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Abstract

Methods to optimise train movements to maintain time and avoid excessive

energy consumption are becoming widely applied, but outcomes remain sen-

sitive to uncertainties within the system. In this paper variability in station

dwell-times and the points of application of planned train control (traction,

coasting or braking) are taken as examples of typical rail system uncertain-

ties, and are used to demonstrate an approach to multi-train trajectory op-

timisation that is resilient to them.

Trade-offs are explored between highly optimised train trajectories that

are vulnerable to perturbation, and less optimal trajectories that are robust

to typical disturbances. Beyond dwell and control variations the method has

application for the many other common rail network uncertainties, e.g. differ-

ences in the traction characteristics of nominally identical trains or variable

train loading. Relative to optimisation without consideration of uncertainty,
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the approach is shown to find control strategies of substantially increased

robustness for the test cases examined, and offers a more principled way to

plan a network than the ad-hoc use of recovery time to mitigate everyday

operational disturbances.

Keywords: multi-train trajectory optimisation, robust control, energy

efficiency, trajectory planning, railway network optimisation, genetic

algorithm

1. Introduction

1.1. Background

Owing to increased traffic demands, railway systems in the UK and else-

where have become increasingly busy and in some areas their capabilities

restrict the volume of people and goods that can be moved1. Trains are

operating at increased frequency but there is often also a desire to minimise

travel time and, as a consequence, the system has little slack with an in-

creased likelihood that small disruptions can propagate across large parts of

the network with disproportionately severe effects.

Many uncertainties exist in rail networks, for example, small differences

in the traction characteristics of nominally identical trains, varying dwell-

times (DT) at stations, varying train loads, and variations in the locations

at which train control switches between traction, coasting or braking. We

refer to these locations as control-points (CP) for brevity. This is the case

even where the planned trajectory is advised to the driver through a driver

advisory system (DAS). For a busy network with little scope for recovery

these uncertainties mean that a planned schedule that appears to be optimal

2



may not be achievable in practice, i.e. it is not a robust. This has to be

mitigated with recovery time built into the timetable, without which oper-

ation can become severely degraded as, for example, delays accumulate and

cannot be recovered. An example taken from the UK shows a train making

14 station calls on a journey from London to Leeds having a scheduled ex-

tended stop of 480s (8 minutes) at its eighth station call. Analysis of 21 days

of data2 in the period 11th February to 12th March 2019 shows that actual

dwell time here had a mean of 338s, maximum of 645s and minimum of 225s.

The extended dwell was in some cases sufficient to enable recovery of delay

that had accumulated by this mid stage of the journey but at other times

was under or over generous. Beyond experience of the operator there is no

certainty this stage of the journey or scheduled duration of extended stop is

the optimum to maintain good service over the whole trip or for other trains

routed in the vicinity.

In this paper a method is introduced that attempts directly to impose

robustness in planned trajectories through probabilistic variation of CPs and

DTs within a genetic algorithm (GA) based, multi-train optimisation process.

This is in contrast to simple application of a GA to optimise train trajectory,

which has been well covered by previous publications, for example by Chang

and Sim, Yang et al. and Goodwin et al.3,4,5. The aim is to prove the concept

of including uncertainties in the rail network optimisation process to support

future application to an operational network. Trade-offs are explored between

highly optimised trajectories that are vulnerable to disruption, and what

may at first appear to be less optimal trajectories but ones that are robust

to uncertainty. The newly developed procedure is shown to find network-
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wide driving strategies of increased robustness, and offers a more systematic

way to plan a network than ad-hoc use of recovery time to mitigate everyday

disturbances to operation.

1.2. Optimisation in uncertain systems

Most trajectory planning work (for both single and multiple trains) is

focused on finding the optimal solution for a predefined timetable. Usually

train control seeks to maintain the timetabled traverse time for a length

of track, whilst minimising the energy consumption6. The problem is con-

strained by the dynamic performance limits of trains and restrictions on

speed and headways. The traditional formulation of the multi-train trajec-

tory planning problem can be formalised as:

f(X) → min (1)

where X is a control strategy for all trains on the network, and f(X) is a

cost function typically based on the traverse times and energy consumption

of all train journeys.

In optimising a rail network it is often assumed that if the optimal control

strategy is identified, then its implementation will result in optimal perfor-

mance of the system. However, the optimum is likely to lie on the limit of the

feasibility boundary and so will be very sensitive to parameter uncertainty

or noise7. In this context noise refers to the many small uncertainties that

most current models do not consider but which exist in reality, for example,

variations in DT at stations dependent on passenger boarding rate8,9. These

mean that if optimised control strategies (for a noiseless system) are applied
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to real operation it is unlikely they will perform as well as expected, and may

in-fact result in severely sub-optimal outcomes. Most of these uncertainties

fall into two different groups classified by Chen et al.10 as:

Type 1 - variation (α) in uncontrolled parameters, e.g. variations

between nominally identical vehicles, variations in station

dwell times.

Type 2 - variation (δ) in control, caused by imperfect application, e.g.

variation in locations at which a driver switches between

traction, coasting and braking.

Including both Type 1 and 2 variations the problem becomes:

f(X+ δ, α) → min (2)

By optimising this system, with noise included, the best result that could

be achieved with Equation (1) is expected to be approached but not matched,

this deviation being the cost of achieving a robust solution.

To explore the trade-off between cost and increased robustness, an exist-

ing multi-train trajectory optimisation study5 was utilised with the control

algorithm modified to include variations in DT, a Type 1 uncertainty, and

CP, a Type 2 uncertainty. Other uncertainties could also be considered but

DT and CP are taken here as examples with which to explore the method.

The model developed by Goodwin et al.5 uses a genetic algorithm (GA)

based optimiser, although the same consideration of noise could be applied

with alternative optimisation approaches – it is not specific to the GA im-

plementation.
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The uncertainties in DT and CP were quantified as statistical distribu-

tions from which values are sampled at each cost function evaluation (full

details below). This implies that the value of the cost function will vary

stochastically, and therefore a single evaluation could be misleading since it

would only examine one combination of uncertainties. A more realistic pic-

ture is given by taking the mean of N evaluations for a particular network

control strategy, i.e. considering the driving strategies for all trains move-

ments that take place. This may be undertaken directly (Equation (3)), or

in a GA optimiser may be achieved by increasing the population size. The

larger the N used, the better the representation of how the network will

really perform for that specific control strategy.

F̂ (X) =
1

N

N
∑

i=1

f(X+ δ, α) (3)

2. Methods

The existing multi-train trajectory planning optimisation method reported

previously5,11 was used as a starting point, focusing on movement of multiple

trains on a simple railway network (Figure 1). The aim was to demonstrate

the concept for robust multi-train trajectory planning by inclusion of un-

certainties in the optimisation process, and this network is suited to that

low technology readiness level (TRL) 2-3 objective, in preparation for later

application at TRL 7-9 (operational demonstration and application to geo-

graphical networks).
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2.1. Network and train schedule

The rail network studied (Figure 1) consists of three bi-directional sin-

gle track lines, joining four stations. Three trains are considered with the

journey schedule given below. Times for traverse and dwell are targets, i.e.

maximum traverse times, and minimum DTs, but may be varied by the op-

timisation if (for example) an early arrival or extended dwell is beneficial to

overall network behaviour. The network traverse times represent 10% slack

relative to flat out running and aim to represent a mainline suburban railway

operation with stops every 10-12 minutes. It should be noted that the simple

network modelled here is being used to explore the optimisation approach,

not to represent a specific network.

• Train 1: Mass 665 tonnes. Travels station 1 to 4 (traverse time 675s),

calls at station 4 (planned dwell 60s, minimum 30s), terminates at

station 2 (traverse time 747s)

• Train 2: Mass 600 tonnes. Travels station 2 to 4 (traverse time 701s),

calls at station 4 (planned dwell 60s, minimum 30s), terminates at

station 3 (traverse time 605s)

• Train 3: Mass 565 tonnes. Travels station 3 to 4 (traverse time 599s),

calls at station 4 (planned dwell 60s, minimum 30s), terminates at

station 1 (traverse time 637s)

At the beginning of the simulation all three trains depart their originating

stations simultaneously. The motion was discretised in intervals of 1s, and

over each individual time step it was assumed equations of linear acceleration
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apply. This allows non-uniform acceleration due to velocity dependence of

forces controlling motion to be closely approximated11 within a simple com-

putational approach. Although an analytical calculation could be made for

this simple network such an approach rapidly becomes unfeasible for a larger

network, so it was decided to use the more scalable time discretisation ap-

proach here. The forces controlling motion are the maximum traction force

available (360kN, irrespective of velocity), resistance to motion (g), and brake

force (h). The velocity dependent quantities are summarised by Equations 4

and 5 in which v is the velocity4.

g(v) = 11.4 + 0.101v + 0.001269v2 (4)

h(v) =



















300− 0.2v if 0 ≤ v ≤ 100km/hr

280− 1.2(v − 100) if 100 < v ≤ 200km/hr

160− 0.5(v − 200) if 200 < v ≤ 300km/hr

(5)

The lines of the network are each 30km long, with line-speed (V ) of

300km/hr except for the restrictions given in Equation 6 in which subscripts

indicate the stations connected, and s denotes the distance along the line

measured from the originating station. For trains moving in the reverse

direction the same line-speed restrictions were taken to exist at the same

locations. Since they are single track bi-directional lines, a train must com-

plete its traverse of a line before a train in the opposite direction can begin

its motion. Stations are capable of accommodating multiple trains, and the

network is taken to have no height variation (zero gradient) throughout al-

though the method admits variations in gradient, curvature and any other
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deterministic features. In combination with the range of train weights these

factors provide a variety of behaviour sufficient to test the optimisation of

train trajectories to compare cases with and without noise.

V(1,4)(s) = 200km/hr if 15km ≤ s ≤ 20km

V(2,4)(s) = 150km/hr if 10km ≤ s ≤ 13km

V(3,4)(s) = 230km/hr if 20km ≤ s ≤ 23km

(6)

2.2. Optimisation approach

The optimisation process without consideration of noise is fully described

by Goodwin et al.5 so only a brief summary is provided here. Train move-

ments are defined by a driving strategy consisting of traction and coasting

pairs, so a journey is made up of a series of applications of power (trac-

tion) followed by coasting. At the end of the journey braking is triggered to

bring the train to a stop at the required station. The locations of transitions

between traction, coasting or braking are defined as the CPs. Terminol-

ogy varies internationally and the same thing may also be referred to as a

switching point, but is distinct from wayside timing points which may also be

referred to as CPs in some rail operations. Optimisation is used to establish

the best places to make these control changes, although as discussed later the

planned positions may not be followed accurately during driving the train.

The duration over which traction or coasting is applied determines the speed

profile of the train, which must be kept within the line-speed-limit at any

location.

With the driving strategy defined by CPs, their location can be varied to

search for improvements in time keeping and reductions in network energy
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usage. During optimisation the performance of the driving strategies was

tested by running a simulation of the network and scoring performance using

the cost function Equation (7).

cost function =

M
∑

i=1

max(0, arrival time - timetabled arrival)

+ c
(

M
∑

i=1

energy consumed on journey
)

(7)

where M is the total number of journeys taken on the network across all

trains. This trades off delays and energy consumption through the constant,

c, by which the relative importance of these factors can be expressed. The

value of c can be modified depending on the relative importance to the oper-

ator of timekeeping or energy use, but a fixed value was maintained during

the current exploration focused on system variabilities. The cost function

used here is an example through which the effects of uncertainties in the

system can be explored; alternative cost functions have been developed that

are able to account for wider issues than just time and energy, for example

by Pavlides and Chow12.

Genetic Algorithms are a popular heuristic search technique well suited

to realistic (rather than mathematically well-behaved) problems expressed

by non-convex, possibly non-smooth, cost functions and non-linear relation-

ships. They model, in crude terms, the process of natural selection and em-

pirically have been shown to be able to arrive at good solutions in reasonable

times using reasonable computational resources. A population of individuals
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(phenotype) is initiated, e.g. representing a complete run of timetabled train

movements on the network, each characterised by an arbitrary set of problem

parameters (genotype), e.g. CP locations and accelerating/coasting/braking

actions to achieve the train movements. Each evaluation of the phenotype

using its current genotype is scored according to the cost function and the

“fittest” (best scoring) individuals are selected for breeding, whereby the

genotypes of pairs of fit individuals (parents) are recombined through the

mechanisms of crossover (mimicking the combination of DNA strands in sex-

ual reproduction) and mutation (mimicking the random variations that can

take place in this process). The new generation of “children” then undergoes

the same process of evaluation and breeding until a satisfactory solution is

reached, determined for instance by a fall in cost below some pre-determined

threshold or when local convergence is observed, e.g. via “small” changes

in cost from generation to generation. There are many possible ways of

implementing genetic operations and the specific choices for this work have

been fully described by Goodwin et al.5 and so are omitted here for brevity,

other than to report that a particular feature is its very low risk of becoming

“stuck” in cost function local minima rather than approaching the true min-

imum. It is worth noting that the means of embedding robustness/resilience

in the GA optimisation process could also be applied to other optimisation

techniques but here the focus is on GA as there is a large body of work

indicating their suitability for addressing train control problems.

Without noise in the system, the best driving strategies across trains on

the network would simply be those which when combined have the lowest

cost function score at the defined end point of the optimisation. The “all-
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time best scoring” driving strategies for the network could be identified after

a given number of potential strategies had been evaluated. However, in a

noisy system a single evaluation of each driving strategy is very unlikely

to identify the best performer under real-world conditions because it would

only have considered one case of the uncertainties present in the system. To

explore this issue it is useful to define training noise (the level of uncertainty

considered during the optimisation process) and utilisation noise (the level

of uncertainty in the system where the optimised driving strategy is applied).

To achieve a resilient control strategy the optimisation must be conducted

over a range of possible variations. Algorithm 1 takes the example of dwell

time to illustrate how training noise (i.e. training data-sets of dwell time

around a network) is applied to give greatest likelihood of good performance

for future utilisation noise which cannot be known in advance. For exam-

ple, actual station DT on a specific future journey cannot be known when

planning a timetable and the train control to achieve that timetable. The

optimisation process therefore considers 50 different potential combinations

of uncertainties, performing the optimisation process (step 2) for each case.

The solutions generated (the best driving strategies for that particular real-

isation of uncertainty) are then re-evaluated against all 50 uncertainty cases

to assess how they would respond to real-world variations in DT. A similar

process is performed when considering uncertainty (noise) in the application

of train control. The set of driving strategies that together offer the lowest

average cost function score for the whole network (i.e. lowest delay and en-

ergy use for all trains combined) is then selected as the best solution. While

it would be likely that this “best” solution could be improved upon for a
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Algorithm 1 Robust genetic algorithm, illustrated for dwell time robustness

1. Select as training data 50 data-sets for dwell times across the network

during running a timetable

2. For each training data-set n=1..50 simulate the timetable:

(a) Run genetic algorithm (200 generations, population 100) to

identify high performing train control strategies to achieve the

timetable and energy objectives, defined by Equation (7)

(b) Score each of the final population of train control strategies when

applied to simulate the timetable for each of dwell data-sets 1..50,

using Equation (3), N=50

(c) Identify the best scoring train control strategy for training data-

set n

3. Select the highest performing train control strategy across all 50 train-

ing data-sets

specific case of DT or CP uncertainty, on average it will be expected to of-

fer the best network performance over a wide range of utilisation conditions

without prior knowledge of exactly what these will be.

2.3. Representing DT uncertainty

Station DTs, measured as time spent in the station, excluding terminat-

ing trains, are inherently unpredictable largely owing to the boarding and

alighting of passengers, the speed of which is affected by many uncontrollable

variables such as the number and configuration of train doors, the number of

passengers with large luggage, and variations in passenger personal mobility.

Evidence demonstrating the distribution of DTs on the UK network is plot-
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ted in Figure 2, in which two distinct properties can be seen in data covering

almost 400,000 station stops on a range of suburban, regional and inter-city

routes. First, there is a distribution of DTs achieved around the nominal

DT, so modelling just the nominal dwell would clearly be unrealistic. Sec-

ond, shorter nominal dwells are associated with a more consistent (narrow)

distribution of DTs achieved, whereas longer nominal dwells are associated

with greater variability.

Variation in station DTs was introduced into the model so as to approx-

imate real-world behaviour, with the stochastic component normally dis-

tributed, and DT truncated to avoid negative waiting timesa. To enable

the uncertainty in DT to be varied smoothly for investigation, the standard

deviation in the stochastic component of DT was chosen to always be one

third of the mean, resulting in the series of distributions shown in Figure 3,

that closely resemble the real-world data in Figure 2. Since DT mean and

standard deviation are related in the example cases explored in this paper,

DT noise is quantified in the following sections by its mean value. The op-

timisation procedure is independent of this distributional choice, so, in real

applications, the representation of DT could be tuned to the characteristics

of a specific station, line, fleet or known passenger behaviour.

aA normal distribution was used for simplicity although the example data in Figure 2

have a skewed distribution. This has no impact on the consideration of robust trajectory

planning, but developing an alternative distribution to represent DT stochastic component

may be a useful area of future work.
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2.4. Representing uncertain CP application

Adapting the model described by Goodwin et al.5 to introduce uncer-

tainty in CP application into the system was achieved by adding a zero-mean,

normally distributed random distance to the position of each CP. Instead of

the next control action being applied as soon as the train passed the distance

specified in the control sequence the action was applied with the specified

level of uncertainty (Figure 4). This distribution could be refined for a spe-

cific application, for example, through observation of drivers to understand

the spread of early or late applications of control relative to DAS advice.

However, as for the DT case, the optimisation procedure developed in this

paper is independent of this distributional choice so a simple normal distri-

bution is satisfactory. CP noise is quantified in the following sections by its

standard deviation. Its inclusion in the representation of train control leads

to two closely related situations becoming possible.

First, each time a driving strategy was simulated there was a chance that

the trajectories taken do not maintain safe operation, for example by violat-

ing the line-speed-limits (Figure 4b). During the progress of the optimisation

such driving strategies were discarded and replaced with a driving strategy

probabilistically selected from the previous generation of the optimisation

process, this being a safe but sub-optimal driving strategy.

Second, it is possible that the “best” control strategy found by the op-

timisation in fact relies on the specific deviations of CP application chosen

to represent real-world variations during the optimisation. These deviations

would be unlikely to reliably occur in reality, giving a high likelihood of poor

network performance in a manner similar to optimising for a perfectly per-

15



forming system with no uncertainties. To screen out these cases the final pop-

ulation of potential driving strategies produced by the GA was re-simulated

without any noise and any candidates found to be invalid were discarded.

2.5. Optimisation parameters

The optimisation parameters used in this investigation are shown in Ta-

ble 1, and are identical to those used by Goodwin et al.5, except for the

additions explained above to account for noise. Eiben13 observes that pa-

rameters for a genetic process may have different optimum values throughout

the optimisation process, and here it was found that a linear decrease in the

size of mutation with each generation yielded improved performance.

Since GAs are not deterministic and the uncertainties being considered

add further variability to the system, after completion of each optimisation

a further analysis was conducted in which the performance of the chosen

control strategy was explicitly estimated, using Equation (3) (N = 500).

3. Results and Discussion

3.1. Baseline: Optimising without noise

The first series of optimisations was carried out without any training noise

during the optimisation process, the results from which are shown in Figure 5.

This is equivalent to a conventional optimisation developed for application in

ideal conditions (i.e. when there will be no uncertainties during utilisation).

With that in mind, it would be expected that its performance when utilised

with no CP or DT noise would be good, with a low score for delay and energy

consumption. Performance could, however, deteriorate markedly under real
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conditions. For the system studied, the mean utilisation DT noise was found

to have no effect on the validity of control strategies (no violations of the

type shown in Figure 4 occured). This is expected since a DT variation

should not adversely change driving behaviour after the train begins to move.

Introduction of utilisation CP noise had negligible effect on the cost function

scores, and this outcome held for all the different combinations of training

noise.

From Figure 5(a) it can be seen that the probability of an optimised

control strategy being valid, avoiding Figure 4 type violations, drops quickly

as utilisation CP noise increased. The optimised solutions found are very

close to the line-speed constraints, and when utilised in a system with no

noise they always keep the safety constraints and are therefore considered

valid solutions. However, as soon as a small amount of CP noise is introduced

during the utilisation of the control strategies the probability of speed-limit

violations becomes high, invalidating the control strategies. Far from being

surprising, this lack of robustness is exactly the behaviour that would be

expected from near optimal solutions to the noiseless problem7. By assuming

certainty in CP application during the optimisation it has produced solutions

that are sensitive to CP noise. In reality it would be expected that such

speed-limit violations would be avoided by drivers, with the consequence that

it would be very difficult or impossible to keep to the scheduled timetable.

Similarly, Figure 5(b) shows that, above a certain threshold, increased

utilisation DT noise produced an almost linear increase in the averaged cost

function score of a control strategy, i.e. increasingly poor performance. In

seeking to minimise energy consumption the optimisation has selected driving
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strategies that make full use of the timetabled traverse time on each journey

(since losses due to air resistance are reduced at lower speeds). If these

strategies are followed recovery time is minimised so any late departure will

cause a late arrival (with this effect amplified as delays propagate across the

network). Below a DT noise with mean of 45s this lack of recovery time is

not an issue because the utilisation DT has a very low probability of being

greater than the planned DT of 60s. However, above a mean DT noise of

60s the majority of dwells are extended and, since there is minimal recovery

time, any increase in DT causes delay and increases the Equation (3) cost

function score. Again, by assuming certainty in DTs during the optimisation

it has produced solutions that are sensitive to real-world conditions.

3.2. Optimising with CP variability

The second series of optimisations was carried out with different levels

of training CP variability during the optimisation process, the results from

which are illustrated in Figure 6.

Figure 6(a) shows that increasing the CP training noise leads to the op-

timisation finding control strategies that are substantially more robust to

variation in CP application. However, from Figure 6(b) it can be seen that

when utilised at a zero DT noise there is a small increase in cost function

score associated with the rise in CP training noise. This is the cost of having

an increase in robustness relative to that shown in Figure 5. In the case of a

utilisation CP noise, raising its level from zero to a 100m standard deviation

around nominal CP positions causes the probability of the control strategy

being evaluated as valid to increase from 0.04 to 0.86 (>2000%), but the cost

function score to increase by only 2.3%. This shows the benefit of retaining
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valid control under real conditions comes at a low cost.

3.3. Optimising with DT variability

The next series of optimisations was carried out with different levels of

DT uncertainty during the optimisation process, but with no CP uncertainty.

The results for training DT noise (mean) = 30, 45 and 135, 150s were found

to be almost identical to training DT noise of 0 and 120s respectively so

are omitted from Figure 7. For the first case, this is because the training

noise level is too low to have a noticeable effect – the vast majority of DT

instances are less than the nominal DT used in the system (60s) and therefore

rarely affect the actual departure time. In the second case, this is because

the training noise level is too high – the optimisation can no longer select

genuine improvements in control above the noise. The overall behaviour is

that a rise in DT training noise within the limits of what would constitute

noise rather than a more major disruption in the real system increases the

probability of developing driving strategies that remain valid in real-world

conditions, i.e. avoiding Figure 4b type violations.

It can be seen from Figure 7(b) that increasing the DT training noise

leads to solutions that have a lower cost function score when utilised at high

DT noise (i.e. are more robust). The results in Figure 7(a) show a sec-

ondary benefit of slightly increased robustness to variation in CP application

accuracy even though DT variability was the main consideration during op-

timisation. In this case, introducing one type of noise has led to the system

becoming more robust to another type of noise. However, the increase in ro-

bustness is accompanied by an increase in average cost function score when

utilised at low DT noise - seen in Figure 7(b).
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The importance of the training noise matching the noise level at which the

solution with be utilised is highlighted in Table 2. The modelling outcomes

show that the cost function score when the utilisation DT noise matches the

training noise is much lower than when the utilisation DT noise is fixed at

zero but the training noise varied. In situations where the utilisation noise

levels of a real system are not well known estimates will be needed in the

choice of training noise. It follows that all non-robust optimisations make

the (usually implicit) assumption that noise levels on all parameters are zero.

For many situations, particularly metro applications, this may be an accept-

able approximation but it is unlikely to hold in complex, interconnected,

stochastic systems such as a busy mainline suburban, regional or intercity

rail networks.

The trade-off between the cost function score and increased robustness

could be summarised as a “cost” to be paid in terms of energy to build in

recovery time to achieve increased robustness. The benefit of an optimisation

process is in making this trade-off strategically, not through ad-hoc use of

recovery time in the timetable with only limited understanding of its effect

on the whole network. Referring to the London to Leeds train described

in the Introduction, it would be possible to establish whether the current

location and duration of recovery time included in its schedule could be im-

proved upon, including considering the interaction of this train with others

on the network. This can be explored by looking at the traverse times of the

trains and the corresponding energy consumption. For convenience the con-

vention CP DT will be used to describe the training noise levels used during

optimisation (e.g. 0 90 denotes a training CP noise standard deviation of 0
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metres and a mean training DT noise of 90 seconds). The mean timetabled

journey time in the system modelled is 660.7s, calculated across all legs of

the timetable detailed in Section 2.1. From Table 3 it can be seen that the

mean journey time with 0 0 is 658s, giving a mean recovery time per journey

of just under 2.7s. Running with such low recovery time results in 0 0 having

the lowest average speed and therefore the lowest energy consumption of the

cases in Table 3. At first sight this may be considered a success, since the

service is predicted to be is punctual and energy efficient, but when consid-

ering robustness this is actually a “brittle” solution, with utilisation noise

rapidly leading to sub-optimal performance, as shown in Figure 5.

If the training DT noise is increased to 90s (training noise 0 90) then the

mean speed of operation rises and journey traverse time falls to give a mean

recovery time of just under 25s on each station to station traverse. This raises

the proportion of journeys in which punctual operation can be maintained

even where there is a significant probability that DT will be longer than

timetabled, but at the cost of running faster and using slightly more energy.

Mean recovery time is used here to summarise this behaviour, although the

optimisation actually distributes it non-uniformly between journey legs to

cope with interaction of services at station 4 (see Figure 1). Interestingly,

fast running (in order to build up recovery time) is similar to typical driver

behaviour14 but in this case has been found by a direct optimisation, which

has no prior knowledge of existing operational concepts.

3.4. Optimisation with both CP application and station DT variability

In real systems there may be uncertainty in many parameters simulta-

neously, so it is important to investigate the performance of the proposed

21



method in this situation. The performance when high levels of CP and

DT training noise are present simultaneously is shown in Figure 8. It can

be seen that the robustness of control strategies to CP noise at utilisation,

indicated by a high proportion of control strategies being valid during ap-

plication, is predominantly influenced by the training noise level of CP used

during optimisation. In terms of maximising robustness to CP variation the

performance of the 100 90 optimisation is very close to the performance of

the 100 0 optimisation, indicating that including DT noise at training makes

only a marginal difference to performance under CP noise at utilisation. In

contrast, Figure 8(b) shows the performance of the 100 90 optimisation is

similar, but slightly more costly, than the 0 90 optimisation. Including both

training noises simultaneously has led to higher cost function scores than

applying DT training noise alone. However, the performance of the 100 90

optimisation is still an improvement over the 0 0 optimisation when utilised

at a high level of DT noise. This indicates that the proposed approach for

including uncertainty in the optimisation is capable of finding solutions that

increase system robustness when two different types of uncertainty exist si-

multaneously.

4. Conclusion

When planning train trajectories it is important to consider the robust-

ness of driving strategies if they are to be successful under real-world con-

ditions. Uncertainty in location of control points (CPs) and length of dwell

times (DTs) can otherwise nullify a planned control strategy, making it un-

likely that the driving strategies found will be robust enough to perform as
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predicted in real operation. Non-systematic approaches may address this

problem, such as ad-hoc addition of recovery time to timetables, or by driv-

ing trains aggressively in an effort to keep to the timetable, but at the cost of

excess energy consumption and poor utilisation of trains, crew and network

capacity.

A method to consider noise in a multi-train optimisation procedure has

been described which seeks to find robust solutions to the multi-train trajec-

tory planning problem. For a small demonstration network it is shown to be

effective in finding robust control strategies in the presence of two different

types of uncertainty: the accuracy of the CPs (i.e. differences in applica-

tion point for traction, coasting or braking relative to a planned trajectory),

and variation in station DTs. These uncertainties were first considered sep-

arately, before it was shown that they could be considered simultaneously

in the optimisation, in which case it is predicted that the system will still

achieve good levels of robustness. For both types of uncertainty a trade-off

was observed between the robustness and the average cost function score

at utilisation, which represents a combination of delay and energy costs for

the train trajectory solution. The aim here was to explore the concept of

including uncertainties in train trajectory planning using a simple network

(technology readiness level, TRL, 2-3, proof of concept) in preparation for fu-

ture application at TRL 7-9 (operational demonstration). The procedure for

including training noise in the optimisation process is generalisable to include

the many different uncertainties that can affect railway system operation.

It is expected that this approach to optimisation offers greatest bene-

fit to mainline and suburban railways which are typically complex systems
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with high levels of uncertainties (large variety of vehicles, stations of differ-

ent characteristics). These contrast with metro or underground operations in

which there are lower levels of uncertainty (fewer vehicle types, often aiming

for flat-out driving to maximise throughput of passengers). The predictions

for the example network show that, for best network performance, the train-

ing noise used during the optimisation process should reflect the noise level

that is expected when the optimised driving strategy is utilised. Planning

for a level of uncertainty close to that experienced increases resilience and

robustness of the driving strategy without excessive cost.

Directions for further development of the technique include considering

different sources of noise (e.g. train resistance coefficients, traction efficien-

cies, rail-wheel adhesion levels), and different network topologies and timeta-

bles to understand how the method scales with increasing network size. For

larger networks implementation using parallel computing on graphics pro-

cessing units (GPUs) is expected to offer increased speed of computation.
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Figure 1: Network topology for concept exploration, previously investigated by Yang et al.
and Goodwin et al.4,5. Edges represent single track line with bi-directional traffic, nodes
represent stations.
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Figure 2: Distributions of DT achieved for planned nominal dwells of 30, 60, 90 and 120s,
as percentages of total stops for each nominal time. Data were obtained from data feeds
(15,16) of arrival and departure times, pre-processed to remove erroneous zero and negative
DTs. Data are for UK train operators East Midlands Trains (period 9th to 16th January
2016), Great Northern, and Thameslink (both for period 29th March to 3rd May 2016).
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Figure 3: Distribution in stochastic DTs (DTs), used to represent DT variation in the
optimisation process. (i) and (ii) illustrate the two extreme types of DT distribution,
similar to those found for a large sample of real trains, Figure 2.

30



Figure 4: Effect of uncertainty in CP application on train velocity trajectories: (a) When
applied without any noise, a control strategy may consistently pass close to a feasibility
boundary without the possibility of violations arising. (b) When implemented with noise
the same control strategy may break the safety constraints, which will result in it being
evaluated as “invalid” for that simulation.
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(a)

(b)

Figure 5: Predictions for utilisation of driving strategies optimised with no training noise.
Shaded areas show one standard deviation. (a) Effect of utilisation CP noise on the
probability the control strategy is valid (utilisation DT noise = 0s). (b) Effect of utilisation
DT noise on the average cost function score (utilisation CP noise = 0m).
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(a)

(b)

Figure 6: Predictions for utilisation of driving strategies optimised with zero DT training
noise and a range of CP training noise. Shaded areas show one standard deviation. (a)
Effect of variation in utilisation CP noise on the probability the control strategy is eval-
uated as valid (utilisation DT noise = 0s). (b) Effect of variation in utilisation DT noise
on the average cost function score (utilisation CP noise = 0m).
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(a)

(b)

Figure 7: Predictions for utilisation of driving strategies optimised using different levels of
training DT noise, with no CP (CP) training noise. Shaded areas show one standard devi-
ation. (a) Effect of variation in utilisation CP noise on the probability the control strategy
is evaluated as valid (utilisation DT noise = 0s). (b) Effect of variation in utilisation DT
noise on the cost function score of operations (utilisation CP noise = 0m).
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(a)

(b)

Figure 8: Predictions for utilisation of driving strategies optimised using combinations
of DT (mean) and CP (sd) training noise. The dotted lines emphasise the level of the
training noise used.(a) Effect of variation in utilisation CP noise on the probability the
control strategy is evaluated as valid. (b) Effect of variation in utilisation DT noise on the
cost function score of operations.
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Table 1: Model and GA parameters used in this investigation.

Parameter value

M (size of mutation, varied linearly during solution) (m) start = 200
end = 0

Population size 100
Number of generations 200
c (value of energy relative to time) (min/kWh) 0.0015
N (for averaging final population) 50
Minimum dwell (s) 30
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Table 2: Cost function score at utilisation relative to a base case for training without DT noise.
CP noise zero in all cases. Higher cost function scores represent worse performance.

Training DT noise
(mean) /s

Utilisation DT noise Cost function %
change

45 0 1
60 0 4
75 0 9
90 0 14
105 0 18
120 0 20

45 45 0
60 60 -1
75 75 -6
90 90 -10
105 105 -12
120 120 -11
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Table 3: Average properties of the control strategies resulting from different combinations of
training noise (all utilised at, CP noise = DT noise = 0).

Training noise (CP DT)

0 0 100 0 0 90 100 90

Mean speed /ms−1 45.6 45.7 47.1 46.6
Mean journey time /s 658 656 636 644
Mean journey energy /kWh 1008 1038 1148 1152
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