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NŽŶ-ůŝŶĞĂƌ SŽŝů BĞŚĂǀŝŽƵƌ ŽŶ HŝŐŚ SƉĞĞĚ 
RĂŝů LŝŶĞƐ ʹAŶ ĞƋƵŝǀĂůĞŶƚ ůŝŶĞĂƌ ĂƉƉƌŽĂĐŚ 

Authors:  
K. Dong, D.P. Connolly, O. Laghrouche, P.K. Woodward, P. Alves Costa 

Abstract (200 words) 
This paper gives new insights into non-linear subgrade behaviour on high speed railway 

track dynamics.  First, a novel semi-analytical model is developed which allows for soil 

stiffness and damping to dynamically change as a function of strain.  The model uses 

analytical expressions for the railroad track, coupled to a thin-layer element formulation for 

the ground. Material non-linearity is accounted for using Ă ͚ůŝŶĞĂƌ ĞƋƵŝǀĂůĞŶƚ͛ ĂƉƉƌŽĂĐŚ 
which iteratively updates the soil material properties.  It is validated using published 

datasets and in-situ field data.  Four case studies are used to investigate non-linear 

behaviour, each with contrasting subgrade characteristics.  Considering an 18 tonne axle 

load, the critical velocity is significantly lower than the linear case, and rail deflections are 

up to 30% higher.  Furthermore, at speeds close-to, but below the non-linear critical 

velocity, dynamic amplification is highly sensitive to small increases in train speed.  These 

findings are dependent upon soil material properties, and are important for railway track-

earthwork designers because often 70% of the linear critical velocity is used as a design 

limit.  This work shows that designs close to this limit may be still at risk of high dynamic 

effects, particularly if line speed is increased in the future. 

 

Keywords (6): Soil-subgrade non-linearity; railroad track stiffness; railway critical velocity; 

Rail-track dynamic amplification; Thin-layer element method (TLM), high speed rail track 

design 

1. Introduction 
Increases to operational train speed mean that it is more likely vehicles will induce dynamic 

effects within the supporting track and soil structure.  This is because as train speed 

increases towards the elastic wave speeds in the track-ground system, dynamic wave 

propagation increases.  The speed of maximum dynamic amplification is known as the 

͚critical velocity͛ ([1], [2]) and in certain cases has been measured to be as low as 65 m/s 

([2], [3]).  This is significantly below the operational speed of typical high speed lines/trains 

(85m/s), and if large track displacements are induced, the track will degrade quickly and 

hence require frequent maintenance. 

 To investigate this problem, early researchers proposed the use of analytical 

approaches for the track and soil response in the frequency domain ([1], [4], [5], [6]).  These 

were expanded upon by using integral transform methods for the simulation of more 

complex systems like layered ground.  This allowed for more complex and layered soil 
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profiles to be investigated ([2], [3], [7], [8], [9]).  Alternatively, semi-analytical formulations 

were proposed (e.g. thin-layer element method [10]), which allowed for even greater 

flexibility in soil profiles to be investigated ([11], [12], [13]). 

 Rather than model the track using analytical expressions, ͚ƚǁŽ-and-a-ŚĂůĨ͛ 
dimensional models (2.5D) for both the track and soil were also proposed ([14], [15], [16], 

[17], [18], [19]).  These assume the track is invariant in the direction of train passage thus 

only requiring the problem to be discretised into 2D, before recovering the 3D response 

using a transform.  This is advantageous because it allows for the modelling of relatively 

complex track and soil geometry, with much lower run times compared to 3D models. 

 The 2.5D approach is useful for simulation of concrete slab track systems because 

ƚŚĞ ŐĞŽŵĞƚƌǇ ĚŽĞƐŶ͛ƚ ǀĂƌǇ greatly in the direction of train passage.  However, ballasted 

tracks have discretely spaced sleepers which cannot be simulated using this technique.  

Therefore ([20], [21], [22], [23]) proposed periodic models where each repetitive sleeper 

bay was classified as a cell.  The periodic modes of the slice are computed and then a 

Floquet transform used to convert the response of the single slice into an infinitely long 

domain. 

 Periodic modelling is useful when track geometry is repetitive, however it is 

challenging to use when this is not the case (e.g. transition zones or singular defects).  In 

these cases, 3D models are required.  A variety of these have been proposed in the 

frequency domain, typically using finite elements for the track and boundary elements to 

prevent reflections from outgoing waves ([24], [25], [26], [27], [28]).  Alternatively, time 

domain formulations have been proposed which can permit more complex material models, 

however present more challenges related to boundary reflections ([29], [30], [31], [32], [33], 

[34], [35], [36], [37]) . 

 A challenge with the majority of analytical and numerical approaches proposed for 

railway modelling is the assumption of linear elastic material behaviour.  However, when 

the train speed is high, large strains are often induced in the soil, thus causing non-linear 

stiffness and damping behaviour ([3], [38], [15]). This results in quite different track 

behaviour (i.e. deflection) compared to the case in which non-linearity is not accounted for. 

 To include non-linear material effects, [2], [3], [7] and [29] used models with 

manually adjusted soil stiffness to predict the response of track in Ledsgard, Sweden.  

Furthermore, [39] used a similar approach to investigate the response of a piled 

ĞŵďĂŶŬŵĞŶƚ͘  A ĐŚĂůůĞŶŐĞ ǁŝƚŚ ƚŚŝƐ ĂƉƉƌŽĂĐŚ ŝƐ ƚŚĂƚ ŵĂŶƵĂůůǇ ĐŚŽŽƐŝŶŐ ƐƚŝĨĨŶĞƐƐ͛ ǀĂůƵĞƐ ŝƐ 
often inaccurate and it is only practical to implement stiffness changes over large depths of 

soil (e.g. across an entire soil layer).  Alternatively, [40] considered non-linear elastic 

behaviour when modelling the response of the same Swedish site using a time domain 3D 

finite element model.  This allowed for the non-linearity of all finite elements to be 

considered individually, however a challenge with constitutive models though is that they 

require a large number of input parameters, many of which are difficult to quantify.  

Therefore, [15] proposed a 2.5D finite/infinite element method, coupled with an iterative, 

͚ůŝŶĞĂƌ ĞƋƵŝǀĂůĞŶƚ͛ procedure that used strain levels and degradation curve data to 



3 

 

automatically adjust material stiffness and damping based upon strain levels.  Again, an 

͚ĞůĞŵĞŶƚ-by-ĞůĞŵĞŶƚ͛ ŶŽŶ-linear approach was used and strong agreement was achieved 

compared to the Swedish data.   

To compare the difference between a constitutive non-linear material model and a 

linear equivalent model, [38] compared both using a 3D finite element approach.  To reduce 

ƚŚĞ ĐŽŵƉůĞǆŝƚǇ ŽĨ ƚŚĞ ůŝŶĞĂƌ ĞƋƵŝǀĂůĞŶƚ ĨŽƌŵƵůĂƚŝŽŶ͕ Ă ŚŽƌŝǌŽŶƚĂů ͚ůĂǇĞƌ-by-ůĂǇĞƌ͛ ͚ůŝŶĞĂƌ 
ĞƋƵŝǀĂůĞŶƚ͛ approach was used.  This assumed that the same non-linear changes to material 

properties below the track centre-line also propagated to the far-field.  Therefore the elastic 

material properties away from the track were considered to degrade in an overly 

conservative manner.  Despite this assumption, for locations near the track, it was found 

that the linear equivalent approach gave similar results but with reduced computational 

requirements.     

This paper therefore builds upon this linear equivalent approach to simulate soil 

non-linearity.  First, a frequency domain model is described, where the track is modelled 

analytically and the soil modelled semi-discretely using the thin-layer element method.  The 

track-ground models are coupled and the overall model is computed in an iterative (thin) 

͚ůĂǇer-by-ůĂǇĞƌ͛ ŵĂŶŶĞƌ ƚŽ ŝŶĐůƵĚĞ ƚŚĞ ĞĨĨĞĐƚƐ ŽĨ ŶŽŶ-linearity.  This greatly reduces the 

computational time, and due to the very thin nature of elements used in the thin-layer 

method, stiffness changes due to non-linearity can be simulated with much finer granularity 

compared to [38]. 

 

2. Model description 
The track-ground system is modelled using a sub-structuring approach [12].  An analytical 

model is used to calculate the track response, while the thin-layer element method is used 

to compute the soil response.  They are then coupled taking into account the  compatibility 

of displacements and equilibrium of loads in the vertical direction (thus implying relaxed 

boundary conditions [41]).  Non-linearity is adopted in the soil response using an 

͚ĞƋƵŝǀĂůĞŶƚ ůŝŶĞĂƌ͛ ŵĞƚŚŽĚŽůŽŐǇ͘  AůƚŚŽƵŐŚ ƚŚĞ ŵŽĚĞů ŝƐ ďǇ ĚĞĨŝŶŝƚŝŽŶ ͚ůŝŶĞĂƌ ĞƋƵŝǀĂůĞŶƚ͕͛ ƚŚĞ 
ƚĞƌŵ ͚ŶŽŶ-ůŝŶĞĂƌ͛ ŝƐ ĂůƐŽ ƵƐĞĚ ŝŶƚĞƌĐŚĂŶŐĞĂďůǇ ƚŽ ĚĞŶŽƚĞ ƚŚĞ ƐĂŵĞ ŵĞĂŶŝŶŐ͘ 

2.1 Track model 

The track is modelled in the wavenumber-frequency domain as described in the works of 

[13], [42], [9], and [12].  Ballasted track (Figure 1) and slab track (Figure 2) are described 

using different formulations, however for brevity, only the ballasted track is described here. 

The governing equations for the ballasted track are shown in Equation 1, where ܧ௕ is the 

ďĂůůĂƐƚ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ; ݄௕ is the ballast thickness;  ܥ௣ is the ballast compressional wave 

speed, and ݑ෤௥, ݑ෤௦and ݑ෤௕௕ are the rail, sleeper, and ballast (bottom) displacements 

respectively, with the tilde ͚Ε͛ ĚĞŶŽƚŝŶŐ ƚŚĞ frequency domain. 
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Figure 1: Ballasted track structure 

Furthermore, ݇௣כ  is the complex stiffness of the railpad, which is defined as, ݇௣כ ൌ  ݇௣ሺͳ ൅݅߱ܿ௣).  In this formula, ݇௣ is the railpad stiffness, ܿ௣ is the viscous damping, i ൌ ξെͳ and ߱ 

is the frequency.  Finally, ݇୶ is the Fourier image of x (direction of train passage), ݉௥ and ݉௦ 

are the mass of rail per metre and the distributed mass of sleepers/ties respectively, ʹܾ is 

the track width, and ܲ is the downward vertical force applied at the railhead. 

 

Figure 2: Slab track structure 

 

 

ێێۏ
ێێێ
௥݇௫ସܫܧۍێ ൅ ݇௣כ െ ߱ଶ݉௥ െ݇௣כ Ͳെ݇௣כ ݇௣כ ൅ tanߙܾכ௕ܧ߱ʹ ൬݄߱௕ܥ௣ ൰ ௣ܥ െ ߱ଶ݉௦ െʹ߱ܧ௕ߙܾכsin ൬݄߱௕ܥ௣ ൰ ௣Ͳܥ െʹ߱ܧ௕ߙܾכsin ൬݄߱௕ܥ௣ ൰ ௣ܥ

tanߙܾכ௕ܧ߱ʹ ൬݄߱௕ܥ௣ ൰ ௣ܥ ൅ ݇௘௤ۑۑے
ۑۑۑ
ېۑ ቐ ෤௥ሺ݇௫ݑ ǡ ߱ሻݑ෤௦ሺ݇௫ ǡ ߱ሻݑ෤௕௕ሺ݇௫ǡ ߱ሻቑ

ൌ ൝ ෨ܲሺ݇௫ǡ ߱ሻͲͲ ൡ                       
(1) 

Coupling between the analytical track model and the soil is implemented using an 

equivalent complex stiffness (݇௘௤) in the vertical direction only, computed using the thin-
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layer method, and defined by Equation 2.  As train speed increases, wave energy propagates 

to greater depths in the soil, meaning the deeper soil layers affect the track response.  

Therefore, the accurate coupling across this interface becomes increasingly important as the 

train speed approaches the critical velocity. 

 ෨݇௘௤ሺ݇௫ǡ ߱ሻ ൌ ׬ߨʹ ෤௭௭ீሺ݇௫ݑ ǡ ݇௬ǡ Ͳǡ ߱ሻܥ௧௚݀݇௬ାஶିஶ        (2) 

In Equation 2, ݑ෤௭௭ீ ŝƐ ƚŚĞ GƌĞĞŶ͛Ɛ ĨƵŶĐƚŝŽŶ ŽĨ vertical displacement of the uppermost soil 

surface (z=0) and corresponds to the z-direction term (Q33) of the stationary dynamic 

flexibility matrix Q in the transformed domain [13]. ݇௬ is the Fourier image of y (lateral 

direction). ܥ௧௚ is a factor used to adjust the coupling depending upon whether the track is 

slab or ballasted.  In the case of a ballasted track, displacements at the track centre are used 

for computation (Equation 3), as demonstrated in Figure 3.  For the slab track, the mean 

displacement across the interface boundary is used (Equation 4) [9][13], via the approach 

outlined in Figure 4.  For both track cases, relaxed boundary conditions are assumed (i.e. 

coupling is only accounted for in the vertical direction). 

௧௚ܥ  ൌ sinሺ݇௬ܾሻ݇௬ܾ  (3) 

 

Figure 3: Illustration of scaling factor of the track-ground coupling for ballasted track 

 

௧௚ܥ  ൌ sinሺ݇௬ܾሻଶሺ݇௬ܾሻଶ  (4) 
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Figure 4: Illustration of scaling factor of the track-ground coupling for slab track 

 

2.2 Soil model 

The stresses, strains and displacements within the 3D soil stratum are computed using the 

thin-layer method.  To do so, the domain is discretised into a series of thin horizontal layers.  

Three nodes are used for each element (thin-layer) and the analytical wave equation is used 

to compute the response in both horizontal directions.  The problem is solved in the 

frequency-wavenumber domain, using eight thin-layers per wavelength to ensure accuracy 

[12]. 

2.2.1 Equivalent stiffness formulation 

Solving the system of equations (Equation 1 and Equation 2) returns the displacements of all 

track components, including the lowermost layer (ݑ௕௕ ), due to a vertical unit load on the 

rail ([9] [12]). These displacements can then be scaled linearly to account for a point load of 

arbitrary magnitude.  However, to compute soil displacements for a load of arbitrary 

magnitude, the displacement GƌĞĞŶ͛Ɛ Ĩunction ܴ௨൫݇௫ǡ ݇௬ǡ ߱൯ for each individual soil thin 

layer is scaled as: 

 ܴ௨൫݇௫ǡ ݇௬ǡ ߱൯ ൌ ሺܮሺ݇௫ǡ ߱ሻܥ௧௚ሻݑ௚൫݇௫ǡ ݇௬ǡ ߱൯  (5)  

Where ݑ௚ሺ݇௫ǡ ݇௬ǡ ߱ሻ is the ground displacement GƌĞĞŶ͛Ɛ ĨƵŶĐƚŝŽŶ in the wavenumber-

frequency domain. Similarly, ݑ௚ሺ݇௫ǡ ݇௬ǡ ߱ሻ can be replaced by the stress ĂŶĚ ƐƚƌĂŝŶ GƌĞĞŶ͛Ɛ 
functions: ߪ௚൫݇௫ǡ ݇௬ǡ ߱൯ and ߝ௚൫݇௫ǡ ݇௬ǡ ߱൯, to obtain the stress/strain response in the soil.  

TŚĞ ƐƚƌĂŝŶ GƌĞĞŶ͛Ɛ ĨƵŶĐƚŝŽŶ ŝƐ required to compute the soil strain levels needed for the 

equivalent linear formulation.  Also, ܮሺ݇௫ǡ ߱ሻܥ௧௚ is the load scale function, where ܥ௧௚ is 

given in Equation 3 and Equation 4.  ܮሺ݇௫ǡ ߱ሻ represents the load transmitted by the track 

to the ground and is computed by multiplication of the equivalent stiffness and lower track 

displacement:  

ሺ݇௫ǡܮ  ߱ሻ ൌ  ݇௘௤ሺ݇௫ǡ ߱ሻ ൈ ௕௕ ሺ݇௫ǡݑ ߱ሻ (6) 
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Finally, the ground response (displacement, stress or strain) for an individual layer (e.g. soil 

surface as shown in Figure 24) in the time time-space domain is computed by inverting the 

ƐĐĂůĞĚ GƌĞĞŶ͛Ɛ ĨƵŶĐƚŝŽŶ ƵƐŝŶŐ ƚŚĞ ŝŶǀĞƌƐĞ FŽƵƌŝĞƌ ƚƌĂŶƐĨŽƌŵ͗  

 ܴሺݔǡ ǡݕ ሻݐ ൌ ͳሺʹߨሻଷ න න න ܴሺ݇ݔǡ ǡݕ݇ ߱ሻஶ
ିஶ

ஶ
ିஶ

ஶ
ିஶ ݁௜ሺఠ௧ି݇ݔ௫ି݇ݕ௬ሻ݀݇(7)    ߱݀ݕ݇݀ݔ 

It is worth noting that because the TLM model is computed in the wavenumber-frequency 

domain, the moving load effect is taken into account using the shift property of the Fourier 

transform that allows frequency to be related to wavenumber, i.e., ߱ ൌ ȳ െ ݇௫ܿ, where ȳ 

is the excitation frequency (set to 0Hz in this work), ݇௫ is the wavenumber in the direction 

of moving load, and ܿ is the moving load velocity.    

 

2.2.2 Equivalent linear formulation 

When the soil is subject to small strains, the stresses and strains are directly proportional, 

meaning the soil response can be considered linear and elastic (i.e. Gmax in Figure 5).  

However, as the strains increase, this relationship becomes non-linear causing soil stiffness 

to decrease, and damping to increase with strain.  Figure 5 shows this typical stress-strain 

relationship where the stiffness is defined by the gradient of the solid black line and 

damping by the grey-shaded loop area.  Secant and tangent stiffness formulations can be 

used to describe this behaviour, however the linear equivalent approach requires secant 

stiffness to be used. 

 

Figure 5: Strain-stress path during cyclic loading 

To assess non-ůŝŶĞĂƌ ďĞŚĂǀŝŽƵƌ͕ Ă ͚ůŝŶĞĂƌ ĞƋƵŝǀĂůĞŶƚ͛ ĂƉƉƌŽĂĐŚ ŝƐ ƵƐĞĚ͘  The advantage of 

using this is that it can be used with frequency domain approaches to reduce the 

computational demand in comparison to constitutive time domain models. By definition, it 

means that while the analysis remains linear, the soil properties are updated as function of 

the strain level, thus simulating non-linear type effects. It requires for the linear system of 



8 

 

equations to be computed, the strain levels assessed, the stiffness adjusted and the process 

repeated until convergence.  It is implemented element-by-element (i.e. layer-by-layer) with 

the TLM formulation as follows: 

1. Assume low strain properties for all thin-layer elements (i.e. Gmax or G0) 

2. Compute strain time histories and effective octahedral shear strain within all 

elements using Equation 8 

3. Use stiffness-strain relationship curves which are functions of confining stress and 

plasticity index, to update the stiffness within each element (Figure 10 (a)) 

4. Use damping-strain relationship curves which are functions of confining stress and 

plasticity index, to update the damping within each element (Figure 10 (b)) 

5. If the lower soil layer is unbound (i.e. infinite depth with no bedrock), update the 

absorbing layer to have identical properties to the deepest thin-layer element 

6. Repeat steps 2 ʹ 5 until the differences between shear modulus and damping of the 

central node in two consecutive iterations fall below the pre-defined convergence 

(i.e. 3% tolerance between iterations [15]) 

 

Plasticity index is typically determined using laboratory tests and effective octahedral strain 

is calculated as: 

௢௖௧ߛ  ൌ ߙ ͳ͵ ටሺߝ௫௫ െ ௬௬ሻଶߝ ൅ ሺߝ௫௫ െ ௭௭ሻଶߝ ൅ ሺߝ௬௬ െ ௭௭ሻଶߝ ൅ ͸ሺߛ௫௬ଶ ൅ ௫௭ଶߛ ൅ ௬௭ଶߛ ሻ (8) 

Where ߝ௫௫, ߝ௬௬ and ߝ௭௭ are the strains in the three coordinate directions while ߛ௫௬, ߛ௬௭ and ߛ௫௭ are the shear strains.  These are calculated for all layers using Equation 5.  ߙ is a 

constant chosen as 0.65 in-line with other linear equivalent formulations [43].   

 

3. Model validation 

3.1 Soil stress validation 

The linear equivalent formulation relies on the accurate calculation of stress and strain 

levels within the full depth of the soil layer.  To show that the model is capable of computing 

these, results are compared against approximate values from the work of Chen et al. [44].  

The benchmark problem consists of an Euler beam resting on a homogenous half-space, 

traversed by a 160kN moving vertical load at 30m/s.  The beam is 4m wide, 0.3m thick and 

infinite in the direction of vehicle travel.  Stresses are monitored at 2m directly below the 

soil surface, at the central line of the Euler beam.  To simulate the problem, the beam is 

modelled analytically and the soil is modelled using the thin-layer method, with the 

equivalent stiffness computed as shown in the slab formulation (Equation 1).  The material 

properties used for this simulation are shown in Table 1. 
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Figure 6: Schematic diagram of Chen's validation model 

Table 1: Properties of the beam and the ground for Chen's validation 

Beam 

Density (kg/m3) ͳͻͲͲ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ;MPĂͿ ͵ͲͲͲͲ 

Width (m) Ͷ Thickness (m) ͲǤ͵ 

Mass (kg) ʹʹͺͲ Second moment of area (m4) ͲǤͲͲͻ 

Ground 

Density (kg/m3) ͳͺͲͲ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ;MPĂͿ ʹͻ 

Poisson ratio ͲǤͶͷ Shear wave speed (m/s) ͹ͶǤͷͶ 

 

Figure 7 shows a comparison of stress time histories between the published results and the 

result of the new TLM model.  Four stress components are shown (ߪ௫௫, ߪ௬௬, ߪ௭௭ and ߬௫௭) 

because two of the shear stress components are zero (߬௫௬ and ߬௬௭) directly below the load.  

Strong agreement is seen between results with respect to both shape and magnitude.  It 

should be noted that although this example validates stresses, the TLM formulation uses 

strain levels directly to compute stress levels, thus by default, also confirming the accuracy 

of strain levels.  Therefore it can be concluded that the stress-strain computations within 

the soil model are accurate. 
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Figure 7: Comparisons of the dynamic stresses of an element at (0, 0, -2m) underneath the moving load 

 

3.2 Experimental validation 

The second validation is for field data recorded at Ledsgard, Sweden.  This site was 

subject to large rail deflections and suspected high soil non-linearity during the passage of 

X2000 trains shortly after opening.  This occurred because the track was constructed over 

soft ground, with a sandwiched layer of extremely soft organic clay (Figure 8).  Therefore it 

has been used for a variety of numerical model validations (e.g. [2], [15], [38]).  

The track is ballasted with the properties shown in Table 2, and rests on a 1.2m high 

embankment.  The train is an X2000 with 5 carriages and 20 axle loads (Figure 9).  Wheel-rail 

irregularities are not considered due to their minor influence on low-frequency dynamic 

track amplification.  Also, it should be noted that although for the linear case the response 

of a single wheel can be used (i.e. via superposition) to compute the response of an entire 

train, this is not possible when considering soil non-linearity.  Instead, for each run, the 

unique combination of train wheels is computed. 

 The soil properties at the site are shown in Table 3.  All soil layers have a shear wave 

speed significantly lower than the engineered embankment, and the soil stratum is 

supported by bedrock at a depth of 30m.  To model soil non-linearity, example shear 

modulus and damping ratio curves are shown in Figure 10, based upon triaxial tests 

performed on Ledsgard soil samples [15].  The shear modulus reduction curve formulations 

proposed by [45] require Plasticity Index (PI) and effective confining pressure (ߪԢ௠) as 

inputs.  Therefore [15] computed ߪԢ௠ at the centre of each physical soil layer, however in 

this work, these values are computed at the centre of each individual thin layer.  This results 

in a much larger number (one per thin-layer element) of individual curves than the 4 

examples shown in Figure 10.   
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Figure 8: Geometric dimensions at the Ledsgard site 

Table 2: Track parameters at the Ledsgard site 

Rail 

Mass per unit length (kg/m) ͳʹͲ 

YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ;MNͬŵ2) ʹͳͲ ൈ ͳͲଷ 

Second moment of inertia (m4) ͸Ǥͳͳ ൈ ͳͲିହ 

Railpad 

Stiffness per unit length (MN/m) ͵ͷͲ 

Damping per unit length (kNs/m2) ͵Ͳ 

Sleeper 

Mass per unit length (kg/m) ͶͻͲ 

Ballast 

Density per unit length (kg/m3) ͳʹͲͲ 

Thickness of the ballast (m) ͲǤ͵ͷ 

Ballast stiffness per unit length (MN/m2) ͵ͳͷ 

Compression wave speed in ballast (m/s) ͹ͺ͸ 

 

 

  

 



12 

 

 

Figure 9: Geometric and mechanical properties of the X2000 train 

Table 3: Low-strain properties of embankment and soil layers at the Ledsgard site 

 
Thickness 

(m) 

P-wave speed 

(m/s) 

S-wave speed 

(m/s) 

Density 

(kg/m3) 
Damping 

Embankment ͳǤʹ  ͵ͶͲ  ʹͳͲ  ͳͺͲͲ  ͲǤͲͶ 

Dry crust ͳǤͳ  ͷͲͲ  ͸ͷ  ͳͷͲͲ  ͲǤͲͶ 

Organic clay ͵  ͷͲͲ  ͶͲ  ͳʹͷͲ  ͲǤͲʹ 

Clay ͵Ͳ  ͳͷͲͲ  ͺ͹  ͳͶ͹ͷ  ͲǤͲͷ 

 

 

 

Figure 10: (a) Shear modulus reduction curves; (b) Damping ratio for different soil layers at Ledsgard [15] 

Figure 11 (a), (b) and (c) compare the proposed model results with the field data for 

speeds of 70km/h, 140km/h and 180km/h, respectively.  For speeds of 70 km/h and 140 

km/h, the TLM model shows a match with the field data. For the higher speed of 180 km/h, 

there are a few small discrepancies, however overall a strong agreement in terms of shape 

and magnitude is found. 

Figure 11 (d) compares the peak upward and downward rail deflections for the 

equivalent linear and linear simulation results. The positive values designate upward 

displacements and the negative values represent downward displacements.  

At low speed the linear and equivalent linear simulations show a close match to each-

other.  However, as speed increases, the equivalent linear results show larger deflections 

because the equivalent linear soil is less stiff in the presence of high strains, thus facilitating 

higher displacements.  When compared to the field data, the equivalent linear results are a 
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closer match, with the linear case significantly underestimating maximum upward and 

downward deflections.  This is particularly true as train speed approaches the critical 

velocity.  For example, the maximum downward displacement at a speed of 180 km/h for 

the field data is 12.7mm.  This is close to the equivalent linear predicted result of 13.3mm, 

but quite different to the linear value of 9.2mm.  Therefore it can be concluded that the use 

of a non-linear formulation is necessary to accurately compute the track response. 

Figure 12 (a) shows the degradation of the embankment surface shear modulus during 

the equivalent linear analysis. It is seen that it reduces by 38% after the 1st iteration, and 

after the convergence criteria has been met, it is only 46% of the original low-strain value.  

Further, Figure 12 ;ďͿ ƐŚŽǁƐ ƚŚĞ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ versus depth for speeds of 70km/h and 

204km/h. It can be seen that the reduction of embankment stiffness is approximately 50%, 

which matches with the result shown in Figure 12 (a). Also there is a large change to the 

YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ ŝŶ ƚŚĞ ƚŽƉ Ϯ ƐŽŝů ůĂǇĞƌƐ ;ĚƌǇ ĐƌƵƐƚ ĂŶĚ ŽƌŐĂŶŝĐ ĐůĂǇ ůĂǇĞƌͿ͘  TŚŝƐ ŝŶĚŝĐĂƚĞƐ ƚŚĂƚ 
they are undergoing high strains and their stiffness is degrading significantly as train speed 

increases.  In contrast, as depth increases, strain levels decrease and train speed has little 

ĞĨĨĞĐƚ ŽŶ YŽƵŶŐ͛Ɛ ŵŽĚƵůƵƐ͘ 

 

 

 

Figure 11: Measured and simulated time histories of track displacements for different train speeds: (a) c=70km/h; (b) 

c=140km/h; (c) c=180km/h; (d) Peak displacements versus train speeds (Southbound) 
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Figure 12: ;ĂͿ EŵďĂŶŬŵĞŶƚ ƐŚĞĂƌ ŵŽĚƵůƵƐ ƌĞĚƵĐƚŝŽŶ ƉƌŽĐĞƐƐ Ăƚ ĞĂĐŚ ŝƚĞƌĂƚŝŽŶ ƐƚĞƉ Ăƚ ƐƉĞĞĚ ŽĨ ϮϬϰŬŵͬŚ͖ ;ďͿ YŽƵŶŐ͛Ɛ 
modulus comparison over the depth for speeds of 70km/h and 204km/h 

 

Figure 13 shows the maximum octahedral shear strain versus depth for train speeds of 

70km/h and 204km/h.  It compares the linear and non-linear formulations, and also shows 

results published in [38], which were obtained using a comprehensive 3D constitutive 

model.  The strain levels are low in the embankment due to its high stiffness but again the 

strains are large in the top 2 soil layers.  As found previously, the strain levels are larger for 

the equivalent linear model compared to the linear model, particular towards the soil 

surface. 

  Comparing model results against [38], it is seen that strain levels are of similar 

magnitude.  There are some discrepancies in the embankment and also towards the top of 

the clay layer.  The discrepancy in the clay layer shows the strain levels in [38] decreasing 

more slowly that in the TLM model.  This may be due to the different element sizes used in 

the different models ʹ the TLM utilises much thinner elements, thus allowing non-linear 

effects to be captured more precisely.  Furthermore, qualitatively comparing strains with 

depth against the contours presented in [15], in which an equivalent linear approach is 

applied on the basis of element-by-element strategy instead, strain levels are shown to 

decrease rapidly in-line with the TLM results. 

 

Figure 13: Variation of maximum octahedral shear strain with depth for train speed at (a) 70km/h; (b) 204km/h 
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4. Numerical analysis 
As shown via the validation case, at high speed, railway lines can induce elevated subgrade 

strains which can result in non-linear soil behaviour. Therefore four soil case studies are 

undertaken, with properties shown in Table 4 and Figure 14, to investigate the effect of 

ĚŝĨĨĞƌĞŶƚ ƐŽŝů ƐƚŝĨĨŶĞƐƐ͛Ɛ and layering combinations on track response. To account for non-

linearity effect, the shear modulus degradation and damping ratio curves are based on the 

functions proposed by Ishibashi and Zhang [45]. Effective confining stress and plasticity 

index are governing factors that affect the non-linearity soil behaviour. In this study, the 

plasticity index is assumed to be 30 for all soils. In Figure 14, the corresponding primary 

wave speed ܥ௣ and secondary wave speed ܥ௦ of each soil layer are listed and two points (A 

and B), indicating upper and lower position of soil, are selected for each soil case for the 

strain analysis. The cases are:  

1. A homogeneous low stiffness soil 

2. A low stiffness soil overlying a stiffer soil 

3. A high stiffness soil overlaying a softer soil 

4. A homogeneous high stiffness soil 

For all cases, the train is modelled as a moving 18 tonne axle load.  A large number of train 

speeds are considered, as needed to plot dynamic amplification curves.  Regarding the 

track, it is a ballasted track with properties shown in Table 5.  A variety of output variables 

are plotted, however for dynamic amplification curves it should be noted that non-linear 

dynamic amplification is very sensitive to wheel spacing and therefore can change 

dramatically depending upon vehicle configuration. 

 

Table 4: Soil properties used in the case studies 

 
Layer 

thickness (m) 

YŽƵŶŐ͛Ɛ 
modulus (MPa) 

PŽŝƐƐŽŶ͛Ɛ 
ratio 

Density 

(kg/m3) 
Damping 

Soil 1 λ Ͷͷ ͲǤ͵ͷ ͳͺͲͲ ͲǤͲ͵ 

Soil 2 [ʹǢ  λ] ሾͶͷǢ  ͳʹͲሿ ሾͲǤ͵ͷǢ  ͲǤ͵ͷሿ ሾͳͺͲͲǢ  ͳͺͲͲሿ ሾͲǤͲ͵Ǣ  ͲǤͲ͵ሿ 

Soil 3 [ʹǢ  λ] ሾͳͲͲǢ  Ͷͷሿ ሾͲǤ͵ͷǢ  ͲǤ͵ͷሿ ሾͳͺͲͲǢ  ͳͺͲͲሿ ሾͲǤͲ͵Ǣ  ͲǤͲ͵ሿ 

Soil 4 λ ʹͲͲ ͲǤ͵ͷ ͳͺͲͲ ͲǤͲ͵ 
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Figure 14: Wave speeds demonstration for different soil conditions 

Table 5: Ballasted track properties 

  Ballasted track 

Rail ܫܧ௥ ሺNmଶሻ ͳǤʹ͸ ൈ ͳͲ଻ ݉௥ ሺkgȀmሻ 120 

Railpad ݇௣ ሺNȀmሻ ͷǤͷ ൈ ͳͲ଼ ܿ௣ ሺNsȀmሻ ʹǤͷ ൈ ͳͲହ 

Sleepers ݉௦ ሺkgȀmሻ 490 

Ballast ݄௕௔௟௟௔௦௧ ሺmሻ 0.35 ܧ௕௔௟௟௔௦௧ ሺMPaሻ 150 ʹܾ (m) 2.5 ߩ ሺkgȀmଷሻ 1600 

 

 

4.1 Soil Case 1 

Soil 1 is a homogeneous half-space with a Young modulus of 45MPa.  Figure 15 

shows the relationship between train speeds for four variables: a) rail displacement, b) 

ballast velocity, c) strain at 2m depth (Point A in Figure 14), and d) strain at 4m depth (Point 

B in Figure 14).  The linear and non-linear results are compared for each, considering the 

passage of a single wheel.  It should however be noted that for the non-linear case, the 

results are highly sensitive to wheel spacing and should be treated as indicative. 

Firstly, considering rail displacements, the non-linear and linear curves have a similar 

shape.  The linear case has lower displacements for the majority of speeds, except around 

its critical velocity peak at 90m/s.  Regarding maximum dynamic amplification, the non-

linear case shows 24.6% greater displacements compared to the linear case.  Further, the 

critical velocity reduces from 91 m/s to 80 m/s.  These effects occur because the soil 

stiffness is reduced for the equivalent linear case.  This causes the track to deflect more, but 
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also lowers the wave propagation velocities, thus affecting the dispersive characteristics of 

the soil.   

Analysing the octahedral strains at 2m and 4m below the ground surface shows a maximum 

at 91m/s, approximately the shear wave speed (and thus the critical velocity) of the linear 

soil case. However, for the non-linear case at 2m, the peak displacement magnitude 

increases by 20.8%, and the critical velocity shifts to 80 m/s which is 12.1% lower than the 

linear case.  In comparison, at 4m the peak displacement magnitude increases by 10.1%, 

and the critical velocity shifts to 85 m/s which is 6.6% lower than the linear case.  The effect 

at 2m is therefore more pronounced than at 4m and due to greater soil non-linearity close 

to the soil surface.  This is further illustrated in Figure 16 which shows strain versus depth, 

for a low speed (10m/s) and the non-linear critical speed (80m/s).  At a depth of 2m, strain 

levels are significantly higher than at 4m (ʹǤͶ ൈ ͳͲିସ vs ͳǤͳ͵ ൈ ͳͲିଷ).  Further, if a depth of 

1m is considered, increasing the train speed results in a 387% increase in strain level.   

 

 

 

Figure 15: Soil case 1 comparisons of linear and equivalent nonlinear DAF curves of (a) rail displacements (b) ballast 

velocity (c) octahedral strain at Point A (d) octahedral strain at Point B 
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Figure 16: Maximum shear strain vs depth for c = 10 m/s and c = 80 m/s for non-linear Soil case 1 
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Figure 17: Stress history of Point A underneath the centre line of the track structure at the speeds of (a) c = 10m/s (b) c = 

80m/s (c) c = 130m/s 

 

Figure 17 shows the stress histories of the (non-linear) soil formulation at 2m depth 

(Point A), directly below the track for 3 speeds.  At low speed, the stress history has a 

symmetrical shape and the magnitude of each stress component is small. However, as train 

speed increases, this symmetry is lost and all stress component magnitudes increase 

significantly.  The change in magnitude is summarised in Table 6, where it is seen that higher 

speeds cause the horizontal stress component to increase as a proportion of the vertical 

stress.  Therefore, although the vertical stress component increases with speed, when 

approaching the critical velocity, the horizontal components increase more rapidly.  After 

experiencing a peak at 80m/s, all stresses components stabilise and only experience small 

additional increases. This is also shown in Figure 18 which shows the effect of speed on 

peak-peak stress components when considering soil non-linearity.  In this figure it is seen 

that as train speed increases the discrepancy between vertical and horizontal stresses 

decreases. 

 

Table 6: The magnitude of maximum stress components (peak-to-peak) at various speeds 

 C = 10 m/s C = 80 m/s C = 130 m/s 
Magnitude Percentage Magnitude Percentage Magnitude Percentage 

Vertical stress 

(kPa) 
16.8 -- 40.8 -- 41.3 -- 

Horizontal 

stress (kPa) 
2.8 16.7% 23.4 57.3% 30.1 72.8% 

Longitudinal 

stress (kPa) 
1.1 6.5% 9.1 22.3% 13.1 31.7% 
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Figure 18: DAF curves for stress components at Point A in Soil case 1 

 

4.2 Soil Case 2 

Soil Case 2 consists of a 2m thick soft layer (45 MPa) overlying a stiffer homogenous half-

space (120 MPa).  Figure 19 (a) shows that the maximum rail displacement increases by 

29.5%, from 2.95 mm to 3.82 mm, when considering soil stiffness degradation. In a similar 

manner to Soil Case 1, this is because the equivalent linear model results in decreased soil 

stiffness, therefore causing greater track deflections.  However, in contrast to Case 1, track 

deflections are lower for the linear case for most of the train speeds, even at the linear 

critical speed. 

Similarly, the critical speed shifts to 90 m/s, for the non-linear case, which represents a 

20.0% decrease.  This is due to the reduced wave speeds associated with the degraded soil 

stiffness.  Additionally, the velocity-displacement gradient is very steep for the non-linear 

case immediately prior to critical velocity.  This indicates that very minor changes to speed 

can almost double rail deflections.  At speeds greater than the critical velocity, 

displacements reduce rapidly, to magnitudes even lower than the static load case.  This is 

true for both the linear and non-linear case.   

Figure 19 (b) shows the relationship between strain and soil depth for speeds of 10 m/s 

and 90 m/s, which represent the quasi-static case and also the non-linear critical velocity 

case.  The black dotted line indicates the soft-stiff soil interface. The higher speed shows 

significantly larger strains compared to the low speed case, particularly in the top 2m where 

the softer soil is located.  At the interface between the soft and stiff soils, there is a rapid 

reduction in strain levels for both speeds, however this is particularly pronounced for the 

higher speed.  At the stiffer soil locations the strains remain higher for the non-linear case, 

however the values are lower than in the soft soil layer, and converge rapidly until a depth 

of approximately 6m. 
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Figure 19: Soil case 2, (a) comparisons of linear and nonlinear DAF rail displacement curves, (b) Maximum (non-linear) 

shear strain vs depth for c = 10 m/s and c = 90 m/s 

 

Figure 20: Soil case 2 comparisons of linear and nonlinear DAF curves of maximum octahedral strain (a) at Point A (b) at 

Point B 

Figure 20 compares octahedral strain dynamic amplification curves for the linear and 

non-linear formulations, at depths of both 1m (Point A) and 4m (Point B) below the soil 

surface.  The 1m location represents the centre of the soft layer, while the 4m location 

represents a depth 2m below the soft-stiff layer interface. Figure 20 (a) shows that the peak 

strain of the linear result at 1m is located at 110 m/s, which is close to the linear track-

ground critical velocity. Similarly, for the 4m case, the peak (low-strain) strains are found at 

152m/s, corresponding to the shear wave velocity of the lower layer.  Therefore the critical 

velocity is located between the speeds of peak strains in both layers.  This is in contrast to 

Soil Case 1, where the critical velocity at all soil and track locations (in terms of either strain 

of displacement), is constant.  This is because P-SV waves are non-dispersive for Soil Case 1, 

while in Soil Case 2 P-SV waves experience dispersion due to the presence of two 

contrasting stiffness soil layers. 

Comparing the linear and non-linear cases, the maximum strain levels are elevated by 

23.4% and 5.3% when non-linearity is considered, for the 1m and 4m locations respectively.  

Further, the critical speeds are shifted by 18.2% and 10.7% respectively.  Interestingly, for 

the 1m case, for the majority of train speeds, the strains are higher for the non-linear case, 

however at 4m between speeds of 140-200m/s, the linear case shows higher displacements.  
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Further, at low train speed, there is discrepancy between the linear and non-linear cases at 

1m, however at a depth of 4m, below a speed of 70m/s, both formulations result in almost 

identical strain magnitudes.  This is because strains reduce with depth, meaning the deeper 

soil locations are less susceptible to soil stiffness degradation. 

 

 

 

Figure 21: Stress path followed at point A during the load passage with different speeds (a) c = 10 m/s (b) c = 90m/s (c)   

c = 110 m/s 

Figure 21 shows the p-q stress paths at a depth of 1m below the track centre-line for speeds 

of 10, 90 and 110 m/s.  The stress paths are computed using the mean stress increment (dp) 

and shear stress increment (dq): 
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݌݀ ൌ οߪଵ ൅ οߪଶ ൅ οߪଷ͵  

ݍ݀ ൌ ඨሺοߪଵ െ οߪଶሻଶ ൅ ሺοߪଵ െ οߪଷሻଶ ൅ ሺοߪଶ െ οߪଷሻଶʹ  

Where ߪଵǡ  ଷ represent the principal stresses. At a speed of 10m/s, there is no sign ofߪ ଶ andߪ

dynamic amplification. However, when the speed is 110 m/s, (i.e. close to the critical 

velocity), the stress state becomes highly turbulent and the magnitudes increase 

significantly.  This is consistent with the findings of [46]. 

 

4.3 Soil Case 3 

Soil Case 3 consists of a stiffer 2m layer (100MPa) overlying a softer lower layer (45MPa).  It 

is therefore an inversely dispersive scenario, where phase velocities both increase and 

decrease depending upon frequency. 

 

Figure 22: Soil case 3, (a) comparisons of linear and nonlinear DAF rail displacement curves,(b) Maximum (non-linear) 

shear strain vs depth for c = 10 m/s and c = 80 m/s 

Figure 22 shows the effect of moving speed on maximum rail displacement.  The non-

linear formulation results in a 7.2% increase in maximum displacement and 11.3% critical 

velocity respectively.  These discrepancies are lower in magnitude compared to the previous 

soil case, and are due to the stiffer soil being located near the surface.  This results in lower 

strain levels near the soil surface, and that decay less rapidly with depth.  For example, for 

Soil Case 2, Figure 19 shows a maximum strain in the top 2m of ͳǤ͵ʹ ൈ ͳͲିଷ, and a 

maximum of ͵Ǥͳ ൈ ͳͲିସ in the lower layer (i.e. 325% reduction).  In contrast, for Soil Case 3, 

Figure 22 shows that the maximum strains in the upper and lower layers are ͹Ǥͺ ൈ ͳͲିସ and ͸Ǥͺ ൈ ͳͲିସ respectively, which is a 14.7% reduction.  Therefore the upper soil layer has less 

influence on overall non-linearity for Case 3 compared to Case 2.  Another notable 

difference between these cases is that for case 2, strains reduce dramatically when moving 

across the upper to lower layer interface.  In contrast, Case 3 (Figure 22) shows that strains 

increase (but less drastically) when crossing the upper to lower layer interface.  This occurs 

because softer soil layers typically experience higher strain levels. 
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Figure 22 (a) also shows displacement oscillations at speeds greater than the critical 

velocity for the linear case.  The critical speed computed using the linear analysis is located 

at 90 m/s which is related to the lower layer shear wave speed, while the second peak is at 

136 m/s, and thus coincides with the shear wave velocity of the upper soil layer. 

 

Figure 23: Soil case 3 comparisons of linear and nonlinear DAF curves of maximum octahedral strain (a) at Point A (b) at 

Point B 

Figure 23 shows the relationship between maximum octahedral strain and train speed, 

for both soil formulations and at depths of 1m and 4m below the track.  For the non-linear 

case at both depths, there is a more pronounced increase and decrease in strain levels 

immediately before/after the peak strain values.  These peaks are 8.3% and 11.5% lower 

than the linear case, in terms of critical velocity respectively, but the magnitudes are 30.7% 

and 27.8% higher than the linear result.  Although, for all cases, strain levels are lower than 

those for Case 2, at higher speeds, the decrease in strain levels at very high speed is also 

lower than Case 2.  Interestingly, at very low and very high speeds, strain levels are similar 

for the linear and non-linear cases.  The main discrepancy occurs in a localised speed range 

close to the critical velocity where the amplification effects are more dominant. 

Considering the linear cases, the peak values do not correspond to the shear wave 

speeds of either the upper or lower supporting soil. This difference is caused by the complex 

dispersion characteristics of the inversely-dispersive profile.   
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Figure 24: Normalised ground surface contours (a) Linear: c = 10 m/s (b) Nonlinear: c = 10 m/s (c) Linear: c = 80 m/s (d) 

Nonlinear: c = 80 m/s 

Finally, Figure 24 shows ground surface contour plots for high (80m/s) and low 

(10m/s) speed wheel passages, computed using both linear and non-linear formulations.  At 

low speed, the soil response is uniform and symmetrical, and the contours for the linear and 

non-linear formulations are similar.  However, at high speed, the linear and non-linear 

responses are markedly different.  The linear formulation is relatively uniform and similar to 

both low speed responses, however, the non-linear result has a significantly pronounced 

wavefront.  This occurs because the moving load speed is at the critical velocity of the non-

linear soil (i.e. degraded stiffness soil), while it is below the linear critical velocity.  Therefore 

it can be concluded that track-ground behaviour can be markedly different when 

considering linear and non-linear soil behaviour. 

 

4.4 Soil Case 4 

Soil Case 4 is a homogeneous half-space, similar to Case 1, however with a greater stiffness  

(E=200MPa).  Figure 25 (a) shows the relationship between rail displacement and train 

speed, where it is seen that the curve shape for both formulations is similar.  However, the 

non-linear formulation shows a 1.3% increase in maximum displacement and 15.8% 

decrease and critical velocity respectively.  Although the change in critical speed is 

comparable to Case 1, the increase in magnitude is significantly different (20.7% for case 1).  

Also, for Case 1, rail displacements at low speed are greater for the non-linear case, 

however when the soil has a Young modulus of 200 MPa, the displacements are almost 

identical at speeds below 70m/s.  This occurs because the elevated stiffness results in the 

generation of lower strains inside the soil stratum.  This is seen in Figure 25 (b) which 

compares strain with depth for low speed (10m/s) and at the non-linear critical velocity 

(150m/s).  The high speed case exhibits higher maximum strain levels (ͶǤʹͶ ൈ ͳͲିସ 

compared to ͳǤͻʹ ൈ ͳͲିସfor the low speed case).  However, these are still relatively low, 

meaning soil stiffness degradation is also low. 
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Figure 25: Soil case 4, (a) comparisons of linear and nonlinear DAF rail displacement curves (b) Maximum (non-linear) 

shear strain vs depth for c = 10 m/s and c = 150 m/s 

 

5. Discussion 
The four case studies presented show that train speed has a marked effect on track-

ground response during train passage.  Table 7 summaries the results and shows that 

dynamic track deflections increase with speed from their static value by between 58% and 

120%.   

Further, Table 7 quantifies the large discrepancy between track displacements 

computed using linear and non-linear formulations.  This discrepancy is up to 30% for the 

case of a soft soil overlying a stiffer soil, however is less of a problem when the entire soil 

layer is stiff.  Table 7 also shows that the critical speed is influenced when considering non-

linearity.  For all soil cases, the critical velocity is shifted to a lower value, ranging between 

80-89% of the original linear value.  Also, at speeds close-to, but below the critical velocity, 

the non-linear formulation reveals that the gradient of the dynamic amplification curve is 

much steeper with respect to speed compared to the linear case.   

These two findings are important when designing high speed lines because often 

70% of the linear critical speed is chosen as the cut-off track-foundation design criteria.  

Therefore, if the railway track/foundations are designed to have a critical speed у50-70% of 

the linear value, the track may be of risk of high dynamic effects.  As an example, case 2 

shows a very steep velocity-displacement gradient immediately prior to the critical velocity, 

indicating small speed changes will radically alter track deflections.  Therefore this could be 

problematic if it is decided to increase train speeds slightly in the future. 

It should be noted that the reduction in critical speed is dependent upon the 

characteristics of the soil, because the non-linear stiffness degradation of cohesive and 

granular soils is very different.  Cohesive soils have plasticity and the sensitivity of their 

shear stiffness degradation curves to the confining stress is low.  Alternatively, granular soils 

have a low plasticity index and are more greatly affected by confining stress.  In practical 

railway situations, embankments are typically constructed using granular materials while 

the underlying soil might be cohesive.  Therefore, in addition to the train-induced stresses, 
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embankment stiffness degradation will be effected by confining stress, while the supporting 

soil might be more greatly effected by plasticity index. 

It should also be noted that although this research presents dynamic amplification 

curves considering subgrade non-linearity, the results are for a single wheel passage only.  

This is acceptable for linear simulations, however for non-linear ones, the results can be 

greatly affected by vehicle axle configuration (i.e. axle spacing) and, the axle load.  

Therefore, when investigating the effect of subgrade non-linearity in practise, rolling stock 

configuration should be considered since it has a strong influence on track-ground 

behaviour. 

Finally, stiffness degradation and consequently the reduction of the critical speed 

can have a strong impact on the accumulation of permanent strains in the ground.  This can 

be investigated using shakedown limit analysis, such as that presented by [46]. 

 

Table 7: Summary of effect of non-linearity on rail displacements and critical velocity  

 Rail displacement Critical speed 

Percentage increase from 

maximum linear 

displacement  

Percentage increase from 

static displacement 

Percentage decrease 

from linear speed 

Soil Case 1 24.6% 114.5% 12.2% 

Soil Case 2 29.5% 120.5% 20.0% 

Soil Case 3 7.2% 58.1% 11.3% 

Soil Case 4 1.3% 77.4% 15.8% 

 

6. Conclusions 
This paper presents a frequency domain numerical model to investigate the effect of soil 

non-linearity on the response of high speed railway lines.  The model uses analytical 

expressions to describe the response of the track and a thin-layer element method for the 

ŐƌŽƵŶĚ͘  TŚĞ ŵŽĚĞů ŝƐ ĐŽƵƉůĞĚ ǁŝƚŚ Ă ͚ůŝŶĞĂƌ ĞƋƵŝǀĂůĞŶƚ͛ ĨŽƌŵƵůĂƚŝŽŶ ƚŽ ĂůůŽǁ ƚŚĞ ƐŽŝů 
stiffness to change depending upon strain level.  The linear stress-strain implementation is 

validated using an independently published dataset and the non-linear response is validated 

using field data collected on a high-speed railway line.  The model is used to investigate four 

railway case studies, each with highly contrasting subgrade characteristics.  It is found that 

non-linearity has a very significant influence on track-ground response.  For example, the 

critical velocity shifts to as low as 80% of the linear case, while rail deflections are up to 30% 

higher.  Further, at speeds close-to, but below, the non-linear critical velocity, dynamic 

amplification is highly sensitive to small increases in train speed.  These findings depend 

upon material properties, and are important for high speed rail track-earthwork designers 

because often 70% of the linear critical velocity is used as a design limit.  However, this work 

shows that designs close to this limit may be still at risk of high dynamic effects, particularly 

if line speed is increased slightly at a later date.  
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