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Topological energy bounds for frustrated magnets
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Frustrated magnets are known to support two-dimensional topological solitons, called skyrmions. A contin-
uum model for frustrated magnets has recently been shown to support both two-dimensional skyrmions and
three-dimensional knotted solitons (hopfions). In this article we derive lower bounds for the energies of these
solitons expressed in terms of their topological invariants. The bounds are linear in the degree in the case of
skyrmions and scale as the Hopf degree to the power 3/4 in the case of hopfions.
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I. INTRODUCTION

Since their experimental observation [1] in 2009, there has
been intense interest in magnetic skyrmions. These skyrmions
were predicted to exist in Ref. [2] and owe their stability to
the Dzyaloshinskii-Moriya (DM) interaction. An alternative
stabilizing mechanism, realized in recent experiments [3],
is provided in frustrated magnets. Theoretical studies of
frustrated magnets have revealed a rich variety of phenom-
ena [4–7]. In Ref. [6] a Ginzburg-Landau type continuum
model of frustrated magnets was developed, and this con-
tinuum model has been shown to support not only two-
dimensional skyrmions [6] but also three-dimensional knotted
solitons [7].

Topological energy bounds are a ubiquitous feature in the
theory of topological solitons [8]. They give an indication
as to how the energy of a soliton depends on its topological
complexity and can sometimes give information about the
stability of solitons. They can provide useful consistency
checks on numerical methods. They can also be useful in
mathematical proofs of existence of solitons.

In models that support two-dimensional skyrmions, one
often finds linear energy bounds of the form E � CN , where
E and N are the energy and degree of a skyrmion and C is
a positive constant. Bounds of this type have been derived
for the O(3) sigma model [9], the baby Skyrme model [10],
and chiral magnetic skyrmions stabilized by the DM interac-
tion [11] (see also Ref. [12] for recent developments). Linear
bounds support a particle-like interpretation of skyrmions,
with the mass (energy) roughly proportional to the number of
particles (degree). They also give information about stability
to separation. If the energy E1 of a one-soliton is close to its
bound, E1 − C � C, then the energy NE1 − EN required to
separate an N-soliton of energy EN into N one-solitons is less
than or equal to N (E1 − C) � NC. Thus in systems where the
bound is almost saturated, it is relatively easy to separate an
N-soliton into N one-solitons.

Three-dimensional solitons in magnetic systems are char-
acterized by the Hopf degree Q ∈ π3(S2) ∼= Z. In such
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systems one often finds energy bounds of the form E �
CQ3/4. The first bound of this type was obtained for the
Faddeev model [13], but more recently bounds have been
obtained for several variant models, including the Aratyn-
Ferreira-Zimerman model, the Nicole model, and a Faddeev-
type model stabilized by a potential term [14]. The sublinear
power 3

4 is characteristic of knotted solitons and reminiscent
of the lower bound on the ropelength energy of a knot [15],
which scales as crossing number to the power 3

4 . It also
suggests a high degree of stability: If the energy of a Q-soliton
grows as Q3/4, then it is energetically very expensive for a
Q-soliton to separate into solitons of lower charge.

In this note we will derive topological energy bounds
for two- and three-dimensional solitons in the Ginzburg-
Landau model of frustrated magnets developed by Lin and
Hayami [6]. These scale as N and Q3/4, respectively. We test
the sharpness of the two-dimensional bound by computing
energies of one-solitons and comparing them with the lower
bound and show that the 3

4 power in the three-dimensional
bound is optimal.

II. THE ENERGY AND ITS LOWER BOUND

Our starting point is the energy functional derived by Lin
and Hayami [6]:

E [m] =
∫ [

− I1

2
|∇m|2 + I2

2
|�m|2 + (H − H.m)

]
dnx.

(1)

Here m(x) is a three-component vector-valued function satis-
fying the constraint m.m = 1. The vector H describes the ex-
ternal magnetic field. We assume throughout that H = |H| �
1
4 ; in this situation the vacuum for the theory is m = H/H [6].
The constant H has been included in the energy density so that
the vacuum has energy zero; effectively, we have subtracted
the vacuum energy from the total energy. As in Refs. [6,7]
we choose units so that I1 = I2 = 1. We also apply a rotation
so that H = He3 = (0, 0, H ). With these choices the energy
becomes

E [m] =
∫ [− 1

2 |∇m|2 + 1
2 |�m|2 + H (1 − m3)

]
dnx. (2)
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We will be interested in spatially localized solitons for this
energy. We therefore assume that the field m far from the
soliton lies in the vacuum, that is,

m(x) → e3 and |∇m(x)| → 0 as |x| → ∞. (3)

The key identity that we use to obtain lower bounds on the
energy is the following, valid for any t1, t2 ∈ R:∫

1

2
|t1�m + t2(m − e3)|2dnx

=
∫ [

t2
1

2
|�m|2 − t1t2|∇m|2 + t2

2 (1 − m3)

]
dnx. (4)

Here we have used an integration by parts. The associated
boundary term vanishes due to our assumptions (3). We have
also simplifed the nonderivative terms using the equations
|m|2 = |e3|2 = 1.

Subtracting this positive quantity from the energy yields
the inequality

E � E −
∫

1
2 |t1�m + t2(m − e3)|2dnx (5)

=
∫ [

1

2

(
1 − t2

1

)|�m|2 +
(

t1t2 − 1

2

)
|∇m|2

+ (
H − t2

2

)
(1 − m3)

]
dnx. (6)

The lower bound is non-negative as long as t1, t2 are chosen
so that

0 � t1 � 1, t1t2 � 1
2 , 0 � t2 �

√
H . (7)

These constraints have solutions as long as H � 1
4 . From now

on we assume that t1, t2 satisfy inequalities (7).
A slightly more useful lower bound can be obtained by

rewriting the term |�m|2. Since m is a unit vector,

|�m|2 � (m.�m)2 = |∇m|4. (8)

Here we have used the identity 0 = 1
2�|m|2 = m.�m +

|∇m|2.
To further simplify this term, consider the 3 × 3 matrix

Mi j = ∂kmi∂kmj . This matrix is symmetric, and its eigenval-
ues are non-negative because it can be written as the product
of a matrix with its transpose. One of its eigenvalues is
zero, because Mi jmj = 0 due to the identity 0 = 1

2∂k|m|2 =
m.∂km. We denote the remaining eigenvalues by λ2

1, λ
2
2. Then

|∇m|4 = (trM )2 = (
λ2

1 + λ2
2

)2 � 4λ2
1λ

2
2

= 2[(trM )2 − tr(M2)]

= 2
n∑

i, j=1

[|∂im|2|∂ jm|2 − (∂im.∂ jm)2]

= 2
n∑

i, j=1

|∂im × ∂ jm|2 = 2
n∑

i, j=1

(m.∂im × ∂ jm)2. (9)

The last of these identities follows from the fact that
m is perpendicular to the derivatives of m. Using this,

we arrive at

E �
∫ [

2
(
1 − t2

1

)
E4 + (

t1t2 − 1
2

)
E2 + (

H − t2
2

)
E0

]
dnx,

(10)

E4 = 1

2

n∑
i, j=1

|∂im × ∂ jm|2, E2 = |∇m|2, E0 = 1 − m3,

(11)

valid for t1, t2 satisfying the constraints (7).

III. TWO-DIMENSIONAL SKYRMIONS

We now specialize to dimension n = 2. In this case solitons
are skyrmions, characterized by their degree (or generalized
winding number) N ∈ Z. If f (m) is any real-valued function
on the two sphere then the degree can be calculated using

N[m]

(∫
S2

f dA

)
=

∫
R2

f (m)(m.∂1m × ∂2m) d2x. (12)

In a two-dimensional context the right-hand side of in-
equality (10) is known as the baby Skyrme energy. A lower
bound on this energy in terms of N is presented in Ref. [10];
we rederive this argument.

The E2 term in (10) is straightforwardly bounded from
below using (9):∫

E2 d2x � 2
∫

|m.∂1m × ∂2m| d2x � 8πN. (13)

The remaining terms are bounded as follows:∫ [
2
(
1 − t2

1

)
E4 + (

H − t2
2

)
E0

]
d2x

=
∫ [√

2
(
1 − t2

1

)√
E4 −

√
H − t2

2

√
E0

]2
d2x

+
∫

2
√

2
(
1 − t2

1

)(
H − t2

2

)√
E0E4 d2x, (14)

� 2
√

2
(
1 − t2

1

)(
H − t2

2

) ∫
(1 − m3)

1
2 |m.∂1m × ∂2m| d2x,

(15)

� 32π

3

√(
1 − t2

1

)(
H − t2

2

)
N, (16)

where we used that
∫

S2 (1 − m3)
1
2 d2x = 8π

√
2/3. Combining

the above, we obtain that

E [m] � 4π

[
2t1t2 − 1 + 8

3

√(
1 − t2

1

)(
H − t2

2

)]
N[m]. (17)

This gives a family of bounds, parametrized by t1, t2 sat-
isfying inequalities (7). We now seek to choose t1, t2 so as
to obtain the strongest possible bound. To this end, let us
write t1 = √

u/v, t2 = √
uv for u, v>0. Then the bound can

be written

E [m] � 4π

[
2u − 1 + 8

3

√
(1 − u/v)(H − uv)

]
N[m]. (18)

The function (1 − u/v)(H − uv) is maximized with respect
to variation in v by the choice v = √

H . With this choice of v
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we obtain

E [m] � 4π

[
2u − 1 + 8

3
(
√

H − u)

]
N[m], (19)

= 4π

(
8

3

√
H − 1 − 2

3
u

)
N[m]. (20)

We now maximize in u by making u as small as possible.
Since u = t1t2 � 1

2 , we choose u = 1
2 to obtain

E [m] � 16π

3
(2

√
H − 1)N[m], (21)

obtained from the solution t1 = (4H )−
1
4 , t2 = (H/4)

1
4 to the

constraints (7). Note that since t1t2 = 1
2 , the E2 term in (10)

plays no role in this bound. With hindsight, it is better to
construct a bound using E0 and E4 rather than E2.

In order to test the effectiveness of the bound (21) we have
computed the energies of one-skyrmions. As in Ref. [6], we
employ a hedgehog ansatz

m(r, θ ) = [sin f (r) cos θ, sin f (r) sin θ, cos f (r)]. (22)

Within this ansatz the energy (2) is

2π

∫ ∞

0

{
1

2

(
f ′′ + f ′

r
− sin f cos f

r2

)2

+1

2

[
( f ′)2 + sin2 f

r2

]2

− 1

2

[
( f ′)2 + sin2 f

r2

]
+ H (1 − cos f )

}
rdr (23)

and its Euler-Lagrange equation is

0 = r{ f ′′′′ + f ′′[1 − 6( f ′)2] + H sin f }
+ {2 f ′′′ + f ′[1 − 2( f ′)2]}
− r−1{ f ′′(1 + 2 cos2 f ) + sin f cos f [1 − 2( f ′)2]}
+ r−2 f ′(1 + 2 cos2 f ) − 3r−3 sin f cos f . (24)

This has a power-series solution

f (r) = π + A1r + A2r3 + O(r4), (25)

valid for small values of r. It also has an approximate solution,

f (r) ≈ A3e−λr cos(ωr) + A4e−λr sin(ωr), (26)

valid for large values of r, in which λ, ω>0 satisfy (λ +
iω)2 = − 1

2 + i
√

H − 1
4 . We have solved the Euler-Lagrange

equation numerically using a shooting method and using these
approximate solutions as initial conditions. As a check on
numerical accuracy, we computed the integral E4 − E0 of
1
2 |�m|4 − H (1 − cos m3), which according to a virial theo-
rem vanishes on minimizers: The largest value of |E4 − E0|
obtained was 3.2 × 10−4.

The energies of our solutions are shown in the left plot
of Fig. 1, together with the energy bound (21). One striking
feature in Fig. 1 is that, whereas the energy bound approaches
zero as H → 1

4 , the energy of the skyrmion approaches a
nonzero constant ≈3.4. It follows that for small values of H
the skyrmion energy is well above the bound. In contrast, for
large values of H skyrmion energies are quite close to the
bound. In the right plot of Fig. 1 we plot the ratio E/Emin

of the skyrmion energy to its bound as a function of 1/H .
The graph is well approximated by the function E/Emin ≈
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FIG. 1. Left: Energy E (solid curve) of the one-soliton and the
lower bound Emin of (21) (dashed curve) as functions of H . Right:
The ratio E/Emin (solid curve) and the line of best fit 1.18 + 0.24H−1

(dashed curve) as a functions of H−1.

1.18 + 0.24H−1, indicating that for large values of H the
skyrmion energy is within 20% of its bound.

IV. THREE-DIMENSIONAL HOPFIONS

Now we consider the case n = 3. In this context the right-
hand side of (10) is known as the Faddeev energy (or the
Faddeev-Skyrme energy), and was introduced in Ref. [16].
Lower bounds on the Faddeev energy in terms of the Hopf
degree Q were obtained in Refs. [13,14,17]. We will exploit
these bounds to obtain bounds on our energy E .

Recall that only two of the three terms in (10) played a role
in our two-dimensional topological energy bound. In order to
keep the algebra manageable, we restrict our attention here
to bounds involving only two of the three terms in (10). The
Derrick scaling argument [18] shows that it is hopeless to try
to bound an energy formed from E0 and E2, so the two cases
to consider are E0 with E4 and E2 with E4.

We start with E0 and E4. We choose t1 = √
s and t2 =

1/2
√

s in order to set the coefficient of E2 to zero. The allowed
range for s is 1/4H � s � 1. Then our lower bound (10) is

E �
∫ [

2(1 − s)E4 +
(

H − 1

4s

)
E0

]
d3x. (27)

In Ref. [14] it was shown that, for positive constants α0, α4,
∫

[α4E4 + α0E0]d3x

� 8
(
α3

4α0
)1/4

(27π )1/4

[∫
S2

(1 − m3)1/6 dA

]3/2

|Q|3/4. (28)

Since
∫

S2 (1 − m3)1/6 dA = 219/63π/7, these inequalities to-
gether give

E �
[

(1 − s)3

(
H − 1

4s

)]1/4 217/233/4π5/4

73/2
|Q|3/4. (29)

This gives a family of lower bounds parametrized by s. The
right-hand side is maximized by s = (1 + √

1 + 12H )/12H ,
and this leads to the lower bound

E � 2831/2π5/4

73/2

√
1 + 12H − 2√√
1 + 12H − 1

|Q|3/4. (30)
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Now we construct a bound using E2 and E4. We choose
t2 = √

H , so that the lower bound (10) is

E �
∫ [

2
(
1 − t2

1

)
E4 +

(
t1

√
H − 1

2

)
E2

]
d3x. (31)

The Vakulenko-Kapitanski bound [13] (see also Ref. [17]) is
∫

[α4E4 + α2E2]d3x � 33/816π2√α2α4|Q|3/4, (32)

for positive constants α2, α4. Combining the above yields

E � 33/816π2
√(

1 − t2
1

)
(2

√
Ht1 − 1)|Q|3/4. (33)

The right-hand side is maximized when t1 = (1 +√
1 + 12H )/6

√
H , and this leads to the lower bound

E � 29/2π2

35/8

√
1 + 12H − 2√√
1 + 12H − 1

|Q|3/4. (34)

We have now derived two bounds (30) and (34) on the
energy of the form E � C(H )|Q|3/4. Surprisingly, the coeffi-
cients C(H ) in the two bounds depend on H in the same way,
and differ only by a numerical factor. The numerical factor
in the bound (30) is 2831/27−3/2π5/4 ≈ 100 and the numerical
factor in the bound (34) is 29/23−5/8π2 ≈ 112. Therefore the
second bound (34) derived using E2 and E4 is slightly stronger
than that derived using E0 and E4. However, it is conjectured
that the bounds on the Fadeev energy from which these are
derived can be improved [14,19], and improvements in these
bounds would improve the bounds (30) and (34). Of course,
the possibility remains that a stronger bound could be obtained
using all three terms E0, E2, E4; however, the algebra involved
would be tricky.

It is natural to ask whether the power 3
4 in the bound (34)

is optimal: Does there exist a bound of the form E � C|Q|α ,
with α > 3

4 ? With minor modifications, a construction due to
Lin and Yang [20] shows that there are maps mQ : R3 → S2

of Hopf degree Q whose energy is bounded from above by
C′|Q|3/4 for a constant C′>0. This shows that the power 3

4 is
optimal.

We first describe the construction of mQ in the case Q = n2

for n ∈ N. Fix a continuous function m1 : R3 → S2 whose
first and second derivatives are continuous and bounded, such
that m1(x) = (0, 0, 1) outside a compact set. Fix a contin-
uous function p : D2 → S2 on the disk D2 whose first and
second derivatives are continuous and bounded, such that
p = (0, 0, 1) in a neighborhood of the boundary of the disk,
and such that the degree of p is 1. Choose n disjoint geodesic
disks B1, . . . , Bn of radius ε/

√
n in the lower hemisphere of

S2, for fixed ε>0 (this can be done as long as ε is sufficiently
small). Construct a map qn : S2 → S2 such that qn agrees with
p on each disk Bi, and qn = (0, 0, 1) on S2 \ ⋃n

i=1 Bi. Extend
this function to a neighborhood of S2 in R3 in such a way that
qn(y) = qn(y/|y|). Then it is straightforward to check that

sup
S2

|∂iqn|=O(n1/2) and sup
S2

|∂i∂ jqn|=O(n) for i, j =1, 2, 3.

(35)

Unlike in Ref. [20], here we have bounds on second as well as
first derivatives. Now let mQ : R3 → S2 be the function

mQ(x) = qn[m1(x/
√

n)]. (36)

This has Hopf degree Q as explained in Ref. [20].
Now we describe the construction of mQ in the case n2 <

Q < (n + 1)2 for suitable n. Let l = Q − n2, and note that
0 < l<2n + 1. Choose aQ ∈ R3 sufficiently large such that
at every point x ∈ R3, either mn2 (x) = (0, 0, 1) or ml (x −
aQ) = (0, 0, 1). Let

mQ(x) =
⎧⎨
⎩

mn2 (x) mn2 (x) �= (0, 0, 1)
ml (x − aQ) ml (x − aQ) �= (0, 0, 1)
(0, 0, 1) otherwise

. (37)

Finally, in the case Q < 0 we choose mQ(x) = m−Q(−x).
It is straightforward but tedious to check [using the es-

timates (35)] that there is a constant C′ > 0 such that the
energies of the maps mQ are bounded above by C′|Q|3/4.
Therefore the power 3

4 in the bound (34) is optimal.

V. CONCLUSIONS

We have obtained topological lower bounds on the energy
of two-dimensional skyrmions (21) and three-dimensional
hopfions (34) in a continuum model of frustrated magnets.
The bounds scale with the degree N and Hopf degree Q
as N and Q3/4, respectively. The two-dimensional bound is
reasonably strong, in the sense that for large values of H the
energy of a one-soliton is roughly 20% above the bound. The
3
4 power in the three-dimensional bound is optimal, in the
sense that the energy does not admit bounds of the form C|Q|α
with α > 3

4 . However, it is expected that the coefficient in this
bound could be improved substantially by improving bounds
on the Faddeev energy [14,19].

Although we have presented results for a specific energy
functional (2), our methods could be applied to a broader
range of energy functionals. The crucial step in our derivation
is that the final line of the inequality (6) is non-negative for
some values of t1, t2. So the function H (1 − m3) could be re-
placed by a function V (m) as long as there exists a unit vector
e and a constant t2 > 1

2 such that V (m) − t2
2 (1 − e.m) � 0.

For example, one could consider a potential of the form

V (m) = H (1 − m3) + α
(
1 − m2

3

)
that includes an anisotropy term. As long as the coefficients
satisfy H > 1

4 and H + 2α > 1
4 one could adapt our method

to derive a topological energy bound. On the other hand, a
potential with two zeros such as V (m) = 1 − m2

3 does not
seem to be amenable to our method. Similarly, a potential such
as V (m) = (1 − m3)2, whose Taylor expansion V ≈ 1

4 (m2
1 +

m2
2 )2 about its minimum does not include a quadratic term,

cannot be tackled using our method. It would be interesting to
know whether either of these potentials supports skyrmions or
hopfions.
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