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A Spatiotemporal Estimation Framework for Real-World LIDAR
Wind Speed Measurements

Julian Mercieca , Member, IEEE, Parham Aram , Bryn Ll. Jones,

and Visakan Kadirkamanathan , Member, IEEE

Abstract— Despite significant advances in the remote sensing
of fluid flows, light detection and ranging (LIDAR) measurement
equipment still presents the problems of having only radial (line-
of-sight) wind speed measurements (Cyclops’ dilemma). Substan-
tial expanses of unmeasured flow still remain and range weighting
errors have a considerable influence on LIDAR measurements.
Clearly, more information needs to be extracted from LIDAR
data. With this motivation in mind, this brief shows that it
is possible to estimate the wind velocity, wind direction, and
absolute pressure over the entire spatial region of interest. A key
challenge is that most established estimation techniques cater for
systems that are finite-dimensional and described by ordinary
differential equations (ODEs). By contrast, many fluid flows
are governed by the Navier–Stokes equations, which are partial
differential-algebraic equations (PDAEs). We show how a basis
function decomposition method in conjunction with a pressure
Poisson equation (PPE) formulation yields a spatially continuous,
strangeness-free, reduced-order dynamic model for which a mod-
ified DAE form of the unscented Kalman filter (UKF) algorithm is
used to estimate unmeasured velocities and pressure using sparse
measurements from wind turbine-mounted LIDAR instruments.
The approach is validated for both synthetic data generated
from large eddy simulations of the atmospheric boundary layer
and real-world LIDAR measurement data. Results show that a
reconstruction of the flow field is achievable, thus presenting
a validated estimation framework for potential applications
including wind gust prediction systems and the preview control
of wind turbines.

Index Terms— Differential-algebraic equations, light detection
and ranging (LIDAR), Navier–Stokes equations, partial differen-
tial equations, unscented Kalman filter (UKF), wind turbines.

I. INTRODUCTION

T
HE ability to harness fluid flow represents a burgeoning

source of renewable energy. However, taking wind as an

example, fluid flow is also the main disturbance in the control

system of wind turbines. This has sparked recent interest in

maximizing energy production and mitigating structural loads

using the preview control of wind turbines and forecasting

of wind gusts [1]. Although sampling an oncoming wind

field has become possible with recent advances in fluid flow
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measurement, we are still left with the compelling questions

of how best to use such limited sparse flow measurements to

predict wind gusts and to incorporate such knowledge within a

preview control strategy [2]–[4]. Furthermore, these measure-

ments are only line-of-sight velocity measurements and there-

fore require extra information to resolve wind magnitude and

direction (Cyclops’ dilemma [5]). Range weighting is another

imperfection influencing light detection and ranging (LIDAR)

measurements, where a spatial filter is effectively applied

along the laser beam, resulting in wind speeds at locations

other than the focal distance to affect the measured value [6].

Overcoming such sources of error require further information

that may be obtained from a physical model that captures the

spatiotemporal dynamics of the wind. This will inevitably rely

upon the accuracy of wind models employed and calls for

wind velocity estimation tools that predict wind turbine gusts

using limited spatiotemporal wind velocity measurements [7],

thereby mitigating the possible blade damage due to severe

wind gusts if the blade pitch is altered in a timely man-

ner [2], [6]. This would, of course, link measurements to

regions of flow which are not directly observed.

Much of the design and control problems treated in the

existing wind energy literature take common assumptions

that include the steady and uniform flow across the rotor

plane [8]. To account for the unsteady nature of fluid flow,

the next improvement employs Taylor’s frozen turbulence

hypothesis [9] that assumes an unchanged spatial structure

of wind flow as this advects with a mean velocity [10].

In this brief, we seek to provide a more complete picture

of the oncoming wind field by estimating wind velocity and

pressure over the horizontal plane spanned by the LIDAR

beams, rather than estimating wind flow at only single point

locations. This becomes a critical requirement, for instance,

in the detection of oncoming flow dynamics having length

scales smaller than the wind turbine rotor blade diameter,

such as wind gusts. Retaining the full DAE formulation is

a very attractive consideration due to the retained pressure

field description that is essential for several fluid flow types

and situations [11] as well as potential wind flow applications

in drag reduction. A pressure difference across a vehicle

amounts to pressure drag, which constitutes 80% of ground

transportation drag [12].

To conquer the fact that only limited spatial measurements

are available, we propose a model-based estimation framework

that presents a reasonable approximation where the field is

approximated up to a particular bandwidth. We therefore con-

sider models governed by the Navier–Stokes equations, which

are known to be a good approximation for many real-world
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fluid flows, including atmospheric boundary layer flow [13],

and form the basis of this brief. However, the Navier–Stokes

equations are in partial differential-algebraic equation (PDAE)

form, which presents difficulties for estimation purposes.

In addition to being infinite-dimensional, the DAE formulation

(also known as a descriptor or generalized state-space model)

means that it is clearly distinguished from constrained ordinary

differential equation (ODE) systems. In constrained ODE

systems, the evolution of all process states follows differential

equations, subject to algebraic constraints that confine state

evolution. In DAE systems, however, the evolution of some

states is not described by differential equations. Such states

are known as algebraic and follow an evolution that is entirely

governed by the evolution of differential states, such that

all algebraic constraints are satisfied (e.g., pressure in an

incompressible flow) [14]. This key difference means that a

DAE system cannot be handled and estimated as a constrained

ODE system, requiring an alternative estimation scheme [14].

A further important consideration is that DAE systems are

generally described by their differentiation index, typically

defined as the minimum number of differentiations required

in order to obtain an explicit ODE formulation [15]. However,

this concept cannot be applied to the Navier–Stokes equations

since the pressure is only determined up to an additive constant

and the equations are hence of an undetermined nature, which

Kunkel and Mehrmann [15] describe in terms of a so-called

strangeness index.

The foregoing is particularly challenging since the majority

of established estimation techniques are designed for finite-

dimensional systems in ODE form. We note that a simplified

wind model has been proposed in [16]; however, this is derived

as the spatial discretization of the linearized incompressible

Navier–Stokes equations. In [5], a simplified deterministic

state-space model of atmospheric boundary layer flow was

derived based on spatial discretization and excluding pressure.

In this brief, we derive a descriptor flow model in nonlinear,

spatially continuous form. The key to obtaining a strangeness-

free DAE of differentiation index 1 is the reformulation of

the Navier–Stokes equations using the pressure Poisson equa-

tion (PPE) in conjunction with basis function decomposition.

The latter enables the user to represent the flow field by

choosing an appropriate number and the placement of basis

functions, or states, that are independent of the number and

placement of observations, which allows a computationally

efficient estimation procedure.

Although estimation for linear descriptor systems has been

well developed by several authors, most research efforts in

designing observers and filters for the nonlinear case are

more recent [17]. The application of Kalman filtering for

this class of systems is proposed in [18] for the extended

Kalman filter (EKF), while heuristic modifications of the

unscented Kalman filter (UKF) [19], [20] are proposed for

nonlinear descriptor systems in [21] and [22]. These recent

advances in extending Kalman filtering to nonlinear DAE

systems assume that the algebraic equations are free of any

uncertainty. Although this is generally the case, transform-

ing a nonlinear PDAE to a DAE requires the consideration

of model approximation effects. By representing the latter

effects stochastically, we compute and exploit the mean and

covariance of the algebraic state estimates that are necessary

to complete the estimate information obtained and, unlike

previous methods, ensure that the mean and covariance of

both differential and algebraic states are encoded in the sigma

points. We therefore implement a modified DAE form of the

discrete-time UKF algorithm, where differential and algebraic

state filtering distributions are derived as unscented-transform-

based Gaussian approximations. Estimation performance is

demonstrated for wind field data generated from large eddy

simulations (LESs) of the atmospheric boundary layer, and

real-world LIDAR measurement data obtained from a nacelle-

mounted LIDAR unit.

In summary, the main contributions of this brief are twofold

as follows.

1) The incompressible Navier–Stokes equations are used

to model and estimate the 2-D atmospheric boundary

layer flow by reformulating the equations into a spa-

tially continuous, strangeness-free descriptor form of

differentiation index 1, following a PPE formulation in

conjunction with basis function decomposition.

2) The performance of the proposed reduced-order model

and estimator is validated for both synthetic data

obtained using LES simulations of the atmospheric

boundary layer and real-world LIDAR measurements.

The rest of this brief is organized as follows.

Sections II and III constitute the aforementioned contribution,

while Section IV provides the relevant results that make up

contribution. Concluding remarks are given in Section V.

II. GENERALIZED STATE-SPACE MODEL FOR

INCOMPRESSIBLE FLOW

Since effects of compressibility become significant only

at flow velocities of M > 0.3, where M is the Mach

number [23], we consider wind flow expressed by the Navier–

Stokes equations for viscous incompressible flow [16], [24],

as follows:

∂U(s, t)

∂ t
= −∇ P(s, t) − U(s, t) · ∇U(s, t) +

1

Re
∇2U(s, t)

(1a)

0 = ∇ · U(s, t) (1b)

where U(s, t) and P(s, t) denote the velocity and pressure

fields, respectively, evolving over spatial domain � ∈ R
d

for d-dimensional flow, with time t ∈ R+ and s ∈ �.

The term Re denotes Reynolds number, the superscript ⊤ is

the transpose operator, and ∇ denotes the del operator. The

boundary condition may be specified as

U(s, t) = Uδ(s, t) with s ∈ δ� (2)

where δ� is the domain boundary and the initial condition is

U(s, 0) = U0. (3)

A derivation of the Navier–Stokes equations is given in [25].

It is noteworthy that (1) gives no explicit equation for the

pressure P , with a pressure term appearing only once as

a spatial derivative on the right-hand side of (1a). In fact,
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P is known as a Lagrange multiplier, which enforces the

incompressibility of the velocity field U such that the algebraic

equation (1b) is always satisfied. This PDAE system is said

to have a higher differentiation index (nondecoupled) since no

pressure term exists in the algebraic equation. Furthermore,

since the pressure is only determined up to an additive

constant, the system is undetermined and the concept of the

differentiation index cannot be readily applied [26]. Whenever

undetermined solution components exist, the differentiation

index concept for general nonlinear DAEs is described in

terms of a so-called strangeness index [15]. Consequently,

following the strangeness index definition given in [15, Defin-

ition 4.4], which is not provided here in the interest of brevity,

the above-mentioned system is, after spatial discretization,

characterized by a unity strangeness index. To render this

formulation amenable to an estimation framework, we propose

a reformulation into a strangeness-free spatially continuous

generalized state-space form by employing basis function

decomposition following a PPE description. The following

preliminaries present the necessary matrices and associated

invertibility properties required to obtain the main result of

this section. Note that all integral operations presented here

are performed elementwise.

Let nφ denote the number of basis functions, each φ(s−ζi ) :

� → R, where ζi is the center of the i th basis function.

Furthermore, let φ(s) = [φ(s−ζ1) φ(s−ζ2) · · · φ(s−ζnφ )]⊤

and φ(s) = Id ⊗ φ(s), where ⊗ denotes the Kronecker product

operator of two matrices and Id is a d ×d identity matrix. The

matrix γ ∈ R
dnφ×dnφ shall be defined as

γ �

∫

�

φ(s)φ⊤(s)ds. (4)

Also, define the matrix η ∈ R
nφ×nφ as

η �
∫

� φ(s)(∇2φ⊤(s))ds (5)

where ∇2 denotes the Laplace operator. We note that since

γ is symmetric and positive, then in [27], the matrix is

positive definite and hence invertible. To show invertibility

for the matrix η, we consider a regular grid of equally spaced

identical basis functions. This yields a Toeplitz-block Toeplitz

matrix structure for η and its invertibility may be determined

in [28] and [29].

In order to obtain a strangeness-free nonlinear descriptor

system of differentiation index 1, let

f(U(s, t), P(s, t)) =
∂U(s, t)

∂ t
. (6)

We decompose the spatiotemporal fields U(s, t) and P(s, t)

using an infinite set of linearly independent basis functions

Z = {φ(s − ζi )}
∞
i=1, as follows:

U(s, t) = φ⊤(s)x(t) (7)

P(s, t) =

∞
∑

i=1

φ(s − ζi )zi (t) = φ⊤(s)z(t) (8)

where x(t) ∈ R
dnφ and z(t) ∈ R

nφ are the velocity and

pressure state vectors, respectively, that scale the field basis

functions φ(s). Substituting the field decomposition in the

momentum equation (1a), we obtain

φ⊤(s)
∂x(t)

∂ t
= f(φ⊤(s)x(t), φ⊤(s)z(t)). (9)

Premultiplying (9) by φ(s) and integrating over the spatial

domain � yields
∫

�

φ(s)φ⊤(s)ds
∂x(t)

∂ t
=

∫

�

φ(s)f(φ⊤(s)x(t), φ⊤(s)z(t))ds.

(10)

Substituting γ into (10) and premultiplying by γ −1, we may

write

∂x(t)

∂ t
= γ −1

∫

�

φ(s)f(φ⊤(s)x(t), φ⊤(s)z(t))ds. (11)

To derive the algebraic equation for z(t), we first obtain the

PPE by taking the divergence of (1a) and using the divergence-

free condition of (1b) [30]

∇2 P(s, t) = −∇ · (U(s, t) · ∇U(s, t)). (12)

Let

g(U(s, t)) = −∇ · (U(s, t) · ∇U(s, t)). (13)

Then, substituting the field decomposition into (12) yields

(∇2φ⊤(s))z(t) = g(φ⊤(s)x(t)). (14)

Premultiplying (14) by φ(s) and integrating over the spatial

domain � gives
∫

�

φ(s)(∇2φ⊤(s))ds z(t) =

∫

�

φ(s)g(φ⊤(s)x(t))ds. (15)

Substituting η given by (5) into (15) and premultiplying

by η−1, we have that

z(t) = η−1

∫

�

φ(s)g(φ⊤(s)x(t))ds. (16)

The final form of the nonlinear descriptor model may therefore

be written as

∂x(t)

∂ t
= γ −1

∫

�

φ(s)f(φ⊤(s)x(t), φ⊤(s)z(t))ds (17a)

z(t) = η−1

∫

�

φ(s)g(φ⊤(s)x(t))ds (17b)

where both x(t) and z(t) are exactly determined, making the

formulation strangeness-free. The concept of the differentia-

tion index may now be applied to such system of equations and

the formulation is said to have a unity differentiation index.

III. ESTIMATION OF THE INCOMPRESSIBLE

NAVIER–STOKES EQUATIONS

A. Reduced-Order Nonlinear DAE Flow Estimation Model

In order to render our flow model apt for estimation pur-

poses, we decompose the velocity and pressure fields using a

set of Gaussian basis functions, allowing a finite-dimensional

state vector to approximate a spatially continuous field. The

field basis functions are described by

φ(s − ζi ) = exp

(

−
(s−ζi )

⊤(s−ζi )

2σ 2
φ

)

(18)
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where σφ ∈ R is a parameter defining the basis function width.

The basis function width and placement are computed using

a spatial frequency analysis technique that follows the work

of Sanner and Slotine [31] and applied in a spatiotemporal

context in [32]. This approach considers spatial frequency

cutoff as the design parameter describing basis function width

and placement.

Since the observations are discrete in time, we discretize

time using a first-order Euler method. This simple approach

is known to introduce a discretization error [33]; however,

this is only incurred in the forward prediction step so it is

then corrected throughout the update step of the estimation

algorithm. We may write the flow estimation model by first

defining xk := x(k�t) and zk := z(k�t ) with regular time

steps �t and denoting the index of the future time sample by

the subscript k + 1.

Substituting the decomposition into (1a) yields

φ⊤(s)xk+1 = �t f(φ
⊤(s)xk, φ

⊤(s)zk)+ φ⊤(s)xk + ǫk(s)

(19)

where to approximate the effects of model reduction and

model uncertainties, the spatial field is subjected to a dis-

turbance ǫk(s), which represents a normally distributed zero-

mean white noise process where ǫk(s) ∼ N (0, σ 2
q I) and the

covariance is defined by

cov(ǫk(s), ǫk+τ (ξ )) =

{

σ 2
q δ(s − ξ ), if τ = 0

0, otherwise
(20)

for all τ ∈ Z, where ξ ∈ �, I is an identity matrix of

appropriate dimensions, δ is the Dirac delta function and

N (0, σ 2
q I) denotes the zero-mean normal distribution with

covariance σ 2
q I. Premultiplying (19) by φ(s), integrating over

the spatial domain � and rearranging gives

xk+1 = f (x)(xk, zk) + qk (21)

where

f (x)(xk, zk) = �tγ
−1

∫

�

φ(s) f(φ⊤(s)xk, φ
⊤(s)zk)ds + xk

(22)

and

qk = γ −1

∫

�

φ(s)ǫk(s)ds. (23)

In [34], we have that qk is a zero-mean, normally distributed

white noise process with covariance Qk = σ 2
q γ −1. We note

that the terms in φ(s) and its spatial derivatives get integrated

and can either be computed analytically or numerically.

Proceeding similarly for algebraic equation (1b), we get

zk = g(z)(xk) + ẽk (24)

where

g(z)(xk) = η−1

∫

�

φ(s)g(φ⊤(s)xk)ds (25)

where ẽk is a zero-mean, normally distributed white noise

process with covariance Ẽk = σ 2
ẽ
η−1. The discrete-time

reduced-order spatiotemporal nonlinear descriptor model is

then given by

xk+1 = f (x)(xk, zk) + qk (26a)

zk = g(z)(xk) + ẽk . (26b)

We note that the states xk and zk can be decoupled from the

integral computation, thus allowing offline computation and

hence more efficient estimation. Following the dimensional

analysis carried out in [5], the wind field dynamics over

the horizontal plane are largely independent of changes in

height, and we will therefore consider only 2-D flow (d = 2).

Taking the first nφ components of xk+1 as an example and

denoting this vector by x
(u)
k+1 (i.e., the state vector describing

the horizontal component of velocity), we may decouple the

states from the integral computation, as follows:

x
(u)
k+1

=�tγ
−1
0

[

1

Re

∫

O

φ
∂2φ⊤

∂s1
2

ds x
(u)
k +

1

Re

∫

O

φ
∂2φ⊤

∂s2
2

ds x
(u)
k

−

∫

O

φ
∂φ⊤

∂s1
ds zk −

∫

O

φ

(

φ ⊗
∂φ

∂s1

)⊤

ds
(

x
(u)
k ⊗ x

(u)
k

)

−

∫

O

φ

(

φ ⊗
∂φ

∂s2

)⊤

ds (x
(v)
k ⊗ x

(u)
k )

]

+ x
(u)
k + q

(u)
k

(27)

where φ = φ(s), q
(u)
k denotes the first nφ components of qk ,

x
(v)
k denotes the last nφ components of xk , and γ0 is given by

(4) with d = 1. Grouping terms, this equation has the form

x
(u)
k+1 = f (u)(xk, zk) + q

(u)
k (28)

where

f (u)(xk, zk) = A1x
(u)
k + A2zk + A3(x

(u)
k ⊗ x

(u)
k )

+A4(x
(v)
k ⊗ x

(u)
k )

A1 =
1

Re
�tγ

−1
0

[ ∫

O

φ
∂2φ⊤

∂s1
2

ds +

∫

O

φ
∂2φ⊤

∂s2
2

ds

]

A2 = −�tγ
−1
0

∫

O

φ
∂φ⊤

∂s1
ds

A3 = −�tγ
−1
0

∫

O

φ

(

φ ⊗
∂φ

∂s1

)⊤

ds

A4 = −�tγ
−1
0

∫

O

φ

(

φ ⊗
∂φ

∂s2

)⊤

ds. (29)

It is easy to see that the constant matrices A1, A2, A3, and A4

may be computed offline. By proceeding similarly for any

other dimension and component of velocity and pressure,

the form of (26) is obtained.

B. Static Pressure Estimation

In the incompressible Navier–Stokes equations (1), the total

pressure P appears only as a spatial derivative in the momen-

tum equation (1a). The static (P(s)) and dynamic (P(d))

pressure terms that make up P = P(s)+ P(d) are characterized

by different time constants, with P(s) naturally demonstrating

much slower dynamics. This makes P unobservable, and
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consequently, the pressure estimated using (24) is effectively

dynamic pressure. We therefore propose to model static pres-

sure P(s) by a Gaussian random walk model to track its slow

variation and take a single pressure measurement ỹk(sP) :=

ỹ(sP , k�t ) at regular time intervals �t within the spatial

domain �. We assume that the static pressure is uniform

throughout this domain. The full static pressure model is then

given by

P
(s)
k+1 = P

(s)
k + wk (30)

ỹk(sP ) − φ⊤(sP)zk = P
(s)
k + vk (31)

where sP is the position of the pressure sensor, wk ∼ N (0, σ 2
w)

and vk ∼ N (0, σ 2
v + φ⊤(sP )P

(z)
k φ(sP )) denote additive white

Gaussian noise and P
(z)
k denotes the associated algebraic state

covariance matrix. The term φ⊤(sP )zk effectively represents

the dynamic pressure estimate so the difference between

φ⊤(sP )zk and the single pressure measurement ỹk(sP ) is used

to estimate the static pressure term using the standard Kalman

filter. The covariance term of vk caters to both pressure sensor

noise and dynamic pressure estimation error through σ 2
v and

φ⊤(sP )P
(z)
k φ(sP ), respectively.

C. Observation Process

Current LIDAR systems can only detect aerosol speeds in

the line-of-sight direction of the laser beam. Measurements

are taken at discrete points along the line-of-sight path, so we

consider the case where observations are available at regular

time intervals �t at ns points distinctly located throughout

the spatial domain s ∈ �. Define the observation vector as

yk(sl ) := y(sl , k�t ). Then, the full model observation equation

may be written as

yk(sl) = uk(sl) sin θ + vk(sl) cos θ + rk(sl) (32)

where uk(sl) := u(sl , k�t ) and vk(sl ) := v(sl , k�t ) are the

horizontal and vertical velocity components, respectively, θ is

the LIDAR beam half-angle, sl is the lth position, and rk(sl)

denotes additive white Gaussian noise having zero mean and

covariance Rk = σ 2
r I. Substituting for field decomposition

yields the reduced-order model observation equation given as

yk(sl) = φ⊤(sl) (x
(u)
k sin θ + x

(v)
k cos θ) + rk(sl) (33)

where x
(v)
k represents the last nφ components of xk .

D. Unscented Kalman Filtering for Nonlinear DAE Systems

Since the UKF and most of the state estimation tools do

not readily handle nonlinear DAE systems and we cannot

treat a descriptor system as a constrained ODE system [14],

we make use of a modified UKF algorithm, where the effects

of uncertainties and unmodelled dynamics in both difference

and algebraic equations may be represented stochastically.

In the literature, such uncertainties are typically conveniently

represented by zero-mean white Gaussian process noise, such

as [5], to account for the effects of assuming 2-D flow and

excluding turbine dynamics, and [32], to represent the approxi-

mation effects of basis function decomposition. By proceeding

similarly for our work, these effects, including those due

to time discretisation, are incurred in the forward prediction

step. This is then corrected throughout the update step of the

estimation algorithm.

State estimation is performed using the reduced-order DAE

model given by (26) and (33). Our aim is to find Gaussian

approximations to the filtering distribution p(xk, zk |y1:k) for

time steps k running from 0 to K . This is achieved by

using an altered UKF algorithm, which follows that pro-

posed by Mercieca et al. [35], with a notable difference

that the algebraic equation is now stochastic. Consequently,

the unscented sampling process required for the state and

measurement prediction steps is carried out for the augmented

random variable Xk = (x⊤
k z⊤

k )⊤. Unlike previous approaches,

including both differential and algebraic state distributions

in the computation of the state and measurement predictions

ensures that the estimates use statistical information from all

states so that the set of sigma points giving the projected

prediction correctly encode the mean and covariance of both

differential and algebraic states. Also, instead of obtaining

the predicted and filtered algebraic state estimates by directly

solving the algebraic equation, the unscented transform is used

to compute the mean and covariance of the algebraic state

estimates after the differential states undergo the nonlinear

transformation g.

As discussed in [5], the coupling between the wind velocity

fields is enhanced by assuming that the instantaneous wind

direction is uniform throughout the spatial domain under study.

Note that since the observation equation is linear in the states,

the predicted differential states are corrected using the standard

Kalman filter update equations.

IV. RESULTS

This section evaluates the performance of the estimation

framework developed here by considering wind flow over a

large horizontal plane, using both LES data and real-world

LIDAR data. The proposed estimation method gives the full

picture of the flow field by using limited sparse flow speed

measurements and a single pressure measurement to provide

flow velocity and absolute pressure estimates anywhere in

the area of interest. This becomes important, for instance,

in the detection and prediction of oncoming flow dynamics

having length scales smaller than the wind turbine rotor blade

diameter, such as wind gusts.

A. Estimation from LES Wind Field Data

Realistic wind field data are generated using the Simulator

for Offshore Wind Farm Applications (SOWFA) [24], which

enables LES simulations of the atmospheric boundary layer.

A typical snapshot of the LES data is shown in Fig. 1 together

with a measurement waveform as captured at one measurement

point. The LIDAR configuration consists of two beams of half-

angle 15◦ with the line-of-sight wind speed being measured at

discrete points along the beams. The LIDAR range considered

in this example is 220 m and the distance between sample

points (black plus signs) is 20 m, which is considerably less

than the characteristic gust length scales (O(102) m) [5].
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Fig. 1. (a) Snapshot from an LES of the atmospheric boundary layer
together with the line-of-sight wind speed observation locations (black plus
signs situated over a 15◦ half-angle LIDAR beam configuration) within a
120 m × 240 m spatial domain at a height of 100 m above sea level. The

contour represents the wind speed in ms−1 with the prevailing wind direction
being from the southwest. The solid black circle shows the location of the wind
turbine nacelle on which the LIDAR unit and pressure sensor are mounted.
Note that the rotor blades are shown for clarity, but the turbine dynamics
are excluded in this brief. (b) RWS measurement plots as captured at one
observation location.

The solid black circle shows the location of the wind turbine

nacelle on which the LIDAR unit and pressure sensor are

mounted. We shall assume free boundary conditions through-

out the estimation process.

1) Basis Function Selection: To ensure that the chosen basis

function grid layout can adequately approximate a spatial field,

an oversampling parameter of ρφ = 2.08 was chosen due to

the relatively slow roll-off of Gaussian basis functions, requir-

ing nφ = 15 basis functions that were equally spaced over

a 3 × 5 grid laid out in the spatial domain �. Consequently,

15 × 3 = 45 basis functions are required to represent the

velocity and pressure fields.

2) State Estimation: A Monte Carlo approach was used to

demonstrate the performance of the proposed state estimation

algorithm, where 50 realizations of wind field data were

generated. Each realization estimated K = 500 data points

(in time) with a sample time of �t = 0.1 s. Estimation

parameters were set as σ 2
q = 1m2 s−2, σ 2

ẽ
= 10−4 m2s−2,

σ 2
r = 10−3 m2s−2, σ 2

w = 10−5Pa2, σ 2
v = 10−4Pa2, Re = 107,

α = 1, and β = 2. No prior information about initial states

was passed on to the state estimator and the initial differential

state distribution was set to N (0, 100γ −1).

3) Estimation Performance: The mean root-mean-square

error (MRMSE), which is often used in the literature for

nonlinear state estimation ( [36] and references therein), was

used to obtain the accuracy of the resulting state estimates by

comparing the estimated field with the generated field. The

MRMSE is defined at each time instant k as

MRMSEk =
1

N

N
∑

j=1

√

√

√

√

1

O

O
∑

o=1

(ν
( j )
k,o)

2, k = 0, 1, 2, . . . , K

(34)

where ν
( j )
k,o is the estimation error at spatial location o at the kth

sampling instant for the j th simulation run. O is the number

of spatially discrete points (equally spaced on � with a spatial

TABLE I

AVERAGE MRMSE VALUES FOR THE STABILIZED SIMULATION

PERIOD (t ≥ 10 S) FOR 50 SIMULATION RUNS

Fig. 2. Error in the field state estimation. The mean RMSE (solid line) and
95% confidence interval (shaded area) plots are shown for (a) wind velocity
magnitude (m/s), (b) wind direction (◦), and (c) pressure (Pa).

Fig. 3. Spatial field estimation is visualized here by showing a single time
instant of the generated wind data (left) and estimated flow field (right), shown
here for (a) wind velocity magnitude (represented by contours, in m/s) and
direction arrows representing direction and (b) pressure (in Pa).

discretisation step of �s) and N is the number of simulation

runs.

Table 1 summarizes the average MRMSE values for the

whole simulation period (0 ≤ k ≤ 500) with Fig. 2 showing

the corresponding MRMSE plots. Fig. 3 shows a single time

instant of the generated fields and estimated fields. Accurate

pressure estimation is obtained despite being measured only at

a single point in the field. This shows how the derived reduced-

order model and proposed nonlinear descriptor estimation

algorithm can identify dynamic pressure and correctly estimate

the whole pressure field. The contributions to the estimation

errors mainly come from three sources: model uncertainty,

model reduction/approximation, and sparse measurements.

Although the evolution of wind gusts is a 3-D phenomenon,

this work is assuming that the flow is 2-D. Although this is
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Fig. 4. (a) Single instant from the reconstructed wind field obtained from
estimation using the real-world LIDAR wind speed measurements along the
two lateral (outer) beams in a 15◦ half-angle configuration. The wind velocity
magnitude is represented by contours (in m/s) and direction arrows represent
the wind direction. Note that the rotor blades are shown for clarity, but the
turbine dynamics are excluded in this brief. (b) Typical real-world LIDAR
wind speed measurement data set shown in comparison with the estimated
RWS for the LB (top) and the RB (bottom) at a distance of 80 m away from
the LIDAR unit.

not strictly true, it is a reasonable assumption as described

and used in [5]. Furthermore, a wind turbine with rotating

blades also causes some upstream distortion of the flow as

it nears the rotor plane, which is not being modeled in our

work. The model reduction scheme employed affects model

accuracy and selecting the number of basis functions has to

be traded off against the estimation accuracy that can be

achieved with limited spatial measurements. Basis function

decomposition brings about the loss of high spatial frequency

components [37]. The Gaussian approximations made in the

UKF-based filtering algorithm also contribute toward the esti-

mation error.

B. Estimation from Real-World LIDAR Measurements

The performance of the proposed estimation framework was

further demonstrated for real-world wind speed LIDAR mea-

surements obtained from a five-beam wind turbine-mounted

LIDAR unit manufactured by Avent Lidar Technology. Three

of the five LIDAR beams provide measurements on a

horizontal plane, with two lateral beams at a 15◦ half-angle

and one central beam. Since the only wind field data available

is the radial wind speed (RWS) at these observation locations,

the two lateral beams are the ones used for estimation, while

the central beam is only used for validating the estimation

performance. The dynamic wind model and estimation scheme

developed here allow for wind field reconstruction of the

entire region of interest using these LIDAR measurements.

A single instance of this reconstruction is given in Fig. 4(a).

The LIDAR observation points are indicated with black plus

signs. The LIDAR range is 185 m and the distance between

the sample points is 15 m. Basis function selection and state

estimation were performed similarly as in Section IV-A, with

�t = 0.25s. Numerical tests revealed that the average runtime

for the proposed estimation algorithm was 0.083s1 per single

iteration, which comfortably allows for real-time execution.

A comparison of a typical real-world LIDAR data set and

its estimate are shown in Fig. 4(b) for the left beam (LB) (top)

and the right beam (RB) (bottom) at a distance of 80 m

1Simulations were carried out on an Intel®Core i5-2450M at 2.50-GHz
personal computer with 4 GB of RAM.

Fig. 5. Typical comparison of the real-world LIDAR wind speed measure-
ments and the corresponding estimation shown for every observation location
along the central beam. Plots are shown in the order of increasing distance
from the LIDAR unit, with the top plot showing the estimation at 50 m away
from the LIDAR equipment.

Fig. 6. Error in the field state estimation at the central beam observation
locations. The mean RMSE (solid line) and 95% confidence interval (shaded
area) are shown for the RWS for 30 independent LIDAR measurement data
sets over (a) time and (b) space along the central beam direction.

away from the LIDAR unit. A similar comparison is shown

in Fig. 5 for every observation location located on the central

beam in the order of increasing distance from the LIDAR

unit (top to bottom). The accuracy of the state estimates was

evaluated by comparing the RWS estimates to the LIDAR wind

speed measurements at the central beam, using the MRMSE as

defined in (34), where O = 10 is now the number of observed

spatial locations (along the central beam) and N = 30 is the

number of independent LIDAR measurement data sets, each

of 20-s duration. The MRMSE of the field estimates is shown

in Fig. 6(a). The average MRMSE for the entire duration

is 0.8452 m/s, which is approximately 12.6% of the wind

field RWS range ([5.26 11.95] m/s). This is comparable to

the MRMSE value obtained for LES data in Section IV-A,

although real-world data now present further uncertainties,

including LIDAR range weighting effects and atmospheric

stability. Fig. 5 reveals how estimation performance degrades

since the measurement points become further spaced apart

with distance, leading to a poorer resolution for the underlying

basis functions. Detecting wind gusts coming from the furthest

locations may be difficult since these may not go past any mea-

surements for them to be identifiable. For practical indications

of the expected uncertainty, Fig. 6(b) shows the estimation per-

formance visualized using the MRMSE of the field estimates



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

over distance along the central beam. The MRMSE is defined

at each spatial location o as

MRMSEo =
1

N

N
∑

j=1

√

√

√

√

1

K + 1

K
∑

k=0

(ν
( j )
k,o)2. (35)

V. CONCLUSION

This brief has proposed a spatiotemporal wind flow esti-

mation framework with a reduced-order flow model and a

nonlinear estimator that accurately estimates velocity and

pressure given sparse line-of-sight wind speed measurements.

By uniquely employing a PPE formulation, a spatially con-

tinuous, strangeness-free nonlinear DAE form of the Navier–

Stokes equations was obtained and used for estimation by a

modified UKF algorithm. The estimation framework was suc-

cessfully validated for both simulated and real-world LIDAR

data. An average MRMSE of 12.6% was achieved for the esti-

mation of real-world wind data with LIDAR preview distances

ranging from 50 to 185 m. For application to the preview

control of wind turbines, the recommended preview distance

is determined by the blade-pitch system bandwidth [10]. The

proposed estimator is yet to be investigated for its benefits

in the preview control of wind turbines by implementing the

estimator for the modular model predictive control (MPC)

layer proposed in [38], which had assumed perfect wind

preview knowledge.
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