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Utilising stream reasoning techniques to
underpin an autonomous framework for cloud
application platforms
Rustem Dautov1*, Iraklis Paraskakis1 and Mike Stannett2

Abstract

As cloud application platforms (CAPs) are reaching the stage where the human effort required to maintain them at an

operational level is unsupportable, one of the major challenges faced by the cloud providers is to develop appropriate
mechanisms for run-time monitoring and adaptation, to prevent cloud application platforms from quickly dissolving
into a non-reliable environment. In this context, the application of intelligent approaches to Autonomic Clouds may

offer promising opportunities. In this paper we present an approach to providing cloud platforms with autonomic
capabilities, utilising techniques from the Semantic Web and Stream Reasoning research fields. The main idea of this
approach is to encode values, monitored within cloud application platforms, using Semantic Web languages, which

then allows us to integrate semantically-enriched observation streams with static ontological knowledge and apply
intelligent reasoning. Using such run-time reasoning capabilities, we have developed a conceptual architecture for an
autonomous framework and describe a prototype solution we have constructed which implements this architecture.

Our prototype is able to perform analysis and failure diagnosis, and suggest further adaptation actions. We report our
experience in utilising the Stream Reasoning technique in this context as well as further challenges that arise out of
our work.

Keywords: Cloud computing; Autonomic computing; Monitoring; Analysis; Stream reasoning

Introduction
Cloud computing impacts upon almost every aspect of

daily life and the economy – pervasive cloud services

are revolutionising the way we do business, maintain

our health, and educate and entertain ourselves. Along

with recent advances in computing, networking, software,

hardware andmobile technologies, however, come emerg-

ing challenges to our ability to ensure that cyberspace

resources and services are properly regulated, maintained

and secured. The ubiquitous insertion of increasingly

automated processes and procedures into traditional per-

sonal, scientific and business activities dictates a need

to design such systems carefully, so as to guarantee that

these associated challenges are properly met. Managing

such large scale systems effectively inevitably means that
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resources will need to become increasingly “autonomous”,

capable of managing themselves – and cooperating with

one another - without manual intervention.

In particular, the Platform-as-a-Service (PaaS) segment

of cloud computing has been steadily growing over the

past several years, with more and more software devel-

opers choosing cloud application platforms as convenient

ecosystems for developing, deploying, testing and main-

taining their software. Following the principles of Service-

Oriented Computing (SOC), such platforms offer their

subscribers a wide selection of pre-existing and reusable

services, ready to be seamlessly integrated into users’

applications. However, by offering such a flexible model

for application development, in which software assets are

assembled from existing components just like a Lego®

construction set, cloud platform providers increasingly

find themselves in a situation where the ever-growing

complexity of entangled cloud environments poses new

challenges as to how such systems should be monitored

and managed.

© 2014 Dautov et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.
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In this context, we present a novel approach to devel-

oping autonomic cloud application platforms, based on

our vision of treating cloud platforms as sensor networks

[1]. Our approach makes intelligent re-use of existing

solution strategies and products (specifically, Stream

Reasoning and the Semantic Web technology stack),

to create a general-purpose autonomous framework. In

this paper we consider how cloud application platform

providers can benefit from our approach. As will be

explained in more detail below, our approach relies on

annotating monitored values with semantic descriptions,

thereby enabling the framework to combine observation

streams with static ontological knowledge and perform

run-time formal reasoning. This in turn opens promising

opportunities for performing run-time analysis, problem

diagnosis, and suggesting further adaptation actions. We

also discuss potential shortcomings of our approach and

consider ways of overcoming them.

The rest of the paper is organised as follows.

Section “Background and motivation” is dedicated to

background information and motivation of the research

presented in this paper. It briefs the reader on the cur-

rent state of the art and known limitations in service-

based cloud environments and also summarises existing

research efforts in the area of managing the ever-

expanding complexity of cloud application platforms.

Section “Related technology: stream reasoning” intro-

duces the reader to Stream Reasoning – a promising com-

bination of traditional stream processing systems with

Semantic Web technologies. This section also explains

why these techniques are suitable for developing moni-

toring and analysis mechanisms. In Section “Description

of the framework” we present the autonomous frame-

work: we present a high-level conceptual architecture

based on the MAPE-K reference model, then describe the

prototype implementation of the framework, and finally

summarise our initial experimental results.

Background andmotivation
A fundamental goal of cloud computing is to achieve

economies of scale by providing seemingly unlimited

access to computing resources, while at the same time

avoiding the sunk costs associated with acquiring dedi-

cated systems and personnel. The core underlying archi-

tecture of the cloud is, accordingly, one of service-oriented

computing (SOC): services are provided as basic build-

ing blocks from which applications can be constructed

both rapidly and cheaply, without compromising on relia-

bility or security [2]. Today’s providers consequently need

to host an ever-increasing number of online services, and

make these available both reliably and securely to large

numbers of users spread across a wide range of geographi-

cal locations.Meeting these demands has naturally shaped

the way services are provided: it has long been recognised

that the ’service cloud’ will ultimately comprise a federated

collection of resources distributed across multiple infras-

tructure providers [3], and cloud application platforms

can be expected to play an important role in this con-

text. Creating andmaintaining the required infrastructure

is, inevitably, an increasingly complex issue, and one that

needs careful consideration.

As in all industries, cloud service providers face the

problem of monitoring their customers’ changing needs,

and responding in an appropriate and timely manner. This

is particularly problematic in the context of cloud ser-

vices, because these are, by definition, targeted at users

whose needs can be expected to change both rapidly and,

at times, dramatically. Providers therefore need to moni-

tor service usage in real time, so as to identify bottlenecks

and failures that might undermine their ability to hon-

our their customers’ service-level agreements (SLAs) –

and having identified ’broken’ services, these need to be

replaced seamlessly with new services whose behaviour

is, in some contractually meaningful sense, equivalent to

those being replaced. Given that services also need to be

ubiquitous and available to customers using them in new

and potentially unexpected ways, it is clear that cloud ser-

vices will need to become increasingly autonomous and

self-describing, reusable, and highly interoperable. This is

particularly important at the PaaS level, given the large

and increasing number of generic platform services and

apps that are available, offering everything from basic

calculator functionality to multi-environment distributed

business processing [4].

Such cloud platforms, which not only provision cus-

tomers with an operating system and run-time envi-

ronment, but additionally offer a complete supporting

environment to develop and deploy service-based appli-

cations, including a range of generic, reliable, composable

and reusable services, are known as cloud application plat-

forms (CAPs) [5,6] (see Figure 1). By offering integrated

services in this way, CAPs further reduce the human effort

and capital expenses associated with developing complex

software systems. This means that software developers –

CAP end users – can concentrate on their immediate,

domain-specific tasks, rather than expend effort on, for

example, developing their own authentication or e-billing

mechanisms – instead, existing components are offered,

managed and maintained by the CAP. The integration of

users’ applications with platform services usually takes

place by means of APIs, through which software develop-

ers can easily couple necessary services with their applica-

tions and also perform further service management. Some

of the most prominent and commercially successful CAPs

already provision their subscribers with tens of built-ins

and third-party services. For example, Google App Engine

[7] offers 38 services, andMicrosoft Azure [8] provides 20

built-in services and 35 add-ons (i.e., third-party services



Dautov et al. Journal of Cloud Computing: Advances, Systems and Applications 2014, 3:13 Page 3 of 12

http://www.journalofcloudcomputing.com/content/3/1/13

Figure 1 General structure of a Cloud Application Platform (CAP). By offering integrated services together with PaaS provision, CAPs reduce the

costs associated with complex development.

registered with the platform). Appealing opportunities

to significantly decrease time to market, introduced by

the combination of cloud computing and SOC, has been

attracting more and more attention over the past several

years. Gartner forecasts that the PaaS market will grow

from $900 M (in 2011) to $2.9B (in 2016) with the aPaaS

(application Platform-as-a-Service) as the largest segment

[9]. IDC, another leading IT market research and analysis

agency, predicts that in 2014 “value will start to migrate

“up the stack”, from IaaS to PaaS and from generic PaaS to

data-optimized PaaS” [10].

From SOC to clouds and its consequences

Given the continuing shift towards cloud computing, the

complexity of next-generation service-based cloud envi-

ronments is soon expected to outgrow our ability to

manage them manually [11,12]. For instance, Heroku

[13] already offers more than 120 different ’add-ons’,

including such services as data storage, searching, e-mail

and SMS notification, logging and caching, and more.

These can be re-used and integrated by users, generat-

ing complex interrelationships between services and user

applications – indeed, add-ons are already being repli-

cated across multiple computational instances, coupled to

more than a million deployed applications [14,15].

Maintaining the ever-expanding software environment

of a CAP is, consequently, a major challenge. Platform

providers must be able to monitor the resulting “tangled”

environment for failures and sub-optimal behaviours,

while simultaneously addressing the needs of customer

SLAs. They must be able to exercise control over all crit-

ical activities taking place on the platform, including the

introduction of new services and applications and the

modification of existing ones to maintain the platform’s

and deployed applications’ stability and performance [16].

As we have argued above, this requires the introduc-

tion of autonomic features to the system, thereby allow-

ing services, and the platform as a whole, to adapt

their behaviours as required, following the principles

of self-management, self-tuning, self-configuration, self-

diagnosis, and self-healing [17].

While cloud providers arguably offer suitable adapta-

tion mechanisms at the Infrastructure-as-a-Service (IaaS)

level [18] - mainly dealing with load-balancing and elas-

ticity - the same does not appear to be true at the PaaS

level, where providers do not currently provide prompt,

timely, and customisable self-management mechanisms

[4] – mechanisms which would support intelligent, flexi-

ble, prompt and timely analysis of monitored values and

detection of potential failures. At the PaaS level, a vast

stream of data is constantly being generated and pro-

cessed by a far wider range of agents than are present

at the IaaS level, including a wide variety of platform

components, generic and third-party services, deployed

applications, and more.

For instance, WhatsApp – the world’s leading instant

messaging application for mobile devices [19] – is hosted

on Google App Engine, utilises its XMPP-compatible chat

messaging service and reports activity of 400 million

monthly active users [20]. Heroku also reports several

notable examples [21]: PageLever, an analytics platform

for measuring a brand’s presence on Facebook, processes

500million Facebook API requests/month, which are then

stored in a database. Quiz Creator saw activity peaks of

over 10,000 user requests/minute. Playtomic, an applica-

tion for run-time game analytics, claims to have around

15-20 million gamers generating over a billion events per

day at the rate of 12,000 requests/second. Heroku itself

hosts over one million deployed applications at a smaller

scale and offers more than one hundred add-ons (20 of
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which are purely concerned with data storage). As these

examples demonstrate, systems as dynamic as CAPs must

handle numerous rapidly-generated streams of raw data

at an unpredictable rate – that is, they must be capable of

performing continuous monitoring and analysis of all crit-

ical activities taking place within the platform in order to

maintain the overall stability of the platform and hosted

applications.

State of the art in cloud self-management

Maintaining cloud environments has been a task of

paramount importance ever since the emergence of cloud

computing. Such complex environments clearly dictate

the need for automated monitoring and analysis of vast

amounts of dynamically flowing data so as to per-

form, for example, resource planning and management,

billing, troubleshooting, SLA and performance manage-

ment, security management, etc. [18].

According to [22,23], a cloud can be logically repre-

sented in terms of seven interconnected layers: facility,

network, hardware, operating system (OS), middleware,

application and user. Accordingly, monitoring and analy-

sis activities can be performed at each of these layers or in

a cross-layer manner. Based on this taxonomy, Aceto et al.

[18] recently surveyed 28 existing cloud monitoring tools

and solutions with respect to such criteria as scalability,

timeliness, autonomicity, adaptability, reliability, accuracy,

resilience, extensibility, intrusiveness and others. Most of

the analysed works are specifically designed to perform

low-level monitoring [24] (at facility, network, hardware

and OS levels) – that is, to monitor the Infrastructure-

as-a-Service (IaaS) level of cloud computing. Performing

monitoring activities at this level primarily enables cloud

providers to adapt to varying volumes and types of user

requests by allocating the incoming workload across com-

putational instances (i.e., load balancing), or by reserving

and releasing computational resources upon demand (i.e.,

elasticity) [25,26].

However, more sophisticated adaptation scenarios at

higher levels (middleware and application), such as modi-

fying the actual structure and/or behaviour of a deployed

application at run-time, are much more difficult to auto-

mate, and are currently beyond the capabilities of com-

mon CAPs. Unfortunately, at the moment there seem

to be no self-management mechanisms of such a kind

at the Platform-as-a-Service (PaaS) level. Even though

there are several approaches which perform monitoring

at the middleware level, the values they collect are pri-

marily used to perform adaptations at theIaaS, rather

than PaaS, level – for example, instead of replacing

a “slow” service with an equivalent (but faster) alter-

native (PaaS-level adaptation), additional computational

resources are provisioned to the given service (IaaS-level

adaptation).

An alternative approach to PaaS-level adaptations

performed by CAP providers is to require deployed appli-

cations to implement their own built-in adaptation func-

tionality. As with IaaS solutions, this means that platform

providers do not offer solutions which would allow hosted

applications to modify their internal structure and/or

behaviour at run-time by adapting to changing context

(e.g., by substituting one service for another). Instead, this

task has been shifted to the Software-as-a-Service (SaaS)

level – that is, it has been left to software developers,

the target customers of the PaaS offerings, to implement

self-adaptation logic within their applications.

Given these considerations, we believe that self-

adaptation capabilities at the PaaS level itself, and in CAPs

in particular, are as yet immature and not well theo-

rised. It is our belief that self-management at the PaaS

level is equally important, and that development of self-

adaptation mechanisms at this level is essential in order

to prevent cloud platforms from dissolving into “tangled”

and unreliable environments. Our goal in this paper is to

present and justify one possible strategy for addressing

this gap.

Related technology: stream reasoning
Since the early 2000s, when data volumes started explod-

ing, the challenge of data analytics has grown consider-

ably. Nowadays, the problem is not just about giant data

volumes (“Big Data”) – it is also about an extreme diversity

of data types, delivered at various speeds and frequencies

[27]. In the modern world, heterogeneous data streams

are to be found everywhere – sensors networks, social

media sites, digital pictures and videos, purchase trans-

action records, and mobile phone GPS signals, to name

a few [28] – and on-the-fly processing of newly gener-

ated data has become an increasingly difficult challenge.

Two important aspects of traditional database manage-

ment systems make them unsuitable for processing con-

tinuously streamed data from geographically distributed

sources at unpredictable rates, so as to obtain timely

responses to complex queries [29], namely: (i) data is (per-

sistently) stored and indexed before it can be processed,

and (ii) data is processed only when explicitly queried by

users, i.e. asynchronously with respect to its arrival. In

contrast, streamed data cannot sensibly be stored for any

length of time if it is to be used for real-time adapta-

tion; and we cannot rely on users issuing one-off queries.

Rather, we need some way for adaptation to be triggered

automatically, as and when problems arise.

To cope with the unbounded nature of streams and tem-

poral constraints, so-called continuous query languages

[30] have been developed to extend conventional SQL

semantics with the notion of windows. This approach

restricts querying to a specific window of concern which

consists of a subset of statements recently observed on
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the stream, while older information is (usually) ignored,

thereby allowing traditional relational operators to be

applied [31].

The concepts of unbounded data streams and windows

are visualised in Figure 2. The small circles represent

tuples continuously arriving over time and constituting

a data stream, whereas the thick rectangular frame illus-

trates the window operator applied to this unbounded

sequence of tuples. As time passes and new values are

appended to the data stream, old values are pushed out

of the specified window, i.e. they are deemed irrelevant

and may be discarded (unless there is a need for storing

historical data for later analysis).

Stream Reasoning goes one step further by enhancing

continuous queries with run-time reasoning support –

that is, with capabilities to infer additional, implicit knowl-

edge based on already given, explicit facts. The concept

was introduced by Barbieri et al. [32], who defined it as

“reasoning in real time on huge and possibly noisy data

streams, to support a large number of concurrent deci-

sion processes”. In the Big Data paradigm, for example,

where data streams are becoming increasingly perva-

sive, the combination of stream processing techniques

with dynamically generated data, distributed across the

Web, requires new ways of coping with the typical open-

ness and heterogeneity of the Web environment – in

this context, Semantic Web technologies facilitate data

integration in open environments, and thus help to over-

come these problems by using uniform machine-readable

descriptions to resolve heterogeneities across multiple

data streams [33]. The primary segment of Big Data

processing, where Stream Reasoning is being adopted is

the Semantic Sensor Web [34] – “an attempt to enable

more expressive representation and formal analysis of

avalanches of sensor values in such domains as traffic

surveillance, environmental monitoring, house automa-

tion and tracking systems, by encoding sensor observation

data with Semantic Web languages” [35]. Other prob-

lem domains, where Stream Reasoning techniques are

expected to be effective, include, e.g., analysis of social

media streams, understanding users’ behaviour based on

their click streams, and analysis of trends in medical

records to predict spread of a disease over the world. [36].

As Semantic Web technologies are mainly based on

Description Logics, their application to data stream pro-

cessing also offers new opportunities to perform reason-

ing tasks over continuously and rapidly changing flows of

information. In particular, Stream Reasoning utilises and

benefits from the following Semantic Web technologies:

• Resource Description Framework (RDF), as a uniform

format for representing streamed heterogeneous data

as a collection of (subject, predicate, object) triples

using a vocabulary defined in an OWL ontology;
• OWL ontologies and SWRL rules, as a source of static

background knowledge. OWL ontologies may also

act as a vocabulary of terms for defining RDF triples;
• SPARQL-based continuous query languages, as a way

of querying RDF streams and performing reasoning

tasks by combining them with the static background

knowledge.

As a result, several prominent Stream Reasoning

approaches have emerged, including, e.g., C-SPARQL

[37], CQELS [38], ETALIS [39], and SPARQLstream [30].

These systems aim at preserving the core value of data

stream processing, i.e. processing streamed data in a

timely fashion, while providing a number of additional

features [33]:

• Support for advanced reasoning: depending on the

extent to which Stream Reasoning systems support

reasoning, it is possible not only to detect patterns of

events (as Complex Event Processing already does

[29]), but in addition to perform more sophisticated

Figure 2 Querying of streamed data. Continuous query languages address the problem of querying an unbounded data stream by focussing on

a well-defined window of interest.
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and intelligent detection of failures by inferring

implicit knowledge based on pre-defined facts and

rules (i.e., static background knowledge).
• Integration of static background knowledge with

streamed data: it is possible to match data stream

values against a static background knowledge base

(usually represented as an ontology), containing

various facts and rules. This separation of concerns

allows for seamless and transparent modification of

the analysis rules constituting the static knowledge

base.
• Support for expressive queries and complex schemas:

ontologies also serve as a common vocabulary for

defining complex queries. This means that the classes

and properties constituting an ontology provide

“building blocks” and may be used for defining

queries of any required expressivity.
• Support for logical, data and temporal operators: to

cope with the unlimited nature of data streams,

Stream Reasoning systems extend conventional

SQL-based logical and data operators with temporal

operators. This allows us to limit an unbounded

stream to a specific window, and also to detect events

following one after another chronologically.
• Support for time and tuple windows: windows may be

specified either by time-frame, or else by the number

of entries to be retained, regardless of arrival time.

Taken together, these features facilitate evaluation of

expressive queries over streamed data and, as a result,

have the potential to allow us to benefit from

increased analysis capabilities when processing data

streams, such as monitored values within CAPs.

However, no solution is ever perfect, and Stream

Reasoning at its current state is not an exception.

Accordingly, in order to realise its potential in the

context of analysing large data streams of CAPs, we

need to address following shortcomings [35]:
• Need for unified data representation format: before

formal reasoning can be applied, heterogeneous

values have to be represented in a common format –

RDF. Although this process can be seen as a way of

tackling, e.g., the “variety” aspect of Big Data [40], it

requires establishing mappings between source data

formats and their RDF representations, which has to

be performed manually.
• No standards yet: the lack of common standards

resulted in several independent and hardly

interoperable approaches.
• Immature reasoning support: as opposed to static

SPARQL reasoning capabilities, querying over

dynamic data streams with the reasoning support is

not fully implemented yet, and the conventional

SPARQL 2.0 specification is not supported by any of

the existing Stream Reasoning approaches.

• Low performance: the Stream Reasoning research

area is still in its infancy, and suffers from low

performance. Since expressivity of a query language is

known to be inversely related to its performance [33],

evaluation of rich and complex queries always bears

the penalty of performance, which is particularly

critical when performing data analytics on very large

data streams.
• Low scalability: one of the main shortcomings of

formal reasoning, both static and stream, is that it is

not linearly scalable [41]. This means that the larger

the knowledge base over which reasoning is

performed, the slower this process is. In the context

of analysing large data sets within CAPs, this

shortcoming becomes a major concern and cannot be

neglected.

In summary, Stream Reasoning is not a “silver bullet” –

its shortcomings, unless properly addressed, may

outweigh its positive aspects and seriously hinder the

implementation of the autonomous framework.

Description of the framework
In this section we explain the underlying organisation of

the autonomous framework, starting from a high-level

description of the architecture and then going into imple-

mentation details. Through our experiments with Heroku,

we discovered that simply deploying the autonomous

framework to a cloud is not enough. Shortcomings asso-

ciated with Stream Reasoning required us to address

unexpected performance and scalability issues relating to

our approach, as will be further discussed in Subsection

“Evaluation and future work” below.

Conceptual architecture

We will describe our approach by sketching out a high-

level architecture of the framework, taking the established

MAPE-K framework [17] as our underlying model for

self-adaptation (see Figure 3). In order to support both

self-awareness and context-awareness of the managed ele-

ments, we need to employ some kind of architectural

model describing the adaptation-relevant aspects of the

cloud environment (e.g., platform components, available

resources, connections between them, etc.) and the man-

aged elements (e.g., entry-points for monitoring and exe-

cution). We therefore used OWL ontologies to represent

the self-reflective knowledge of the system. Such an archi-

tectural model also serves as a common vocabulary of

terms shared across the whole managed system, and cor-

responds to the Knowledge component of the MAPE-K

model. Moreover, our ontological classes and proper-

ties, as explained below, also serve as “building blocks”

for creating RDF streams, SPARQL queries and SWRL

rules.
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Figure 3 Prototype framework. Our framework architecture implements the established MAPE-K control model for autonomic computing.

Within the framework, raw data generated by sensors

passes through three main processing steps:

• The triplification engine is a software component

responsible for consuming and “homogenising” the

representation of incoming raw observation values.

The use of time-stamped RDF triples, incorporating

OWL-based subjects, predicates and objects,

promotes human-readability while at the same time

allowing us to exploit the extensive capabilities of

SPARQL query languages.
• The continuous SPARQL query engine is a software

component which supports situation assessment by

taking as input the continuous RDF data streams

generated by the triplification engine and evaluating

them against pre-registered continuous SPARQL

queries. By registering appropriate SPARQL query

against a data stream, we are able to detect critical

situations – for example, service failures, high

response time from services, overloaded message

queues and network request time outs – with minimal

delay: the continuous SPARQL engine will trigger as

soon as RDF triples in the stream match the WHERE

clause of any registered query. Using SPARQL and

RDF triples in this way also makes it possible to

benefit from inference capabilities – in addition to

querying data and detecting complex event patterns,

we are able to perform run-time analysis by reasoning

over RDF triples [35]. Employing existing RDF

streaming engines with “on-the-fly” analysis of

constantly flowing observations from hundreds of

sensors is expected to help us achieve near real-time

behaviour [36] of the adaptation framework (as

opposed to “static” approaches where monitored

data is first stored on the hard drive before being

analysed) – a key requirement when developing an

adaptation mechanism.
• The OWL/SWRL reasoning engine is the software

component responsible for generating a final

diagnosis and an appropriate adaptation plan

whenever a critical condition is detected, a process

which typically requires rather complex reasoning

over the possible roots of a problem, and the

identification of multiple potential adaptation

strategies. We address this challenge (at least

partially) using OWL ontologies and SWRL rules,

since these provide sufficient expressivity to define

adaptation policies [42], while at the same time

avoiding the potentially error-prone and intensive

task of implementing our own analysis engines from

scratch. Instead, we apply the built-in reasoning

capabilities of OWL and SWRL, so that the routine of

reasoning over (i.e., analysing) a set of situations and

adaptation alternatives is achieved using an existing,

tested, and highly optimised mechanism. This also

enhances opportunities for reuse, automation and

reliability [12].

Prototype implementation

As a first step towards a proof of concept, a prototype

solution implementing the conceptual architecture has

been developed. As a test bed for our experiments we

have chosen Heroku – a well-established and trustable
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cloud PaaS offering with sufficient levels of support

and documentation for our purposes. As outlined in

Section “Background and motivation”, Heroku qualifies

as a cloud application platform, and it offers a range of

add-on services to experiment with. The main criteria

used when choosing services for our experiments were:

(i) pervasive use by deployed applications to make sure

that the service is widely used and thus emits enough

data to be monitored and analysed, (ii) easy and straight-

forward provisioning of the service, and (iii) presence

of clear and simple metrics for monitoring. Accordingly,

from the more than 100 Heroku add-ons available, we

chose for our experiments an implementation of the

RabbitMQ messaging queue service called CloudAMQP

[43] – a widely adopted solution for decoupled com-

munication between various components of cloud-based

distributed applications. We then developed the following

simple use-case scenario, both to test the viability of our

general approach, and to identify directions for further

work and experimentation.

Let us consider a typical cloud-based scenario, in which

worker applications responsible for background process-

ing of various tasks are decoupled from the main appli-

cation by means of a messaging queue service. At some

point, the job queue gets overloaded and workers spend

too much time processing their tasks. This may hap-

pen, for example, on a cheaper subscription plan when

the rate of incoming messages is faster than the queue

service can write to disk, or the volume of incoming

messages exceeds the available memory [44]. In order

to satisfy SLAs we wish to detect such situations in a

timely manner and, where possible, launch additional

worker instances to offload the job queue. In investi-

gating this scenario our main focus has been on the

monitoring and analysis steps of the MAPE-K model,

whereas the planning and execution steps have been

left aside (this example is intended only to demonstrate

the viability of our approach, and is correspondingly

simplified).

Figure 4 shows the architecture of the prototype and

illustrates the steps constituting the use-case scenario.

The client application sends tasks to the RabbitMQ job

queue, which are then picked up and processed by an

available worker instance on a first-come first-served

basis. Once a job task is processed, the worker acknowl-

edges the queue of accomplishing the task.

Accordingly, in order to support proper functioning

of this simple application system, we are interested in

monitoring the followingmetrics associated with themes-

saging queue:

(i) Size of the message queue (i.e., current number of

messages in the queue).

(ii) Message queuing time (i.e., difference between the

time when a message is published to the queue and

the time when it is consumed by a worker).

Figure 4 Prototype architecture. The prototype architecture used in our proof-of-concept use-case scenario involves real-time monitoring of

service performance by an Autonomic Manager. The Autonomic Manager responds to critical situations at the PaaS level by identifying when ‘slow’

services should be replaced by faster alternatives.
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(iii) Workers’ execution time (i.e., time between the

moment when a worker picks up a message from the

queue and the moment when it acknowledges the

queue of accomplishing the task).

We chose these particular metrics because they are eas-

ily monitored within Heroku (hence suitable for test pur-

poses), and when violated they unambiguously indicate a

critical situation. Simultaneous violation of threshold val-

ues of these three metrics represents a critical situation

where the current number of worker instances is not able

to cope with the workload, so that additional instances

have to be launched to prevent the whole system from

crashing.

To implement this simple use-case, we used Java as

a programming language, Eclipse IDE (with the Heroku

plug-in) for coding and testing, and Protégé IDE [45] for

developing the OWL ontology and SWRL rules. We also

used OWLAPI [46] to create, manipulate and reason over

the OWL ontology and SWRL rules programmatically,

and the C-SPARQL library [47] to create and query RDF

streams.

The main components we implemented were:

• The RabbitMQ job queue – used to decouple the

client application from workers, and for transferring

tasks. The CloudAMQP implementation of

RabbitMQ, offered by Heroku, is easy to use and

configure within Java applications.
• Client – a GUI application responsible for sending

jobs to the corresponding queue. From the GUI it is

possible to specify the number of parallel threads

sending tasks to the queue.
• Workers – computational instances responsible for

picking tasks from the queue, executing them and

notifying the queue when the task is accomplished.
• Sensors – pieces of programming code responsible

for measuring: (i) size of the message queue – every

time the client sends a new task to the queue, it

receives back the current number of awaiting

messages; (ii) time when a new task is published and

time when it is consumed by a first available worker;

(iii) workers’ execution times – workers calculate

their own execution time by subtracting the time

when a job was picked up from the queue from the

time when it was processed. The measured values are

then transformed into RDF triples using terms from

the OWL vocabulary, and sent to the RabbitMQ

monitoring queue. The following three samples

demonstrate how data, generated by sensors as

described in the above-mentioned cases, is

represented in the RDF format (where ex is

shorthand notation for a purpose-built ontology

containing corresponding classes and properties):

The main components constituting the monitoring

framework are:

• The RabbitMQ monitoring queue – used to collect

monitored values of the job queue workload and

workers’ response times.
• Autonomic Manager – this is the core component of

the framework responsible for collecting and

analysing monitored values, detecting/predicting

critical conditions, and generating corresponding

adaptation actions. By registering appropriate

C-SPARQL queries against the monitoring queue,

the Autonomic Manager is notified as soon as the

RDF triples in the stream satisfy the WHERE clause

of the query. Let us now consider the following

queries for each of the monitored metrics:

This query is triggered whenever the number of

awaiting messages exceeds 10000.

This query is triggered whenever the difference

between the time when a message is published and

the time when it is consumed exceeds 10 seconds.
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This query is triggered whenever the execution time

of a worker exceeds 5 seconds.

Querying over the RDF stream allows the autonomic

manager to detect if there are too many messages in the

queue, and to identify execution time violations. Once

queries are triggered, fetched values are added to the

OWL ontology in order for traditional static reasoning to

be applied. The AutonomicManager is able to deduce that

the overloaded queue and workers represent a critical sit-

uation for which a possible adaptation strategy would be

the launching of additional worker instances. These activ-

ities are performed by reasoning over the OWL ontology

and SWRL rules, which are declaratively defined by plat-

form administrators at design-time with respect to given

SLAs, and can be modified at run-time if needed. The

following is illustrates a typical SWRL rule, which allows

the Autonomic Manager, based on the violated values

received at the querying stage, to deduce that the observed

critical situation requires some adaptation actions – that

is, that additional worker instances have to be launched:

We have run initial experiments on Heroku’s Cedar

stack using a free account – each computational instance

(or dyno in Heroku terminology) has 512MB of RAM and

1GB of swap space (1.5 GB RAM in total), and 4 CPU

cores (Intel Xeon X5550 2.67 GHz). Single instances of the

autonomic manager and the client application and three

worker instances were deployed on separate dynos. To

simulate the critical workload on the queue we: (i) com-

pletely turned workers off to let messages accumulate to

reach critical level (the threshold level we specified in a

corresponding C-SPARQL queue was set to 10000 mes-

sages); and (ii) made workers “sleep” for 1000 ms every

time they picked a task from the queue (the threshold level

of message queuing time was set to 10000 ms, and the

threshold level of workers’ execution times was set to 5000

ms). These initial experiments show that we are able to

detect all critical conditions within 1 second – this is the

minimum time frame between two consecutive evalua-

tions of registered queries against the data streamwhich is

allowed by the current implementation of the C-SPARQL

engine.

Evaluation and future work

Unfortunately, as the number of incoming RDF triples

increases, the performance of the framework decreases.

As explained in Section “Related technology: stream rea-

soning”, Stream Reasoning on its own currently suffers

from performance and scalability issues. Existing exper-

iments suggest that with the increase of RDF data sets

from 10K to 1M triples, the average execution time of

C-SPARQL queries increases at least 50 times [38]. Such

performance drops make our framework potentially inca-

pable of monitoring and analysing large data sets within

CAPs and need to be addressed, especially if at some later

stage we wish to expand the technique to handle Big Data

scenarios.

A possible solution to this problem, to be investigated in

the next stage of our work, is to parallelise reasoning tasks

across several instances of the Autonomic Manager [48]

by fragmenting incoming data streams into sub-streams,

so that each instance only deals with a subset of the

incoming values. Unlike static data fragmentation, where

the set of values is finite, partitioning of streamed data,

due to its unbounded nature and unpredictable rate, is

associated with a risk of splitting semantically connected

RDF triples into separate streams, which in turn may

result in incorrect deductions. Therefore, careful design of

the fragmentation logic is crucial in order to confirm that

no valuable data is misplaced or lost.

In order to address this challenge, there already exist

several technologies, both commercial (e.g., Oracle Fast

Data solutions [49] and IBM InfoSphere Streams [50]) and

open-source (e.g. Apache S4 [51] or Storm [52]). These

solutions provide infrastructure and tooling in order to

handle massive data streams, and as the next step we will

integrate our autonomous framework with one of these

data stream solutions. We anticipate that this will allow

us to address two of the five Stream Reasoning chal-

lenges identified in Section “Related technology: stream

reasoning”, namely, scalability and performance.

We also want to emphasise that we expect our main

contribution to be in the area of prompt, dynamic and

intelligent analysis of the monitored values (which is quite

difficult to benchmark), rather than in terms of perfor-

mance. We also anticipate that further on-going develop-

ments in Stream Reasoning will see the resolution of two

further shortcomings – the immature reasoning support

and the lack of standards. The requirement to homogenise

data and represent it in RDF format is expected to be less

problematic. There already exist tools for converting data

stored in relational databases into RDF, using special map-

ping languages (e.g., R2RML [53]), and analogous tools

can be envisaged for RDF stream generation.

Our prototype case study suggests that once we have

implemented the whole MAPE-K chain for a small num-

ber of key parameters (e.g., the number of messages

in the queue, message queuing time, and the execution

times from workers), the introduction of additional mon-

itoring parameters becomes a trivial task, and does not
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necessarily bring scientific contribution. Rather than cre-

ate a comprehensive adaptation framework which would

monitor and analyse all possible metrics of a cloud plat-

form, our future research activities will therefore focus

on further enriching the background knowledge base

(i.e. OWL/SWRL policies) to see what kind of knowledge

can be inferred from a limited number of observed param-

eters to support the analysis and diagnosis of potential

failures.

We also plan to experiment with other continuous

query engines, such as CQELS and SPARQLstream, and

compare them in terms of the analytical support they

can offer. At the moment, on-the-fly reasoning support

of continuous SPARQL query languages is quite limited

(at least compared to traditional static SPARQL) [35], and

depends on the supported entailment regimes of particu-

lar query languages. Research in the direction of bridging

the gap between static and dynamic reasoning support in

SPARQL queries is continuing, and we can also reason-

ably hope for truly run-time reasoning to appear in the

relatively near future.

Conclusion
In this paper we have presented a novel approach to

enhancing cloud platforms with self-managing capabili-

ties. It utilises the Semantic Web technology stack for

annotating observation values with semantic descriptions,

and techniques from Stream Reasoning for performing

run-time analysis and problem diagnosis within cloud

application platforms. We have also introduced a con-

ceptual architecture which follows the MAPE-K reference

model to implement closed adaptation loops, and a pro-

totype framework developed in Java and deployed on

Heroku. Initial experiments demonstrate the viability of

the proposed approach, both in terms of performance and

in terms of the analysis capabilities of the autonomous

framework. More specifically, the framework is able not

only to monitor values, but also to detect and diagnose

critical situations, and to propose a simple adaptation

strategy within 1 second. Our results are, however, based

on a relatively small-scale case study, and we have identi-

fied further challenges associated with Stream reasoning

that will need to be overcome for the approach to become

adopted in practice. Even so, we believe that the applica-

tion of Stream Reasoning and Semantic Web – two areas

where intelligence lies at the very core – to Autonomic

Clouds is a promising direction.
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