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ABSTRACT  

 

PURPOSE:  Clinical trials suggest that intensive surveillance of colon cancer (CC) survivors to detect 

recurrence increases curative-intent treatment, though any survival benefit of surveillance as currently 

practiced appears modest.  Realizing the potential of surveillance will require tools for identifying 

patients likely to benefit and for optimizing testing regimens.  We describe and validate a model for 

predicting outcomes for any schedule of surveillance in CC survivors with specified age and cancer stage. 

 

METHODS:  A Markov process parameterized based on individual-level clinical trial data generates 

natural history events for simulated patients.  A utilization submodel simulates surveillance and 

diagnostic testing.  We validate the model against outcomes from the Follow-up After Colorectal Surgery 

(FACS) trial. 

 

RESULTS:  Pre-validation sensitivity analysis showed no parameter influencing curative-intent treatment 

by >5.0% or OS5 by >1.5%.  In validation, the proportion of recurring subjects predicted to receive 

curative-intent treatment fell within FACS 95% confidence intervals for carcinoembryonic antigen (CEA)-

intensive, computed tomography (CT)-intensive, and combined CEA+CT regimens, but not for a 

minimum surveillance regimen, where the model overestimated recurrence and curative treatment.  

Observed five-year overall survival (OS5) fell within 95% prediction intervals for all regimens.   

 

CONCLUSION:  The model performed well in predicting curative surgery for three of four FACS arms.  It 

performed well in predicting OS5 for all arms.  
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INTRODUCTION 

More than three quarters of the nearly 95,000 Americans diagnosed annually with colon cancer 

(CC) receive curative-intent treatment.[1]  While the majority will be cured in the long term, 

approximately one fifth will experience recurrence, consisting of disease relapse or development of a 

new primary (metachronous) CC[2], with median survival of two to three years.[3][4]    

Most CC survivors undergo post-treatment surveillance involving periodic follow-up testing to 

detect recurrence at an earlier stage where salvage surgery can provide a cure.  Two previous meta-

analyses showed improved mortality with intensive surveillance (i.e. more frequent testing using 

multiple modalities) compared to less intensive surveillance (risk ratio 0.73, 95% CI 0.60 to 0.89[5]; odds 

ratio 0.73, 95% CI 0.59 to 0.91[6]).  However, a more recent meta-analysis[7], which included three large 

trials published in the last decade[2, 8, 9], showed no survival benefit from intensive surveillance.  

Across all published surveillance trials, the strategies tested, the populations studied, and the study 

periods vary significantly.[2, 9ʹ15]  Unsurprisingly, an evidence-based consensus among expert panels 

regarding how best to follow these patients is lacking.[16ʹ22]    

Part of the frustrating lack of progress in identifying an approach to surveillance that improves 

survival may arise from the heterogeneity of patient characteristics, disease features, and treatment 

histories.   A number of factors have been found to impact recurrence risk in CC, including age, cancer 

stage, preoperative carcinoembryonic antigen (CEA) level, tumor differentiation, perineural and 

lymphovascular invasion, number of lymph nodes harvested at primary surgery, number of cancer-

containing nodes, whether the patient received adjuvant chemotherapy, microsatellite instability, and 

others.[23ʹ27]  Notably, existing guidelines do not offer algorithms for tailoring surveillance based on a 

ƉĂƚŝĞŶƚ͛Ɛ ƐƉĞĐŝĨŝĐ ƌŝƐŬ ĨĂĐƚŽƌƐ Žƌ ƚƌĞĂƚŵĞŶƚ ŚŝƐƚŽƌǇ͘  WŚŝůĞ ƐŽŵĞ ŐƵŝĚĞůŝŶĞƐ ŝŶĐŽƌƉŽƌĂƚĞ Ă ĚĞŐƌĞĞ ŽĨ 

ĨůĞǆŝďŝůŝƚǇ ŝŶ ƚŚĞŝƌ ƌĞĐŽŵŵĞŶĚĂƚŝŽŶƐ ďĂƐĞĚ ŽŶ ǁŚĞƚŚĞƌ ƉĂƚŝĞŶƚƐ ĂƌĞ ĐŽŶƐŝĚĞƌĞĚ ͞ŚŝŐŚ ƌŝƐŬ͕͟ ƚŚĞǇ ĚŽ ŶŽƚ 
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offer objective criteria for defining high risk.[20, 22]  This has led numerous authors to suggest a need 

for greater risk stratification and personalization of surveillance.[28ʹ30] 

For these reasons, there is an unmet need to develop a new approach for post-treatment 

surveillanceͶone which enables consideration of patient, disease, and treatment factors to tailor the 

surveillance regimen of each patient.  Such multi-dimensional risk stratification may help identify the 

patients most likely to benefit from intensive surveillance and inform which surveillance strategies 

(specific tests and frequency) are most likely to result in detection of recurrence at a point where 

curative treatment is possible while minimizing unnecessary testing.  The sheer number of distinct 

combinations and schedules of surveillance tests coupled with the number of risk-modifying patient, 

disease, and treatment factors make it unlikely that any number of traditional surveillance trials by 

themselves will ever provide the insight needed to personalize colon cancer surveillance.   

We previously developed and validated a simple proof-of-concept simulation model based on 

published aggregate data that predicted the rate of curative salvage surgery and survival outcomes 

among colorectal cancer patients.[31]  The model simulated the interplay between colorectal cancer 

recurrence natural history and early detection of recurrence through surveillance testingͶan approach 

designed to allow the simulation of hypothetical surveillance strategies.  Here, we build upon that work 

by describing the development and validation of the Colon Cancer Surveillance and Recurrence Model 

(CCSuRe).   CCSuRe utilizes a more realistic representation of underlying disease processes (including 

non-constant progression risks over time and the effects of age and cancer stage on risk) that is fitted or 

͞ƚƌĂŝŶĞĚ͟ ďĂƐĞĚ ŽŶ ŝŶĚŝǀŝĚƵĂů-level clinical trial data.  In addition, it uses a more complete model of 

surveillance and follow-up diagnostic testing.  We validate the model by comparing observed outcomes 

from colon cancer patients in each arm of the recent Follow-up After Colorectal Surgery (FACS) trial[2] 

to CCSuRe-predicted outcomes for matched groups of simulated patients.  This work represents the first 

independent validation of a colon cancer surveillance model against the results of a modern clinical trial.  
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It is a key step toward our objective of developing a surveillance model that can inform practice 

recommendations and personalize surveillance strategies for individual CC patients (and, eventually, for 

rectal cancer patients) based on patient and disease characteristics.  Moving from one-size-fits-all 

surveillance toward a more tailored approach has the potential to increase the effectiveness and cost-

effectiveness of surveillance while minimizing unnecessary testing. 
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METHODS 

Overview of Approach 

CCSuRe consists of two interacting submodels: a disease progression submodel and a utilization 

submodel.  The former generates natural history events for simulated patients over time from the point 

of initial treatment of CC, and the latter simulates scheduled surveillance testing, follow-up diagnostic 

testing and recurrence treatment, which may affect survival.  After clinical trial data ŝƐ ƵƐĞĚ ƚŽ ͞ƚƌĂŝŶ͟ 

the disease progression submodel, any hypothetical post-treatment surveillance regimen can be 

simulated by changing the parameters of the utilization submodel that control surveillance testing 

schedules. 

 

The Disease Progression Submodel 

We use a multi-state, non-homogenous Markov process to represent disease progression in 

continuous time.[32ʹ36]  There are four progressively more severe states: 1) no known recurrence, 2) 

detectable and resectable recurrence, 3) detectable recurrence which is not resectable, and 4) death 

(possible transitions depicted in Figure A1 of Appendix 1).  Transition intensities ߣ௜௝ሺݐሻ describe the 

hazard rates (may be non-constant) at which transitions from state i to state j occur over time.  

In practice, one can only infer that state transitions have occurred after the fact through clinical 

observation (with error).  To infer parameters of the transition intensity functions, we used a maximum 

likelihood estimation process (Appendix 2) based on real-world follow-up data from the Clinical 

Outcomes of Surgical Therapy (COST) trial.[37]  The COST trial enrolled 788 subjects across 48 U.S. sites 

with curatively treated Stage I-III colon cancer from 1994 to 1999.  Participants underwent either 

laparoscopically-assisted or open surgical resection.  With a median follow-up of 4.4 years, the COST 

investigators found no difference between arms in the primary endpoint of time to tumor 

recurrence.[37]  
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The distribution of recurrence sites was also based on the COST trial data using non-mutually 

exclusive categories of local extraluminal, intraluminal (metachronous), lung, liver, abdominal 

metastases, and other metastases.  Patients with local extraluminal, intraluminal, lung, or liver 

recurrence are assumed to spend some amount of time in state 2 (detectable and resectable) before 

eventually advancing to state 3.  However, patients whose recurrences manifest solely as abdominal 

metastases Žƌ ͞ŽƚŚĞƌ͟ ŵĞƚĂƐƚĂƐĞƐ transition from state 1 directly to state 3; such a patient would at no 

point be a candidate for curative treatment once their recurrent disease was detectable. 

 For ͞recurrence transitions͟ (from state 1 to 2 and from state 1 to 3), we assume that the 

transition intensities ߣଵଶሺݐሻ and ߣଵଷሺݐሻ are equal.  The COST trial data demonstrated that the hazard of 

recurrence was non-constant over time, so we used a piecewise (first increasing, then decreasing) 

Weibull hazard.  We also include the covariate of stage, assuming proportional hazards, because the 

hazard of recurrence differs based on cancer stage.    

The transition from state 2 to 3 represents progression from a detectable and resectable 

recurrence to a non-resectable one.  We model ߣଶଷሺݐሻ using a decreasing Weibull hazard since later 

recurrences tend to be more indolent.[38ʹ41]  

 Transitions from states 1 and 2 to state 4, and from state 3 to 4, represent deaths.  The two 

former transitions both represent death from other causes; we assume that ߣଵସሺݐሻ ൌ  ሻ.  Theݐଶସሺߣ 

transition from State 3 to 4 represents death from cancer or other causes; ߣଷସሺݐሻ ൐  ሻ. Based onݐଵସሺߣ 

empirical hazard plots observed in the COST data, we assumed constant hazard and included an age 

covariate for all transitions into state 4.  

After estimating the disease progression parameters, we estimated the rate of symptom onset 

among recurring patients.  We assume a constant hazard for symptom onset; patients become eligible 

to develop symptoms when they transition from state 1 to states 2 or 3.  To develop this hazard 

estimate, we used a chart review dataset of 62 recurring patients at our own institution (since COST trial 
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data does not describe symptomology at presentation), containing details of all relevant healthcare 

encounters following initial CC treatment and symptomology at each visit.   

 

Survival of recurring patients after curative surgery 

We fit an exponential survival model to the subset of COST patients who underwent curative 

surgery for recurrence using initial surgery as time 0 and death or last follow up as an event or point of 

censoring, respectively.  This model was used to probabilistically assign life expectancies after curative 

treatment of recurrence. 

Appendix 1 provides a detailed description of the disease progression submodel.  Maximum 

likelihood calculations for parameter estimation were performed using MATLAB 2015a (Natick, MA).  

 

The Utilization Submodel 

Once the disease progression submodel was specified, it was coupled with a utilization 

submodel.  The latter, a microsimulation developed using Anylogic v7.2 (Chicago, IL), re-creates 

scheduled surveillance testing, follow-up diagnostic testing, and treatment of recurrence for each of a 

series of simulated CC survivors for a surveillance period of up to five years.  A schedule for surveillance 

carcinoembryonic antigen (CEA) testing, computed tomography (CT) of chest/abdomen/pelvis, and 

colonoscopy can be specified.  The results of each test depend upon test sensitivity and specificity (Table 

1), and upon the true state of simulated individuals in the disease progression submodel.  Since test 

findings may be equivocal early in the course of a recurrence, causing a delay in diagnosis, we chose to 

model this phenomenon.  The probabilities of equivocal results given the presence of disease (Table 1) 

were estimated based on the same dataset used to estimate symptom parameters and were varied 

extensively in sensitivity analysis.   
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Algorithms for repeat or follow-up diagnostic testing triggered by an equivocal or positive result 

were based on NCCN colon cancer guidelines[20], where possible, and on consensus from the coauthors 

and a panel of three medical oncologists with expertise in colorectal cancer prevention and treatment at 

separate academic institutions.  Appendix 3 depicts all testing algorithms.  

 

Base Case and Sensitivity Analysis 

We modeled a base case in which a population of 100,000 seventy-year-old CC survivors with a 

distribution of stage I, II, and III disease representative of U.S. patients (31.1%, 35.0%, and 33.9%, 

respectively)[42] underwent NCCN-adherent surveillance[20].  The regimen consisted of CEA 

measurement every three months for the first two years following initial surgery, then every six months 

for the following three years; annual CT of chest, abdomen, and pelvis for five years; and colonoscopy at 

years one and four.  We conducted one-way sensitivity analysis on all utilization submodel parameters 

(Table 1) according to the ranges shown.  We then simultaneously varied combinations of these 

parameters to which the model was sensitive.  The primary outcomes of interest in sensitivity analyses 

were proportion of subjects undergoing curative salvage surgery for recurrence and overall survival at 

five years from the point of recurrence diagnosis (OS5).  Recurrence proportion (the proportion of 

subjects experiencing recurrence) was not examined as an outcome in sensitivity analysis since it 

depends on disease progression parameters estimated by fitting to trial data as described above.   

 

External Validation 

After fitting the disease progression submodel to COST trial data and testing CCSuRe͛Ɛ ƐĞŶƐŝƚŝǀŝƚǇ 

to variation in utilization parameters, we examined the model͛Ɛ ability to predict cancer-related 

outcomes for an independent group (i.e. a group whose data did not inform model development).  We 

compared the actual experience of CC subjects in each of the four arms (and in all arms combined) of 
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the recent FACS trial to the outcomes predicted by CCSuRe for corresponding groups with the same 

sample size, mean age, and stage distribution.  At 39 centers in the U.K. between 2003 and 2009, the 

FACS trial randomized 841 patients surgically treated for Dukes Stage A, B, or C colon cancer 

(corresponding to American Joint Committee on Cancer Stages I, II, and III[43]) to four arms undergoing 

either CEA based surveillance, CT based surveillance, combined CEA and CT, or minimum surveillance.[2]  

Median follow-up across all groups was 60 months; Table 2 describes characteristics and assigned 

surveillance regimens for CC subjects in each FACS arm.   

Outcomes examined in validation were recurrence proportion, proportion of recurring subjects 

undergoing curative salvage surgery, and OS5.  Proportion of recurrences discovered because of 

symptoms was not examined given the small number of subjects in this category (36 CC subjects total). 

For each of the four surveillance regimens, we ran CCSuRe 1,000 times using the number of 

subjects enrolled in the corresponding FACS arm (Table 2).  For each outcome, we used the range of 

model outputs from the 2.5th to 97.5th percentile to define 95% prediction intervals.[44]  We also 

constructed a calibration plot comparing observed to mean model-predicted survival of patients with 

recurrence at years one through five to assess model calibration and refinement.[45, 46] 

 

The funding sources played no role in the design of the study or preparation of this manuscript. 
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RESULTS 

Baseline Model Outputs 

In the base case scenario modeling NCCN-adherent surveillance, the model predicted that 16.9% 

of survivors would experience recurrence and that 44.2% of recurring patients would be expected to 

undergo curative-intent treatment.  OS5 for recurring patients was predicted to be 22.6%.   

 

Sensitivity Analysis  

Using the base case as a starting point, we conducted a sensitivity analysis in order to identify 

the utilization inputs to which model results were most sensitive.  Figure 1a depicts the utilization 

parameters which, when varied individually from their baseline levels across the ranges shown in Table 

1, most affected the proportion undergoing potentially curative treatment of recurrence.  This outcome 

was most sensitive to positron emission tomography (PET) scan sensitivity.  Varying PET sensitivity from 

0.72 to 1.00 resulted in variation of the proportion treated curatively from 40.4% to 45.4%.  Figure 1b 

depicts the four parameters which most affected predicted OS5.  Again, PET sensitivity was most 

influential, with inputs between 0.72 and 1.00 resulting in OS5 ranging from 21.5% to 23.0%, 

respectively.   

When CT scan sensitivity for all anatomical sites was simultaneously decreased to the lowest 

extremes, the model predicted a decrease in curative treatment proportion to 42.5%.  At the highest 

extremes of CT sensitivity, curative treatment proportion rose to 44.3%.  OS5 varied from 21.8% to 

22.8%, respectively, for the low and high extremes of CT sensitivity.  Since certain individual 

repeat/follow-up diagnostic testing wait times were influential, we ran the model with all such intervals 

simultaneously set to their low or high extremes.  With all intervals at their lowest extremes (halved), 

curative treatment proportion rose to 46.9%, and OS5 to 23.6%.  Increasing all intervals to their highest 

extremes (doubling) lowered curative treatment proportion and OS5 to 39.8% and 21.5%. 
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External Validation 

The observed proportion recurring in each FACS trial arm, and in all arms combined, is shown in 

Figure 2 alongside corresponding proportions predicted by the model.  Predicted recurrence for the 

three intensive surveillance arms (CEA based, CT based, and CEA+CT based surveillance) fell within 

observed FACS 95% confidence intervals.  Specifically, 15.2% (95% confidence interval [CI] 10.7% to 

20.7%) of FACS subjects in the CEA arm were diagnosed with recurrence compared with a model-

predicted 17.7% (95% prediction interval 12.9% to 23.0%); 20.3% (95% CI 15.0% to 26.5%) of FACS CT 

arm subjects were diagnosed with recurrence compared with a predicted 17.7% (95% prediction interval 

12.4% to 23.3%); 13.9% (95% CI 9.5% to 19.4%) of FACS CEA+CT subjects were diagnosed with 

recurrence compared with a predicted 17.7% (95% prediction interval 12.5% to 22.6%).  Diagnosed 

recurrence in the FACS minimum surveillance arm (10.8%; 95% CI 6.9% to 15.7%) was substantially 

lower than that in other arms and was lower than the ŵŽĚĞů͛Ɛ prediction (17.0%; 95% prediction 

interval of 12.1% to 22.0%).  The ŵŽĚĞů͛Ɛ ƉƌĞĚŝĐƚŝŽŶ ĨŽƌ ƚŚĞ recurrence proportion across all arms 

combined (17.4%; 95% prediction interval 15.1% to 20.1%) was slightly higher than observed in FACS 

(15.0%; 95% CI 12.6% to 17.6%), but still fell within the corresponding FACS 95% CI.  

Figure 3 compares the observed proportion of patients diagnosed with recurrence who 

underwent curative-intent treatment with corresponding predicted levels.  For the CEA, CT, and CEA+CT 

arms, CCSuRe predictions fell within FACS ϵϱй CI͛Ɛ.  Specifically, 33.3% (95% CI 18.2% to 52.6%) of FACS 

CEA arm subjects diagnosed with recurrence underwent curative-intent treatment compared with a 

model-predicted 41.9% (95% prediction interval 26.3% to 57.9%); 46.3% (95% CI 31.7% to 62.4%) of 

FACS CT arm subjects diagnosed with recurrence underwent curative-intent treatment compared with a 

model-predicted 40.1% (23.3% to 56.8%); 37.9% (95% CI 20.7% to 56.0%) of FACS CEA+CT arm subjects 

diagnosed with recurrence underwent curative-intent treatment compared with a model-predicted 
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46.3% (95% prediction interval 30.3% to 62.5%).  For the minimum arm, however, the observed 

proportion undergoing curative-intent treatment (8.7%; 95% CI 0.0% to 28.5%) was significantly lower 

than predicted 29.1% (95% prediction interval 15.1% to 44.4%).  For all arms combined, ƚŚĞ ŵŽĚĞů͛Ɛ 

prediction of 34.1% (95% prediction interval 26.5% to 41.3%) matched the observed value exactly 

(34.1%; 95% CI 25.4% to 43.5%).  

Figure 4 shows the observed and predicted five-year overall survival curves for each FACS arm.  

For each arm, FACS survival curves lay entirely within model prediction intervals for the full five-year 

period.  At five years after detection of recurrence, 27.3% of subjects in the FACS CEA group remained 

alive compared with a model prediction of 21.8% (95% prediction interval of 9.5% to 35.5%); 26.8% of 

the CT group remained alive compared with a predicted 21.1% (95% prediction interval 8.8% to 35.3%); 

34.5% of the CEA+CT group remained alive compared with a predicted 22.8% (95% prediction interval 

10.5% to 35.9%); 17.4% of the minimum surveillance group remained alive compared with a predicted 

16.8% (95% prediction interval 5.6% to 30.3%).  For all groups combined, 27.0% of subjects were alive at 

five years after diagnosis of recurrence compared with a prediction of 20.6% (95% prediction interval 

14.6% to 26.9%), reflecting slightly pessimistic survival predictions by the model on average. 

Figure 5 shows a calibration plot[45, 46].  The 45-degree solid line represents a reference 

standard of perfect calibration and refinement.  The fitted line connecting the data points has y-

intercept of 0.08, indicating that predicted proportions alive at each time point were slightly lower than 

observed on average.  A slope of approximately 0.86 reflects the fact that predicted change in the 

proportion of subjects alive between years 1 and 5 was slightly greater than observed. 
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DISCUSSION  

The long-term objective of this research is to create a model-based tool which leverages the 

best available clinical evidence to assist colon cancer patients and providers in personalizing post-

treatment surveillance based on patient and disease characteristics.  The precision survivorship care that 

such a model can enable has the potential to improve the effectiveness of post-treatment surveillance, 

and in turn to improve the long-term survival of those treated for colon cancer.  Here, we have 

introduced the CCSuRe model and presented an external validation against independent data from a 

recent large multi-center randomized trial of surveillance.[2]  TŚĞ ŵŽĚĞů͛Ɛ ŶĂƚƵƌĂů ŚŝƐƚŽƌǇ ďĞŚĂǀŝŽƌ ŝƐ 

based on patient-level data from a multi-center trial involving U.S. colon cancer survivors.[47]  This work 

represents the first independent validation of a colon cancer surveillance model against the results of a 

modern clinical trial.   

The model performed well in external validation (the most robust form of validation[46]) against 

data obtained from colon cancer patients in the recent FACS trial.  Predicted recurrence proportion fell 

within FACS 95% confidence intervals for the CT, CEA, CT+CEA arms, and for all arms combined, but not 

for the minimum arm.  The model predicted that incidence of recurrence would be similar in each of the 

follow-up arms since the stage distribution was similar across arms; the mode of surveillance should not 

in theory affect the probability of recurrence.  By contrast the observed number of recurrences differed 

between arms in the FACS trial, with the fewest being detected in the minimum follow-up arm.  This 

may reflect under-reporting of recurrence in the minimum arm due to less intense follow-up.   

The proportions of recurring patients predicted by CCSuRe to undergo curative-intent treatment 

fell within FACS 95% confidence intervals for the CT, CEA, and CT+CEA arms, and for all arms combined, 

but again not for the minimum surveillance arm.  In the trial, only two patients in the minimum 

surveillance arm are known to have undergone curative-intent treatment based on available follow-up 
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data.  Accordingly, it is difficult to assess model performance against data from the FACS minimum 

follow-up arm.   

Five-year overall survival for FACS subjects with recurrence in all four arms fell within 

corresponding model-projected 95% prediction intervals.  To assess the calibration and refinement of 

the model, we created a calibration plot.  A slightly positive y-intercept suggests that the model is mildly 

pessimistic in its survival predictions generally.[46, 48]  This may be attributable to improvements in 

colon cancer treatment and survival in the period between recruitment for the COST Trial (1994 to 

1999[37]), whose data was used for model training, and the FACS Trial (2003 to 2009[2]), whose data 

was used in validation.  Overall, the model predicted 5-year survival among subjects with recurrence 

that was 6.4 percentage points lower than what was reported in the combined FACS trial colon cancer 

subjects.  Over approximately the same timespan (1995-2005) In the U.S., 5-year relative survival for 

colorectal cancer patients in general improved by 6.5 percentage points.[49]  Finally, a calibration plot 

slope less than 1.0 reflects the fact that predicted change in the proportion of subjects alive between 

years 1 and 5 was slightly greater than observed in the FACS trial.[46, 50]  The slope of 0.86 compares 

favorably with calibration plot slopes from other external model validations.[45, 50]   

We previously developed a simple proof-of-concept model simulating the interaction between 

recurrence natural history and early detection through surveillance.[31]  It was the first published model 

to account for progression of recurrent disease during diagnostic delay and that considered the full 

range of possible metastatic sites.[51ʹ54]  CCSuRe builds upon our previous model by using individual-

level patient data to parameterize functions describing non-constant hazards of state transitions over 

time.  The new model also incorporates covariates accounting for the effect of cancer stage on 

progression risk and for the effect of age on mortality.  CCSuRe employs more realistic algorithms based 

on empirical data to simulate diagnostic testing following positive surveillance findingsͶa feature that 

will enable future cost comparisons between proposed surveillance regimens. 
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In sensitivity analysis, PET sensitivity was the most influential single parameter on both the 

likelihood of curative surgery and overall survival.  When varied across a 30 percentage point range, the 

proportion of patients with recurrence who underwent curative treatment in the model varied by 5.0 

percentage points, and OS5 varied by 1.5 percentage points.  This is not surprising since PET is 

frequently used in the setting of serially elevated CEA without localized findings as well as to assess 

resectability when recurrent disease is detected.[20]  Model outcomes were also somewhat sensitive to 

wait times for repeat or follow-up diagnostic tests.  This finding suggests that minimizing delays in 

definitively diagnosing recurrence by minimizing unnecessary wait times for subsequent testing could 

improve patient outcomes.  It also underscores the value that improved testing methodologies leading 

to fewer equivocal results (e.g. an improved biomarker for CC) could bring. 

 

Limitations 

As with many modeling studies, some parameters are derived from disparate sources in the 

scientific literature.  We have examined the implications of mis-specification of such parameters using 

one-way and multi-way sensitivity analysis.  Few inputs changed predicted outcomes to a clinically 

relevant extent.  It should also be noted that morbidity stemming from testing itself (most notably, 

morbidity stemming from colonoscopy complications) is not included in the model. 

TŚĞ CO“T ƚƌŝĂů ǁĂƐ ƚŚĞ ĚĂƚĂ ƐŽƵƌĐĞ ƵƐĞĚ ƚŽ ͞ƚƌĂŝŶ͟ ƚŚĞ ĚŝƐĞĂƐĞ ƉƌŽŐƌĞƐƐŝŽŶ ƐƵďŵŽĚĞů͘  COST 

subjects were followed into thĞ ĞĂƌůǇ ϮϬϬϬ͛Ɛ͘  Aside from FACS, only one large study which prospectively 

followed CC survivors undergoing multi-modality post-treatment surveillance has been published since 

COST.[9]  Despite some differences in treatment norms between the COST trial era and today, and 

despite the differences in settings, it is reassuring from a generalizability perspective that the model 

projected outcomes which largely approximated what was observed recently among FACS trial colon 

cancer subjectsͶalbeit with slightly low survival projections across the board.  Therapeutic advances 
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which generally lower recurrence probability after initial treatment should not significantly impact the 

generalizability of the model for comparing relative benefits of alternative surveillance regimens to 

patients whose disease recurs.  More likely to impact CC“ƵRĞ͛Ɛ generalizability would be 1) advances in 

primary treatment (e.g. surgical technique) which substantially change the anatomic distribution of 

recurrences, 2) introduction of diagnostic tests with improved performance characteristics, or 3) 

therapeutic improvements which allow curative treatment of more advanced recurrent disease. 

 

Future Directions 

While more intensive surveillance may somewhat improve clinical outcomes, surveillance 

testing is associated with cost, inconvenience, and potential physical and psychological morbidity.  The 

ability to identify patients who are most likely to benefit from surveillance after surgical cure, and to 

tailor surveillance to clinical characteristics and preferences of individual patients, promises to increase 

value from both patient and system perspectives.  More extensive and recent longitudinal data 

describing surveillance testing and outcomes will permit further estimation of existing model 

parameters for both colon and rectal cancer in the context of more contemporary treatment and 

diagnostic norms.  Further data will also allow estimation of additional risk-modifying covariates.  Such 

covariates could include traditional clinicopathologic risk factors and prognostic or predictive molecular 

characteristics.  The insights gained from this work can inform future risk-stratified surveillance 

guidelines and clinical decision aids.   
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FIGURE LEGENDS  

Figure 1 ʹ Sensitivity analysis results ʹ TŚĞ ͞ƚŽƌŶĂĚŽ ĚŝĂŐƌĂŵs͟ ƐŚŽǁ ƚŚĞ ƉĂƌĂŵĞƚĞƌƐ ǁŚŝĐŚ͕ ǁŚĞŶ 

varied across the ranges shown in Table 1, had the greatest impact on the values of a) proportion of 

recurring patients undergoing curative-intent surgery and b) 5-year overall survival of recurring patients 

(OS5).  PET = positron emission tomography; CEA = carcinoembryonic antigen; CT = computed 

tomography 

Figure 2  - Proportion of patients recurring: model-predicted versus observed in FACS trial.  The first of 

each pair of solid bars represents the mean of 1,000 model runs.  Error bars represent 95% prediction 

intervals for model-predicted outcomes and 95% confidence intervals for observed FACS trial outcomes.  

CEA = carcinoembryonic antigen; CT = computed tomography; CCSuRe = Colon Cancer Surveillance and 

Recurrence Model; FACS = Follow-up After Colorectal Surgery Trial 

 

Figure 3 ʹ Proportion of recurring patients who were treated with curative intent: model-predicted 

versus observed in FACS trial.  The first of each pair of solid bars represents the mean of 1,000 model 

runs.  Error bars represent 95% prediction intervals for model-predicted outcomes and 95% confidence 

intervals for observed FACS trial outcomes.  CEA = carcinoembryonic antigen; CT = computed 

tomography; CCSuRe = Colon Cancer Surveillance and Recurrence Model; FACS = Follow-up After 

Colorectal Surgery Trial 

 

Figure 4 (a-d) ʹ Overall survival following recurrence diagnosis: model-predicted versus observed in 

FACS trial.  a) CEA arm, b) CT arm, c) CEA+CT arm, d) minimum arm ʹ The solid line in each graph 

represents the mean of 1,000 model runs.  The shaded regions represent 95% predictions intervals.  

CCSuRe = Colon Cancer Surveillance and Recurrence Model; FACS = Follow-up After Colorectal Surgery 

Trial 

 

Figure 5 ʹ Calibration plot comparing overall survival of FACS trial recurrers to mean model-predicted 

overall survival at years one through five ʹ The y-intercept and slope of the line fitted to these points 

were used to assess model calibration (i.e. correspondence between the overall levels of predicted and 

observed values) and refinement (i.e. degree to which model estimates span a range similar to that 
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spanned by actual observations) , respectively.[45, 46]  The 45-degree solid line represents a reference 

standard of perfect calibration and refinement.   
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TABLES 

  Parameter 

estimate 

Range used in 

sensitivity 

analysis 

Source 

Surveillance and diagnostic test characteristics 

 CEA sensitivity 0.64 0.49 to 0.79 [55] 

 CEA specificity 0.90 0.75 to 1.00 [55] 

 CT sensitivity ʹ chest 0.94 0.79 to 1.00 [56] 

 CT specificity ʹ chest  0.96 0.81 to 1.00 [56] 

 Ct sensitivity ʹ liver 0.83 0.68 to 0.98 [57] 

 CT specificity ʹ liver 0.59 0.44 to 0.74 [57] 

 CT sensitivity ʹ abdomen 0.73 0.58 to 0.88 [58] [56] [59] 

 CT specificity - abdomen 0.98 0.83 to 1.00 [56] 

 Colonoscopy sensitivity 0.95 0.78 to 1.00 [60] [61] 

 Colonoscopy specificity 1.00 0.85 to 1.00 [60] [61] 

 Liver MRI sensitivity 0.86 0.71 to 1.00 [57] 

 Liver MRI specificity 0.87 0.72 to 1.00 [57] 

 PET sensitivity 0.87 0.72 to 1.00 [62] 

 PET specificity 0.96 0.81 to 1.00 [62] 

Probability of equivocal test results given that recurrence is present 

 Probability of equivocal CEA 0.55 0.40 to 0.70 a 

 Probability of equivocal CT 0.136 0.00 to 0.286 a 

Intervals for repeat or follow-up diagnostic testing 

 For repeat CEA after equivocal result 6 weeks 3 to 12 weeks a,b 

 For repeat CT after equivocal CT 4 weeks 2 to 8 weeks a,b 

 For follow-up CT scan after positive CEA 2 weeks 1 to 4 weeks a,b 

 For follow-up liver MRI after positive CT 1 week 0 to 2 weeks a,b 

 For follow-up PET scan 1 week 0 to 2 weeks Ύ͕ Ώ 
a Internal dataset available upon request 
b Expert opinion 

Table 1 ʹ Utilization submodel parameters ʹ Specific testing algorithms are shown in Appendix 3.  CEA = 

carcinoembryonic antigen; CT = computed tomography; MRI = magnetic resonance imaging; PET = 

positron emission tomography 
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  CEA 

Surveillance 

(n=217) 

CT 

Surveillance 

(n=202) 

CEA + CT 

Surveillance 

(n=208) 

Minimum 

Surveillance 

(n=214) 

Subject Characteristics (N=841) 

 Mean age at randomization 69.4 69.0 70.6 69.3 

 Dukes Stage of primary colon 

cancer (A/B/C) 

14.3% / 55.8% 

/ 30.0% 

19.8% / 

47.5% / 

32.7% 

15.4% / 

56.3% / 

28.4% 

17.8% / 50.0% / 

32.2% 

Surveillance Regimens 

 CEA frequency Every 3 

months for 2 

years, then 

every 6 

months until 

year 5 

None Every 3 

months for 2 

years, then 

every 6 

months until 

year 5 

None 

 CT frequency At 12-18 

months 

Every 6 

months for 2 

years, then 

annually until 

year 5 

Every 6 

months for 2 

years, then 

annually until 

year 5 

At 12-18 

months 

 Colonoscopy frequency None At 2 years At 2 years  None 

 

Table 2 ʹ Sample characteristics and surveillance regimens from FACS trial colon cancer patients.  CEA 

= carcinoembryonic antigen; CT = computed tomography 
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APPENDIX 1 ʹ Detailed description of disease progression submodel 

1. Multi-state Markov models 

We use a multi-state non-homogenous Markov model to model underlying disease progression; this 

type of model has been used previously to model the progression of cancer and other chronic illnesses 

for which transitions between disease states cannot be observed directly.[32ʹ36] Let ܺሺݐሻ be a 

continuous time Markov process which can take on ݊ progressively severe states, denoted byሼͳǡʹǡ ǥ ݊ሽ, 

with ݊ being an absorbing state. For any two states ݅ and ݆ such that݅ ് ݆, the transition intensity ߣ௜௝ሺݐሻ 

is the rate at which transitions occur from state ݅ to state ݆ at time ݐ, that is,  

 

ሻݐ௜௝ሺߣ ൌ  ݈݅݉௛՜଴ ܲሺܺሺݐ ൅ ݄ሻ ൌ ݆ ȁܺሺݐሻ ൌ ݅ሻ݄ Ǥ 
 

The function ߣ௜௝ሺݐሻ can also be thought of as the hazard of transitioning from state ݅ to state ݆ at time ݐ. 

Note further that if ݅ ൌ ݆, then  

ሻݐ௜௜ሺߣ ൌ  െ ෍ ሻ௡ݐ௜௝ሺߣ
௝ୀଵ௜ஷ௝

Ǥ 
 

Although frequently it is assumed that the hazard rates ߣ௜௝ሺݐሻ are constant with respect to time, in this 

model, we make use of a non-homogenous Markov process, assuming that some of the transition 

intensities vary with time. Furthermore, we define the transition probabilities for this process by 

ǡݏ௜௝ሺ݌  ሻݐ ൌ ܲ ሺܺሺݐሻ ൌ ݆ ȁ ܺሺݏሻ ൌ  ݅ሻ, 

 

for any two states i and j and times 0 < s < t. Given the transition intensities for a process, the 

corresponding transition probabilities are found by solving the Kolmogorov forward equations.[63] 
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2. Application to colon cancer and selection of hazard functions 

 

For our application, we assume that ܺሺݐሻ ƌĞƉƌĞƐĞŶƚƐ ĂŶ ŝŶĚŝǀŝĚƵĂů͛Ɛ ĐƵƌƌĞŶƚ ĚŝƐĞĂƐĞ ƐƚĂƚĞ Ăƚ ƚŝŵĞ ݐ ൒ Ͳ 

after initial surgery. Here ܺሺݐሻ  can take on 4 possible disease states, listed below: 

 

(1) No known recurrence 

(2) Detectable and resectable recurrence 

(3) Detectable recurrence that is not resectable 

(4) Death  

 

Figure A1 shows a diagram of these states, along with all of the possible transitions in our model. We 

assume each of the transition intensities ߣ௜௝ሺݐሻ in our model takes on a parametric form, which we 

describe in detail below. 

 

Consider first the transitions from state 1 to state 2 and from state 1 to state 3. Note that both of these 

transitions represent the event of a recurrence; however, a transition from 1 to 2 represents a 

recurrence that could potentially be resectable if it was detected early enough, while a transition from 1 

to 3 is a recurrence that is never resectable, regardless of when it is detected. This determination of 

whether a recurrence could ever be resectable is made based on the site(s) of the recurrence as 

described in the main text. We assume that the transition intensities ߣଵଶሺݐሻ and ߣଵଷሺݐሻ are equal.   

 

We know from empirical hazard plots for time to recurrence detection from the Clinical Outcomes of 

Surgical therapy (COST) Trial[37] that the hazard of recurrence is non-constant over time; it increases 

initially in the time after surgery, reaches a maximum, and then declines. Perez-Ocon et al[64] suggest 

using a piecewise Weibull hazard to model a similar pattern in the timing of breast cancer recurrence. 

Note that the Weibull hazard function has the form 
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ሻݐሺߣ ൌ ߙߛ  ൬ ൰ఊିଵߙݐ
 

 

for fixed shape and scale parameters ߛ and ߙ. Notice that for ߛ ൏ ͳ, the hazard is monotonically 

decreasing, while for ߛ ൐ ͳ, it is monotonically increasing. (For ߛ ൌ ͳǡ it is constant).  

 

In addition to being non-constant with respect to time, the hazard of recurrence also differs based on 

ƚŚĞ ƐƚĂŐĞ ŽĨ Ă ƉĂƚŝĞŶƚ͛Ɛ ƉƌŝŵĂƌǇ ĐĂŶĐĞƌ͖ ƚŚƵƐ ǁĞ ŝŶĐůƵĚĞ ĐŽǀĂƌŝĂƚĞƐ ĨŽƌ ƐƚĂŐĞ ŝŶ ߣଵଶሺݐሻ using the 

proportional hazards assumption. 

 

To write an expression for ߣଵଶሺݐሻ using this approach, we first define the function ߜଵଶሺݐሻ, 

 

ሻݐଵଶሺߜ ൌ  
۔ۖۖەۖۖ
ۓ ଵଶሺଵሻߙଵଶሺଵሻߛ ൭ ଵଶሺଵሻ൱ఊభమሺభሻିଵߙݐ ǡ      Ͳ ൑ ൑ ݐ ௕ܶ௥௘௔௞

ଵଶሺଶሻߙଵଶሺଶሻߛ ൭ݐ െ ௕ܶ௥௘௔௞ߙଵଶሺଶሻ ൱ఊభమሺమሻିଵ ǡ       ݐ ൐ ௕ܶ௥௘௔௞
                

 

for a fixed value of ௕ܶ௥௘௔௞  that we determine empirically from the data. Note that ௕ܶ௥௘௔௞  is the time 

after initial surgery when the hazard of recurrence is at its maximum. Then the expression for ߣଵଶሺݐሻ is 

given by ߣଵଶሺݐሻ ൌ  exp ሺߚଵଶ௦ଶܫ௦ଶ ൅  ሻݐଵଶሺߜ௦ଷሻܫଵଶ௦ଷߚ

 

where ܫ௦ଶ is an indicator variable equal to 1 for stage 2 patients and 0 otherwise; similarly, ܫ௦ଷ is equal to 

1 only for stage 3 patients.  
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Next, we consider the transition from state 2 to state 3. The later a patient recurs after their initial 

surgery, the longer the time they will spend in state 2.[38][39][40][41]  Thus, we model this transition 

with a declining hazard; as before, we choose a Weibull hazard, so that 

 

ሻݐଶଷሺߣ ൌ ଶଷߙଶଷߛ  ൬  ଶଷ൰ఊమయିଵǡߙݐ
 

where ݐ is the time since initial surgery. 

 

Consider next the transitions from states 1 and 2 to state 4. These transitions both represent death from 

other causes; thus we assume that ߣଵସሺݐሻ ൌ  ሻ. Moreover, we use a constant hazard with aݐଶସሺߣ 

covariate for age to model these transitions, 

ሻݐଵସሺߣ  ൌ expሺߚଵସሺܽ݃݁ሻሻ  ଵସǡߙ
 

where ߙଵସ is a constant rate. Lastly, we consider the transition from state 3 to state 4. A patient can 

make this transition by dying from other causes or by dying from cancer. Thus, we assume that ߣଷସሺݐሻ 

has the form, 

ሻݐଷସሺߣ  ൌ ଷସߙ  ൅ expሺߚଵସሺܽ݃݁ሻሻ  ଵସǡߙ
 

where ߙଷସ  is the (assumed) constant hazard of death from cancer. We then must estimate the set of 

natural history parameters ߠ ൌ  ቄߙଵଶሺଵሻǡ ଵଶሺଵሻǡߛ ଵଶሺଶሻǡߙ ଵଶሺଶሻǡߛ ଵଶ௦ଶߚ ǡ ଵଶ௦ଷߚ ǡ ଶଷǡߙ ଶଷߛ ǡ ଵସǡߙ ଵସǡߚ  ଷସቅ from theߙ

COST Trial data.  
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Note that in Castelli et al[65], a multi-state semi-Markov model was used to model the natural history of 

colorectal cancer recurrence; this model also employed Weibull hazards for the transitions between 

states. However, this model utilized a single state for recurrence and did not differentiate between 

resectable and unresectable recurrences. Furthermore, this model assumed a single Weibull hazard for 

the transition between the no recurrence state and recurrence state, instead of the piecewise hazard 

that we use here. 

 

3. Maximum likelihood estimation and misclassification 

 

Now suppose that we have a set of N observations from the process; the ith observation consists of a 

set of ݉௜ observation times ݐ௞ ǡ ͳ ൑ ݇ ൑ ݉௜, and corresponding observed states ݋௞ ǡ ͳ ൑ ݇ ൑  ݉௜. 
Note that we will differentiate here between the observed state of the process ݋௞ at time ݐ௞ and the 

actual state, which we will denote by ݔ௞ Ǥ We make this distinction because in our application, the true 

disease state can only be observed indirectly through the results of a diagnostic test. Thus, we only have 

information about the observed disease state at a given time, which may not correspond to the true 

disease state at that time, and we must account for this potential error in our parameter estimation.  

 

The problem of parameter estimation in the presence of potential misclassification has been addressed 

before (see for instance [33, 34, 66]). Briefly, let ܱሺݐሻ denote the observed disease state at time ݐ; recall 

that we denote the true disease state at time ݐ by ܺሺݐሻ. The value of ܱሺݐሻ is related to the value of ܺሺݐሻ via a series of misclassification probabilities, defined as ܲሺܱሺݐሻ ൌ ݅ ȁܺሺݐሻ ൌ ݆ሻ, for any two states ݅ 

and ݆.  

 

The likelihood function which accounts for misclassification is constructed in the following manner[33]: 

assuming that the observation at ݐଵ is made without error, the contribution to the likelihood for one set 

of observations is given by 
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 κ௜ሺߠሻ ൌ ෍   ෑ ܲሺܱሺݐ௞ሻ ൌ ௞ሻݐ௞ȁܺሺ݋  ൌ ௞ିଵǡݐ௫ೖషభ௫ೖሺ݌ ௞ሻݔ  ௞ሻ௠೔ݐ
௞ୀଶ௫మǡ௫యǥ௫೘೔ ǡ 

 

where the summation is taken over all possible values of the true underlying states ݔଶǡ ଷǡݔ ǥ ௠೔ݔ Ǥ The 

misclassification probabilities ܲሺܱሺݐ௞ሻ ൌ ௞ሻݐ௞ ȁܺሺ݋  ൌ  ௞ሻ in our application are given by theݔ

sensitivities and specificities of the surveillance tests used to make the observations. The total likelihood 

for ܰ observations is then given by 

 

ሻߠሺܮ ൌ  ෑ κ௜ሺߠሻே
௜ୀଵ Ǥ 

 

We then estimate the set of the natural history parameters ߠ that maximizes log -ሻ using a quasiߠሺܮ

Newton algorithm.[67] 

A more detailed description of maximum likelihood estimation of model parameters is provided in 

Appendix 2. 

 

4. Symptom parameter estimation 

 

In addition to the disease progression parameters, we also require an estimate of the rate at which 

patients who recur develop symptoms. We assume that patients become eligible to develop symptoms 

when they make the transition from state 1 to state 2 (or from state 1 to state 3, for those who do not 

pass through state 2). The development of symptoms does not differ based on whether a patient is in 

state 2 or state 3. We assume a constant hazard for the development of symptoms, that is, 

ሻݐ௦௬௠ሺߣ  ൌ ௦௬௠ߙ  Ǥ 
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Our method for estimating this parameter requires an estimate of the disease progression parameters ߠ; thus, we estimate the rate of symptom development separately after we have computed the 

maximum likelihood estimates of the other natural history parameters. 

 

Because the COST trial data did not include descriptions of symptom status at presentation, we used a 

separate dataset (available upon request) based on 62 curatively resected colon cancer patients at our 

own institution to develop the hazard rate estimate.  This internal dataset contained details on all 

relevant healthcare encounters following initial CC treatment and symptom status at each.   

 

Suppose that for each individual in a set of ܰ patients with recurrences, we have the time when they 

were last definitively known to be without recurrence (which we denote by ݐ௟௔௦௧௡௢௥௠) as well as their 

time of detection of recurrence (denoted ݐௗ௘௧); in addition, it is known whether or not the patient was 

symptomatic at the time of detection. For patients who were symptomatic at time of detection, we also 

know the time symptoms began (denoted ݐ௦௬௠; note that ݐ௦௬௠ ൑  ௗ௘௧ሻǤݐ 
 

Denote by ݌ଵሺ௡௢௦௬௠ሻሺݏǡ  did not ݐ and ݏ ሻ the probability that an individual who recurred between timesݐ

develop symptoms. Note that ݌ଵሺ௡௢௦௬௠ሻሺݏǡ  ௦௬௠ as well as the disease progressionߙ ሻ is a function ofݐ

parameters. Similarly, define ݌ሺ௡௢௦௬௠ሻሺ௦௬௠ሻሺݏǡ  ሻ to be the probability that a patient with recurrenceݐ

develops symptoms between times ݏ and ݐ. This probability only depends on the value  ߙ௦௬௠ Ǥ  We 

compute the maximum likelihood estimate of ߙ௦௬௠ Ǥ For an individual who recurred but had not 

developed symptoms by their time of detection, the contribution to the likelihood is given by 

 κ௜൫ߙ௦௬௠൯ ൌ ௟௔௦௧௡௢௥௠ݐଵሺ௡௢௦௬௠ሻሺ݌  ǡ  ௗ௘௧ሻǤݐ
 

The contribution to the likelihood by an individual who recurred and had developed symptoms before 

they were detected is given by 

 



 31 

κ௜൫ߙ௦௬௠൯ ൌ ௟௔௦௧௡௢௥௠ݐଵሺ௡௢௦௬௠ሻ൫݌  ǡ ௦௬௠ݐ െ ݀൯݌ሺ௡௢௦௬௠ሻሺ௦௬௠ሻ൫ݐ௦௬௠ െ ݀ǡ  ௦௬௠൯ǡݐ
 

where ݀ represents one day. The total likelihood is then given by 

 

௦௬௠൯ߙ൫ܮ ൌ ෑ κ௜ሺߙ௦௬௠ሻே
௜ୀଵ Ǥ 
 

We find the value of ߙ௦௬௠  that maximizes ܮ൫ߙ௦௬௠൯ using a quasi-Newton algorithm. 

 

5. Survival for recurrers with curative surgery 

 

Recall that when we computed the natural history parameters, we computed an estimate for the 

rate of transition from state 3 to state 4. Thus, we already have an estimate for the rate of survival 

for recurrers who were detected after their recurrence had become unresectable. However, we 

have not considered survival for recurrers who undergo curative-intent surgery (i.e. who are 

detected in state 2).  

 

For patients who underwent curative surgery for recurrence, we have time of detection as well as 

time of death or the time they were last known to be alive. We fit an exponential survival model to 

this data, giving us the rate of survival post-recurrence diagnosis for patients who were detected 

while their recurrence was still potentially resectable.  
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Figure A1. State transition diagram for disease states of the model; the arrows indicate possible 

transitions.  
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APPENDIX 3 ʹ Utilization submodel algorithms 

Note that empty ovals ƌĞƉƌĞƐĞŶƚ Ğǆŝƚ ƉŽŝŶƚƐ ĨŽƌ ĂŶ ĂůŐŽƌŝƚŚŵ ǁŚĞƌĞďǇ ĂŶ ŝŶĚŝǀŝĚƵĂů ƌĞƚƵƌŶƐ ƚŽ ͞ǁĂŝƚŝŶŐ͟ 

for the next event.  CEA = carcinoembryonic antigen; CT = computed tomography; PET = positron 

emission tomography; MRI = magnetic resonance imaging 

A) Surveillance CEA Testing 
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B) Surveillance CT 
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C) Surveillance Colonoscopy 
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D) Follow-up CT 
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E) CT after Positive Colonoscopy 
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F) Follow-up Liver MRI after CT showing possible liver metastases 
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G) Colonoscopy after Negative CT 
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H) Follow-up PET 
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I) PET after Positive Colonoscopy 
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