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An appraisal of the thermal decomposition mechanisms of ILs as potential lubricants. 

Waleed Al-Sallami1,*, Pourya Parsaeian1, Anne Neville1 

1School of Mechanical Engineering, University of Leeds, UK 

Abstract 

Ionic Liquid (IL) lubricants are rapidly seeing increased use as either base lubricants or 

additives for a wide range of functionalities. This study considers the thermal stability of the 

ILs with the emphasis being their use as potential lubricants. The effect of IL chemistry, 

including anion chain length, cation chain length, anion type and cation type, on their thermal 

stability is studied. The decomposition mechanism as a function of time and temperature is 

considered. Five ILs are studied by utilizing both ThermoGravimetric Analysis (TGA) for the 

dynamic thermal decomposition and Fourier Transform IR spectroscopy (FTIR) for the static 

thermal decomposition.  For static thermal decomposition both time and temperature are 

varied. The results show that the variation of IL chemistry directly influences their thermal 

stability. The increase of either cation or anion chain length decreases their thermal stability. 

Both anion and cation type have a significant influence on the thermal stability. 

Keywords: ILs lubricants, FTIR, TGA, cation chain length, anion chain length, cation type, 

anion type, static thermal decomposition and dynamic thermal decomposition.  

1. Introduction  

The main aim of lubricants is to enhance the tribological performance of interacting surfaces 

in terms of reducing both wear and friction whilst managing energy dissipation and the 

translation of energy into heat. Further, many other crucial properties are desirable in lubricants 

such as their thermal stability, fluidity range and thermal conductivity (1). ILs have been 

proposed as lubricants due to their ability to provide excellent tribological behaviour for 

various tribopairs. In addition, they exhibit highly desirable properties that are matching the 

required properties in lubricants (2-5). ILs can be simply defined as molten salts that are 

available in the liquid state over a wide range of temperatures. ILs’ properties can be controlled 

easily by varying their chemistry, i.e., anion/cation chain length and/or anion/cation type. They 

basically consist of an organic cation and either an organic or inorganic anion when both ions 

contain a controllable alkyl chain length (6).  

 

In the last two decades, ILs have been widely used as either base lubricants or additives. ILs 

have shown excellent tribological performance when lubricating various tribopairs in various 
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conditions (2-5). Ye et al (7) suggested ILs as versatile base lubricants since imidazolium based 

ILs showed excellent tribological performance when lubricating steel, aluminium, copper and 

ceramics.  A few studies suggested the use of ILs as base lubricants in vacuum environments 

(8-13). The results implied that ILs can provide better tribological performance than Polyether 

Ether Fluorine (PFPE) which is one of the most conventional lubricants in vacuum conditions. 

Besides, the use of ILs as additives started when Phillips et al (14) added various ILs into water 

to lubricate ceramic tribopairs. The results demonstrated that ILs can be used as effective anti-

wear additives. However, the majority of ILs are insoluble in non-polar lubricants due to their 

high polarity (2-5). Nevertheless,  fully oil-miscible ILs have been proposed by Qu et al (15) 

and their results suggested that oil-miscible ILs can provide a significant protection against 

wear.  

The thermal stability of lubricants is also crucial since it determines the maximum limit of the 

working temperature. The thermal stability of ILs can be affected by the operating 

environment, their chemistry and the heating process methodology (16). Villanueva et al (17) 

reported that ILs are more stable in a nitrogen environment than air. The effect of anion type, 

cation type and cation chain length were investigated by Maaike et al (18). They found that all 

parameters influence the thermal stability. Later studies revealed that the anion is more 

significant than the cation (19, 20). The effect of the heating process methodology was 

examined. The results implied that the use of TGA to assess the dynamic thermal stability 

provides an overestimation for the thermal stability of ILs (16, 19, 21-24). Other methodologies 

were applied to examine the static thermal stability of ILs in order to find the real maximum 

working temperature by using various periods at constant temperature and then calculating the 

weight loss (25, 26).  

IR spectroscopy can be used to study the thermal decomposition of ILs by comparing between 

IR spectra at room temperature and after heating process. Chowdhury and Thynell (27) used 

FTIR to analyse the decomposition products that are obtained from TGA of various 

imidazolium based ILs. The results implied that the decomposition occurred only in the anion 

and the highest decomposition was obtained in the nitride anion. Feng et al (28) also used TGA 

to study the thermal decomposition of ILs. The FTIR spectra of the decomposed species were 

utilized to assess the thermal decomposition mechanism of imidazolium tetrafluoroborate. 

Their results showed that the decomposition started by the decomposition of the anion.  



Research article 

3 
 

Very recently, Wheeler et al (24) investigated the thermal decomposition of ethyl methyl 

imidazolium ethyl sulfate using FTIR. The results demonstrated that, as expected, the increase 

of either time or temperature increases the concentration of the decomposed species.  

There is a lack of data for IR spectra of ILs at room temperature (29-32). To the best of the 

authors’ knowledge, this study is the first one that presents the FTIR spectra for both 

phosphonium sulfate and imidazolium phosphate ILs. In addition, as mentioned above only 

one study has investigated the thermal decomposition mechanism of IL (imidazolium sulfate) 

using FTIR (24). The aim of this paper is to assess the effect of ILs’ chemistry including; anion 

chain length, cation chain length, anion type and cation type on their dynamic and static thermal 

decomposition. Also, the effect of ILs’ chemistry on their IR spectra at room temperature is 

reported. 

2. Experimental methods  

2.1 Ionic Liquids  

Five ILs are used in this study as presented in Table 1 including their structures, impurities and 

vendors. The selection of these ILs aims to cover the influence of ILs’ chemistry including 

effect of anion chain length, cation chain length, anion type and cation type. From the top of 

the table, the first two are utilized to investigate the effect of anion chain length. The second 

and third are utilized to investigate the effect of cation chain length. The fourth and fifth are 

compared with the first one to investigate the effect of anion type and cation type respectively. 

 

2.2 Dynamic thermal decomposition 

TGA (Mettler Toledo, University of Leeds, UK) is utilized in this study to detect the 

decomposition temperature. In the current study, the temperature is increased at a rate of 10 
oC/min (non-isothermal mode) as utilized for ILs in (19, 33, 34). The starting temperature is 

55 oC. Air atmosphere is utilized to maintain the same environment in both static and dynamic 

experiments. Further, alumina oxide 70 µL crucibles, from Mettler Toledo, are utilized. A 

comparable amount of IL (8 mg) is utilized in all experiments. The first derivative of weight 

loss against surface temperature is was evaluated to find the decomposition temperature.  

2.3 Static thermal decomposition 

2.3.1 Experiments procedure  

The temperature is kept constant for a certain period (iso-thermal mode) and FTIR is used to 

assess thermal stability by comparing between the spectra of ILs before and after each test. 
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Two temperatures are utilized (80 oC and 100 oC) at three periods (2 hours and 5 hours), see 

Table 2. The same amount of IL is used in all experiments (2 ml). ILs are placed in glass 

beakers (see Fig. 3-4). A hot plate is utilized for the heating process when the pre-set 

temperature is maintained by using a feedback signal. The error is ± 2oC. The hot plate is placed 

in a well ventilated place to exhaust the produced fumes directly.  

2.3.2 IR spectroscopy  

The PerkinElmer spectra 100 FTIR-ATR is utilized to investigate the effect of ILs’ chemistry 

on IR spectra before and after the heating process. The background signal is collected firstly. 

The incorporated software spectra spectroscopy software is utilized to subtract the background 

signal and process the obtained signal of lubricants. The signal is collected within the range of 

650 to 4000 cm-1. An average of 25 scans is utilized when the resolution is 2 cm-1. The obtained 

spectra are analysed using the handbook for IR spectra for both organic and inorganic 

compounds (35) in addition to the available data in the literature (24, 29-32) 
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3. Results 

3.1 Dynamic thermal decomposition 

The results of the dynamic thermal decomposition of the examined ILs are depicted in Fig. 3-

1. The effect of anion chain length is evaluated by comparing between EMIM ESU (both chains 

are ethyl) and EMIM OSU (cation chain is ethyl and anion chain is octyl). The effect of cation 

chain length is evaluated by comparing between EMIM ESU and BMIM OSU (cation chain is 

butyl and anion chain is octyl). The results demonstrate that decreasing of either cation or anion 

chain length increases the dynamic thermal stability of IL. This can be resulted due to the 

decrease of the stability of carbocation (36). The effect of anion chain length is significantly 

higher than cation chain length (see Figs. 3-1a and 3-1b). This finding is expected since the 

increase of anion chain length (from ethyl to octyl) is higher than that applied for cation chain 

length (from ethyl to butyl).  

The effects of both anion type and cation type are considered by comparing EMIM ESU with 

PSU and EMIM EP. Previous findings showed that the correlation between either anion type 

Fig. 3-1: Dynamic thermal decomposition of the examined ILs to reveal the effect of: 
(a) anion chain length, (b) cation chain length, (c) cation type and (d) anion type. 
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or cation type and the thermal stability cannot be determined precisely. Some ions 

(anion/cation) demonstrated a significant influence while other ions did not demonstrate any 

influence (19, 20).  However, in this study, both anion and cation demonstrate a considerable 

effect on the thermal stability. It is observed that the presence of phosphorus as either a cation 

(phosphonium cation) or anion (phosphate anion) instead of imidazolium or sulfate 

respectively, decreases the dynamic decomposition temperature (see Fig. 3-1). This finding is 

in agreement with the previous study that compared phosphonium with imidazolium when both 

were combined with a halogenic anion (20).  

Both the onset temperature and the decomposition temperature are considered. The former is 

obtained when only a slight reduction in mass is detected which suggests that the 

decomposition is just started (see Fig. 3-2). The highest reduction in the mass was defined as 

the decomposition temperature (37) as presented in Fig. 3-2.   

It is clear that the ILs’ chemistry has a considerable effect not only on the decomposition 

temperature but also on the onset temperature (see Fig. 3-2). Longer cation or anion chain 

length appears to lead to a decrease in the decomposition temperature while there is no 

significant effect on the onset temperature. In addition, sulfate anion and imidazolium cation 

show a lower onset temperature in comparison with phosphate anion and phosphonium cation 

respectively (see Fig. 3-2).  

Previous studies reported that the use of TGA to study the dynamic thermal decomposition of 

ILs can provided an overestimation for their thermal stability (16, 24). In other word, the 

thermal decomposition can be started in a temperature by far lower than that estimated by TGA. 

Thus, the static thermal decomposition experiments are utilized in this study to obtain 

complementary information. 
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3.2 Static thermal decomposition  

FTIR is utilized to examine the static thermal decomposition by comparing IR spectra of the 

utilized ILs at room temperature and then after each heating process.   

3.2.1 FTIR results at room temperature 

IR spectra for the examined ILs are depicted in Fig. 3-3. The analysis starts with EMIM ESU, 

because it is the only IL in this study that is widely analysed in the literature (24). Table 3 

demonstrates the assigned peaks for EMIM ESU, and all peaks are in agreement with (24, 29). 

It can be clearly seen in Fig. 3-3 that the variation of anion chain length plays a more significant 

role than cation chain length. The intensities of peaks related to the hydrocarbons are increased 

with the increase of either anion or cation chain length (see Fig. 3-3).  

Fig. 3-2: First derivative of the weight loss against surface temperature curve for: (a) 
EMIM ESU, (b) EMIM OSU, (c) BMIM OSU, (d) PSU and (e) EMIM EP. 
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Referring to the Beer-Lambert law (38); the increase of intensity (decrease the transmissivity) 

has a linear relationship with molar concentration. This means that the reduction of peaks’ 

intensity suggests a reduction of the concentration of their related chemicals.  
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The increase of anion chain length lead to a decrease in the intensity (concentration) of both 

sulfate and imidazolium related peaks, as expected. In contrast, the intensities of the peaks 

related to chain lengths; such as C-C, C-H and CH-CH are increased. This finding is expected 

since the chain length is increased and the concentration of these bonds is increased. The same 

behaviour is obtained as a result of the increase of cation chain length (see Fig. 3-3). 

Changing cation type from imidazolium to phosphonium lead to a full diminishing of 

imidazolium related peaks, as expected. Five new peaks are detected and assigned to the 

phosphonium cation. Three peaks are assigned to P-CH3 at 1421 cm-1 asymmetric vibration, 

1313 cm-1 symmetric vibration and 939 cm-1 rocking vibration. For the last two peaks, the one 

at 729 cm-1 is assigned to P-C stretching vibration and the second one at 1090 cm-1 is assigned 

to the asymmetric stretching of P-C. Besides, the rest peaks that are assigned to either sulfate 

anion or hydrocarbons are still existed. However, a new peak at 2825 cm-1 is appeared and  

assigned to the stretching of OCH3 that exists in methyl sulfate. The assignmensts of all these 

peaks are made based on the available data in (35). 

Changing anion type from sulfate to phosphate leads a full diminishing of sulfate related peaks, 

as expected. Five new peaks are appeared when four of them are related to phsphate anion. The 

assignments of the phosphate related peaks are as follows: P-O stretching at 776 cm-1, P-O-C 

symmetric stretching at 933 cm-1, P-O-C  assymetric  stretching at 1050 cm-1, P=O at 1240 cm-

1. Furhter, the last peak is assigned to OH since it is a broad peak between 3190 to 3580 cm-1. 

The OH related peak can be resulted from the water content. Again, the assignments of all these 

peaks are made based on the available data in (35).   

3.2.2 FTIR results after heating process 

ILs are heated up to 80 oC for 2 and 5 hours. The IL colour was changed to black after 30 

minutes of heating (see Fig. 3-4). The change of colour from transparent to black is a reported 

feature  of the oxidation of lubricants (39). In addition, a partial decomposition is observed 

when the intensity of anion and/or cation related peaks are decreased. The increase of time 

from 2 hours to 5 hours lead to a further decrease of anion and/or cation related peaks. The 

temperature is also increased to 100 oC for 2 and 5. The results show that the increase of 

temperature also lead to decrease of anion and/or cation related peaks. This finding suggests 

the increase of either time or temperature increases the amount of the decomposed species.  
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Fig. 3-5 presents the IR spectra of ILs after heating them to 100 oC for five hours. Starting from 

BMIM OSU, a broad weak peak was obtained between 3400 and 3600 cm-1. This peak is 

assigned to OH  (16). This can be resulted from the decomposition of IL as pointed out in (24).  

Subsequently, the intensities of peaks related to imidazolium and hydrocarbon peaks, CH3-CH2 

and CH3-HCH, are increased which means that their molar concentrations are increased. In 

contrast, three peaks related to the sulfate anion are diminished which are SO4 at 1110 cm-1 and 

at 912 cm-1, C-O-S-O and S=O at 757 cm-1. This means that the decomposition process starts 

in the sulfate anion. This finding is in agreement with the previous studies  (24, 28) 

Decreasing cation chain length is expected to increase thermal stability of IL, based on TGA 

results (see Fig. 3-1b). As expected, only one peak related to sulfate anion is diminished while 

the rest sulfate related peaks still exist with a considerable reduction in their intensities (see 

Fig. 3-5). In contrast, cation and hydrocarbon related peaks are increased. Similarly, the 

decrease of anion chain length leads to increase the thermal stability (see Fig. 3-5). This finding 

is again in agreement with TGA results (see Fig. 3-1a). 

 

Fig. 3-4: ILs after heating them into 80 oC and for 2 hours. 
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Changing anion type from sulfate to phosphate lead to increase the stability of IL. Thus, in 

EMIM EP no peaks are neither diminished nor produced due to the heating process (see Fig. 

3-5). This outcome is in agreement with TGA results since the onset temperature of EMIM 

ESU is lower than EMIM EP (see Fig. 3-1d). However, a slight reduction in the intensities of 

the hydrocarbon related peaks occurs. In addition, a noticeable increase of the intensity of OH 

related peak is observed. This finding suggests that a partial decomposition occurs in the 

anion/cation chain. 

Changing cation type shows a slight influence on the static thermal stability. Again, only sulfate 

peak intensities are decreased (see Fig. 3-5). Further, a new peak appears at 1160 cm-1 which 

is assigned to methyl sulphoxides (35). This suggests that the change of cation from 

imidazolium to phosphonium leads to higher oxidation as a result of heating. The phosphonium 

cation related peaks are almost same before and after the heating process (see Fig. 3-5). These 

findings suggest that the anion has a more significant role in the thermal decomposition process 

than cation. 

To investigate the influence of time and temperature on the decomposition process. The results 

of BMIM OSU at various conditions are analysed, since it exhibits the lowest static thermal 

stability. Fig. 3-6 depicts the FTIR spectra for BMIM OSU at room temperature, after heating 

to 80 oC for 2 and 5 hours and after heating to 100 oC for 5 hours. The variation is mainly 

observed in sulfate related peaks rather than imidazolium ones. The intensity of OH peak 

increased with the increase of either time or temperature which confirmed that this peak results 

from the decomposition process as reported before in (24). The increase of either time or 

temperature leads to a reduction in the intensity (concentration) of the decomposed species 

(sulfate). It is obvious that the increase of temperature is more significant than time. This could 

suggest that the increase of temperature increases the decomposition rate. The slight effect of 

time can be resulted from the increase of the amount of the decomposed species at constant 

decomposition rate.  
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4. Discussion 

4.1 Comparison between dynamic and static thermal decomposition  

The use of TGA (in non-isothermal mode) to predict the thermal stability of ILs can result in 

an overestimation for their stability as also pointed out in (16, 24). However, the initiation of 

the thermal decomposition can be observed by the slight reduction of mass before the 

decomposition temperature (see Fig. 3-2). Nevertheless, the use of FTIR to assess the thermal 

stability of ILs can provide more accurate results. The partial thermal decomposition can be 

captured by the static thermal decomposition (using FTIR).  

However, the results of both techniques show that the thermal decomposition of ILs is strongly 

effected by IL chemistry. Consequently, the increase of either cation or anion chain length 

results in a reduction of the thermal stability of ILs in both techniques. In addition, phosphate 

anion is more stable than sulfate anion. This finding suggests that TGA overestimates the 

decomposition temperature but it can provide a good prediction when it is utilized for 

comparison purposes. 

Fig. 3-6: Effect of time and temperature on BMIM OSU IR spectra; (a) spectra between 
2000 cm-1 and 650 cm-1 and (b) spectra between 4000 cm-1 and 2000 cm-1. 
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4.2 Decomposition mechanism 

The decomposition mechanisms are obtained from the static decomposition results. For 

imidazolium sulfate ILs, decomposition starts from the anion (see Figs. 3-5 and 4-1). The 

decomposition process starts when the concentrations (intensities) of the sulfate related peaks 

decrease. The second step is the breaking of anion chain length when SO4 and C-O-S-O peaks 

are diminished.  

For EMIM EP, the decomposition only occurs in the hydrocarbons since a slight reduction in 

their intensities was observed. The increase of the intensity of OH peak confirmed that a partial 

decomposition occurred in the hydrocarbons (See Fig. 3-5). Besides, PSU IL demonstrates a 

partial decomposition in the sulfate anion results a formation of methyl sulphoxides (See Fig. 

3-5). This suggested that the decomposed sulfur is bonded with CH3 instead of O.  

4.3 Effect of time and temperature on the decomposition process 

The increase of either time or temperature demonstrates an increase in the concentration of the 

decomposed species. However, the increase of temperature demonstrates a higher influence 

than time, see Fig. 3.6. This finding suggests that at particular temperature the decomposition 

has a particular rate, and the increase of temperature lead to increase the decomposition rate. 

This finding is in agreement with Arrhenius equation (40) since it states that the rate constant 

Fig. 4-1: Thermal decomposition mechanism for: (a) EMIM ESU, (b) EMIM OSU and (c) 
BMIM OSU. 
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is increased exponentially temperature. The increase of time lead to increase the concentration 

of the decomposed bonds due to the increase of their amount at constant decomposition rate.  

5. Conclusions 
The dynamic and static thermal decompositions of five ILs have been studied. TGA and FTIR 

are utilized to assess the static and dynamic thermal stabilities respectively.  The following 

conclusions have been obtained: 

 TGA provides an overestimation to the thermal stability of ILs. However, it provides 

an acceptable prediction to the effect of ILs’ chemistry on their thermal stability. 

 The increase of either cation chain length or anion chain length decreases the thermal 

stability of IL due to the decrease of the stability of carbocation. 

 Both anion type and cation type influence on the thermal decomposition mechanism of 

IL. However, anion is more crucial in the determination of the thermal stability. 

 Phosphate anion is more stable than sulfate anion when both combined with 

imidazolium cation. 

 The decomposition is started from the anion rather than the cation. 

 The increase of temperature increases the thermal decomposition rate. 
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Condition number Temperature (oC) Time (hours) 

1 80 2 

2 80 5 

3 80 24 

4 100 2 

5 100 5 

Table 1: The utilized ILs and their impurities and vendors. 

Table 2: The applied conditions for the static decomposition experiments. 
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Intensity Wave number cm-1 Assigned to 

w 3150 HCCH ring  

m 3100 CH3(N) HCH 

w 2980 H-C-H  

w 2940 CH3 HCH  

w 2900 Ring CH3 HCH sym str   

m 1574 CH3-N or CH2-N  

w 1468 N-CH3 symmetric vibration  

w 1380 C-H stretching, CH3 (N) bending  

w 1360 CH2 (N) or CH3 (N) stretching 

w 1330 CH2 (N) stretching 

s 1215 S-O stretching  

s 1170 (N) with CH2 or CH3  

w 1110 SO4 asymmetric vibration  

m 1060 O-C  

s 1015 C-O-SO4 stretching, S=O stretching  

w 960 C-C stretching, CH bending 

s 912 C-O-SO3  

w 847 CCH bending  

s 757 C-O-S-O bending 

m 729 S-O stretching  

w 705 In plane bending resulted from imidazolium ring; CH3(N), 

CH2(N). 

Table 3: The assigned peaks for EMIM ESU at room temperature. 


