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Abstract. Data-driven modelling approaches play an indispensable role in ana-
lyzing and understanding complex processes. This study proposes a type of 
sparse, interpretable and transparent (SIT) machine learning model, which can 
be used to understand the dependent relationship of a response variable on a set 
of potential explanatory variables. An ideal candidate for such a SIT representa-
tion is the well-known NARMAX (nonlinear autoregressive moving average 
with exogenous inputs) model, which can be established from measured input 
and output data of the system of interest, and the final refined model is usually 
simple, parsimonious and easy to interpret. The performance of the proposed 
SIT models is evaluated through two real healthcare datasets. 

Keywords: System Identification, Data-driven Modelling, Prediction, 
Healthcare, Machine Learning, NARMAX. 

1 Introduction 

Data analysis and data modelling are perhaps the most commonly used approaches to 
acquiring insightful understanding and characterization of complex systems or phe-
nomena where the changes of relevant factors or variables can be quantitatively 
measured and recorded but the inherent mechanisms or first principle models are not 
available. Traditionally speaking, data analysis is a technique to achieve insight into 
data (e.g. organization’s data, business data, or whatever other data of interest). Tasks 
of data analysis range from data management, pre-processing and evaluation to data 
mining and data modelling. Data modelling provides necessary techniques for under-
standing and analyze data; one important aspect of data modelling is to understand the 
relationships between different features and factors of interest through mathematical, 
statistical and/or other quantitative analysis approaches. System identification and 
predictive modelling are two important classes of data-driven modelling techniques, 
the former concerns the development of mathematical models using data observed 
from dynamical systems, whilst the latter concerns the revealing of relationships of 
features of interest from any collected data.  
    The past decades have witnessed tremendous developments and applications of 
system identification and predictive modelling techniques [1-4], which have been 
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applied in diverse areas including space weather [6-13], climate and geophysics [14-
18], medicine and healthcare [19-21], environments [23-26], societal wellbeing stud-
ies [27], and engineering [28-29]. In concept, there are some subtle differences in 
system identification and predictive modelling. System identification concerns how to 
find a good model, from measured input and output data of a system of interest, that is 
as closely as possible to represent the input-output behavior. In doing so, it requires 
that the identified model should be as accurate as possible to characterize the underly-
ing dynamics hidden in the data. Predictive modelling concerns the detection of de-
pendence relationships among a group of variables by analyzing and modelling the 
relevant data; the goal is to determine if the change in some variables would affect the 
other variables, or if the attribute of some specific variables of interest (e.g. response, 
dependent or output variables) can be characterized by other variables (commonly 
known as explanatory, predictor, independent or input variables). Classification prob-
lem solving with either parametric or non-parametric data modelling methods is a 
typical example of the application of predictive modelling.  

In more detail, system identification [1-4] is different from the conventional con-
cept of predictive modelling [5] in that the former pays more attention on system 
dynamics.  In system identification, it is usually assumed that the measurements or 
recorded data come from dynamic systems, whose current behaviour (often referred 
to as the system output) depends on previous or historical states of both the inputs 
(stimuli or driving signals) and the output itself.  In system identification or dynamic 
modelling, all the input and output signals should strictly be recorded chronologically. 
Unlike in predictive modelling where the order of data records can be altered and 
normally the change will not affect the overall modelling performance, in system 
identification altering data record order is not allowed as the data records virtually 
reflect the change of the system behaviour with ‘time’ (this is an implicit independent 
variable in all time-invariant dynamic systems). 

Despite the difference between system identification and predictive modelling, 
they share many similarities in model construction and algorithm implementations. 
For example, the commonly used methods of generalized linear models in predictive 
modelling, including model variable/term selection, model structure detection, model 
validation and so on, can be borrowed to deal with nonlinear dynamical models e.g. 
NARMAX (nonlinear autoregressive moving average with exogenous input) model 
with an appropriate modification, and vice versa. As highlighted in [4], NARMAX 
model can be considered a dynamically driven single hidden-layer recurrent neural 
network, which include many neural network structures e.g. radial basis function 
neural networks (RBFNs) as a special case. 

While NARMAX model has been extensively applied in many interdisciplinary 
fields, its application potential in healthcare and related area has not yet been well 
explored. So, this study aims to introduce a type of sparse, interpretable and transpar-
ent (SIT) model for healthcare and related data modelling problems. We propose to 
use the NARMAX model, which possesses a number of attractive ‘smart’ properties, 
namely, simple and simulatable, meaningful, accountable, reproducible, and transpar-
ent. Two examples are provided to show the performance of the proposed approach.  
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2 Model Representation 

A wide range of dynamic systems or processes can be represented using NARMAX 
model [4]. Taking the case of multiple inputs (designated by u1, u2, …, ur) and one 
output (designated by y) problem as an example, the NARMAX model that links the 
output y to the inputs u1, u2, …, ur is of the form:  

1 1 2 2( ) [ ( 1), , ( ), ( 1), , ( ), ( 1),..., ( ),...,

              ( 1),..., ( ), ( 1), , ( )] ( )
y u u

r r u e

y t f y t y t n u t u t n u t u t n

u t u t n e t e t n e t

      

    
     (1) 

where y(t), u(t) and e(t) are the measured system output, input and noise sequences 
respectively at time instant t; ny, nu, and ne are the maximum lags for the system out-
put, input and noise; f[•] is some non-linear function to be estimated from data.  Note 
that the noise e(t) is unmeasurable but can be replaced by the model prediction error 
in system identification procedure. The noise terms are included to accommodate the 
effects of measurement noise, modelling errors, and/or unmeasured disturbances.  

Now define a group of new variables (i.e., lagged versions of the original input and 
output variables) as 

( ),                   1
( ) ( ),           1

( ),    1

y

m y y y u

y u y u

y t m m n
x t u t m n n m n n

e t m n n n n m n

   
      
       

                            (2) 

where euy nnnn  . Model (1) can then be written as 

1 2( ) [ ( ), ( ), , ( )] ( )ny t f x t x t x t e t                                                        (3) 

In practice, many types of functions are available to approximate the unknown 
function f[•] in (1), including power-form polynomial models and rational models 
[28], radial basis function (RBF) [8, 31, 32], and wavelet expansions [33]. In this 
study, power-form polynomial basis is considered. Expanding model (1) by defining 
the function f[•] to be a polynomial of degree  gives the representation: 
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                           (4) 

where
miii 21

 are parameters. The degree of a multivariate polynomial is defined as 

the highest order among the terms. For example, the degree of the polynomial 
2 2

1 2 1 1 2 1 2 3 1 4 1 2( , )h x x a x a x x a x a x x     is  1+2=3, which is determined by the 

last term, 
2

4 1 2a x x . Similarly, a polynomial model with degree means that the order 

of each term in the model is not higher than  . Note that the polynomial representa-
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tion (4) belongs to the family of linear-in-the-parameters (LIP) but nonlinear-in-the-
variables (NIV) models. 

In many applications, the noise signal e(t) in the NARMAX model (1) can be rea-
sonably assumed to be an i.i.d. or white noise. In this case, model (1) can be reduced 
to a NARX model which only involves lagged input and output variables as below: 

( ),                 1
( )

( ),        1
y

m
y y y u

y t m m n
x t

u t m n n m n n n

          
                      (5) 

With the above definition, (1) can easily be re-arranged to a LIP-NIV form. 
Note that in nonlinear dynamical system identification, attention is always focused 

on building mathematical models, from experimental data, that can represent the in-
herent dynamics or system input-output relationship as accurate as possible. From a 
neural network perspective, a NARX model can be considered a dynamically driven 
1-hidden-layer neural network, which is referred to as recurrent NARX network (R-
NARX-NN) [4]. For example, for a NARX model of nonlinear degree  =3, define 

                 1
1

[ ( ); ] ( )
n

i i
i

F t x t 


x   

             2
1

[ ( ); ] ( ) ( )
n n

ij i j
i j i

F t x t x t 
 

x  

             3
1

[ ( ); ] ( ) ( ) ( )
n n n

ijk i j k
i j i k j

F t x t x t x t 
  

x   

The recurrent neural network structure of the NARX model is shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  The structure of the NARX model, which is a typical recurrent neural network. 
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3 Sparse Dictionary Learning and NARMAX Model Estimation 

For convenience of description, we first focus on the NARX model estimation, for 
which the procedure starts with setting up a few parameters, namely, the maximum 
lags ny and nu, and the nonlinearity degree  . Now, take a simple case as an example, 
where a system only has one input and one output signal, and assume ny =1, nu =1 
and  =3. We define the following distributed lag sub-dictionaries: 

                  0 {1}D  (constant term) 

                  1 { ( 1), ( 1)},D y t u t    

                  
2

( 1) ( 1)

( 1) ( 1) ,

( 1) ( 1)

y t y t

D y t u t

u t u t
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( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

y t y t y t

y t y t u t
D

y t u t u t

u t u t u t

   
         
    

 

The four sub-dictionaries will then be used to form a dictionary:  

   D = D0 + D1 + D2 + D3                                                                        (6) 

The task of finding a good model is equivalent to selecting important model terms 
from the dictionary D, which well represents the input-output relation of the system.  

For complex cases (e.g. with many inputs, and with large time lags), we can define 
D0, D1, D2 , D3, etc. in the same way. Note that the total number of potential model 

terms in a polynomial NARX model is ]!!/[)!(  nnM  . For example, if  =3, 

ny  = 10,  nu  = 5, then M = (15+3)!/(15!3!) = 153.  For large ny and nu, the number of 
initial candidate model terms included in the initial full model can be very large. 
However, for a given system, the M candidate model terms in D are not necessarily 
equally important for representing the system. Some terms may be irrelevant or only 
make very tiny contribution to explaining the system input-output behavior, thus 
should not be included in the model, because an inclusion of irrelevant model terms 
can generally lead to model overfitting, and may adversely make it more difficulty to 
reveal the true system dynamics. The forward regression orthogonal least squares 
(FROLS) algorithm [4, 31, 32] and its variants [34-38] provide an efficient, powerful 
tool for nonlinear significant model term selection and model structure detection. 
Detailed discussions on the FROLS algorithm can be found in [4, 39, 40].  

This study uses the FROLS algorithm with ridge regularization to select significant 
model terms and determine the model structure. Once a NARX model structure is 
determined, the noise variables e(t-1), …, e(t- ne) and the model terms involving these 
noise variables are accommodated to the NARX model, to develop a NARMAX 
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model structure. Note that the noise signal ( )e t  is not observable but can only be es-

timated from the prediction errors: ˆ( ) ( ) ( )t y t y t   , where ˆ( )y t  is the model 

prediction at time instant t. Detailed discussions may be found in [4].   

4 Case Studies and Real Applications 

4.1 The Relation Between Influenza-like Illness Incidence Rate and Deaths  

The weekly influenza-like illness (ILI) incidence rate and deaths data were acquired 
from the Office for National Statistics (ONS), The Royal College of General Practi-
tioners Research and Surveillance Centre and Public Health Wales. The dataset con-
tains a total of 991 weekly records starting in week 31 of 1999 and ending in week 30 
of 2018. The raw data are plotted in Fig. 2.  

The objective here is twofold. One is to quantify the relation between the week 
mortality and the ILI incidence rate, and another is to do a week ahead prediction of 
the death mortality. We consider two types of models: one using autoregressive varia-
bles and another one without using autoregressive variables. For both cases, the 991 
data points are split into two parts: the first 600 samples are used for model training 
and the remaining 391 are used for model testing. 

The Model Without Including Autoregressive Variables  

Voterra model is special case of NARMAX model, without including autoregressive 
variables. The best Volterra model identified by the FROLS algorithm with Ridge 
regularization is: 

2 2 2 3

( ) 8636.0572 64.6550 ( 1) 55.6953 ( 4)
      0.5110 ( 1) 0.0015 ( 1) 0.8304 ( 4) 0.0026 ( 4)
y t u t u t

u t u t u t u t
     

        
     (7) 

 
 
 
 
 
 
 
 
 

 

 

 
 

Fig. 2.  Weekly influenza-like illness (ILI) incidence rate and deaths, England and Wales, be-
tween week 31 of 1999 and week 30 of 2018.  
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where u(t) represents the weekly ILI incidence rate and y(t) represents the number of 
weekly deaths. A comparison of the model predicted deaths and the corresponding 
true values, on the training and test data sets, are shown in Fig. 3 and Fig. 4, respec-
tively. It can be seen that the simple NARMAX model (7) shows an overall very good 
prediction performance. Note that the model predictions of the short period centred on 
15 August 2009 are quite bad, this is because there is some extremely odd behaviour in 
then ILI incidence rate as shown in Fig. 2. 
 
 
    
 

 

 

 

 

 

 

 

 

 

Fig. 3.  A comparison of the model prediction with the corresponding true number of deaths, on 
the training dataset of the period between week 31 of 1993 and week 47 of 2010.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  A comparison of the model prediction with the corresponding true number of deaths, on 
the test dataset of the period between week 48 of 2010 and week 30 of 2018.  
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The Model with Autoregressive Variables 

With the same training data, the FROLS algorithm produces the following  
NARMAX model: 

( ) 616.435147 0.927840 ( 1) 0.114871 ( 1) ( 3) 10.535455 ( 1)y t y t u t u t u t          (8) 

Note that all the model terms involving noise variables such as u(t-1)e(t-1) are omit-
ted and not included in the final model, because all these noise terms are not useful 
for model prediction but are only used to reduce bias in model estimation. A compari-
son of the model predicted deaths and the corresponding true values, on the training 
and test data sets, are shown in Fig. 5 and Fig. 6, respectively. Model (8) shows that 
the death mortality is closely correlated to the ILI incidence rate.  
 

 
 
 

 
 
 
 
 
 
 

 

 

Fig. 5.  A comparison of the model prediction with the corresponding true number of deaths, on 
the training dataset of the period between week 31 of 1993 and week 47 of 2010. 

 

 

 

 

 

 

 

 
 

Fig. 6.  A comparison of the model prediction with the corresponding true number of deaths, on 
the test dataset of the period between week 48 of 2010 and week 30 of 2018. 
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4.2 Analysis of Beijing Air Quality   

A dataset of Beijing air quality is obtained from http://www.tianqihoubao.com/aqi/. 
The dataset contains six variables, namely, PM2.5 (ȝg/m3), PM10 (ȝg/m3), SO2 
(ȝg/m3), NO2 (ȝg/m3), CO (mg/m3), O3 (ȝg/m3), all of which were measured daily. 
Here, in this study we are interested in understanding how PM2.5 depends on or is 
delated to the other five variables. We therefore treat PM2.5 as an output variable and 
the other five variables are treated to be the inputs.  

We use 732 sample data of the period from 1 January 2016 to 31 December 2017 
to train the model, and use the data of the period of 1 January 2018-31 January 2019 
to test the model performance. The identified model is: 

2.5 10
2 2

3 3
2

10 10

2 2

( ) 0.43615 ( ) 38.07453 ( ) 17.90321

              0.31627 ( ) ( ) 0.00119[ ( )] 7.48672[ ( )]

              0.11175 ( ) ( )+0.00033[ ( )]
              0.01899 ( ) ( 1) 0

PM t PM t CO t

CO t O t O t CO t

PM t CO t PM t
NO t NO t

  
  

   10 2

3 2 3

10 2 2 2

10 2

.007294 ( ) ( 1)
              0.06749 ( 1) ( 1)+0.00100 ( ) ( 2)
              0.01151 ( ) ( 1) 0.02525 ( 1) ( )
              0.03123 ( ) ( 2) 0.39556 ( )
            

PM t NO t
CO t O t SO t O t
PM t SO t SO t NO t
PM t CO t NO t


   
   
  

2 2  0.26760 ( 2) ( ) 0.72491 ( )           SO t CO t SO t












   

    (9) 

The values of RMSE (root mean squared error), MAE (mean absolute error), Cor-
relation (between the measurement and model prediction), and R2 (coefficient of de-
termination) of model (9) over the training data are 15.4160, 10.8202, 0.9656, and 
0.9924, respectively, and 16.9764, 11.2995, 0.9193 and 0.8450, respectively, over the 
test data. These statistics show that PM2.5 has a very strong relation or dependence 
with other five variables.  A comparison between the model predictions and the corre-
sponding true measured values over test datasets is shown in Fig. 7. 

5 Conclusion 

Dara-driven modelling and data based quantitative analysis play a key instrumental 
role in knowledge discovery from healthcare data. In many application scenarios, it is 
interested in knowing how a variable is explicitly related to other variables or factors. 
To answer this question, this study proposed a type of SIT (sparse, interpretable and 
transparent) approach, called NARMAX model, which possess ‘smart’ properties: 
simple/sparse/simulatable, meaningful, accountable, reproducible, and transparent. 
SIT-NARMAX model can be written as a LIP-NIV (linear-in-the-parameters and 
nonlinear-in-the-variables) form, which can easily be estimated using the state-of-the-
art linear regression methods. By applying the forward regression orthogonal least 
squares (FROLS) algorithms to this type of model, it usually leads to parsimonious 
representations for most real data modelling problems. The main advantage of the 
proposed modelling approach is that the resulting model is not only parsimonious but 
also can be written down and easily interpreted. As illustrated in the case studies, the 
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proposed approach provides a powerful and effective tool for dealing with real 
healthcare and related data modelling problems. 

 
 
 
 

 

 

 

 

 

 

 

Fig. 7. A comparison between the model predicted values and the corresponding measurements 
of Beijing air quality (PM2.5) over the test dataset (RMSE = 16.9764, MAE =11.2995, r = 
0.9193 and R2 = 0.8450). 
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