
This is a repository copy of Counting linear extensions: Parameterizations by treewidth.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/146315/

Version: Published Version

Article:

Eiben, E. orcid.org/0000-0003-2628-3435, Ganian, R., Kangas, K. et al. (1 more author)
(2019) Counting linear extensions: Parameterizations by treewidth. Algorithmica, 81 (4).
pp. 1657-1683. ISSN 0178-4617

https://doi.org/10.1007/s00453-018-0496-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Algorithmica (2019) 81:1657–1683

https://doi.org/10.1007/s00453-018-0496-4

Counting Linear Extensions: Parameterizations
by Treewidth

E. Eiben1 · R. Ganian2 · K. Kangas3 · S. Ordyniak4

Received: 16 November 2016 / Accepted: 3 August 2018 / Published online: 4 September 2018

© The Author(s) 2018

Abstract

We consider the #P-complete problem of counting the number of linear extensions of

a poset (#LE); a fundamental problem in order theory with applications in a variety of

distinct areas. In particular, we study the complexity of #LE parameterized by the well-

known decompositional parameter treewidth for two natural graphical representations

of the input poset, i.e., the cover and the incomparability graph. Our main result shows

that #LE is fixed-parameter intractable parameterized by the treewidth of the cover

graph. This resolves an open problem recently posed in the Dagstuhl seminar on Exact

Algorithms. On the positive side we show that #LE becomes fixed-parameter tractable

parameterized by the treewidth of the incomparability graph.

Keywords Partially ordered sets · Linear extensions · Parameterized complexity ·

Structural parameters · Treewidth

1 Introduction

Counting the number of linear extensions of a poset is a fundamental problem of order

theory that has applications in a variety of distinct areas such as sorting [30], sequence

analysis [25], convex rank tests [27], sampling schemes of Bayesian networks [28],

and preference reasoning [24]. Determining the exact number of linear extensions of

a given poset is known to be #P-complete [6] already for posets of height at least

3. Informally, #P-complete problems are as hard as counting the number of accept-

ing paths of any nondeterministic Turing machine, implying that such problems are

not tractable unless P = NP. The currently fastest known method for counting linear

B E. Eiben

eduard.eiben@gmail.com

1 Department of Informatics, University of Bergen, Bergen, Norway

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria

3 Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland

4 Department of Computer Science, University of Sheffield, Sheffield, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0496-4&domain=pdf
http://orcid.org/0000-0003-2628-3435

1658 Algorithmica (2019) 81:1657–1683

extensions of a general n-element poset is by dynamic programming over the lattice of

downsets and runs in time O(2n ·n) [10]. Polynomial time algorithms have been found

for various special cases such as series-parallel posets [26] and posets whose cover

graph is a (poly)tree [2]. Fully polynomial time randomized approximation schemes

are known for estimating the number of linear extensions [7,13].

Due to the inherent difficulty of the problem, it is natural to study whether it can

be solved efficiently by exploiting the structure of the input poset. In this respect, the

parameterized complexity framework [9,12] allows a refined view of the interactions

between various forms of structure in the input and the running time of algorithms.

The idea of the framework is to measure the complexity of problems not only in

terms of input sizes, but also with respect to an additional numerical parameter. The

goal is then to develop so-called fpt algorithms, which are algorithms that run in time

f (k)nO(1) where n is the input size and f is a computable function depending only on

the parameter k. A less favorable outcome is a so-called XP algorithm, which runs in

time n f (k); the existence of such algorithms then gives rise to the respective complexity

classes FPT (fixed-parameter tractable) and XP.

The first steps in this general direction have been taken, e.g., in [19], using the

decomposition diameter as a parameter, in [15] using a parameter called activity for N-

free posets, and very recently in [22], where the treewidth of the so-called cover graph

was considered as a parameter. Also the exact dynamic programming algorithm [10]

can be shown to run in time O(nw · w) for a poset with n elements and width w (the

size of the largest anti-chain). Interestingly, none of these efforts has so far led to an

fpt algorithm.

We believe that this uncertainty about the exact complexity status of counting linear

extensions with respect to these various parameterizations is at least partly due to the

fact that we deal with a counting problem whose decision version is trivial, i.e., every

poset has at least one linear extension. This fact makes it considerably harder to show

that the problem is fixed-parameter intractable; in particular, the usual approach based

on parsimonious reductions fails. On the other hand, the same predicament makes

studying the complexity of counting linear extensions significantly more interesting,

as noted also by Flum and Grohe [16]:

The theory gets interesting with those counting problems that are harder than

their corresponding decision versions.

1.1 Results

In this paper we study the complexity of counting linear extensions when the parameter

is the treewidth—a fundamental graph parameter which has already found a plethora

applications in many areas of computer science [17,18,29]. In particular, we settle the

fixed-parameter (in)tractability of the problem when parameterizing by the treewidth

of two of the most prominent graphical representations of posets, the cover graph (also

called the Hasse diagram) and the incomparability graph.

Our main result then provides the first evidence that the problem does not allow for

an fpt algorithm parameterized by the treewidth of the cover graph unless FPT = W[1].

We remark that this complements the XP algorithm of [22] and resolves an open

123

Algorithmica (2019) 81:1657–1683 1659

problem recently posed in the Dagstuhl seminar on Exact Algorithms [21]. The result

is based on a so-called fpt turing reduction from Equitable Coloring parameterized

by treewidth [14], and combines a counting argument with a fine-tuned construction

to link the number of linear extensions with the existence of an equitable coloring. To

the best of our knowledge, this is the first time this technique has been used to show

fixed-parameter intractability of a counting problem.

We complement this negative result by obtaining an fpt algorithm for the problem

when the parameter is the treewidth of the incomparability graph of the poset. To

this end, we use the so-called combined graph (also called the cover-incomparability

graph [5]) of the poset, which is obtained from the cover graph by adding the edges

of the incomparability graph. We employ a special normalization procedure on a

decomposition of the incomparability graph to show that the treewidth of the combined

graph must be bounded by the treewidth of the incomparability graph. Once this is

established, the result follows by giving a formulation of the problem in Monadic

Second Order Logic and applying an extension of Courcelle’s Theorem for counting.

1.2 Organization of the Paper

The paper is organized as follows. Section 2 introduces the required preliminaries

and notation. Section 3 is then dedicated to proving the fixed-parameter intractability

of the problem when parameterized by the treewidth of the cover graph, and the

subsequent Sect. 4 presents our positive results for the problem. Concluding notes are

then provided in Sect. 5.

2 Preliminaries

For standard terminology in graph theory, such as the notions of a graph, digraph,

path, etc. we refer readers to [11]. Given a graph G, we let V (G) denote its vertex

set and E(G) its edge set. The (open) neighborhood of a vertex x ∈ V (G) is the set

{y ∈ V (G) : {x, y} ∈ E(G)} and is denoted by N (x). The closed neighborhood N [v]

of v is defined as N (v) ∪ {v}. A path between two disjoint vertex sets A, B ⊆ V (G)

is a path with one endpoint in A, one endpoint in B, and all internal vertices disjoint

from A ∪ B. A set X ⊆ V (G) is a separator in G if G − X contains at least two

connected components.

We use [i] to denote the set {0, 1, . . . , i}. The following fact about prime numbers

will also be useful later.

Fact 1 ([6]) For any n ≥ 4, the product of primes strictly between n and n2 is at least

n!2n .

2.1 Treewidth

A tree-decomposition of a graph G is a pair (T ,X = {X t }t∈V (T)), where T is a rooted

tree whose every vertex t is assigned a vertex subset X t ⊆ V (G), called a bag, such

that the following properties hold:

123

1660 Algorithmica (2019) 81:1657–1683

(T1) ∪t∈V (T) X t = V (G),

(T2) for every u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ X t } induces a connected

subtree of T (monotonicity), and

(T3) for each uv ∈ E(G) there exists t ∈ V (T) such that u, v ∈ X t .

To distinguish between the vertices of the tree T and the vertices of the graph G, we

will refer to the vertices of T as nodes; for brevity, we will also interchange T and V (T)

when the context is clear. The width of the tree-decomposition T is maxt∈T |X t | − 1.

The treewidth of G, tw(G), is the minimum width over all tree-decompositions of G.

In some cases, we will make use of a well-established canonical form of tree-

decompositions. A tree-decomposition T = (T ,X) is nice if T contains a root r

(introducing natural ancestor-descendant relations in T) and the following conditions

are satisfied:

– Xr = ∅ and Xℓ = ∅ for every leaf ℓ of T . In other words, all the leaves as well as

the root contain empty bags.

– Every non-leaf node of T is of one of the following three types:

– Introduce node A note t with exactly one child t ′ such that X t = X t ′ ∪ {v} for

some vertex v /∈ X t ′ ; we say that v is introduced at t . If u ∈ X t ′ and uv is an

edge in G, then we also say that uv is introduced at t .

– Forget node A note t with exactly one child t ′ such that X t = X t ′\{w} for

some vertex w ∈ X t ′ ; we say that w is forgotten at t .

– Join node A node t with two children t1, t2 such that X t = X t1 = X t2 .

We note that there exists a polynomial-time algorithm that converts an arbitrary

tree-decomposition into a nice tree-decomposition of the same width [23]. A path-

decomposition is a tree-decomposition where each node of T has degree at most

2, and nice path-decompositions are nice tree-decompositions which do not contain

join nodes. Nice path-decompositions can also be computed from standard path-

decompositions in polynomial time while preserving width [23]. Observe that any

path-decomposition can be fully characterized by the order of appearance of its bags

along T , and hence we will consider succinct representations of path-decompositions

in the form Q = (Q1, . . . , Qd), where Qi is the i-th bag in Q. The pathwidth of G,

pw(G), is the minimum width of a path-decomposition of G.

We list some useful facts about treewidth and pathwidth.

Fact 2 [3,4] There exists an algorithm which, given a graph G and an integer k, runs

in time O(kO(k3)n) and either outputs a tree-decomposition of G of width at most k

or correctly identifies that tw(G) > k. Furthermore, there exists an algorithm which,

given a graph G and an integer k, runs in time O(kO(k3)n) and either outputs a

path-decomposition of G of width at most k or correctly identifies that pw(G) > k.

Fact 3 (Folklore) Let T be a tree-decomposition of G and t ∈ T . Then each connected

component of G − X t lies in a single subtree of T − t . In particular, for each connected

component C of G − X t there exists a subtree T ′ of T − t such that for each vertex

a ∈ C there exists ta ∈ T ′ such that a ∈ X ta .

We note that if G is a directed graph, then tw(G) and a tree-decomposition of G

refer to the treewidth and a tree-decomposition of the underlying undirected graph of

123

Algorithmica (2019) 81:1657–1683 1661

G, i.e., the undirected graph obtained by replacing each directed edge with an edge

(and removing duplicate edges).

2.2 Monadic Second Order Logic

We consider Monadic Second Order (MSO) logic on (edge-)labeled directed graphs

in terms of their incidence structure whose universe contains vertices and edges;

the incidence between vertices and edges is represented by a binary relation. We

assume an infinite supply of individual variables x, x1, x2, . . . and of set variables

X , X1, X2, . . . The atomic formulas are V x (“x is a vertex”), Ey (“y is an edge”),

I xy (“vertex x is incident with edge y”), H xy (“vertex x is the head of the edge y”),

T xy (“vertex x is the tail of the edge y”), x = y (equality), x �= y (inequality), Pa x

(“vertex or edge x has label a”), and X x (“vertex or edge x is an element of set X”).

MSO formulas are built up from atomic formulas using the usual Boolean connectives

(¬,∧,∨,→,↔), quantification over individual variables (∀x , ∃x), and quantification

over set variables (∀X , ∃X).

Let Φ(X) be an MSO formula with a free set variable X . For a labeled graph

G = (V , E) and a set S ⊆ E we write G |� Φ(S) if the formula Φ holds true on G

whenever X is instantiated with S.

The following result (an extension of the well-known Courcelle’s Theorem [8])

shows that if G has bounded treewidth then we can count the number of sets S with

G |� Φ(S).

Fact 4 [1] Let Φ(X) be an MSO formula with a free set variable X and w a constant.

Then there is a linear-time algorithm that, given a labeled directed graph G = (V , E)

of treewidth at most w, outputs the number of sets S ⊆ E such that G |� Φ(S).

We note that the above result requires a tree-decomposition of width at most w to

be provided with the input. However, as seen in Fact 2, for a graph of treewidth at

most w such a tree decomposition can be found in linear time, hence we can drop this

requirement from the statement of the theorem.

2.3 Posets

A partially ordered set (poset) P is a pair (P,≤P) where P is a set and ≤P is a

reflexive, antisymmetric, and transitive binary relation over P . The size of a poset

P = (P,≤P) is |P| := |P|. We say that p covers p′ for p, p′ ∈ P , denoted by

p′
⊳

P p, if p′ ≤P p, p �= p′, and for every p′′ with p′ ≤P p′′ ≤P p it holds that

p′′ ∈ {p, p′}. We say that p and p′ are incomparable (in P), denoted p ‖P p′, if

neither p ≤P p′ nor p′ ≤P p.

A chain C of P is a subset of P such that x ≤P y or y ≤P x for every x, y ∈ C .

An antichain A of P is a subset of P such that for all x, y ∈ A it is true that x ‖P y.

A family C1, . . . , Cℓ of pairwise disjoint subsets of P forms a total order if for each

i, j ∈ [ℓ] and each a ∈ Ci , b ∈ C j , it holds that a ≤ b iff i < j . Furthermore, for

each i ∈ [ℓ − 1] we say that Ci and Ci+1 are consecutive. We call a poset P such that

every two elements of P are comparable a linear order. A linear extension of a poset

123

1662 Algorithmica (2019) 81:1657–1683

P = (P,≤P) is a reflexive, antisymmetric, and transitive binary relation � over P

such that x � y whenever x ≤P y and the poset P∗ = (P,�) is a linear order.

We denote the number of linear extensions of P by e(P). For completeness, we

provide a formal definition of the problem of counting the number of linear extensions

below.

#LE

Instance: A poset P .

Task: Compute e(P).

We consider the following graph representations of a poset P = (P,≤P). The

cover graph of P , denoted C(P), is the undirected graph with vertex set P and edge

set {{a, b} | a ⊳ b}. The incomparability graph of P , denoted I (P), is the undirected

graph with vertex set P and edge set {{a, b} | a ‖ b}. The combined graph of P , denoted

IC (P), is the directed graph with vertex set P and edge set {(a, b) | (a ⊳b)∨ (a ‖ b)}.

Finally, the poset graph of P , denoted PG(P), is the directed graph with vertex set

P and edge set {(a, b) | a ≤ b}. We will use the following known fact about tree-

decompositions and path-decompositions of incomparability graphs.

Fact 5 [20, Theorem 2.1] Let P be a poset. Then tw(I (P)) = pw(I (P)).

Corollary 1 (of Facts 2 and 5) Let P be a poset and k = tw(I (P)). Then it is possible to

compute a nice path-decomposition Q of I (P) of width at most k in time O(kO(k3)n).

2.4 Parameterized Complexity

We refer the reader to [9,12,16] for an in-depth introduction to parameterized com-

plexity; here we only briefly summarize the most important notions required by our

results.

A parameterized counting problem A is a function Σ∗ × N → N for some finite

alphabet Σ . We call a parameterized counting problem A fixed-parameter tractable

(FPT) if A can be computed in time f (k) · |x |O(1) where f is an arbitrary computable

function and (x, k) is the instance. The complexity classW[1] can be seen an the analog

of NP for parameterized decision problems. To prove that a parameterized problem A

is W[1]-hard, one can give an fpt turing reduction from a known W[1]-hard problem B

to A; such an fpt turing reduction is a deterministic algorithm solving A with an oracle

to B with the following properties: (a) the algorithm is FPT, and (b) the parameter for

B in each oracle query is bounded by a function of the parameter for A. To avoid

confusion, we remark that there also exists the complexity class #W[1] which is an

analog of #P for parameterized counting problems.

Our main negative result is based on an fpt turing reduction from the following

fairly well-known W[1]-hard decision problem [14].

Equitable Coloring[tw]

Instance: A graph G and an integer r .

Parameter: tw(G) + r .

Question: Does G admit a proper r -coloring such that the number of vertices in any

two color classes differ by at most one?

123

Algorithmica (2019) 81:1657–1683 1663

We denote by #EC(G, r) the number of equitable colorings of graph G with r colors.

We remark that the problem remains W[1]-hard even if we restrict to the instances,

where |V (G)| is divisible by r . This can be seen, for example, by padding of the

instance by a single isolated clique.

3 Fixed-Parameter Intractability of Counting Linear Extensions

The goal of this section is to prove Theorem 1, stated below.

Theorem 1 #LE parameterized by the treewidth of the cover graph of the input poset

does not admit an fpt algorithm unless W[1]=FPT.

We begin by giving a brief overview of the proof, whose general outline follows the

#P-hardness proof of the problem [6]. However, since our parameter is treewidth, we

needed to reduce from a problem that is not fixed-parameter tractable parameterized

by treewidth. Consequently, instead of reducing from SAT, we will use Equitable

Coloring. This made the reduction considerably more complicated and required the

introduction of novel gadgets, which allow us to encode the problem without increasing

the treewidth too much.

The proof is based on solving an instance (G, r) of Equitable Coloring[tw] in

FPT time using an oracle that solves #LE in FPT time parameterized by the treewidth

of the cover graph (i.e., an fpt turing reduction). The first step is the construction of an

auxiliary poset P(G, r) of size 2(r − 1)|V (G)| + (r2 − 1)|E(G)|. Then, for a given

sufficiently large (polynomially larger than |V (G)|) prime number p, we show how to

construct a poset P(G, r , p) such that e(P(G, r , p)) ≡ e(P(G, r)) · #EC(G, r) · Ap

mod p, where Ap is a constant that depends on p and is not divisible by p. Therefore,

if we choose a prime p that does not divide e(P(G, r))·#EC(G, r), then e(P(G, r , p))

will not be divisible by p. Using Fact 1 we show that if #EC(G, r) �= 0, then there

always exists a prime p within a specified polynomial range of |V | such that p does

not divide e(P(G, r)) · #EC(G, r).

From the above, it follows that there exists an equitable coloring of G with r colors

if and only if, for at least one prime p within a specified (polynomial) number range,

the number of linear extensions of P(G, r , p) is not divisible by p. Moreover, we

show that all inputs for the oracle will have size polynomial in the size of G and

treewidth bounded by a polynomial in tw(G)+r . Before proceeding to a formal proof

of Theorem 1, we state two auxiliary lemmas which will be useful for counting linear

extensions later in the proof.

Lemma 1 If a poset P is a disjoint union of posets P1, . . . ,Pk for some positive integer

k, then

e(P) =

(

∑k
i=1 |Pi |

)

!

∏k
i=1 |Pi |!

k
∏

i=1

e(Pi).

123

1664 Algorithmica (2019) 81:1657–1683

Proof We use induction on k, and observe that the lemma trivially holds for k = 1. Let

Q denote the disjoint union of posets P1, . . . ,Pk−1. For each combination of linear

extension of Q and of Pk there are
(

|Q|+|Pk |
|Pk |

)

linear extensions of P . Hence,

e(P) = e(Q)e(Pk)

(

|Q| + |Pk |

|Pk |

)

=
(
∑k−1

i=1 |Pi |)!
∏k−1

i=1 |Pi |!

(k−1
∏

i=1

e(Pi)

)

· e(Pk) ·

(
∑k

i=1 |Pi |

|Pk |

)

=
(
∑k−1

i=1 |Pi |)!
∏k−1

i=1 |Pi |!

(
∑k

i=1 |Pi |)!

(
∑k−1

i=1 |Pi |)!|Pk |!

k
∏

i=1

e(Pi) =
(
∑k

i=1 |Pi |)!
∏k

i=1 |Pi |!

k
∏

i=1

e(Pi).

⊓⊔

In the following we say that a set C of elements of a poset P is a connected

component of P if C is a connected component of C(P).

Lemma 2 Let p be a prime number and Q be a connected component of a poset P

such that |Q| = p − 1. If the number of linear extensions of P is not divisible by

p, then the number of elements in each connected component of P other than Q is

divisible by p.

Proof Let P1 be a connected component of P different than Q. First note that from

Lemma 1, it is clear that e(P) will be divisible by the number of linear extensions of

the poset P ′ formed as a disjoint union of Q and P1. Now, by Lemma 1 it holds that

e(P ′) =
(p − 1 + |P1|)!

(p − 1)!|P1|!
e(P1)e(Q).

Since e(P) is not divisible by p, it must follow that e(P ′) is also not divisible by p. Note

that
(p−1+|P1|)!
(p−1)!|P1|!

=
(

p−1+|P1|
p−1

)

is a natural number and a divisor of e(P ′). Furthermore,

(p −1)! cannot be divisible by p since p is prime. Hence it follows that
(p−1+|P1|)!

|P1|!
=

(

p−1+|P1|
p−1

)

· (p − 1)! cannot be divisible by p. Suppose that |P1| = ap + b for some

non-negative integers a and b such that b < p; then we obtain that the expression
(p−1+ap+b)!

(ap+b)!
is not divisible by p. But

(p − 1 + ap + b)!

(ap + b)!
=

p−1
∏

i=1

(ap + b + i) ,

which is clearly divisible by (a + 1)p whenever b ≥ 1. Therefore b = 0 and hence

|P1| is divisible by p, which concludes the proof of the lemma. ⊓⊔

We now proceed to the proof of our main theorem.

Proof (of Theorem 1) The proof is structured as follows. We begin by giving the

construction ofP(G, r) andP(G, r , p), after which we establish the desired properties

of P(G, r , p) and P(G, r), and summarize in the conclusion.

123

Algorithmica (2019) 81:1657–1683 1665

v1,0

v1,1

v2,0

v2,1

u1,0

u1,1

u2,0

u2,1

e1,0 e2,0 e1,1 e1,2 e2,1 e2,2 e0,1 e0,2

Fig. 1 The cover graph for an edge e = uv of G in P(G, 3)

Construction of P(G, r) and the main gadget Let (G, r) be an instance of Equitable

Coloring[tw] such that |V (G)| is divisible by r (if this is not the case, then this can

be enforced by padding the instance with isolated vertices, see also [14]). We begin

by constructing the poset P(G, r), which will play an important role later on. For

every vertex v of V (G) we create 2(r − 1) elements denoted vi, j , where 1 ≤ i ≤

r − 1 and j ∈ {0, 1}, such that the only dependencies in the poset between these

elements are vi,1 ≤ vi,0 for all v ∈ V (G), for all i ∈ {1, . . . , r − 1}. For every

edge e = uv ∈ E(G) we create r2 − 1 pairwise-incomparable elements ei, j , such

that (i, j) ∈ ({0, . . . , r − 1}2\{(0, 0)}). The dependencies of ei, j are: if i > 0 then

ui,0 ≤ ei, j , and if j > 0 then v j,0 ≤ ei, j (see also Fig. 1).

Construction of P(G, r , p) Let us now fix a prime number p such that p does not

divide e(P(G, r)) and p > 2r |V (G)| + r2|E(G)|. The main gadget in our reduction

is a so-called (a, b)-flower, which consists of an antichain of a vertices (called the

petals) covering a chain of p−b elements (called the stalk); an illustration is provided

in Fig. 2. Due to Lemma 2, (a, b)-flowers will later allow us to force a choice of exactly

b vertices out of a.

Let G be a graph, r be an integer and p be a prime number as above. Recall that

|V (G)| is divisible by r and let s =
|V (G)|

r
(note that this implies that each color in

an equitable coloring of G must occur precisely s times in G). We proceed with a

description of the poset P(G, r , p). The poset P(G, r , p) is split into r + 3 “levels”

L1, . . . , Lr+3 by linearly ordered elements a0 ≤ a1 ≤ · · · ≤ ar+2 ≤ ar+3, called

the anchors. Each of these levels, besides Lr+3, will consist of some flowers and a

chain of p − 1 elements which we call a stick; each of these flowers and the stick will

always be pairwise incomparable. The anchors a0 and ar+3 are the unique minimum

and maximum elements, respectively. The stick and all the stalks of flowers in level L i

will always lie between two consecutive elements ai−1 and ai , and the petals of these

flowers will be incomparable with ai as well as some anchors above that (as defined

later). Observe that while the relative position of any stalk and any anchor is fixed in

every linear extension, petals can be placed above ai .

123

1666 Algorithmica (2019) 81:1657–1683

a

p − b

Fig. 2 An (a, b)-flower

p − 1

ai−1

ai Ai

Fig. 3 Each level consists of a chain of length p − 1 and a few flowers. The set of petals associated with

level L i is denoted by Ai

We say that a flower (or its stalk, petals, or elements) is associated with the level in

which it is constructed, i.e., with the level L i such that ai−1 ≤ c ≤ ai for stalk elements

c and ai−1 ≤ d and d ‖ ai for petals d. We denote the set of all petals associated with

level L i as Ai (see Fig. 3). For the construction, it will be useful to keep in mind the

following intended goal: whenever an (a, b)-flower is placed in level i , it will force

the selection of precisely b petals (from its total of a petals), where selected elements

remain on level i (i.e., between ai−1 and ai) in the linear extension and unselected

elements are moved to level r +2 (i.e., between ar+2 and ar+3) in the linear extension.

We will later show that the total number of linear extensions which violate this goal

must be divisible by p, and hence such extensions can all be disregarded modulo p.

The first r levels are so-called color class levels, each representing one color class.

We use these levels to make sure that every color class contains exactly s vertices.

Aside from the stick, each such level contains a single (|V (G)|, s)-flower. Recall that

the stalk and the stick on level 1 ≤ i ≤ r both lie between anchors ai−1 and ai , and

that the stalk and the flower are incomparable. We associate each petal of the flower at

123

Algorithmica (2019) 81:1657–1683 1667

level L i with a unique vertex v ∈ V (G) and denote the petal vi . Each petal vi will be

incomparable with all anchors above ai−1 up to ar+3, i.e., vi ‖ a j for i ≤ j ≤ r + 2

and vi ≤ ar+3. Intuitively, the flower in each color class level will later force a choice

of s vertices to be assigned the given color.

Level Lr+1 is called the vertex level and consists of one stick and |V (G)|-many

(r , 1)-flowers; the purpose of this level is to ensure that every vertex is assigned exactly

one color. Each flower is associated with one vertex v ∈ V (G) and we denote the petals

of the flower associated with vertex v as vi for 1 ≤ i ≤ r . We set vi ≤ vi for all

v ∈ V (G) and 1 ≤ i ≤ r .

Level Lr+2 is called the edge level, and its purpose is to ensure that the endpoints

of every edge have a different color. It consists of a stick and |E(G)|-many (r2, 1)-

flowers. Each flower is associated with one edge e = uv ∈ V (G) and we denote the

petals of the flower associated with e as ei, j for 1 ≤ i ≤ r and 1 ≤ j ≤ r . Moreover,

for edge e = uv we set ui ≤ ei, j , v j ≤ ei, j , and we set ar+2 ≤ ei, j whenever i = j .

Observe that this forces any petal ei,i to lie between ar+2 and ar+3 in every linear

extension (i.e., prevents ei,i from being “selected”).

Level Lr+3 is called the trash level. It does not contain any new elements in the

poset, but it plays an important role in the reduction: we will later show that any petals

which are interpreted as “not selected” must be located between ar+2 and ar+3 in any

linear extension that is not automatically “canceled out” due to counting modulo p.

A high-level overview of the whole constructed poset P(G, r , p) is presented in

Fig. 4.

Establishing the desired properties of P(G, r , p) and P(G, r) We begin by formaliz-

ing the notion of selection. Let a configuration be a partition φ of petals of all flowers

into r + 3 sets L
φ
1 , . . . , L

φ
r+3. Let Φ denote a set of all configurations. We say that

a linear extension � of P(G, r , p) respects the configuration φ if L
φ
1 � a1 � L

φ
2 �

a2 � · · · � ar+2 � L
φ
r+3 and we denote the set of all linear extensions of P(G, r , p)

that respects φ by Lφ . We say that a configuration φ is consistent if Lφ is non-empty;

this merely means that L
φ
1 ≤ a1 ≤ L

φ
2 ≤ a2 ≤ · · · ≤ ar+2 ≤ L

φ
r+3 does not violate

any inequalities in P(G, r , p). Observe that if φ is consistent, then Lφ is exactly the set

of linear extension of the partial order Pφ(G, r , p), where Pφ(G, r , p) is obtained by

enriching P(G, r , p) with the relations L
φ
1 ≤ a1 ≤ L

φ
2 ≤ a2 ≤ · · · ≤ ar+2 ≤ L

φ
r+3

and performing transitive closure (in other words, Pφ(G, r , p) is obtained by enforc-

ing φ onto P(G, r , p)).

Since every linear extension of P(G, r , p) respects exactly one configuration, it is

easy to see that e(P(G, r , p)) =
∑

φ∈Φ |Lφ | =
∑

φ∈Φ e(Pφ(G, r , p)). Intuitively,

a configuration φ contributes to the above sum modulo p if e(Pφ(G, r , p)) is not

divisible by p. We shall prove that the only configurations which contribute to this

sum modulo p are those where from every (a, b)-flower there are exactly b petals in the

same level as the stalk, and the remaining a −b petals are in the trash. Furthermore, in

each configuration φ which contributes to the above sum modulo p, the petals in L
φ
r+1

represent a proper equitable coloring of G with r colors, and each such configuration

is respected by the same number of linear extensions.

123

1668 Algorithmica (2019) 81:1657–1683

p − 1p − 1

p − 1 p − 1

p − 1 p − s

r
|V (G)|

|V (G)|

r

|E(G)|

r2

u1 v1

ur vr

u1 ur v1 vr

e1,1 e1,r er,1 er,r

ar+3

ar+2

ar+1

ar

ar−1

a1

a0

Fig. 4 The cover graph of P(G, r , p). The edge e is the edge in G between vertices u and v

123

Algorithmica (2019) 81:1657–1683 1669

Let us first remark that for any configuration φ, the anchors a0, a1, . . . , ar+3 are

comparable to all elements of Pφ(G, r , p). Now, let P
φ

L i
be the poset induced by all

elements e ∈ Pφ(G, r , p) such that ai−1 ≤ e ≤ ai and e �= ai−1, e �= ai . It is readily

seen that e(Pφ(G, r , p)) =
∏r+3

i=1 e(P
φ

L i
). We proceed by stating a series of claims

about our construction.

Claim 1 For each i ∈ {1, . . . , r}, it holds that either e(P
φ

L i
) ≡ 0 mod p, or e(P

φ

L i
) =

s!
(

2p−1
p

)

and L
φ

i contains exactly s petals of Ai and no other petals.

Proof (of the Claim) Assume that e(P
φ

L i
) �≡ 0 mod p and recall that level L i contains

a stick, which is a chain of p−1 elements that is incomparable with all elements of P
φ

L i

in every configuration φ. By Lemma 2 this implies that every connected component of

P
φ

L i
distinct from the stick has size divisible by p. Clearly, L

φ

i contains only those stalks

that are associated with the level L i , and it contains all such stalks. It is readily seen

from the construction that any petal in ∪ j<i A j would necessarily form a component of

size one in P
φ

L i
. Hence, P

φ

L i
contains only elements associated with level L i , namely

elements of the stick and elements of a (|V (G)|, s)-flower. Moreover, by Lemma 2

and the fact that |V (G)| + p − s < 2p, each such flower has exactly p elements in

level P
φ

L i
. Since the p − s elements of the stalk must be in P

φ

L i
, the poset P

φ

L i
contains

exactly s elements of Ai . Clearly, the number of linear extensions of the petals of

the (|V (G)|, s)-flower in P
φ

L i
is s! and hence by Lemma 1 e(P

φ

L i
) = s!

(

2p−1
p

)

, which

concludes the proof. ⊓⊔

Claim 2 Either e(P
φ

Lr+1
) ≡ 0 mod p, or e(P

φ

Lr+1
) =

(|V (G)|p+p−1)!

(p−1)!(p!)|V (G)| and L
φ
r+1 con-

tains exactly |V (G)| elements of Ar+1, specifically one petal for each (r , 1)-flower on

level Lr+1.

Proof (of the Claim) Assume e(P
φ

Lr+1
) �≡ 0 mod p, and let us first examine elements

that are not associated with level Lr+1. Clearly, no element associated with level Lr+2

can appear in P
φ

Lr+1
and the only elements associated with any level i < r +1 that can

end up in P
φ

Lr+1
are petals. Each of these elements is smaller than exactly one petal at

level Lr+1 and incomparable to all other elements associated with this level. It is easy

to see that largest possible size of a connected component of P
φ

Lr+1
is p−1+2r < 2p.

By Lemma 2, every connected component in P
φ

Lr+1
(except for the stick) will have

size p, and therefore P
φ

Lr+1
will contain exactly one element for every set of petals

associated with Lr+1 and no other elements. Hence, P
φ

Lr+1
consists of |V (G)| chains

of length p and one chain of length p − 1. Then e(P
φ

Lr+1
) =

(|V (G)|p+p−1)!

(p−1)!(p!)|V (G)| follows

from Lemma 1. ⊓⊔

Claim 3 Either e(P
φ

Lr+2
) ≡ 0 mod p, or e(P

φ

Lr+2
) =

(|E(G)|p+p−1)!

(p−1)!(p!)|E(G)| and L
φ
r+2 con-

tains exactly |E(G)| elements of Ar+2, specifically one petal for each (r2, 1)-flower

on level Lr+2.

123

1670 Algorithmica (2019) 81:1657–1683

Proof (of the Claim) The idea of the proof is similar to the proof of the previous claim,

with one additional obstacle: that several flowers can be connected with petals from

lower levels into one connected component on level Lr+2 through the petals of flowers

on level Lr+1. So, assume e(P
φ

Lr+2
) contains a connected component C which contains

at least a single stalk. If C contains precisely the single stalk, then by Lemma 2 we have

e(P
φ

Lr+2
) ≡ 0 mod p. Otherwise, for each stalk in C , there must be at least one petal

in the same flower (otherwise the stalk cannot be connected to the rest of C); in other

words, the intersection of each flower and C contains at least p vertices. Let a denote

the number of flowers which intersect C , b2 denote |Ar+2 ∩ C |, b1 denote |Ar+1 ∩ C |

and b0 denote
∑r

i=1 |Ar ∩C |. Then it follows that |C | = p ·a + (b2 −a)+ b1 + b0 ≤

p · a + r2|E | + r |V | + r |V |, and recall that r2|E | + r |V | + r |V | < p. Furthermore,

if b1 > 0 (and at least one petal from Ar+1 is required unless C contains only a single

flower), we have a · p < |C | < (a + 1) · p. Hence any such C cannot have size

divisible by p and by Lemma 2 we have e(P
φ

Lr+2
) ≡ 0 mod p. Otherwise, if no two

flowers are connected through a petal of a flower associated with level Lr+1, then

every connected component of P
φ

Lr+2
of size p must consist of a stalk and exactly one

petal and the claim follows analogously as the proof of Claim 2. ⊓⊔

Claim 4 If φ is a consistent configuration and for all i ∈ {1, . . . , r + 2} it holds that

e(P
φ

L i
) �≡ 0 mod p, then 1) the petals in L

φ
r+1 encode a proper equitable coloring

of V (G) where vertex v receives color i iff the petal vi lies in L
φ

i , and 2) P
φ

Lr+3
is

isomorphic with P(G, r).

Proof (of the Claim) From Claims 1, 2 and 3 together with the assumption that

e(P
φ

L i
) �≡ 0 mod p, it follows that each of the levels L

φ
1 , . . . , L

φ
r contains exactly s

petals associated with the corresponding level, level L
φ
r+1 contains exactly one petal

for each vertex of G and level L
φ
r+2 contains exactly one petal for each edge of G.

For the first part of this claim, we observe that each pair of petals in L
φ
1 , . . . , L

φ
r are

associated with distinct vertices of G. If this were not the case, then since |V (G)| = rs

there would exist a vertex v such that no element of L
φ
1 , . . . , L

φ
r is associated with

v. But due to the construction at level r + 1 there exists some i ∈ {1, . . . , r} such

that vi ∈ L
φ
r+1. Then, since vi ≤ vi and vi can only occur either in level L

φ

i or L
φ
r+3

(the latter of which lies above vi in the linear extension due to the configuration φ),

this would lead to a contradiction. In particular, we conclude that there is a matching

between the petals in level r + 1 (encoding the color for each vertex) and the union of

petals in levels 1, 2, . . . r (encoding the vertices assigned to each color class), and by

Claim 1 it follows that there are exactly s petals in Lr+1 associated with each color

class.

We now argue that the coloring is proper. Observe that by the same argument as

above, if an edge e = uv satisfies ei, j ∈ L
φ
r+2, then ui ∈ L

φ
r+1 and v j ∈ L

φ
r+1. From

the construction of P(G, r , p) it follows that if i = j , then ei, j /∈ Lr+2. Combining

these two facts we get that the coloring encoded in L
φ
r+1 is indeed proper.

Now let us take a look at level L
φ
r+3. To prove the claim, we will construct an

isomorphism f from elements of P
φ

Lr+3
to elements of P(G, r). For every vertex

123

Algorithmica (2019) 81:1657–1683 1671

v ∈ V (G), precisely one element vi ∈ L
φ
r+1 and precisely one of the first r levels

contains an element associated with v; to be precise, vi ∈ L
φ

i and v j ∈ L
φ
r+3 and hence

also v j ∈ L
φ
r+3 for all j �= i . We set f (v j) = v j,0 and f (v j) = v j,1, whenever j �= i

and j < r . For the last remaining elements, we set f (vr) = vi,0 and f (vr) = vi,1.

Next, for every edge e = uv there is exactly one ea,b ∈ L
φ
r+2. Moreover, if ea,b ∈ L

φ
r+2

then ua ∈ L
φ
r+1 and vb ∈ L

φ
r+1, and all other petals for this edge e are in L

φ
r+3. Let

gi (r) = i , gi (i) = 0, and gi (k) = k otherwise. Then we set f (ei, j) = ega(i),gb(j).

Observe that, since ea,b does not lie in L
φ
r+3, no edge is mapped to the non-existent

element e0,0 in P(G, r). It is straightforward to verify that f is really bijective mapping

between elements of P
φ

Lr+3
and P(G, r). Moreover, f (u) ≤ f (v) in P(G, r) if and

only if u ≤ v in P
φ

Lr+3
. Therefore, P

φ

Lr+3
is isomorphic with P(G, r) and the claim

holds. ⊓⊔

Claim 5 e(P(G, r , p)) �≡ 0 mod p if and only if e(P(G, r)) · #EC(G, r) �≡ 0

mod p.

Proof (of the Claim) From previous claims and in particular Claim 4, we already

know that e(Pφ(G, r , p)) �= 0 mod p only if φ corresponds to an equitable coloring

of G with r colors. Moreover, we know that e(Pφ(G, r , p)) =
∏r+3

i=1 e(P
φ

L i
) and if

e(Pφ(G, r , p)) �≡ 0 mod p, then

r+3
∏

i=1

e(P
φ

L i
) =

(

s!

(

2p − 1

p

))r
(|V (G)|p + p − 1)!

(p − 1)!(p!)|V (G)|

(|E(G)|p + p − 1)!

(p − 1)!(p!)|E(G)|
e(P(G, r)).

Since p > |V (G)| + |E(G)|, (|V (G)|p + p − 1)! is divisible by p|V (G)|, but not

by p|V (G)|+1 and (|E(G)|p + p − 1)! is divisible by p|E(G)|, but not by p|E(G)|+1.

Therefore, it is readily seen that

(

s!

(

2p − 1

p

))r
(|V (G)|p + p − 1)!

(p − 1)!(p!)|V (G)|

(|E(G)|p + p − 1)!

(p − 1)!(p!)|E(G)|

is not divisible by p. We will denote this latter expression as cp; note that cp corre-

sponds to the constant Ap introduced at the beginning of this section. Hence, it is easy

to see that if #EC(G, r) denotes the actual number of equitable coloring of G with r

colors, then

e(P(G, r , p)) ≡ cpe(P(G, r))#EC(G, r) mod p.

Since cp is not divisible by p, it is clear that e(P(G, r , p)) �≡ 0 mod p if and only

if e(P(G, r)) · #EC(G, r) �≡ 0 mod p, and the claim holds. ⊓⊔

Claim 6 If #EC(G, r) �= 0, then there is a prime number p greater than 2r |V (G)| +

r2|E(G)| and smaller than (2r |V (G)| + r2|E(G)|)2 such that p does not divide

e(P(G, r)) · #EC(G, r).

123

1672 Algorithmica (2019) 81:1657–1683

Proof (of the Claim) Let us first upperbound e(P(G, r))#EC(G, r). Clearly, P(G, r)

contains m = 2(r − 1)|V (G)| + (r2 − 1)|E(G)| elements, hence e(P(G, r)) ≤

m!. It can easily be verified that the number of possibilities of dividing |V (G)| =

rs vertices into r color classes with exactly s colors each is (rs)!
(s!)r . By Fact 1, the

product of all primes between 2r |V (G)| + r2|E(G)| and (2r |V (G)| + r2|E(G)|)2 is

at least (2r |V (G)| + r2|E(G)|)!22r |V (G)|+r2|E(G)|. However, 2(r − 1)|V (G)| + (r2 −

1)|E(G)| + |V (G)| ≤ 2r |V (G)| + r2|E(G)| and hence e(P(G, r))#EC(G, r) ≤

(2(r − 1)|V (G)| + (r2 − 1)|E(G)|)! +
|V (G)|!
(s!)r is clearly less than the product of

all primes between 2r |V (G)| + r2|E(G)| and (2r |V (G)| + r2|E(G)|)2. Note that if

a natural number N is divisible by set of primes p1, . . . , pℓ then N is divisible by

the product of these primes and in particular N is bigger than the product of these

primes. Therefore, e(P(G, r))#EC(G, r) cannot be divisible by all primes between

2r |V (G)|+ r2|E(G)| and (2r |V (G)|+ r2|E(G)|)2, from which the claim follows. ⊓⊔

Claim 7 tw(C(P(G, r , p))) ≤ r · (tw(G) + 3) + 6.

Proof (of the Claim) To distinguish vertices of G and C(P(G, r , p)) in this proof, we

will refer to the vertices of C(P(G, r , p)) as elements. So, let T = (T , {X t }t∈V (T)) be

a nice tree-decomposition of G of width tw(G). Using T , we show how to construct a

tree-decomposition T ′ = (T ′, {X ′
t }t∈V (T ′)) of C(P(G, r , p)) with treewidth at most

r · (tw(G) + 3) + 6. The construction can be summarized as follows:

1. All bags of T ′ will contain the anchors a0, . . . , ar+3 as well as the top-most element

of each stalk of the (|V (G)|, s)-flowers in the first r levels; let δ denote this set of

2r + 4 elements.

2. For every bag t ∈ T , the tree-decomposition T ′ will contain a node t ′ such that if

v ∈ X t then {v1, . . . , vr } ∈ X ′
t .

3. Afterwards, every introduce node t ∈ T that introduces a vertex v will be replaced

by a long path Pt which gradually introduces and subsequently forgets all remain-

ing elements associated with the flower of v at level r + 1 (i.e., the stalk) as well

as every petal from the first r levels associated with v .

4. For each edge e, we pick an introduce node t ∈ T which contains both endpoint

of e and extend the path Pt by a new segment which introduces and subsequently

forgets all elements associated with the flower of e at level r + 2.

5. The root node is replaced by a path that takes care of all elements which are not

associated with any vertex or edge in G.

Let us now take a closer look what happens in T ′ when t ∈ T is an introduce

node. Let v ∈ V (G) be the vertex introduced at t . Since X ′
t contains elements

a0, . . . , ar+2, v
1, . . . , vr , and the maximum element of each stalk of the (|V (G)|, s)-

flower in the first r levels, it is easily seen that every petal from the first r levels

associated with v as well as the stalk of the flower associated with v in level Lr+1

each forms a separate connected component of C(P(G, r , p))\X ′
t . Moreover, for an

edge e = uv such that X t contains both endpoints of e, we have that X ′
t also con-

tains elements u1, . . . , ur and one can see that also the flower associated with e at

level Lr+2 is a connected component of C(P(G, r , p))\X ′
t . It is readily seen that

the singleton, chain, and flower all have pathwidth 1 and hence there is a nice path-

decomposition (B1, . . . , Bℓt) with B1 = Bℓt = ∅ of the graph containing every petal

123

Algorithmica (2019) 81:1657–1683 1673

element from first r levels associated with v, the stalk of the flower associated with v in

level Lr+1, and the flower associated with e in level Lr+2 for every edge e introduced

at t . We then replace X ′
t by a path (Y1, . . . , Yℓt) such that Yi = Bi ∪ X ′

t and for each

i ∈ {1, . . . , ℓt − 1} the node with bag Yi+1 is the parent of the node with the bag Yi .

It is easy to see now, that when we are forgetting vertex v in node t in T , we can

forget elements v1, . . . , vr in T ′, because we already introduced all its adjacent edges

in C(P(G, r , p)) either in the path corresponding to the node of T introducing v or

the one introducing a neighbor of v.

Finally, when we get to the root node of T , we have already forgotten all elements

associated with any specific vertex or edge of G. Therefore, the only elements besides

δ which need to be included in T ′ are the remaining elements in the stalks in the first

r levels and the sticks in every level. However, it is easy to see that at this point they

all form separate chains in C(P(G, r , p))\δ. Hence there once again exists a path-

decomposition of width at most |δ| + 2 which gradually introduces and subsequently

forgets all of these elements.

One can readily see that the properties (T1), (T2), and (T3) are satisfied and we are

only left with computing the width of T ′. By construction, every join and forget node

in T will become a node in T ′ whose bag has size at most r · |X t | + 2r + 4. On the

other hand, every introduce node in T will become a path in T ′, and the largest bag

on this path has size at most r · |X t | + 2r + 6, from which the claim follows. ⊓⊔

Concluding the proof Let us summarize the fpt turing reduction used to prove The-

orem 1. Given an instance (G, r) of Equitable Coloring[tw], we loop over all

primes p such that 2r |V (G)| + r2|E(G)| < p < (2r |V (G)| + r2|E(G)|)2, and for

each such prime we construct the poset P(G, r , p); from Claim 6 it follows that if

#EC(G, r) �= 0, then at least one such prime will not divide e(P(G, r)) · #EC(G, r),

and by Claim 7 the cover graph of each of the constructed posets P(G, r , p) has

bounded treewidth. For each such poset P(G, r , p), we compute e(P(G, r , p)) by

the black-box procedure provided as part of the reduction. If for any prime p we

get e(P(G, r , p)) �≡ 0 mod p, then we conclude that (G, r) is a yes-instance, and

otherwise we reject (G, r), and this is correct by Claim 5. ⊓⊔

4 Fixed-Parameter Tractability of Counting Linear Extensions

This section is dedicated to proving our algorithmic result, stated below.

Theorem 2 #LE is fixed-parameter tractable parameterized by the treewidth of the

incomparability graph of the input poset.

The proof of Theorem 2 is divided into two steps. First, we apply a transformation

process to a path-decomposition Q of small width (the existence of which is guaranteed

by Corollary 1) of I (P) which results in a tree-decomposition T of I (P) satisfying

certain special properties. The properties of T are then used to prove that IC (P) has

treewidth bounded by the treewidth of I (P). In the second step, we construct an MSO

formulation which enumerates all the linear extensions of P using IC (P), and apply

Fact 4.

123

1674 Algorithmica (2019) 81:1657–1683

4.1 The Treewidth of Combined Graphs

We begin by arguing a useful property of separators in incomparability graphs.

Lemma 3 Let S ⊆ V (I (P)). Then for each pair of distinct connected components

C1, C2 in I (P) − S, it holds that for any a1, b1 ∈ C1 and any a2, b2 ∈ C2 we

have a1 ≤ a2 iff b1 ≤ b2. Namely, the poset contains a total order of all connected

components in I (P) − S.

Proof We begin by proving the following claim.

Claim 8 Let a, b, c be three distinct elements of P such that a ‖ b and both pairs a, c

and b, c are comparable. Then a ≤ c iff b ≤ c.

Proof (of the Claim) Suppose that, w.l.o.g., a ≤ c and c ≤ b. Then by the transitivity

of ≤, we get a ≤ b which contradicts our assumption that a ‖ b. ⊓⊔

Now to prove Lemma 3, assume for a contradiction that, w.l.o.g., there exist a1, b1 ∈

C1 and a2, b2 ∈ C2 such that a1 ≤ b1 and b2 ≤ a2. Let Q1 be an a1-a2 path in I [C1].

By Claim 8, a1 ≤ b1 implies that every element q on Q1 satisfies q ≤ b1, and in

particular a2 ≤ b1. Next, let Q2 be a b1-b2 path in I [C2]. Then Claim 8 also implies

that each element q ′ on Q2 satisfies a2 ≤ q ′. Since b2 lies on Q2, this would imply

that a2 ≤ b2, a contradiction. ⊓⊔

To proceed further, we will need some additional notation. Let T = (T ,X) be a

rooted tree-decomposition and t ∈ T . We denote by L(t) the set of all vertices which

occur in the “branch” of T − t containing the root r ; formally, L(t) = {v ∈ X t ′\X t | t ′

lies in the same connected component as r in T −t}. We then set R(t) = V (G)\(L(t)∪

X t). We also let T r
t denote the connected component of T − t which contains the root

r .

Next, recall that each connected component of the graph obtained after deleting X t

must lie in a subtree of T − t (Fact 3). Let Υt be the set of connected components

of (I (P)\X t) ∩ R(t). Recall that because of Lemma 3, the components of Υt are

totally ordered by P . We say that two components B1, B2 ∈ Υt are consecutive if

there is no element v ∈ V (I (P))\(X t ∪ B1 ∪ B2) that is in between elements in these

components; formally, for every v it holds that either v ≤ b for all b ∈ B1 ∪ B2, or

v ≥ b for all b ∈ B1 ∪ B2.

A block of a bag X t is a maximum set of consecutive connected components in

(I (P) − X t) ∩ R(t); note that each block has a natural total ordering among the

contained components, given by Lemma 3. We say that a node t ∈ T has z blocks

if there exist z distinct blocks of X t . Blocks will play an important role in the tree-

decomposition we wish to obtain from our initial path-decomposition of I (P). The

following lemma captures the operation we will use to alter our path-decomposition.

Lemma 4 Let T = (T ,X) be a rooted tree-decomposition of a graph G and let t ∈ T

be such that there are z blocks of X t . Then there is a tree-decomposition T ′(T ′,X ′)

satisfying:

1. The width of T ′ is at most the width of T .

123

Algorithmica (2019) 81:1657–1683 1675

2. The tree T ′ contains T r
t as a subtree which is separated from the rest of T ′ by t.

3. The degree of t in T ′ is z + 1.

4. There exists a bijection α between the z blocks of X t and the z trees in T ′ − t other

than T r
t such that for each block B of X t , we have

⋃

s∈α(B) X ′
s\X t = B.

5. For each t ′ ∈ N [t]\T r
t , we have X t ′ = X t .

Proof It will be useful to observe that T − T r
t is a subtree of T and in particular it

is connected. Consider the following construction of T ′. First, we copy all nodes of

T r
t ∪ {t} (along with their bags) into T ′, thus ensuring that Property 2 holds. Second,

for each block B of X t we make a copy T B of the tree T − T r
t , and connect the

node t B corresponding to t in T \T r
t by an edge to the node t in T ′. Moreover, for

each node s ∈ T \T r
t we set X ′

s B = Xs ∩ (B ∪ X t). It is easy to verify that all of

the required properties are now satisfied, and it remains to show that T ′ is indeed a

tree-decomposition.

We argue that T ′ satisfies all three properties of tree-decompositions. Property (T1)

follows directly from fact that T was tree decomposition, and hence every vertex that

does not occur in a bag in T r
t must occur in some bag Xs for some node s ∈ T \T r

t ;

then this vertex either also occurs in X t or occurs in some block B and hence in

X ′
s B . Property (T2) is also straightforward, since each vertex either does not occur

in any block or in exactly one block, and in both cases monotonicity follows from

the monotonicity of T and the construction. For the final Property (T3), we recall

that there are no edges between the blocks of X t ; in particular every edge e = ab in

I (P)[X t ∪ R(t)] is either contained in X t , goes between a vertex of X t and a vertex

of some block B, or is contained in some block B. In all three cases, it holds that if

a, b ∈ Xs for some s ∈ T \T r
t , then e ∈ Xs B for some block B. Therefore, T ′ is a

tree-decomposition and the proof is complete. ⊓⊔

We proceed by showing how Lemma 4 is applied to transform a given path-

decomposition.

Lemma 5 Let Q be a nice path-decomposition of I (P). Then there is a rooted tree-

decomposition T = (T ,X) of I (P) with the following properties. T is rooted at a

leaf r and Xr = ∅, the width of T is at most the width of Q, and for any node t ∈ T

with z > 1 blocks:

1. The degree of t in T is z + 1.

2. There exists a bijection α between the z blocks of X t and the z trees in T ′ − t other

than T r
t such that for each block B of X t , we have

⋃

s∈α(B) Xs\X t = B.

3. For t ′ ∈ N (t)∩T r
t there exists a vertex v such that X t ′ = X t\{v}, and furthermore

t ′ has degree at most 2 and 1 block.

4. For each pair of neighbors t, t ′ ∈ T , it holds that |X t\X t ′ | + |X t ′\X t | ≤ 1.

Proof Let us order the vertices of I (P) in the order in which they were introduced in Q.

We set the first leaf of Q to be the root r , and observe that Xr = ∅ since Q is nice. We

then process the vertices of I (P) in their order of introduction; when processing each

such vertex v, we apply Lemma 4 to the unique node t of the current tree-decomposition

which is closest to r and contains v; with a slight abuse of terminology, we say that

t is the node where v is introduced. We show that the following invariants hold after

(and before) each step of this procedure:

123

1676 Algorithmica (2019) 81:1657–1683

1. For each pair of neighbors t, t ′ ∈ T , it holds that |X t\X t ′ | + |X t ′\X t | ≤ 1.

2. For each vertex u that was already processed, the introduce node of u satisfies the

conditions of the lemma.

3. Any node t of degree greater than 2 is an introduce node of an already processed

vertex.

Clearly, all invariant conditions hold for Q rooted at r (the first invariant condi-

tion follows by the fact that Q is nice, and the remaining two are satisfied trivially).

Similarly, all invariant conditions hold after applying Lemma 4 on the first introduce

node t in Q. Indeed, note that since Xr = ∅, we can assume w.l.o.g. that t is a child

of r and X t = {v} for some vertex v. Then the first and third invariant condition is

immediately seen to hold; as for invariant condition 2, if t has more than 1 block then

applying Lemma 4 ensures that t satisfies Conditions 1, 2, and 4, while Condition 3

holds since t ′ = r .

For the induction step, suppose that the conditions hold in a tree-decomposition T

obtained by inductively applying Lemma 4 as above, and the first unprocessed vertex is

v. Let t be the unique node where v is introduced, and let T ′ be the tree-decomposition

we obtained by applying Lemma 4 on T and t .

It is easy to verify that T ′ then satisfies the desired Conditions 1, 2, and 4 at the

node t by Lemma 4. As for Condition 3, since t is the introduce node of v and the

first invariant condition holds in T , it is clear that for t ′ ∈ N (t) ∩ T r
t it is the case

that X t ′ = X t\{v}. Moreover, t ′ cannot be an introduce node, since then t ′ would

have to introduce an already processed vertex, which would imply that X t ′ = X t due

to our application of Lemma 4 on introduce nodes. So, let us consider the node s on

the unique t ′-r path that is the closest introduce node to t ′, and let s′ be the neighbor

of s on the s-t ′ path. Since no vertex was introduced on the s′-t ′ path, it follows that

R(s′) = R(t ′). Since s′ only has 1 block by the construction, it must be the case that

t ′ also only has one block, and so Condition 3 also holds.

We proceed by arguing that the invariant conditions remain satisfied by T ′. Since

Q was nice and T satisfied the first invariant condition, it is readily seen that the

first invariant condition holds for all pairs of neighbors in T r
t as well as for t with

all of its neighbors. If s B and s′B are neighbors in a tree α(B) of T ′ − t , then by

the construction in Lemma 4 there exists a pair of neighbors s, s′ ∈ T \T r
t such that

X ′
s B = Xs ∩(B∪ X t) and X ′

s′B = Xs′ ∩(B∪ X t). But then |X ′
s B \X ′

s′B |+|X ′
s′B \X ′

s B | =

|(Xs ∩ (B ∪ X t))\(Xs′ ∩ (B ∪ X t))| + |(Xs′ ∩ (B ∪ X t))\(Xs ∩ (B ∪ X t))| ≤

|Xs\Xs′ | + |Xs′\Xs | ≤ 1 and the first invariant condition follows. As for the second

invariant condition, notice that from the construction it follows that all the vertices

that precede v in the order of introduction in Q must have been introduced in some

node of T r
t , and the application of Lemma 4 does not alter such introduce nodes for

previously processed vertices. Finally, by the induction hypothesis all nodes of T \T r
t

have degree at most 2, therefore from the construction in Lemma 4 it is clear that all

nodes in T ′\(T r
t ∪ {t}) also have degree 2. Since all introduce nodes of unprocessed

vertices lie in T ′\(T r
t ∪ {t}), we conclude that the third invariant condition also holds

in T ′.

Now, let us consider the tree-decomposition T obtained after processing all vertices

of I (P) according to the procedure described above. T satisfies Condition 4 due to

123

Algorithmica (2019) 81:1657–1683 1677

the first invariant of our procedure, and for all other conditions it suffices to consider

nodes with more than 1 block. In particular, it suffices to verify that all such nodes

satisfy the conditions of Lemma 4 and additionally also condition 3 of this Lemma.

So, suppose for a contradiction that there exists a node t which does not meet these

conditions, but all nodes on the unique t-r path do. Then there are two possibilities to

consider for the unique neighbor t ′ of t on the t-r path. If t ′ were to have more than

1 block, then by our assumptions t ′ would have to satisfy the conditions of Lemma 4,

contradicting the fact that t has more than 1 block. On the other hand, if t ′ were to have

only a single block, then by construction t must be an introduce node of some vertex

v and by our invariants and the construction it follows that t in fact must satisfy all the

required conditions. In particular we conclude that all nodes t satisfy Conditions 1-4

and the lemma follows. ⊓⊔

We call a tree-decomposition rooted at a leaf with Xr = ∅ which satisfies the

properties of Lemma 5 a blocked tree-decomposition. The next ingredient we will

need for proving that IC (P) has small treewidth is the notion of cover-guards.

Let T = (T ,X) be a tree-decomposition of I (P) rooted at r and let t �= r . Then

the cover-guard of t , denoted At , is the set of vertices in L(t) which are incident to

a cover edge whose other endpoint lies in R(t); formally, At = {v ∈ L(t) | ∃u ∈

R(t) : {uv} ∈ E(C(P). For a vertex v ∈ I (P), we let Av = {t ∈ T | v ∈ At } and

Xv = {t ∈ T | v ∈ X t }.

Our next aim is to add all the cover-guards into each bag. Below, we show that this

does not increase the size of bags too much.

Lemma 6 Let T = (T ,X) be a blocked tree-decomposition of I (P) of width k. Then

for each t ∈ T it holds that |At | ≤ 2k + 2.

Proof First, observe that if a node t ∈ T has 0 blocks, then R(t) = At = ∅. So,

consider a node t which has exactly 1 block consisting of connected components

(D1, . . . , D j) in (I (P) − X t) ∩ R(t).

Claim 9 |At | ≤ 2k + 2.

Proof (of the Claim) Assume for a contradiction that |At | > 2k + 2. By Lemma 3

we have that (D1, . . . , D j) are consecutive connected components in a total order of

connected components in I (P) − X t . Hence any edge in C(P) − X t between R(t)

and L(t) must necessarily have one endpoint in D1 ∪ D j . Furthermore, an element

in At cannot be adjacent to both D1 and D j in C(P) − X t due to transitivity and

acyclicity. So, we may partition At into A1
t = {v ∈ At | ∃u ∈ D1 : v ⊳

P u} and

A2
t = {v ∈ At | ∃u ∈ D j : u ⊳

P v}.

By Lemma 3, it also follows that A1
t and A2

t must each lie in separate connected

components of I (P) − X t , say C1 and C2 respectively. Furthermore, each element in

A1
t is maximal in C1 and each element in A2

t is minimal in C2. In particular, each of

A1
t , A2

t forms a clique in I (P). But by our assumption on the size of At , at least one of

A2
t and A1

t must have size greater than k+1, which implies that I (P) contains a clique

of size at least k + 2. It is well-known that each clique must be completely contained

in at least one bag of a tree-decomposition, and so we arrive at a contradiction with

tw(I (P)) ≤ k. Hence we conclude that |At | ≤ 2k + 2 and the claim holds. ⊓⊔

123

1678 Algorithmica (2019) 81:1657–1683

Finally, consider a node t which has at least 2 blocks. By Property 3 of Lemma 5,

it holds that t has a neighbor t ′ in T r
t such that X t ′ = X t\{v} and t ′ has 1 block. By

Claim 9 we know that At ′ ≤ 2k + 2. Since L(t) = L(t ′) and R(t) ⊆ R(t ′), it follows

that At ⊆ At ′ , and in particular |At | ≤ |At ′ |. We have now proved the desired bound

for all nodes in T , and so the lemma holds. ⊓⊔

The following lemma allows us to argue that adding cover-guards into each bag

still results in a tree-decomposition; it is worth noting that the assumption that the

decomposition is blocked is essential for the lemma to hold.

Lemma 7 Let T = (T ,X) be a blocked tree-decomposition of I (P) rooted at r and

let v ∈ I (P). Then T [Av ∪ Xv] is a tree.

Proof Since T is a tree-decomposition, we have that T [Xv] must be a tree. Consider a

connected component A of T [Av] and its unique A-Xv path Q, with endpoints x ∈ Xv

and a ∈ A. Since r is located at a leaf of T it must hold that r /∈ Q. We consider two

cases: either r lies in the same connected component as Xv in T − Q, or it lies in a

different connected component.

In the former case, it follows that each internal vertex q of Q satisfies R(a) ⊆ R(q)

and v ∈ L(q). But then by the definition of Av and the fact that a ∈ Av , this would

imply q ∈ Av , contradicting our construction of Q. Hence if r lies in the same

connected component as Xv in T − Q, then A is adjacent to Xv .

In the latter case, there must exist a node q ∈ Q of degree at least 3 such that

each of A, Xv and r occur in different components of T − q. By the definition of

Av , there exists a vertex u ∈ R(a) such that v ⊳
P u or u ⊳

P v. Since u, v ∈ R(q)

due to the location of the root and there is a cover edge between them, it follows

that either u, v occur in the same connected component of Xq or in two consecutive

ones, but in either case u, v must lie in the same block of q, say block B. But since

u, v /∈ Xq , this contradicts Property 2 in Lemma 5; indeed, each tree in T −q contains

at most one of v, u in its bags, and hence there exists no tree T ′ in T − q satisfying
⋃

t ′∈T ′ X t ′\Xq = B. Hence r cannot occur in a different connected component than

Xv in T − Q.

We conclude that Q contains no internal vertices. In particular, every connected

component of T [Av] is adjacent to Xv . ⊓⊔

With Lemmas 6 and 7, we have the tools necessary for arguing that there exists a

tree-decomposition of the combined graph of small width.

Lemma 8 LetT = (T ,X)be a blocked tree-decomposition of I (P) such that tw(T) ≤

k. Then there exists a tree-decomposition T ′ of IC (P) of width at most 3k + 2.

Proof Consider the tree-decomposition T ′ = (T ,X ′) where X ′ = {X ′
t | t ∈ T } is

defined as follows. For each t ∈ T such that its unique neighbor s in T r
t satisfies

|X t\Xs | = 1, we set X ′
t = X t ∪ As ; it will be useful to observe that As ⊇ At . For

all other nodes t ∈ T , we then set X ′
t = X t ∪ At . We call nodes of the first type

non-standard and nodes of the second type standard.

First, we note that the size of each bag in T ′ is at most 3k + 2, since every node

t ∈ T satisfies |At | ≤ 2k + 2 by Lemma 6. Furthermore, T ′ satisfies condition (T1)

123

Algorithmica (2019) 81:1657–1683 1679

because T was a tree-decomposition of I (P). T ′ also satisfies condition (T2); indeed,

for each v ∈ P it holds that X ′v restricted to standard nodes is a connected tree by

Lemma 7, and by construction every non-standard node t such that v ∈ X ′
t\X t is

adjacent to a standard node containing v. So, it only remains to argue condition (T3).

Obviously, condition (T3) holds for any edge of I (P). So, consider two elements

u, v of P such that u ⊳
P v or v ⊳

P u. If there exists a node t ∈ T such that u, v ∈ X t ,

then u, v ∈ X ′
t and the condition also holds for this edge in IC (P). So, assume that

Xv and Xu are disjoint and let Q be the unique Xv-Xu path in T . By Property 4, the

Xv-Xu path Q in T must contain at least one internal node.

Consider the case where one of these subtrees, say w.l.o.g. Xv , lies in the connected

component T r
t of T − Q. Then for each internal node q ∈ Q, it holds that v ∈ L(q)

and u ∈ R(q), which in turn implies that v ∈ Aq . Let qu be the endpoint of Q in Xu

and let q0 be the neighbor of qu in Q. By Property 4 we have Xqu \Xq0 = {u}, which

implies that qu is a non-standard node and in particular Aq0 ⊆ X ′
qu

. Since q0 is an

internal node of Q, it follows that v ∈ X ′
qu

which means that condition (T3) also holds

for any edge uv in this case.

Finally, consider the case where there exists a node q ∈ Q of degree at least 3 such

that each of Xu , Xv and r occur in different components of T − q. Then we reach a

contradiction similarly as in the proof of Lemma 7. In particular, since u, v ∈ R(q)

due to the location of the root and there is a cover edge between them, it follows

that either u, v occur in the same connected component of Xq or in two consecutive

ones, but in either case u, v must lie in the same block of q, say block B. But since

u, v /∈ Xq , this contradicts Property 2 in Lemma 5; indeed, each tree in T −q contains

at most one of v, u in its bags, and hence there exists no tree T ′ in T − q satisfying
⋃

t ′∈T ′ X t ′\Xq = B. Hence this case in fact violates our assumptions and cannot

occur.

Summarizing the above arguments, we conclude that each bag in T ′ has size at

most 3k + 2 and that T ′ satisfies all of the conditions of a tree-decomposition. ⊓⊔

Corollary 2 Let P be a poset such that tw(I (P)) ≤ k. Then tw(IC (P)) ≤ 3k + 2.

Proof By Corollary 1 we know that there exists a nice path-decomposition of I (P) of

width at most k. By Lemma 5, it follows that there exists a blocked tree-decomposition

of I (P) of width at most k. The corollary then follows by Lemma 8. ⊓⊔

4.2 MSO Formulation

In this subsection, we use Fact 4 to prove the following result, which forms the second

ingredient required for our proof of Theorem 2.

Lemma 9 #LE is fixed-parameter tractable parameterized by the treewidth of the

combined graph of the input poset.

Proof Let P := (P,≤P) be a poset. Let G be an (edge-)labeled directed graph

obtained from IC (P) by directing every bidirectional edge of IC (P), i.e., every edge

of I (P), in an arbitrary way and labeling it with the label ‖.

123

1680 Algorithmica (2019) 81:1657–1683

For a set of edges E ⊆ E(G) with label ‖, let G[E] be the graph obtained from G

after reversing every edge in E . Moreover, for a linear extension � of P let EG(�) be

the set of edges (u, v) of G such that v � u. Note that because every linear extension

of P has to respect the direction of the edges in G given by C , it holds that every edge

in EG(�) has label ‖.

Claim 10 EG(�) defines a bijection between the set of linear extensions of P and the

set of subsets E of edges of G with label ‖ such that G[E] is acyclic.

Proof (of the Claim) Let � be a linear extension of P . Then, as observed above, EG(�)

is a set of edges of G with label ‖. Moreover, because G[EG(�)] is a subgraph of

PG(�) and PG(�) is acyclic so is G[EG(�)]. Hence, EG(�) is a function from the

set of linear extensions of P to the set of subsets E of edges of G with label ‖ such that

G[E] is acyclic. Towards showing that EG(�) is injective, assume for a contradiction

that this is not the case, i.e., there are two distinct linear extensions �1 and �2 of P

such that EG(�1) = EG(�2) and let u and v be two elements of P ordered differently

by �1 and �2. Then {u, v} ∈ I (P) and hence either (u, v) ∈ G or (v, u) ∈ G the

label of (u, v) or (v, u) respectively is ‖. W.l.o.g. assume that (u, v) ∈ G with label

‖. But then, because �1 and �2 differ on u and v, either (u, v) ∈ EG(�1) but not

(u, v) ∈ EG(�2) or (u, v) ∈ EG(�2) but not (u, v) ∈ EG(�1). In both cases we get

a contradiction to our assumption that EG(�1) = EG(�2).

It remains to show that EG(�) is surjective. To see this let E be a subsets of the

edges of G with label ‖ such that G[E] is acyclic. Because G[E] is acyclic it has a

topological ordering, say �, of its vertices. Because G[E] contains C(P) as a subgraph

and any topological ordering of C(P) is a linear extension of P , we obtain that � is

a linear extension and also E = EG(�). ⊓⊔

It follows from the above that instead of counting the number of linear extensions

of P directly, we can count the number of subsets E of the edges of G with label ‖

such that G[E] is acyclic. We will show next that there is an MSO formula Φ(X),

whose length is independent of G and can hence be considered constant, such that

G |� Φ(X) if and only if X is a subset of the edges of G with label ‖ such that

G[E] is acyclic. Because of Fact 4, this implies that #LE is fixed-parameter tractable

when parameterized by tw(G) and hence also when parameterized by tw(IC (P)),

concluding the proof of the lemma.

Informally, Φ(X) will check that X is a set of edges of G with label ‖ and there is

no non-empty set of edges C of G[X] that forms a cycle. For the definition of Φ(X)

we will need the following auxiliary formulas.

– The formula edgesin(X) := ∀x X x → P‖x , which holds if and only if X is a set

of edges of G with label ‖.

– The formula edgesne(C) := ∃cCc ∧ (∀cCc → Ec), which holds if and only if C

is a non-empty set of edges of G.

– The formula cyclic(C, X) := ∀vV v → degree(C, X , v), which holds if and only

if the set C of edges of G[X] is a disjoint union of directed cycles. Note that this

implies that either C is empty or C contains at least one (directed) cycle.

– The formula degree(C, X , v) := degree0(C, X , v) ∨ degree2(C, X , v), which

holds if and only if either no edge in C is incident to v or there are exactly two

123

Algorithmica (2019) 81:1657–1683 1681

edges in C that are incident to v such that one of them corresponds to an edge in

G[X] with tail v and the other corresponds to an edge in G[X] with head v.

– The formula degree0(C, X , v) := ¬∃cCc ∧ Ivc, which holds if and only if no

edge in C is incident to v.

– The formula

degree2(C, X , v) := ∃ci∃coCci ∧ Cco ∧ in(X , ci , v) ∧ out(X , co, v)∧

(∀c(Cc ∧ ¬c = ci ∧ ¬c = co) → ¬(Hvc ∨ T vc))

which holds if and only if there are exactly two edges in C that are incident to v

such that one of them corresponds to an edge in G[E] with tail v and the other

corresponds to an edge in G[E] with head v.

– The formula

in(X , c, v) := (¬P‖c ∧ Hvc) ∨ (P‖c ∧ ¬Xc ∧ Hvc) ∨ (P‖c ∧ Xc ∧ T vc)

which holds if and only if v is the head of the edge of G[X] represented by c.

– The formula

out(X , c, v) := (¬P‖c ∧ T vc) ∨ (P‖c ∧ ¬Xc ∧ T vc) ∨ (P‖c ∧ Xc ∧ Hvc)

which holds if and only if v is the tail of the edge of G[X] represented by c.

Then Φ(X) is the formula:

Φ(X) := edgesin(X) ∧ ¬ (∃Cedgesne(C) ∧ cyclic(C, X))

Which concludes the proof. ⊓⊔

For completeness, we conclude the section by stating the proof of Theorem 2.

Proof (of Theorem 2) Let P be the input poset and let k = tw(I (P)). Then

tw(IC (P)) ≤ 3k + 2 by Corollary 2, and the theorem follows by Lemma 9. ⊓⊔

5 Conclusions and FutureWork

We have given the first parameterized intractability result for counting linear exten-

sions. We hope that the employed techniques will inspire similar results and expand

our knowledge about the parameterized complexity of counting problems. In partic-

ular, even for #LE there remain many open questions concerning other very natural

parameterizations such as the width of the poset (which is, in fact, upper-bounded

by the treewidth of the incomparability graph) or the treewidth of the poset graph.

Moreover, our intractability result for the treewidth of the cover graph poses the ques-

tion whether there are stronger parameterizations under which #LE becomes tractable,

e.g., the treewidth of the comparability graph (i.e., the undirected graph underlying

123

1682 Algorithmica (2019) 81:1657–1683

the poset graph), the treedepth or even vertex cover number of the comparability or

cover graph, as well as combinations of these parameters with parameters such as the

width, the dimension, or the height of the poset. These numerous examples illustrate

that the parameterized complexity of #LE is still largely unexplored. As a side note

it would also be interesting to establish whether our hardness result for #LE can be

sharpened to #W[1]-hardness and to obtain matching membership results.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). Eduard Eiben was

supported by Pareto-Optimal Parameterized Algorithms (ERC Starting Grant 715744) and by the Austrian

Science Fund (FWF, projects P26696 and W1255-N23). Robert Ganian is also affiliated with FI MU, Brno,

Czech Republic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms

12(2), 308–340 (1991)

2. Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7(1), 23–25 (1990)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM

J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of

graphs. J. Algorithms 21(2), 358–402 (1996)

5. Bresar, B., Changat, M., Klavzar, S., Kovse, M., Mathews, J., Mathews, A.: Cover-incomparability

graphs of posets. Order 25(4), 335–347 (2008)

6. Brightwell, G., Winkler, P.: Counting linear extensions is #P-complete. In: Proceedings of the 3rd

Annual ACM Symposium on Theory of Computing, STOC’91, pp. 175–181 (1991)

7. Bubley, R., Dyer, M.: Faster random generation of linear extensions. Discrete Math. 201(1–3), 81–88

(1999)

8. Courcelle, B.: The monadic second-order logic of graphs. i. Recognizable sets of finite graphs. Inf.

Comput. 85(1), 12–75 (1990)

9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,

S.: Parameterized Algorithms. Springer, Berlin (2015)

10. De Loof, K., De Meyer, H., De Baets, B.: Exploiting the lattice of ideals representation of a poset.

Fundam. Inf. 71(2,3), 309–321 (2006)

11. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Berlin (2012)

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science.

Springer, Berlin (2013)

13. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume

of convex bodies. J. ACM 38(1), 1–17 (1991)

14. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen,

C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2),

143–153 (2011)

15. Felsner, S., Manneville, T.: Linear extensions of N-free orders. Order 32(2), 147–155 (2014)

16. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4),

892–922 (2004)

17. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation

and reasoning. Artif. Intell. 174(1), 105–132 (2010)

18. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other

side. J. ACM 54(1), 1:1–1:24 (2007)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica (2019) 81:1657–1683 1683

19. Habib, M., Möhring, R.H.: On some complexity properties of N-free posets and posets with bounded

decomposition diameter. Discrete Math. 63(2), 157–182 (1987)

20. Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter.

Order 11(1), 47–60 (1994)

21. Husfeldt, T., Paturi, R., Sorkin, G.B., Williams, R.: Exponential algorithms: algorithms and complexity

beyond polynomial time (Dagstuhl Seminar 13331). Dagstuhl Rep. 3(8), 40–72 (2013)

22. Kangas, J.-K., Hankala, T., Niinimäki, T.M., Koivisto, M.: Counting linear extensions of sparse posets.

In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI 2016, New

York City, July 9–15, 2016 (2016) (to appear)

23. Kloks, T.: Treewidth, Computations and Approximations. Lecture Notes in Computer Science, vol.

842. Springer, Berlin (1994)

24. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Probabilistic preference logic networks. In: Schaub, T.,

Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014—21st European Conference on Artificial Intelligence,

Aug 18–22, 2014, Prague, Czech Republic—Including Prestigious Applications of Intelligent Systems

(PAIS 2014), Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 561–566. IOS Press,

Amsterdam (2014)

25. Mannila, H., Meek, C.: Global partial orders from sequential data. In: Proceedings of the 6th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’00, pp. 161–168,

New York (2000). ACM

26. Möhring, Rolf H.: Computationally tractable classes of ordered sets. In: Rival, I. (ed.) Algorithms and

Order, pp. 105–193. Springer, Dordrecht (1989)

27. Morton, J., Pachter, L., Shiu, A., Sturmfels, B., Wienand, O.: Convex rank tests and semigraphoids.

SIAM J. Discrete Math. 23(3), 1117–1134 (2009)

28. Niinimäki, T.M., Koivisto, M.: Annealed importance sampling for structure learning in Bayesian

networks. In: IJCAI. IJCAI/AAAI (2013)

29. Paulusma, D., Slivovsky, F., Szeider, S.: Model counting for CNF formulas of bounded modular

treewidth. Algorithmica 76(1), 168–194 (2016)

30. Peczarski, M.: New results in minimum-comparison sorting. Algorithmica 40(2), 133–145 (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

	Counting Linear Extensions: Parameterizations by Treewidth
	Abstract
	1 Introduction
	1.1 Results
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Treewidth
	2.2 Monadic Second Order Logic
	2.3 Posets
	2.4 Parameterized Complexity

	3 Fixed-Parameter Intractability of Counting Linear Extensions
	4 Fixed-Parameter Tractability of Counting Linear Extensions
	4.1 The Treewidth of Combined Graphs
	4.2 MSO Formulation

	5 Conclusions and Future Work
	Acknowledgements
	References

