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Direct synthesis of multiplexed metal nanowire based devices us-
ing carbon nanotubes as vector templates 

P. Clément, X. Xu, C. T. Stoppiello, G. A. Rance, A. Attanzio, J͘ N͘ O͛SŚĞĂ, R. H. Temperton, A. N. Khlobystov, K. R. 

J. Lovelock, J. M. Seymour, R. M. Fogarty, A. Baker, R. A. Bourne, B. Hall, T. W. Chamberlain* and M. Palma*

We present the synthesis of metal nanowires in a multi-

plexed device configuration using single-walled carbon 

nanotubes (SWNTs) as nanoscale vector templates. The 

SWNT templates control the dimensionality of the wires, 

allowing precise control of their size, shape and orienta-

tion; moreover a solution processable approach enables 

their linear deposition between specific electrode pairs 

in electronic devices. Electrical characterizations demon-

strate the successful fabrication of metal nanowire elec-

tronic devices, while multiscale characterization of the 

different fabrication steps reveals details of the structure 

and charge transfer between the material encapsulated 

and the carbon nanotube. Overall the strategy presented 

allows facile, low-cost and direct synthesis of multiplexed 

metal nanowire devices for nanoelectronic applications. 

The ability to control the arrangement of materials into 

highly oriented structures with nanoscale accuracy is of 

great importance, for a variety of applications including 

nanoelectronics, energy storage and nanomedicine. 

Strategies have been proposed, from top-down meth-

ods, such as lithography or reactive ion etching,[1] to bot-

tom-up approaches, including wet-chemistry and chem-

ical vapor deposition.[2] While successful, these method-

ologies suffer from various limitations: top-down strate-

gies are typically costly and time consuming, while the 

most common bottom-up approaches require high tem-

peratures and employ a metal catalyst, inducing enlarged 

grain size and contamination, respectively. Notably, 

these drawbacks have been partially overcome with the 

use of templates that allow the formation of low-dimen-

sionality nanostructures of a wide range of materials.[3] 

In this regard, SWNTs, due to the confinement effects en-

abled by their nanoscopic tubular design, have been em-

ployed as 1D templates to control the position and orien-

tation of molecules or atoms for the construction of na-

noscale 1D architectures. Successful examples include 

the liquid and gas-phase encapsulation of molecules[4] 

with subsequent nanocrystal growth, and the use of 

nanotubes as nanoreactors and templates, via solution 

and gas-phase chemical approaches.[5] Additionally, cou-

pling between the material grown and the nanotube was 

demonstrated, with evidence of electron and/or energy 

transfer. [6] However, a combination of sonication and 

density gradient ultracentrifugation is the only approach 

to have successfully removed newly formed 1D 

nanostructures from nanotube templates, and most im-

portantly no examples are reported which subsequently 

use the extracted material for nanoelectronics:[7] it can 

indeed be desirable to exploit solely metal species in de-

vice configurations, for example for sensing applications. 

Here we present a strategy for the formation of metal 

and metal alloy nanowire-based devices employing 

SWNTs as templates, where a solution processable meth-

odology is employed for the fabrication of distinct (mul-

tiplexed) electronic devices on the same chip. Vapors of 
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metal precursors are used to fill the SWNTs that are then 

dispersed in separate aqueous solutions. Different filled 

SWNTs are immobilized between distinct electrode pairs 

on the same substrate, via dielectrophoresis (DEP); ther-

mal annealing is performed to grow the metal/alloy in-

side the tube. The nanotubes are then removed by oxy-

gen plasma treatment, leaving only the metal nanowires 

on the substrate, for their electrical characterizations to 

be performed. This route represents a facile, scalable and 

environmentally friendly method for the fabrication of 

arrays of distinct 1D metals in device configurations and 

on the same chip. 

For our studies we employed (7,6) enriched semicon-

ducting SWNTs dispersed in water with sodium dodecyl 

sulfate (SDS). The nanotubes were initially filled with a 

Cu containing metal complex precursor, via a universal 

sublimation method as previously reported for 

Pt(acac)2
[2b] and 13 other transition metal complexes.[8] 

The dimensions of the internal cavity of the SWNTs ena-

bles effective encapsulation [see Supporting Information 

(SI), Figure SI-1]. Copper acetylacetonate (Cu(acac)2) was 

chosen as a suitable precursor for the Cu system as 

though it melts at 279-283 ΣC at ambient pressure,[9] 

when sealed in a Pyrex ampoule under vacuum, it was 

found to sublime without decomposition at 110 ΣC. Thus, 

heating Cu(acac)2 and SWNTs under vacuum resulted in 

the gaseous metal complex penetrating the internal 

channels of the nanotube. After heating, the mixture of 

SWNTs and complex was rapidly cooled, condensing the 

complex inside the channels of the SWNT to form 

Cu(acac)2@SWNT. The SWNTs hybrids were washed sev-

eral times to remove any excess material from the exte-

rior of the SWNT.[8] 

Fluorescence detected X-ray absorption spectroscopy 

enabled comparison between spectra of the 

Cu(acac)2@SWNT with free Cu(acac)2 powder and re-

veals that the shapes of the Cu K edges are very similar 

after encapsulation. This suggests that the complex re-

mains intact during the filling process and that there is 

little electronic interaction between the Cu atoms and 

the nanotube interior (Figures SI-2 and SI-3, and Table SI-

1). After decomposition to form Cu@SWNT, the shape of 

the Cu K edge changes significantly, which is consistent 

with the reduction of oxidation state of the Cu. Compar-

ison with the edge energies and shapes of Cu foil and 

Cu(II) complexes, which were used as controls, and time-

resolved heating experiments, confirm this change in ox-

idation state after thermal treatment (see Figures SI-4 

and SI-5). 

We extended this encapsulation strategy employing 

Pt(acac)2 and [Pt(acac)2 + Cu(acac)2] precursors with sep-

arate SWNT samples; the so formed hybrids after anneal-

ing/decomposition will form Pt@SWNT and the alloy Pt-

Cu@SWNT, respectively. The location of the metal com-

plex in each sample was confirmed via HRTEM and EDX 

with metal observed solely inside the SWNT in high 

(>85%) filling yields for all samples (Figure SI-6).[8] 

To explore the potential of employing nanotubes as vec-

tor templates for the fabrication of metal nanowire de-

vices, the filled SWNTs were immobilized on the same 

chip between two electrodes in a device configuration, 

and the effect of the metal (Cu and/or Pt) on the conduc-

tivity of the nanotubes was investigated. The use of en-

riched semiconducting SWNTs for all the device experi-

ments enables the deconvolution of the conductivity of 

the SWNT and metal complexes and resultant nanowire 

species.  

Cu(acac)2@SWNT, Pt(acac)2@SWNT, and [Pt(acac)2 + 

Cu(acac)2]@SWNT were dispersed in separate SDS-water 

solutions and each solution was drop cast on a silicon wa-

fer with pre-patterned electrode pairs (see the SI for full 

details). The SWNT hybrids were immobilized between 

the electrode pairs by DEP,[10] in a field effect transistor 

(FET) configuration, as shown in Figure 1. By repeating 

this process with different solutions of distinct SWNT hy-

brids whilst addressing, via DEP, different electrode-pair 

locations on the same substrate surface, it is possible to 

immobilize distinct metal acetylacetonate (M(acac)2, 

where M = Cu and/or Pt) SWNT hybrids 

(M(acac)2@SWNTs) at separate locations on the same 

chip (see Figure 1 and the SI).[10] Finally, the sample was 

washed with water to remove the SDS and purged with 
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nitrogen gas. 

 

Figure 1: Schematic representation of the deposition of 

M(acac)2@SWNT by DEP (beige for Cu(acac)2, blue for 

Pt(acac)2 and both colors for the Pt-Cu alloy), followed by 

decomposition of the precursor after annealing. The chip is 

presented in the FET configuration, where S, D and G are 

the source, drain and gate electrodes, respectively. 

With optimal parameters, a single M(acac)2@SWNT can 

be immobilized between two electrodes, as demon-

strated in the representative Atomic Force Microscopy 

(AFM) image shown in Figure 2a. Figure 2b-d show rep-

resentative ISD-VSD curves of the three different 

M(acac)2@SWNT devices, performed before and after 

annealing at 200 °C (at which temperature the precursors 

have been observed to decompose) under N2 leading to 

the formation of M@SWNT. We noticed a similar effect 

on all devices, with a decrease in the measured conduc-

tivity upon annealing assigned, due to the fragmented 

nature of the guest species not providing a viable con-

duction pathway, to changes in the electronic structure 

of the nanotube. UV-vis and photoluminescence spec-

troscopy analysis of empty and filled SWNTs (Figures SI-7 

and SI-8), reveal shifts and quenching, indicating modifi-

cation in the electronic states of the filled SWNTs com-

pared to the empty ones. We propose that upon decom-

position of the metal precursors (M2+) to form nanowires 

(M0) the nature of the guest/nanotube interactions and 

consequently the effective density of states of the nano-

tube changes resulting in reduction in the conductivity of 

the nanotubes. [11]  A control experiment was performed 

using pristine empty SWNT in devices before and after 

annealing; in this case the conductivity was observed to 

increase after annealing, likely due to the improved elec-

trical contact between the nanotube and the gold elec-

trodes (Figure SI-9a).[12] 

 

Figure 2: a) AFM topographical image of a single filled SWNT 

immobilized between two electrodes; ISD-VSD curve charac-

terization of b) Cu(acac)2@SWNT, c) Pt(acac)2@SWNT and 

d) [Pt(acac)2 + Cu(acac)2]SWNT hybrids after deposition by 

DEP (black) and after annealing at 200 °C (red). e) HRTEM of 

a single Cu@SWNT nanotube, black arrows highlight the 

van der Waals gap between the Cu nanowire and the SWNT: 

scale bars are 2 nm (white) and 1 nm (black) respectively. 

As reported previously,[13] the metal does not grow uni-

formly inside the nanotubes as there are insufficient 

metal atoms to form a continuous metal wire inside an 

individual SWNT (Figure 2e); after annealing at 200 ΣC we 

observe the formation of nanoparticles and inhomoge-

neous nanowires between the electrodes (see Figure SI-

10). Therefore, in order to fabricate a homogenous wire, 

it was necessary to deposit a bundle of M(acac)2@SWNT 

between the electrodes, instead of an individual filled 

SWNT; this was done following the same method de-

scribed previously for a single SWNT but increasing the 

concentration of the filled SWNT solution and the DEP 

time. Figure 3a (left) shows a representative AFM image 

of a small bundle (ca 100 nm in height) of 

Cu(acac)2@SWNT immobilized between an electrode 

pair. The SWNT shell was then removed by oxygen 

plasma treatment,[14] while the Cu remained between 
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the two electrodes, exhibiting a height of ca 70 nm 

(Figure 3a right; see also schematic in Figure 3b). It is rea-

sonable to assume that the change in height is due to the 

removal of the SWNTs. ISD-VSD curves were measured for 

M@SWNT bundles and we observed a decrease in the 

conductivity after annealing (Figure 3c); control experi-

ments with a bundle of pristine SWNTs show instead an 

increase in current after annealing treatment (see Figure 

SI-9b). Moreover, when the SWNTs were removed via ox-

ygen plasma, a sharp decrease in the conductivity was 

observed, likely due to the lower charge mobility for the 

pristine metals compared to the M@SWNTs (Figure 3c).   

The inhomogeneity of the metal wires, the non-optimal 

contact of these with the macroscopic electrode once 

the SWNT is removed, and the potential presence of in-

tercalated carbon fragments, might be additional rea-

sons for the observed decrease in conductivity.  

 

Figure 3: a) AFM topographical images and height profiles of Cu@SWNT before (left) and after (right) oxygen plasma treat-

ment; b) scheme showing the removal of the SWNTs leaving the material grown on the substrate; c) ISD-VSD characterization 

of  bundles of (left to right) Cu(acac)2@SWNT, Pt(acac)2@SWNT and [Pt(acac)2 + Cu(acac)2]SWNT hybrids after deposition by 

DEP (black), annealing at 200 °C (red) and plasma treatment (blue).

To additionally demonstrate the removal of the SWNT 

shell, gate-dependence measurements were performed. 

With the presence of the p-type SWNT, the device had a 

gate dependence for the M(acac)2@SWNT and 

M@SWNT; nevertheless, this was not observed for Cu, Pt 

and Pt-Cu nanowires when the SWNTs were removed 

(see Figure 4, and Figure SI-11). Furthermore, it should 

be noted that the conductivity measurements of the de-

vices at room temperature indicate that the metals ap-

pear to be in their metallic form, even after the short ox-

ygen plasma treatment. This was further verified using a 

combination of bulk (XPS and Raman spectroscopy) and 

local probe (TEM and EDX) techniques: see the SI for full 

details (Figures SI-12-14, and Table SI-2). 
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In summary, we present a solution-processable method 

of general applicability for the direct synthesis of multi-

ple metal nanowires on the same chip. Different 

M(acac)2@SWNT were immobilized from solution onto 

surfaces in nanoscale device configurations, where the 

SWNTs were used as vector templates. By simple anneal-

ing, metal nanowires were grown in the cavity of the 

nanotubes, which were then removed via oxygen 

plasma. Distinct Cu, Pt and Pt-Cu nanowires were suc-

cessfully synthesized between different electrode pairs 

on the same chip as indicated by the I-V curves recorded: 

no gate dependence was observed upon removal of the 

SWNT shell. This strategy represents a viable route to the 

large-scale fabrication and detailed exploration of mate-

rials properties in controlled 1D architectures. The uni-

versal nature of the SWNT filling method allows a broad 

range of individual metals and an almost infinite number 

of metal combinations in alloy form to be incorporated; 

this in turn means that our approach has the potential to 

impact upon a broad range of fields, from nanoelectron-

ics applications with low power consumption such as 

chemical sensors or quantum information processing, to 

lab-on-a-chip based tunable electrocatalytic arrays. 

Figure 4: ISD-VG characterization (VSD=100 mV) with gate dependence of SWNT hybrids after deposition by (left to right): DEP 

(black), annealing at 200 °C (red) and plasma treatment (green) for: a) Cu(acac)2@SWNT; b) Pt(acac)2@SWNT; and c) Pt-

Cu(acac)2@SWNT.
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