

The database consists of approximately 100,000 adult social care records over a period 
of 15 years (also used in [37]). The records cannot be processed outside the secure 
facilities of Leeds Institute for Data Analytics (LIDA) at the University of Leeds. After 
removing records with fewer than three events and selecting people within a certain 
age range the dataset was reduced to ≈ 25, 000 records. All the events have been cate-
gorised and coded, where each code (event label) represents one of the following four 
event types: a referral to adult social care, an assessment, a service (including reable-
ment activity) or a review. Referral event codes are composed of three parts: source 
(who made the referral)—2 categories; reason (why the service is needed)—12 catego-
ries and outcome (decision for assessment)—15 categories. The assessment activity 
is coded using only one variable; eligibility with 16 categories. The service activity is 
coded with 116 categories and the review activity with 17 categories. The final num-
ber of unique codes (unique existing combinations of categories for all codes) is 301.

We consider an event of interest to be the use of a form of intensive, high cost care 
provision, a permanent residential or nursing placement, called for simplicity “Expen-
sive Care” (EC in short), with the alternative event being called “Non Expensive Care” 
(NEC), which we use to split the clients into two groups: EC, with 6128 clients with 
111,736 events in total and 252 unique events and NEC, with 18,518 clients, 286,201 
total number of events, 258 unique events). It is clear that the average number of 
events per client in the EC group is much higher and we expect that the two groups 
will provide an interesting test bed for the performance of our algorithms. The out-
put from our algorithm can be further used for risk stratification (see [37] for initial 
results using RobustSpam).

Each event is an interval that is represented with a starting time point and ending 
time point (together with the event label as discussed in “Methodology” section, 
see Fig. 7), the length of the interval varies and is even reduced to single points on 
some occasions. We allow an uncertainty β on the time stamp of the starting and 
ending point events. β could depend on the type of event (for example, services 
could be recorded with better accuracy than referrals) although here we consider 
uniform uncertainty. In principle, a frequent pattern mining algorithm can use 
prior information as in (7). However, in order to illustrate how prior information 

ta tb tc

aa
as

ae

bb
bs

be

cc
cs

ce

Fig. 7  Conversion of time interval events to a set of pointwise events based on beginning/end points a Time 
points of the events a, b and c, b Including uncertainty, c Starting and ending times of uncertainty intervals 
for the events a, b and c 
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can improve performance we apply both the general and ordered versions of the 
algorithm to this dataset (Algorithms FARPAM and FARPAMp correspondingly).

Weather dataset

To see how performance of the proposed algorithm may depend on various hardware 
parameters we decided to use a publicly available dataset. The European Commission 
provides access to weather data via Agri4Cast Resources Portal of the Joint Research 
Centre (http://agri4​cast.jrc.ec.europ​a.eu). Gridded Agro-Meteorological database con-
tains meteorological parameters from weather stations interpolated on a 25 × 25 km 
grid. Meteorological data are available on a daily basis from 1975 to the last calendar 
year completed, covering the EU Member States, neighbouring European countries, and 
the Mediterranean countries. The following variables can be accessed:

•	 Maximum/minimum/mean temperature,
•	 Mean daily wind speed at 10 m (m/s),
•	 Vapour pressure (hPa),
•	 Sum of precipitation (mm/day),
•	 Potential evaporation from a free water/crop canopy/moist bare soil surface (mm/

day),
•	 Total global radiation ( kJ/m2/day),
•	 Snow depth.

We chose a mean daily temperature to generate patterns according to the procedure 
described in “Temporal data” section and shown in Fig.  2. As temperature has sea-
sonal variation we consider its first derivative T ′(t) . Suppose that for each grid point 
where data were interpolated from weather stations we have chosen nlevel levels T ′

j  , 
j = 0, . . . , nlevel−1 . Then j-th event happens at a time τk when T ′(τk) = T ′

j  and T ′′(τk) ≥ 0 
while (j + nlevel)-th even happens if T ′(τk) = T ′

j  and T ′′(τk) < 0 . So for each grid point 
we have a sequence 2nlevel events. We chose T ′

j  values in such a way, so T ′(t) ≤ T ′
j  for 

(j + 1)tmax/nlevel , j = 0, . . . , nlevel−1 , time where tmax is the total period of time the given 
variable is known (we used 20 years). Note that each grid point has its own values for T ′

j .
The weather data allows us to form various datasets. If we choose places in a rela-

tively small region (one country like the UK), then we should expect a high level of 
correlation between temperature rise and fall for neighbouring places, thus we expect 
to have a lot of patterns even for large values of minimum support, e.g. σ = 0.99 . On 
the other hand, temperature variations in the Mediterranean and Baltic countries 
may often behave independently. At the same time we may also control the length of 
patterns we aim to find. Each record corresponds to events that took place within a 
given time period. It is clear that during a 5-day period we get fewer events compared 
to a 25-day period. In this way we may control the maximum length of patterns for 
the given minimum support level.

The aim of the paper is not to provide a comprehensive study related to possible 
weather (or adult social care) datasets but to use them as test data to show perfor-
mance improvements of the proposed algorithms.

http://agri4cast.jrc.ec.europa.eu
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Hardware

Two workstations were used to get performance results:

•	 WS4. CPU: Intel Core i7-4790 (codename Skylake, 4 cores, processor base frequency 
3.6 GHz), RAM: 16 GB, operating system: 64-bit Windows 8.1. This workstation is a 
part of LIDA of University of Leeds where the private social care records can be pro-
cessed.

•	 WS6. CPU: Intel Core i7-3930K (codename Sandy Bridge E, 6 cores, processor base 
frequency 3.2 GHz), RAM: 32 GB, operating system: 64-bit Windows 10. This work-
station was used to process the weather dataset.

All codes were compiled with an Intel C++ compiler (part of Intel Parallel Studio XE 
2016), in release mode, with maximum optimisation (favour speed, /O2 flag). For multi-
threaded versions of the codes, OpenMP was used.

Results
We evaluate the efficiency of the proposed optimisation by comparing results with 
other existing algorithms where possible as well as by varying some parameters of the 
problems.

Sequential pattern mining

If the uncertainty parameter β is set to zero (and with the assumption that for each 
record no two events happen at the same time), then the problem becomes a classical 
sequential pattern mining problem. Therefore we are able to compare results and per-
formance of our optimised algorithms with other publicly available sequential pattern 
mining algorithms. We decided to use a SPAM code from SPMF (http://www.phili​ppe-
fourn​ier-viger​.com/spmf/, an open-source data mining library written in Java, [62]). This 
is considered to be one of the most efficient codes for sequential pattern mining prob-
lems and according to [8] it outperforms such algorithms as SPADE and PrefixSpan. Our 
codes are written in C and compiled with an Intel C compiler. Of course, it is not fully 
correct to compare codes written in different languages, however our aim is simply to 
provide the reader with an idea of possible improvements. It is likely that direct conver-
sion (without any optimisation) of a Java code to C or Fortran languages will provide a 
user with shorter run times (both implementations should have similar dependence on 
parameters of a problem, e.g. number of patterns or minimum support). In order to give 
a more realistic comparison for the C code we have implemented a naive version of the 
Apriori-like algorithm with bitmaps similar to the method in [8].

Table 3  Run times (in seconds) for algorithms with zero uncertainty β = 0 for the weather 
dataset (L3-D3-T14) measured over 14 places in the UK

Support Max length No. patterns Apriori Apriori+ bitmap SPAM FARPAM FARPAMp

0.5 3 8332 120.1 18.7 14.7 1.19 1.21

0.4 4 46,848 5942.1 51.9 50.4 3.66 3.87

0.3 5 157,536 7519.8 120.4 219.4 7.80 7.85

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
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Table  3 demonstrates the difference in times between the naive Algorithm  1, its 
bitmap version and the SPAM Java function. For the illustration we used the L3-D3-T14 
weather dataset. The dataset was abstracted from data collected at 14 places in the UK 
(roughly uniformly distributed) and is for 3 levels for the first derivative of temperature, 
each record is for events within a 3-day period. The corresponding results for the social 
care data (non-expensive and expensive care datasets) are shown in Table 4. For both 
tables FARPAM stands for the optimised version of the proposed algorithm with no 
assumption for robustness intervals for alike events, while FARPAMp is for the case 
when those intervals can be ordered according to statement (7).

While the relative performance of the two proposed algorithms depends on the data-
sets they are applied to, the main result is that the proposed algorithms outperform the 
SPAM code: the times for the new algorithms are sufficiently less (roughly 15 times faster 
for weather datasets and 4 times faster for the social care dataset). For the weather data-
set the relative improvement increases with the number of patterns mined. For the adult 
social care dataset the improvement decreases at the largest number of patterns mined, 
but is still significant. This is maybe partly due to different programming languages used, 
but also to multithreading and differences in the algorithms. FARPAMp gives a signifi-
cant improvement for the adult social care dataset, but not for the weather dataset. This 
is because the weather dataset does not have many repeated events. However we expect 
that if the Java version is directly translated into its C version (without any further opti-
misation) the ratio of run times may decrease, but dependence on the number of pat-
terns should not change very much. We can see that our approaches can be used even 
in the case of sequential pattern mining and we have some sort of linear behaviour for 
run times provided by SPAM and the proposed algorithms. The algorithms proposed in 
the paper deal with uncertain timestamps thus solve an inherently harder problems than 
SPAM. Hence, seeing them running faster than SPAM is one of their advantages.

Non‑zero uncertainty

In case of non-zero uncertainty β , the SPAM algorithm cannot be used, however we 
may consider the RobustSPAM algorithm introduced in [37] and written in Java. The 
results shown in Table  5 demonstrate a dramatic reduction in run times by using the 
new approach.

Table 4  Run times  (in seconds) for  algorithms with  zero uncertainty β = 0 for  expensive 
and non-expensive datasets

EC/NEC Support Max length No patterns SPAM Apriori+ bitmap+ OMP FARPAM FARPAMp

NEC 0.10 7 491 1.0 1.6 0.42 0.29

NEC 0.05 9 3414 3.6 3.8 1.45 0.47

NEC 0.03 11 15,413 9.3 12.0 7.60 0.84

NEC 0.02 12 51,413 20.9 36.2 3.47 1.82

NEC 0.01 14 427,239 88.5 301.0 21.92 10.16

EC 0.10 8 3416 1.3 1.7 0.56 0.24

EC 0.05 11 32,507 5.9 5.1 3.00 0.54

EC 0.03 12 163,949 18.5 27.3 9.73 1.67

EC 0.02 14 567,200 43.2 107.9 18.59 4.56

EC 0.01 16 479,3176 191.1 – 67.45 32.77
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It is also interesting to see how the new approaches perform for test datasets. For a 
given minimum support σ one may try to find patterns of all possible lengths. Thus we 
may plot run time as a function of maximum pattern length. Due to a limited number 
of events for each record the maximum length of a pattern is also limited. In Fig. 8 we 
show results found with the naive Apriori+ bitmap+OpenMP approach and the two 
proposed algorithms. One may see that for the social care datasets NEC and EC curves 
obtained with the naive approach and the proposed approach for ordered uncertainty 
intervals for alike events (FARPAMp) behave in a similar way even though the second 

Table 5  Run times  (in seconds) for  algorithms with  uncertainty β = 60 for  expensive 
and non-expensive datasets, pattern lengths 3, 4 and 5

EC/NEC Support RobustSPAM Apriori Apriori+ bitmap+ OMP FARPAM FARPAMp

NEC 0.10 715.9 20.9 2.3 0.74 0.40

NEC 0.05 2370.7 91.7 8.1 1.06 1.05

NEC 0.03 5984.1 256.3 14.1 1.66 1.58

NEC 0.02 13,045.1 602.2 26.8 2.30 1.88

EC 0.10 355.6 10.4 1.4 0.39 0.25

EC 0.05 1160.6 46.8 2.7 0.48 0.50

EC 0.03 2908.1 128.5 5.1 0.76 0.58

EC 0.02 6189.3 275.1 10.0 1.05 0.85
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approach works much faster. On the other hand, if prior information related to alike 
events is not embedded in the algorithm for longer patterns (FARPAM) and small run 
times, the performance of the general approach may in some cases be even slower than 
the naive one. This is due to the fact that the general approach has to process more 
possible pattern combinations and is not allowed to discard some of them. Thus it is 
clear that if such prior information exists one needs to embed it in the algorithm.

Our algorithms can readily be used to provide a sensitivity analysis by varying the 
uncertainty factor beta and the level of support sigma. For example, the uncertainty 
parameter β may sometimes be known or roughly estimated from data collection 
procedures. However, in many cases we may need to vary its value within a range and 
see if we get meaningful results. Ideally we want to estimate the number of patterns we 
may find for a given support σ and uncertainty β . In Fig.  9 curves found for different 
values of β behave in a similar way. Thus we may find a number of patterns for a relatively 
big support, e.g. σ = 0.7 , for a range of β , then find the number of patterns for smaller 
support for one value of β and based on the values found we may estimate the number of 
patterns for various values of β for a given level of support.

Time restrictions

The algorithms we propose here can also be used when additional time restrictions 
are given, so all events in a pattern should take place within a given time interval �t , 
see “Multithreading” section. In Fig. 10 we show results found for the weather dataset. 
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By setting �t to 0.3 we plot the number of patterns found for various uncertainties β , 
see Fig.  10a. In the case of small β the results are not very sensitive to values of β as 
the number of patterns found by the algorithm tends to be similar. On the other hand, 
when values of uncertainty β become of the same order as the time restriction �t we 
see a dramatic increase of the number of patterns when we increase uncertainty β . For 
Fig. 10b we fix the uncertainty and show how the number of patterns increases with �t 
for given support values.

Multithreading

Absolute numbers for run times of algorithms are important, however it is also crucial to 
see how an algorithm behaves in a multithreading environment. The current tendency in 
CPU development is to increase the number of threads able to run parallel jobs. We need 
to be sure an approach is scalable in the ideal case, run times are inversely proportional 
to the number of threads used by an application. Figures 11 and 12 show performance 
of our algorithm in the multithreading environment. There is certainly room for further 
optimisation of the codes to achieve better results, however this may require low level 
programming and taking into account the hardware parameters of an existing CPU. We 
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do not want to be bound to a particular CPU, so that we can easily transfer the codes to 
new CPU architectures in the future.

Discussion
We have proposed several approaches to improve performance of algorithms for pattern 
mining with uncertainty and time restrictions. For each pattern we store a binary vector 
to find if the pattern is a subpattern of a given record. These binary vectors are stored in 
a compressed form, so information related to every 32 records can be stored as a 32-bit 
number. This not only allows us to efficiently use available memory, but also to speed 
calculations as only one CPU instruction needs to be used to find a candidate binary 
vector for a pattern containing any two given patterns. This approach may also be fur-
ther extended for datasets with many records, e.g. hundreds of thousands, if SIMD CPU 
instructions for modern processors are used. In this way we may only use one instruc-
tion to process 128 records if the CPU has SSE2 capability, 256 records in case of AVX2 
technology and 512 records for AVX-512.

The Apriori Principle allowed us to avoid searching patterns when some of their sub-
patterns are not frequent. An ordered storage of previously found patterns reduces the 
search time for a new candidate pattern. Multithreading capabilities of modern proces-
sors can also be used in an efficient way if the search for candidate patterns and check-
ing the candidate patterns which have been found is split between available threads. For 
test datasets this approach gave us very promising results (about 70% of the theoretical 
acceleration, which is often hard to achieve).

Some algorithms previously designed to work with uncertainty in data were very 
slow compared to ones used for sequential pattern mining. The proposed code opti-
misation strategies showed that they can be very efficient and potentially applied to 
real time problems. This opens up a very large range of problems with errors in data 
which can now be solved numerically. Problems with time restrictions can also benefit 
from the suggested optimisation ideas as the run times are similar to ones without any 
restrictions.
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Fig. 12  Run time for the non-expensive care dataset for different number of threads
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In principle the ideas proposed in the paper are not limited to problems with uncer-
tainty in data and time restrictions but can be useful for a wider range of problems from 
sequential to temporal pattern mining.

Conclusions
In this work we have presented a novel algorithm which can accommodate a range of 
time series problems, with or without time stamp uncertainties and with or without 
temporal constraints. We have demonstrated several levels of optimisation of the initial 
Apriori version to show methods which can be used to speed up most pattern mining 
calculations. We profiled and verified the algorithms with the existing fast SPAM code 
(for the case of sequential dataset with sequences length of one) and the RobustSPAM 
algorithm from [37] (with the assumption that uncertainty interval β > 0 and there are 
no coincident events). We showed that the algorithm outperforms RobustSPAM, and its 
final state of the art optimised versions outperform SPAM. The algorithms have been 
tested on two different datasets, an adult social care dataset and a weather temperature 
dataset.

Future works
The ideas presented in the paper offer a number of routes for further development. 
The algorithm, and the optimisation ideas are planned to be extrapolated for the case 
of sequential pattern mining (see Definition in [6]) on the datasets with temporal 
uncertainties with constraints on temporal length. In this case the structure of ID lists 
needs to be redefined, taking into account the information of which sequence in the 
row an element belongs to. The algorithm can also be extrapolated for the case of 
uncertain stream datasets. In this case the way of storage/accessing dataset should be 
revised. Once the frequent patterns are found with the algorithm FARPAMp, further 
analysis could be applied such as:

•	 Classification analysis (see for example [63, 64]);
•	 Clustering (see for example [65]);
•	 Building predictive models, etc. (see for example [66]).

In application to the Adult Social Care dataset the found frequent patterns will be 
cleaned from irrelevant ones and used to build a predictive model. The Adult Social 
Care dataset is divided into two groups: patients later assigned to an “expensive care” 
and everyone else. It is intended to used supervised learning machine tools for pre-
dictive analysis (for example, Random Forest or an Artificial Neural Network).
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