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Abstract 7 

Constitutive models for masonry require a number of parameters to define material behaviour 8 

with sufficient accuracy. It is common practice to determine such material parameters from 9 

the results of various, relatively simple, small-scale laboratory experiments. However, the 10 

effectiveness of determining material parameters that are representative of masonry from 11 

small-scale experiments have found to be problematic. This paper investigates the material 12 

parameter identification problem for masonry constitutive models. The methodology is based 13 

on an inverse analysis containing an optimization procedure and surrogate modelling. The 14 

general framework of the non-linear estimate methodology and the parameter identification 15 

problems are discussed. 16 

 17 

Keywords: Numerical modelling, material parameter identification, masonry, non-linear 18 

analysis 19 

1 Introduction 20 

Masonry is the oldest material used in construction and has proven to be both simple to build 21 

and durable. Although its simplicity of construction, the analysis of masonry is a challenging 22 

task. Masonry is an anisotropic, heterogeneous and composite material where mortar joints 23 

act as plane of weakens. The need to predict the in-service behaviour and load carrying 24 

capacity of masonry structures has led researchers to develop several numerical methods and 25 

computational tools which are characterized by their different levels of complexity. For a 26 

numerical model to adequately represent the behaviour of a real structure, both the 27 

constitutive model and the input material properties must be selected carefully by the 28 
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modeller to take into account the variation of masonry properties and the range of stress state 29 

types that exist in masonry structures (Hendry 1998.). It is often the case that material 30 

parameters are very sensitive to the mechanical behaviour of the structure and if not selected 31 

accurately can lead to over or under estimations (Sarhosis 2015). A broad range of numerical 32 

methods is available today ranging from the classical limit analysis methods (Heyman, 1998) 33 

to the most advanced non-linear computational formulations (e.g. finite element and discrete 34 

element methods of analysis). The selection of the most appropriate method to use depends 35 

on, among other factors, the structure under analysis; the level of accuracy and simplicity 36 

desired; the knowledge of the input properties in the model and the experimental data 37 

available; the amount of financial resources; time requirements and the experience of the 38 

modeller (Lourenço, 2002). It should also be expected that different methods should lead to 39 

different results depending on the adequacy of the approach and the information available. 40 

Preferably, the approach selected to model masonry should provide the desired information in 41 

a reliable manner within an acceptable degree of accuracy and with least cost. This paper 42 

investigates the material parameter identification problem for masonry and proposes an 43 

alternative methodology for obtaining material parameters for non-linear constitutive laws.  44 

 45 

2 Conventional methods for material parameter identification 46 

Conventionally, material parameters for masonry constitutive models are determined directly 47 

from the results of compressive, tensile and shear strength tests on small masonry prisms. 48 

These usually consist of assemblages of masonry consisting of a small number of bricks and 49 

mortar joints. It is usually assumed that the stress and strain fields in the specimen are 50 

uniform. In some other cases, separate tests are carried out on material samples, such as 51 

masonry units and/or mortar specimens (Rots, 1997; Van der Pluijm, 1999). The testing of 52 

small specimens is simple, relatively inexpensive and involves little specialist equipment. 53 

However, the conventional approach is considered to be problematic and may not produce 54 

material parameters that are representative of masonry. As identified by Hendry (1998), brick 55 

and mortar properties are highly variable and depend primarily on the local supply of raw 56 

materials and manufacturing methods. Also, the assumption that the stress and strain in the 57 

specimen are uniform is not applicable for masonry which is an intrinsically inhomogeneous 58 

material. Moreover, the simple conditions under which the small specimens are tested in the 59 



3 

 

laboratory do not usually reflect the more complex boundary conditions, the combinations of 60 

stress-state types and load spreading effects that exist in a large scale masonry structure. In 61 

addition, some of the parameters obtained from small scale tests are variable and sensitive to 62 

the method of testing. This is likely to be due to the combined effects of eccentric loading, 63 

stress concentrations and variations in the resistance to applied stress that are likely to exist in 64 

the test specimens (Hendry, 1998). According to Vermeltfoort (1997), the effects of boundary 65 

conditions such as platen restraint and the shape and size of the test specimen can have a 66 

significant influence on the magnitude of the measured parameter. For example, a mortar 67 

joint between porous and absorbent masonry units will set, harden and cure in a different way 68 

to the same mortar used to form a cube in a steel mould. Also, the restraint conditions on the 69 

mortar in the cube test will be different to those existing in the mortar joint between masonry 70 

units. Thus, the compressive strength of mortar obtained from a mortar cube test is unlikely 71 

to represent the compressive strength of the mortar in between adjacent masonry units. The 72 

situation is made more complex when workmanship is considered. Usually a much higher 73 

standard and consistency of workmanship will be achieved by constructing small scale test 74 

specimens in the laboratory compared with the construction of larger scale masonry 75 

structures. Such variations in workmanship will not be captured if the material parameters are 76 

based on the results from the testing of small scale specimens. In addition, the use of field test 77 

results presents another set of difficulties. The stress and strain levels that are found in 78 

structures in the field are likely to be very low and affected by effects such as moisture 79 

movements, shrinkage and creep. Any material parameters determined from field 80 

measurements are unlikely to represent the behaviour of masonry in the post-cracking and 81 

near-collapse conditions. Other factors such as load spreading effects, residual thermal 82 

stresses in bricks, large inclusions sometimes found in bricks, etc all contribute to the 83 

uncertainty of material parameters obtained from small scale experiments. As a result of these 84 

difficulties it is often necessary to adjust the material parameter values obtained from small 85 

scale experiments before they can be used in the numerical model. 86 

3 Proposed method for material parameter identification 87 

From the above discussion it is evident that an alternative method of determining material 88 

parameters that better reflects the complex nature of masonry and the range of stress state 89 

types that exist in practice is worthy of further investigation. According to the proposed 90 
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method, a numerical analysis for each large scale “non-trivial” experiment is carried out 91 

using an initial estimate of the material parameters. These initial values are “tuned” to 92 

minimise the difference between the responses measured from the large scale laboratory 93 

experiments and those obtained from the numerical simulation. It was envisaged that such 94 

tests would be carried out in the laboratory and the large scale structures selected for this 95 

purpose would be subjected to loading that would create a variety of different stress states. 96 

The responses measured in the laboratory would normally be deflections or distortions. An 97 

assumed range of material parameters is initially used in the model for the simulation of the 98 

large scale experiments. These initial material parameters could be based on the results 99 

obtained from conventional small-scale experiments, on values provided in codes of practice 100 

or from experience and engineering judgement. It should also be mentioned that the range of 101 

the selected material parameters should produce similar mechanical behaviour to that 102 

obtained from the large scale experiment. The selection of the range of material parameters is 103 

very important and will depend on the experience of the modeller. The material parameter 104 

identification problem can then be considered as an optimization problem in which the 105 

function to be minimized is an error function that expresses the difference between the 106 

responses measured from the large scale experiments and those obtained from the numerical 107 

analysis. Responses are based on the mechanical response of the masonry to be analyzed and 108 

can include: failure load, load at initial cracking, load-deflection characteristics, etc. The use 109 

of optimization software is essential for the evaluation of the approximation of responses as 110 

well as for the implementation of the optimization process. Once should be aware that the 111 

optimization procedure should provide a single set of material parameters (e.g. global 112 

minimum) that are representative for the case under investigation. The use of graphical 113 

illustrations of the solution in the form of response surface analysis is highly recommended.  114 

 115 

The proposed method of material parameter identification is illustrated in Figure 1. The 116 

method was initially proposed by Toropov and Garrity (1998) and later expanded and 117 

validated for low strength masonry by Sarhosis & Sheng (2014).   118 

 119 

The aim of the identification problem is to obtain the optimum estimate of the unknown 120 

model parameters taking into account uncertainties which may exist in the problem, such as 121 

the inherent variation of material properties, experimental errors and errors in the model 122 
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estimation method. The estimates of the material parameters obtained from this approach 123 

could be referred to as the “maximum likelihood estimates” and can be used to “inform” the 124 

computational model. Sarhosis (2014) suggested that in order to account for the inherent 125 

variations in the materials and unavoidable variations in workmanship, for each of the large 126 

scale experiments at least three specimens should be tested. Also, it is important to note that 127 

the above method can be used for any constitutive model describing masonry as long as the 128 

constitutive model describes the mechanical behaviour of masonry with sufficient accuracy. 129 

It is anticipated that after undertaking a series of studies, an extensive library of material 130 

parameters can be obtained where one can download and use for the numerical simulation.  131 

 132 

Examples showing studies for material parameter identification for large deformation 133 

plasticity models include: a) test data of a solid bar in torsion (Toropov et al., 1993) and b) 134 

test data for the cyclic bending of thin sheets (Yoshida et al., 1998). Later, Morbiducci (2003) 135 

applied the method to two different masonry problems in order to: a) identify the parameters 136 

of a non-linear interface model (Gambarotta et al., 1997a) to describe the shear behaviour of 137 

masonry joints under monotonic loading, where shear tests were chosen as the experimental 138 

tests; b) to evaluate the parameters of a continuum model for brick masonry walls under 139 

cyclic loading (Gambarotta et al., 1997b); and c) to evaluate the parameters of low bond 140 

strength masonry (Sarhosis 2014;  Giamoundo et al. 2014). From the above studies, the 141 

following points have been observed and should be taken into consideration when using such 142 

method: 143 

a) When modelling masonry, different material parameters influence different stages of 144 

mechanical behaviour; 145 

b) large number of full scale experiments may be required; and 146 

c) a significant amount of computational time is required to carry out parameter 147 

sensitivity studies.  148 

 149 
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4 Formulation of the material parameter identification problem  150 

4.1 Formulation of the optimization problem 151 

Consider an experimental test performed on ℳ = 1,2, … , 𝓂 specimens. Also, the design 152 

variables or unknown parameters to be estimated are 𝒫 = 1,2, . . , p which form part of the 153 

constitutive model for the masonry material. Let’s assume that 𝒩 = 1,2, … 𝓃 represents the 154 

number of responses that are recorded from the experimental data and are going to be 155 

compared with the numerical simulation. Also, let’s consider the variable R𝓃exp
 to be the value 156 

of the 𝓃th measured response which corresponds to the large scale experiment carried out in 157 

the laboratory. Consider R𝓃comp
 as the value of the 𝓃th measured response quantity 158 

corresponding to the computational simulation. The model takes the general function form 159 𝓍 =ℛ(𝒫). To calculate this function for the specific set of parameters, 𝓍, once has to use a 160 

non-linear numerical simulation, usually based on a discrete or finite element method of 161 

analysis. The intention is to simulate the mechanical behaviour of the experimental test under 162 

consideration. In this way, the difference between the experimental and the numerical 163 

responses can be obtained. This form an error function that can be expressed by the 164 

difference D=ℛM,Nexp − ℛM,Ncomp
. 165 

 166 

The optimization problem can then be formulated as follows:- 167 

 168 F(𝓍)1 =  ∑ [(ℛ1,1exp − ℛ1,1comp)2 + (ℛ1,2exp − ℛ1,2comp)2 … … . +(ℛ1,nexp − ℛ1,ncomp)2  ]     (1) 169 

F(𝓍)2 = ∑ [(ℛ2,1exp − ℛ2,1comp)2 + (ℛ2,2exp − ℛ2,2comp)2 … … . +(ℛ2,nexp − ℛ2,ncomp)2  ]      (2) 170 ⋮ 171 F(𝓍)𝓂 = ∑ [(ℛ𝓂,1exp − ℛ𝓂,1comp)2 + (ℛ𝓂,2exp − ℛ𝓂,2comp)2 … … . +(ℛ𝓂,nexp − ℛ𝓂,ncomp)2  ]      (3) 172 

 173 𝐹𝑀(𝐱) = F(𝔁)1 + F(𝔁)2 + ⋯ + F(𝔁)𝓂  is a dimensionless function. The problem is then to find the 174 

vector 𝒙 = [𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝] that minimizes the objective function: 175 

 176 
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F(𝔁)total = ∑ θℳ(𝐹𝑀(𝐱)),         𝐴𝑖 ≤ 𝑋𝑖 ≤ 𝐵𝑖           (𝑖 = 1 … … . . 𝑁)    (4) 177 where  F(𝔁)total
 is a function of the unknown parameters (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑝), θℳ is the weight 178 

coefficient which determines the relative contribution of information yielded by the M-th set 179 

of experimental data, and 𝐴𝑖 , 𝐵𝑖 are the lower and upper limits on the values of material 180 

parameters identified by physical considerations. The objective function is an implicit 181 

function of parameters 𝑥, where 𝑥 ∈ ℝ. Also, once should expect that since a series of 182 

numerical simulations will be required, a considerable amount of computational time will 183 

result. Also, the optimization procedure may present some level of numerical noise. Since the 184 

computational simulations would involve an excessive amount of computational time to 185 

execute and convergence of the above method cannot be guaranteed due to the presence of 186 

noise in the objective function values, routine task analysis such as design optimization, 187 

design space exploration, sensitivity analysis and what-if analysis become impossible since 188 

they require thousands of simulation evaluations. One way to mitigate against such a burden 189 

is by constructing surrogate models (also referred to by some researchers as response surface 190 

models or metamodels). These mimic the behaviour of the model as closely as possible while 191 

at the same time they are time effective to evaluate (Queipo et al., 2005). Surrogate models 192 

are constructed based on modelling the response predicted from the computational model to a 193 

limited number of intelligently chosen data points. In the case that a single variable is 194 

involved, the process is known as curve fitting, see Figure 2. New combinations of parameter 195 

settings, not used in the original design, can be plugged into the approximate model to 196 

quickly estimate the response of that model without actually running it through the entire 197 

analysis. This approach can result in less computational iterations leading to substantial 198 

saving of computational resources and time.  199 

 200 

Using this approach, the initial optimization problem, equation (4), is replaced with the 201 

succession of simpler mathematical programming sub-problems as follows:  202 

 203 

Find the vector 𝒙𝑘∗  that minimizes the objective function: 204 

 205 

𝐹̃𝑘(𝑥) = ∑ θℳ𝐹̃𝑘𝑀(𝑥),     𝐴𝑖𝑘 ≤ 𝑋𝑖 ≤ 𝐵𝑖𝑘 , 𝐴𝑖𝑘 ≥ 𝐴𝑖, 𝐵𝑖𝑘 ≤ 𝐵𝑖     (𝑖 = 1 … … . . 𝑁)               (5) 206 
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 207 

where 𝑘 is the iteration number. The limits 𝐴𝑖𝑘   and 𝐵𝑖𝑘 define a sub-region of the 208 

optimization parameter space where the simplified functions 𝐹̃𝑘𝑀(𝑥) are considered as current 209 

approximations of the original implicit functions 𝐹𝑀(x). To estimate their accuracy, the error 210 

parameter 𝑟𝑘 = |[𝐹(𝑥𝑘∗) − 𝐹̃𝑘(𝑥𝑘∗)]/𝐹(𝑥𝑘∗)| is evaluated. The value of the error parameter 211 

gives a measure of discrepancy between the values of the initial functions and the simplified 212 

ones. Any conventional optimization technique can be used to solve a sub-problem, equation 213 

(5), because the functions involved in its formulation are simple and noiseless.  214 

 215 

4.2 Choice of the surrogate model 216 

To construct the simplified noiseless expression for the function  𝐹̃𝑘𝑀(𝑥) in equation (5), 217 

different methods of regression analysis can be used including the Least Squares Regression 218 

(LSR) method, the Moving Least Squares (MLS) method and the Hyper Kriging approach for 219 

building approximation models. The LSR and the MLS methods will be described for 220 

approximating noisy experimental results such as those obtained from the testing of masonry 221 

structures. Hyper Kriging is not considered further as it is suitable for modelling highly non-222 

linear response data that does not contain numerical noise.  223 

 224 

4.2.1 Least Squares Regression (LSR) 225 

LSR is an approximation method which finds application in data fitting (Toropov et al., 226 

2005). The best fit in the least squares sense minimizes the sum of the squared residuals i.e. 227 

the difference between an observed value and the fitted value provided by the model. Let N 228 

points located at positions 𝑥𝑖 in ℝ where 𝑖 ∈ [1 … 𝑁]. We wish to obtain a globally defined 229 

function 𝑓(𝑥) that approximates the given scalar values 𝑓𝑖 at points 𝒙𝑖 in the least squares 230 

sense with the error function 𝑟𝐿𝑆 = ∑ ‖𝑓(𝒙𝑖) − 𝑓𝑖‖2𝑖 . The following optimization problem can 231 

be obtained: 232 𝑚𝑖𝑛 ∑ ‖𝑓(𝑥𝑖) − 𝑓𝑖‖2𝑖                        (6) 233 

, where 𝑓 is taken from the polynomial basis vector and the vector of unknown coefficients to 234 

be minimized in equation (6). 235 
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 236 

4.2.2 Moving Least Squares (MLS) 237 

MLS is an approximation building technique that is proposed for smoothing and interpolating 238 

data (Toropov et al., 2005). MLS is a generalisation of a conventional weighted least squares 239 

model building method. The main difference between MLS and LSR is that with MLS the 240 

weights associated with the individual experimental sampling points do not remain constant 241 

but are functions of the normalized distance from an experimental sampling point to a point 𝑥 242 

where the approximation model is evaluated. In the weighted least squares formulation, we 243 

use the error function 𝑟𝑊𝐿𝑆 = ∑ 𝑊𝑖‖𝑓(𝑥𝑖) − 𝑓𝑖‖2 𝑖 for a fixed point 𝑥̃ ∈  ℝ, which we  244 

minimize: 245 𝑚𝑖𝑛 ∑ 𝑊𝑖‖𝑓(𝑥𝑖) − 𝑓𝑖‖2 𝑖                        (7) 246 

 247 

The function is similar to equation (6) only that, now, the error is weighted by 𝑊𝑖. Many 248 

choices for the weighting function 𝑊𝑖 have been proposed in the literature (Alexa et al., 249 

2003). Equation 8 shows the Gaussian formulation: 250 

 251 𝑊𝑖 = 𝑒−𝜃𝑟𝑖2  (8) 252 

 253 

, where 𝑟𝑖 are the Euclidian normalized distances from the  𝑖 − 𝑡ℎ sampling point to a current 254 

point. Also, the parameter 𝜃 refers to the “closeness of fit” and by varying its value we can 255 

directly influence the approximating/interpolating nature of the MLS fit function. A low 256 

value of 𝜃 leads to least squares smoothing (e.g. in the case where 𝜃 = 0, then equation (7) is 257 

equivalent to the traditional least squares regression). Alternatively, when the parameter 𝜃 is 258 

large, it is possible to obtain a very close fit through the sampling points (i.e. interpolating), if 259 

desired. When the MLS method is used to approximate results obtained from experiments 260 

carried out on masonry structures, interpolation (i.e. a high value of 𝜃) would not be 261 

appropriate, as there is a considerable amount of variation in the masonry material properties 262 

resulting in experimental noise.    263 

 264 
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4.3 Choice of the optimization method 265 

In order to solve the sub-problem in equation (5), there are a number of available 266 

optimization methods to be used. Currently, a gradient-based method (known as Sequential 267 

Quadratic Programming) and a global search algorithm method (known as the Genetic 268 

Algorithm approach) are the two representative methods that can be used for the comparison 269 

of results (Toropov and Yoshida, 2005).  270 

 271 

The Sequential Quadratic Programming (SQP) method is used for solving constrained 272 

optimization problems by creating linear approximations to the constraints (Toropov et al., 273 

2010). The fundamental principle behind this method is to create a quadratic approximation 274 

of the Lagrangian function that combines the objective function with active constraints. The 275 

quadratic problem is then solved for the search direction avoiding any constraint violations. 276 

On the other hand, a Genetic Algorithm (GA) is a machine learning technique modelled after 277 

the evolutionary process theory. Genetic algorithms differ from conventional optimization 278 

techniques in that the work is based on a whole population of individual objects of finite 279 

length, typically binary strings (chromosomes), which encode candidate solutions 280 (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) using a problem-specific representation scheme (Toropov et al., 2010). 281 

These strings are decoded and evaluated for their fitness, which is a measure of how good a 282 

particular solution is. Following Darwin’s principle of “survival of the fittest” (or natural 283 

evolution), strings with higher fitness values have a higher probability of being selected for 284 

mating purposes to produce the next generation (i.e. new population created from current 285 

population) of candidate solutions (Toropov et al., 2010). Evolution is performed by breeding 286 

the population of individual designs over a number of generations. The advantages and the 287 

limitations of SQP and GA methods for solving optimization problems are shown in Tables 1 288 

& 2.  289 

Table  1  Sequential Quadratic Programming: Advantages and limitations  290 

Advantages Limitations 

- Converges fast to a highly 

accurate solution when 

gradients are accurate; 

- There is no dramatic increase in 

- As with any other gradient-based technique, 

SQP falls into the nearest local optimum so 

might need restarts from different points; 

- Converges poorly when gradients are 
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the number of iterations when 

the number of design variables 

grows.  

inaccurate; 

- Deals with continuous problems. In the case 

of a discrete problem, the solution has to be 

discretised (e.g. rounding off); 

- As a sequential technique, parallelisation is 

only possible for getting gradients. 

 291 

 292 

Table  2  Genetic Algorithm: Advantages and limitations  293 

Advantages Limitations 

- More likely to find a non-local 

solution as it works with a 

population of sets of variables 

rather than a single set; 

- Can handle noise and occasional 

failure to compute responses; 

- As GA is a non-deterministic search 

method (it exhibits different 

behaviours on different runs), it 

makes the search highly robust; 

- Simplicity; 

- Can be easily parallelised; 

- Only requires the objective function 

and not the derivatives; 

- Allows both discrete and continuous 

(discretized) variables as it codes 

the variables rather than taking the 

variables themselves.   

- High number of design iterations; 

- Lower accuracy compared with 

gradient based techniques for 

continuous problems; 

- Lack of indication as to how close 

the solution is to the optimum; 

- A few parameters need to be 

defined that affect the solution 

process.  

 294 
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 5 Conclusion 295 

A methodology for material parameter identification for nonlinear masonry constitutive laws 296 

has been proposed. Usually, the material parameters used for modelling masonry within 297 

computational models are based on the results of simple tests that do not reflect the more 298 

complex boundary conditions and combinations of stress-state types that exist in a real 299 

masonry structure. A method which is considered likely to determine more representative 300 

material parameters for masonry constitutive models has been proposed. This involves the 301 

computational analysis of large scale experimental tests on masonry structures. The initially 302 

assumed material parameters are tuned to minimize the difference between the responses 303 

measured from the large scale tests and those obtained from the computational simulations. 304 

The procedure has been successfully validated by (Sarhosis, 2014) when used to determine 305 

the material parameters for low bond strength masonry for a microscopic discrete element 306 

model. Both computational and experimental test data from a number of low bond strength 307 

brick masonry wall panels, each containing an opening to represent a large window, loaded at 308 

mid-span are used. Such wall panels were chosen as they contain regions of different types of 309 

stress when subjected to an externally applied load. In addition, the panels were considered to 310 

be sufficiently large to include inherent variations in the masonry materials and variations in 311 

workmanship. In the future, the effectiveness of the methodology is going to be applied to 312 

identify material parameters for macro-models.  313 

 314 
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Figure 1 Proposed methodology for the identification of material parameters (Sarhosis 2014) 435 
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Figure 2 Curve fitting  437 
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