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Abstract

This survey covers schedulability analysis tech-

niques for probabilistic real-time systems. It reviews

the key results in the field from its origins in the late

1980s to the latest research published up to the end

of August 2018. The survey outlines fundamental

concepts and highlights key issues. It provides a

taxonomy of the different methods used, and a clas-

sification of existing research. A detailed review is

provided covering the main subject areas as well

as research on supporting techniques. The survey

concludes by identifying open issues, key challenges

and possible directions for future research.
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1 Introduction

Systems are characterised as real-time if, as well as meeting functional requirements, they are

required to meet timing requirements. Real-time systems may be further classified as hard real-

time, where failure to meet their timing requirements constitutes a failure of the system, or soft

real-time, where failure to meet timing requirements leads only to a degraded quality of service.

Today, both hard and soft real-time systems are found in many diverse application areas including:

automotive, aerospace, medical systems, robotics, and consumer electronics.

Real-time systems are typically implemented via a set of programs, also referred to as tasks,

which are executed on a recurring basis. Verifying the timing correctness of a real-time system is

typically framed as a two step process:

Timing Analysis seeks to characterise the amount of time which each task can take to execute

on the hardware platform. Typically, this is done by estimating, as a single value, an upper

bound on the Worst-Case Execution Time (WCET) of the task.

Schedulability Analysis seeks to characterise the end-to-end response time of functionality

involving one or more tasks, taking into account the way in which the tasks are scheduled and

any interference between them. An upper bound on the Worst-Case Response Time (WCRT)

can then be compared to the deadline for that function to determine if end-to-end timing

requirements can be guaranteed.

The concept of probabilistic real-time systems departs in two main ways from the classical model

described above. Firstly, it recognises that the execution times of tasks may exhibit significant

variability due to hardware effects (e.g. caches, branch prediction, pipelines, and other hardware

acceleration features) as well as due to different input values and paths taken through the code.
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Thus the WCET may be substantially larger than typical execution times and may rarely occur.

Much of the work on the analysis of probabilistic real-time systems therefore models the execution

time of each task using a probability distribution with distinct probabilities associated with each

possible value of execution time. Secondly, the timing requirements are such that deadlines are no

longer considered to require absolute guarantees, but rather the probability of the deadline being

exceeded must be below some specified threshold. (In practice, there may also be constraints on

the number of consecutive deadlines that can be missed and hence on the probability that such a

black-out period exceeds a certain length).

The concept of probabilistic real-time systems spans both the traditional classifications of hard

and soft real time systems. In the case of a hard real-time system, failure to meet a deadline may

constitute a failure of the system; however, provided that the probability of such a failure occurring

is sufficiently small, for example leading to a failure rate of no more than 10−7, 10−8, or 10−9

per hour of operation, then it may still be acceptable to the system designers. This stems from

the observation that the mechanical and electrical components of systems are typically designed

with similar failure rates in mind (measured in terms of the number of failures per hour or billion

hours). Thus engineering the timing behaviour of a system function to ensure a much smaller

failure rate would have little or no impact on overall reliability and availability, while it could

potentially require the provision of much more costly hardware. Acceptable failure rates depend

on the criticality level assigned to the system function, as an example in the automotive standard

ISO-26262 each Automotive Safety Integrity Level (ASIL) is associated with an observable failure

rate. These are 10−9 per hour for ASIL D, 10−8 for ASIL C and B, and 10−7 for ASIL A. (Note, the

relationship between failure rates per hour of operation and appropriate thresholds on probabilities

of failure for individual tasks depend on various factors considered in fault tree analysis, including

any mitigations and recovery mechanisms that may be applied in the event of a timing failure [62]).

We note that traditional analysis techniques can still be applied in cases where a very low level

of deadline misses are permissible; however, since the reasoning used can only argue that either all

deadlines will be met or not, then the results produced can in some cases be very conservative, thus

requiring substantial hardware over-provision compared to the results of probabilistic schedulability

analysis1 expressed in terms of probabilities or probability distributions.

In the case of soft real-time systems, failure to meet a deadline and the consequent late response

represents a degradation in the quality of service provided or the utility of the results produced.

Here, probabilistic schedulability analysis can be used to characterise the expected quality of

service that the system will provide.

This survey classifies and reviews probabilistic schedulability analysis techniques for real-time

systems, where one or more task parameters are modelled as random variables, i.e. via probability

distributions. Probabilistic schedulability analysis aims to determine for a set of tasks with

parameters described by probability distributions, scheduled according to a given policy (for

example fixed priority preemptive scheduling or Earliest Deadline First (EDF)) if those tasks can

be guaranteed to meet their timing requirements, described in terms of probabilistic deadlines (i.e.

deadlines with associated thresholds on the maximum acceptable probability of a deadline miss),

or to simply compute the probability of deadline failure.

Much of the literature on probabilistic schedulability analysis models task execution times

via probability distributions, while other works consider probabilistic Worst-Case Execution

Time (pWCET) distributions. The latter can be derived via probabilistic timing analysis, us-

1 In this survey, we adopt the widely used term “probabilistic schedulability analysis” noting that it can easily
be misinterpreted. To clarify, while the results produced are expressed in terms of probabilities or probability
distributions, the analysis methods themselves are deterministic in the sense of always producing the same
results from the same inputs, unlike, for example, randomised search techniques.
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ing analytical methods referred to as Static Probabilistic Timing Analysis (SPTA) [35, 53, 11,

10, 85, 84] or statistical methods referred to as Measurement-Based Probabilistic Timing Ana-

lysis (MBPTA) [32, 58, 66, 44, 150, 135, 133, 88, 87]. Probabilistic timing analysis techniques are

reviewed in detail in a companion survey [52].

Research into probabilistic schedulability analysis can be classified into eight main categories.

This classification forms the basis for the main sections of this survey. Note, for ease of reference

we have numbered the categories to match the sections, starting at 3.

3. Probabilistic Response Time Analysis: these methods compute the probability distribution of

the response time of each task, or the jobs of each task. These response time distributions can

then be compared to the deadlines to determine if the timing requirements are met.

4. Probabilistic Analysis assuming Servers: these methods assume that each task is allocated a

proportion of the processor bandwidth via a server. This has the advantage of isolating the

tasks from interfering with one another, which simplifies the schedulability analysis.

5. Real-Time Queuing Theory: these methods estimate the fraction of deadlines that will be met

from queue length dependent lead-time profiles. These profiles describe the time to go to the

deadline and the distribution of queue lengths obtained via queueing theory.

6. Probabilities from Faults: works in this category assume additional execution time or load on

the system from fault recovery operations as a consequence of faults that occur according to

some probability distribution.

7. Statistical Analysis of Response Times: works in this category differ from those above in

that they use statistical techniques based on observations of response times to predict the

probability of deadline failure.

8. Probabilistic Analysis of Mixed Criticality Systems: these methods analyse mixed criticality

systems using a richer representation (e.g. execution times described by probability distributions)

rather than discrete WCET estimates for different levels of criticality.

9. Miscellaneous: research in this category explores different aspects of scheduling probabilistic

real-time systems, including tasks with precedence constraints, the imprecise computational

model, randomised job dropping, priority assignment policies, component based scheduling,

and multiprocessor scheduling.

10. Addressing Issues of Intractability: the methods reviewed in this section aim to significantly

reduce the runtime of probabilistic schedulability analysis techniques.

The research in these categories is summarised by authors and citations in Table 1. Note the

sub-categories correspond to the subsections of this survey.

It is interesting to note how research in the different categories has progressed over time.

Figure 1 illustrates the number of papers reviewed in each of the main categories covered by this

survey that were published in 3-year time intervals from 1988 to 2018. (This figure is best viewed

online in colour). A number of observations can be drawn from Figure 1. Firstly, the volume of

research into probabilistic schedulability analysis has greatly increased since its origins in the late

1980s / early 1990s. The number of publications on the main theme of probabilistic response time

analysis (Section 3) has steadily increased during this time. Work on server-based analysis and

real-time queueing theory (Sections 4 and 5) have produced a small number of papers over most

of the time period. By contrast, work on probabilities derived from faults (Section 6) began in

1999, with a peak in 2003 - 2006, and fewer publications in recent years, Categories of more recent

interest (i.e. publications since 2007) include statistical analysis (Section 7) and addressing issues

of tractability (Section 10). However, the hot topic in recent years, albeit with mainly preliminary

publications, is work on probabilistic approaches to mixed criticality systems (Section 8). This

area has shown a rapid expansion in the number of publications since 2015.

Before moving to the sections of this survey which review the literature, we first discuss (in

Section 2) fundamental concepts and issues pertaining to probabilistic schedulability analysis.

LITES
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Table 1 Summary of publications from different authors in the categories described in the main sections

and subsections of this survey.

3 Probabilistic Response Time Analysis

3.1 Analysis for Periodic Tasks with No Backlog

Woodbury and Shin [152], Tia et al. [143], Atlas and Bestavros [13], Gardner et al. [60], Tanasa et al. [141]

3.2 Analysis for Periodic Tasks with Backlog

Diaz et al. [54, 55], Lopez et al. [93], Kim et al. [76], Ivers and Ernst [70], Tanasa et al. [140]

3.3 Analysis for More Complex Task Models

Cucu-Grosjean and Tovar [41], Cucu-Grosjean [40], Maxim et al. [105], Maxim and Cucu-Grosjean [106],

Maxim and Bertout [104], Santinelli and Cucu-Grosjean [130, 131], Santinelli et al. [136], Khan et al. [74],

Santinelli [129], Carnevali et al. [34], Ben-Amor et al. [23], Markovic et al. [103]

4 Probabilistic Analysis assuming Servers

4.1 Analysis for Server-based Systems

Abeni and Buttazzo [2, 3, 4] , Kaczynski et al. [72], Manica et al. [99], Abeni et al. [6, 5], Palopoli et

al. [122, 120, 121], Frias et al. [59, 146]

5 Real-Time Queueing Theory

5.1 Analysis based on Real-Time Queuing Theory

Barrer [20], Panwar et al. [123], Lehoczky [83], Doytchinov et al. [56], Hansen et al. [67], Zhu et al. [154],

Gromoll and Kruk [63], Kruk at al. [79]

6 Probabilities from Faults

6.1 Analysis of Fault Recovery on Processors

Burns et al. [33, 30], Broster and Burns [27, 26], Kim and Kim [75], Aysan et al. [18], Short and

Proenza [138], Santinelli et al. [134]

6.2 Analysis of Fault Recovery on CAN

Navet et al. [117], Broster et al. [28, 29], Aysan et al. [19] Axer et al. [17] , Davis and Burns [48], Nolte et

al. [119], Zeng et al. [153]

7 Statistical Analysis of Response Times

7.1 Statistical Estimation

Navet et al.[116], Lu et al. [96, 97, 94, 95], Liu et al. [91], Maxim et al. [111]

8 Probabilistic Analysis of Mixed Criticality Systems

8.1 Analysis for Mixed Criticality Systems

Santinelli and George [132], Guo et al. [64], Maxim et al. [107, 108], Alahmad and Gopalakrishnan [9, 8],

Draskovic et al. [57], Abdeddaim and Maxim [1], Kuttler et al. [80]

9 Miscellaneous

9.1 Task Graphs and Precedence Constraints

Manolache et al. [100, 101, 102], Hua et al. [69]

9.2 Multiprocessor Analysis

Nissanke et al. [118], Leulseged and Nissanke [86], Mills and Anderson [113, 112], Liu et al.[92], Wang et

al. [149, 148] , Ren et al. [128]

9.3 Miscellaneous Models and Techniques

Hu et al. [68], Hamann et al. [65], Kim et al. [77], Gopalakrishnan [61]

9.4 Position Papers

Quinton et al. [125], Cucu-Grosjean [42, 43]

10 Addressing Issues of Intractability

10.1 Re-sampling

Refaat et al. [127], Maxim et al. [110, 109], Milutinovic et al. [114]

10.2 Analytical Methods and Other Techniques

Chen and Chen [36] von der Bruggen et al. [147], Chen et al. [37]
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10 Efficient Computation / Issues of Intractability

9 Miscellaneous

8 Probabilistic Analysis of Mixed Criticality Systems

7 Statistical Analysis of Response Times

6 Probabilities from Faults

5 Real-Time Queueing Theory

4 Probabilistic Analysis assuming Servers

3 Probabilistic Response Time Analysis

Figure 1 Intensity of research in the different categories corresponding to Sections 3 to 10 of this

survey.

Note that conventional schedulability analysis techniques aimed at systems where task parameters

are specified by single values rather than probability distributions are outside of the scope of this

survey, they are reviewed in detail in a number of prior works [137, 49, 45].

2 Fundamentals and Key Issues

The term probabilistic real-time systems is used to refer to real-time systems where one or more

of the task parameters (e.g. execution time, period, etc.) are described by random variables.

Although a parameter, such as the execution time of a task, is described i.e. modelled by a random

variable, this does not necessarily mean that the actual parameter itself exhibits random behaviour

or that there is necessarily any underlying random element to the system that determines its

behaviour. The actual behaviour of the parameter may depend on complex and unknown or

uncertain behaviours of the overall system. As an example, the outcome of a coin toss can be

modelled as a random variable with heads and tails each having a probability of 0.5 of occurring,

assuming that the coin is fair. However, the actual process of tossing a coin does not actually have

a random element to it. The outcome could in theory be predicted to a high degree of accuracy

if there were sufficiently precise information available about the initial state and the complex

behaviour and evolution of the overall physical processes involved. There are, however, many

useful results that can be obtained by modelling the outcome of a coin toss as a random variable.

The same is true in the analysis of probabilistic real-time systems.

LITES
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In this survey we use calligraphic characters to denote random variables. As an example,

the discrete probability distribution of the execution time X of a task may be described by a

Probability Mass Function (PMF)

X =

(

1 2 4

0.85 0.1 0.05

)

(1)

indicating that there is a probability of 0.85 that the execution time will be 1, a probability of 0.1

that it will be 2, and a probability of 0.05 that it will be 4. Thus the Cumulative Distribution

Function (CDF) is given by:

FX (x) = P (X ≤ x) =























0 if x = 0

0.85 if x = 1

0.95 if x = 2

0.95 if x = 3

1 otherwise













(2)

Further, the Complementary Cumulative Distribution Function (1-CDF) or Exceedance Function

is given by:

F̄X (x) = P (X > x)























1 if x = 0

0.15 if x = 1

0.05 if x = 2

0.05 if x = 3

0 otherwise













(3)

Timing requirements in probabilistic real-time systems are typically specified in terms of

probabilistic deadlines. In contrast to conventional timing requirements where only a relative

deadline is specified, probabilistic timing requirements also prescribe a limit or threshold on the

maximum acceptable probability that the deadline will be missed. Extending the simple example

above, let us assume that the task has a period of 10 and a deadline of 3, and is the only task in

the system. In that case it would have a Deadline Miss Probability of 0.05 (which can be obtained

directly from the 1 - CDF) and would therefore be viewed as schedulable if the threshold on the

probability of deadline failure were specified as 0.1.

In the above example, with a single task, schedulability analysis deriving the probabilistic

response time distribution is trivial, since the response time distribution is the same as the

execution time distribution. However, once multiple tasks are considered, then execution time

distributions need to be combined in some way to form a probabilistic response time distribution,

and this gives rise to issues relating to independence.

2.1 Independence

◮ Definition 1. Two random variables X and Y are probabilistically independent if they describe

two events such that knowledge of whether one event did or did not occur does not change the

probability that the other event occurs. Stated otherwise, the joint probability is equal to the

product of their probabilities P ({X = x} ∩ {Y = y}) = P (X = x) · P (Y = y).

In our context this means that the execution times of two jobs of the same or different tasks

are independent if the event that the execution time of the first job takes a particular value x has

no effect on the probability that the execution time of the second job will take some value y. If

this is not the case, then the execution times of the two jobs are said to be dependent.
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Much of the literature on probabilistic schedulability analysis assumes that the random variables

describing the execution times of jobs of the same or different tasks are independent. When the

assumption of independence holds, then the basic convolution operator ⊗ can be used to determine

the sum Z = X ⊗ Y of the independent random variables X and Y where:

P{Z = z} =
k=+∞
∑

k=−∞

P{X = k}P{Y = z − k} (4)

For example, if both X and Y are given by

(

2 10

0.6 0.4

)

, then we have:

(

2 10

0.6 0.4

)

⊗

(

2 10

0.6 0.4

)

=

(

4 12 20

0.36 0.48 0.16

)

(5)

Issues of dependence are of great importance in probabilistic schedulability analysis, since an

assumption of independence when it does not in fact exist can easily result in the computation of

unsound2 i.e. optimistic probabilities of a deadline miss. As an example, adapted from the work

of Ivers and Ernst [70], consider how the execution time distributions X and Y for the jobs of two

tasks may be combined to obtain a response time distribution. Here, we assume that task τX

has the higher priority and runs first and we are interested in the response time of task τY which

is released at the same time as task τX , but runs once task τX has completed. If the execution

times of the two jobs are independent, then the response time distribution may be obtained via

convolution as given in (5) above. Thus assuming a deadline of 10 the probability of a deadline

miss is 0.64, whereas with a deadline of 15 the probability of a deadline miss would be 0.16. If the

execution times are instead perfectly positively correlated, then whenever task τX executes for

2 time units then so does task τY , and similarly if τX executes for 10 time units, then so does

task τY . In this case, the response time can only take two values: 4 and 20, with probabilities of

0.6 and 0.4 respectively. Thus, compared to the independent case, the probability of missing a

deadline of 15 is increased to 0.4, whereas the probability of missing a deadline of 10 is decreased

to 0.6. If instead the execution times are perfectly negatively correlated, then whenever task τX

executes for 2 time units then task τY executes for 10 time units, and vice-versa. In this case

the response time is always 12. Interestingly, while the probability of missing a deadline of 15

is reduced to zero, missing a deadline of 10 is now certain; it has a probability of 1, which is

higher than in the case of either independence or positive correlation. This simple example serves

to illustrate that the correctness of probabilistic schedulability analysis, and the response time

distributions produced, crucially hinges upon the dependences between task execution times. The

difficulty is that in practice the actual execution times of jobs of the same or different tasks are

unlikely to be independent, rather they may exhibit correlation emanating from history dependent

software states (e.g. static local variables) or history dependent hardware states (e.g. shared cache

lines within the memory hierarchy), and also from dependences due to common or correlated

input values that change only slowly over time.

2.2 pWCET Distributions

Some recent works on probabilistic schedulability analysis assume that the execution time behaviour

of tasks is characterised by a probabilistic Worst-Case Execution Time (pWCET) distribution.

2 In this survey, we use the adjective sound to indicate a description, an analysis, or a probability distribution
that provides information about the system that is not optimistic with respect to its timing behaviour. Thus
the information provided may be precise, or it may be pessimistic.

LITES
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This term has been used widely in the literature, with a number of different definitions given.

Below, we provide an overarching definition of the pWCET distribution.

◮ Definition 2. The probabilistic Worst-Case Execution Time (pWCET) distribution for a task is

the least upper bound, in the sense of the greater than or equal to operator � (defined below), on

the execution time distribution of the jobs of the task for every valid scenario of operation, where

a scenario of operation is defined as an infinitely repeating sequence of input states (including

both input values and software state variables) and initial hardware states that characterise a

feasible way in which recurrent execution of the task may occur.

◮ Definition 3. (From Diaz et al. [55]) The probability distribution of a random variable X is

greater than or equal to (i.e. upper bounds) that of another random variable Y (denoted by X � Y)

if the Cumulative Distribution Function (CDF) of X is never above that of Y, or alternatively,

the 1-CDF of X is never below that of Y. Similarly, the probability distribution of a random

variable X is less than or equal to (i.e. lower bounds) that of another random variable Y (denoted

by X � Y) if the Cumulative Distribution Function (CDF) of X is never below that of Y, or

alternatively, the 1-CDF of X is never above that of Y.

Graphically, Definition 2 means that the 1 - CDF of the pWCET distribution is never below

that of the execution time distribution for any specific scenario of operation. Hence the 1 - CDF

or exceedance function of the pWCET distribution may be used to determine an upper bound on

the probability p that the execution time of a randomly selected job of the task will exceed an

execution time budget x, for any chosen value of x. This upper bound is valid for any feasible

scenario of operation.

Figure 2 Exceedance function or 1-CDF for the pWCET distribution of a task, and also execution

time distributions for specific scenarios of operation.

Figure 2 illustrates the execution time distributions for a number of different scenarios of

operation (solid lines), the precise pWCET distribution (red dashed line) which is the least upper

bound (i.e. the point-wise maxima of the 1 - CDF) for all of these distributions, and also some
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arbitrary upper bound pWCET distribution (red dotted line) which is a pessimistic estimate of

the precise pWCET. Also shown (on the y-axis) is an upper bound p on the probability that any

randomly selected job of the task will have an execution time that exceeds x (on the x-axis). The

value x is referred to as the pWCET estimate at a probability of exceedance of p. (More formally,

the precise upper bound pWCET distribution is given by supθ∈Θ F̄θ where F̄θ is the 1 - CDF for

scenario of operation θ, and Θ is the space of all valid scenarios of operation).

Note that the greater than or equal to relation � between two random variables does not

provide a total order, i.e. for two random variables X and Z it is possible that X � Z and Z � X.

Hence the precise pWCET distribution may not correspond to the execution time distribution for

any specific scenario. This can be seen in Figure 2, considering the execution time distributions

X , Y and Z. It is the case that X � Y, but X � Z and Z � X.

We note that the term pWCET is open to misinterpretation and is often misunderstood. To

clarify, it does not refer to the probability distribution of the worst-case execution time, since the

WCET is a single value. Rather informally, following Definition 2, the pWCET may be thought of

as the “worst-case” (in the sense of upper bound) probability distribution of the execution time

for any scenario of operation.

It is interesting to consider the use and interpretation of the pWCET distribution for a task.

Let us assume that the task will be run repeatedly a potentially unbounded number of times, and

that a fixed execution time budget of x applies to each run. Further, we assume that this budget

is enforced by the operating system, and therefore that any job of the task that has not completed

within an execution time of x is terminated and assumed to have failed. The pWCET distribution

provides the following information, by reading off the probability of exceedance p associated with

the execution time budget x (see Figure 2):

(i) An upper bound p on the probability (with a long-run frequency interpretation) equating

to the number of jobs expected to exceed the execution time budget divided by the total

number of jobs in a long (tending to infinite) time interval.

(ii) An upper bound p on the probability that the execution time budget will be exceeded

by a randomly selected job. (This is broadly equivalent to the above long-run frequency

interpretation).

Contrast this with the binary information provided by the WCET. If x is greater than or equal to

the WCET, then we can expect the budget to never be exceeded. If x is less than the WCET,

then we expect the budget to be exceeded on some runs, but we have no information on how

frequently this may occur.

We note that some researchers have interpreted the pWCET distribution as giving the

probability or confidence (1−p) that the WCET does not exceed some value x. This interpretation

can be confusing, since the meaning of the WCET is normally taken to be the largest possible

execution time that could be realised on any single job of the task. Instead, in line with Definition 2

and (i) above, we view the 1 - CDF of the pWCET distribution as providing, for any chosen value x

for the execution time budget, an associated upper bound probability p (with a long-run frequency

interpretation) equating to the number of jobs of the task expected to exceed the execution time

budget x, divided by the total number of jobs of the task executing in a long time interval.

2.3 pWCET distributions and dependences

There are two main ways of obtaining pWCET distributions: via Static Probabilistic Timing

Analysis (SPTA) or via Measurement-Based Probabilistic Timing Analysis (MBPTA). (A detailed

discussion and review of these methods is given in the companion survey [52] on probabilistic

timing analysis).

LITES
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The aim of SPTA methods is to construct an upper bound on the pWCET distribution of a

task by applying static analysis techniques to the code, supplemented by information about input

values, along with an abstract model of the hardware behaviour. For static analysis to produce a

non-degenerate3 pWCET distribution there typically has to be some part of the system or its

environment that contributes random or probabilistic timing behaviour. SPTA methods for tasks

running on time-randomised hardware (e.g. with a random replacement cache) effectively consider

each path through the code. For each path, these methods construct a pWCET distribution that

upper bounds the probability distribution of the execution time for that path, considering all

possible initial hardware states and all possible input states that cause execution of the path.

The upper bound pWCET distributions for every path are then combined using an envelope

function (taking the point-wise maximum over the 1-CDFs) to determine an upper bound on the

pWCET distribution for the task that is valid independent of the path taken. (More sophisticated

SPTA methods analyse sub-paths and use appropriate join operations at path convergence to

compute tighter upper bounds on the pWCET distribution of the task).

The upper bound pWCET distribution for a task derived by SPTA (as described above)

upper bounds the pWCET distributions for every path through the code. Similarly, the pWCET

distribution for each path upper bounds the execution time distribution for every input state

that drives that path, and every initial hardware state that could occur at the start of that path.

Hence, by construction the pWCET distribution derived by SPTA is probabilistically independent

of the input state chosen or the path taken4. This has implications for the use that can be made of

the pWCET distribution. Firstly, it can be used to bound the behaviour of any randomly selected

job of the task. Secondly, since the pWCET distribution is independent of the input state, which

may have strong dependences and correlations with the input states for previous jobs, it can be

composed using basic convolution to upper bound the execution time behaviour of multiple jobs

in a sequence. It can therefore be used to derive probabilistic worst-case response time (pWCRT)

distributions, which can then be compared to deadlines to determine the probability of a deadline

miss.

We note that the actual execution times for a sequence of jobs of a task, which exercise the same

or different paths, may well show strong correlations and dependences. It is the modelling of the

execution times via an appropriate pWCET distribution which enables probabilistic independence

to be assumed. (This is similar to the conventional case of a single WCET which can similarly be

used in this way, even though the actual execution times of different jobs have strong dependences).

The aim of Measurement-Based Probabilistic Timing Analysis (MBPTA) methods is to make

a statistical estimate of the pWCET distribution of a task. This estimate is derived from a sample

of execution time observations obtained by executing the task on the actual hardware or on a

cycle-accurate simulator5 according to an appropriate measurement protocol. The measurement

protocol executes the task multiple times according to some sequence(s) of feasible input states

and initial hardware states, thus sampling one or more possible scenarios of operation.

Provided that the sample of execution time observations passes appropriate statistical tests,

then Extreme Value Theory (EVT) [39] can be used to derive a statistically valid estimate of the

probability distribution of the extreme values of the execution time distribution, i.e. to estimate

the pWCET distribution. By modelling the shape of the distribution of the extreme execution

times, EVT is able to predict the probability of occurrence of execution time values that exceed

3 A degenerate distribution has only a single possible value.
4 This holds provided that the random values generated, for example by the random number generator within a

random replacement cache, are also independent.
5 A cycle-accurate simulator provides the same timing behaviour as the actual hardware, accurate to a single

processor clock cycle.
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any that have been observed. (For a basic introduction to the use of EVT in this context, see the

companion survey [52] on probabilistic timing analysis. More detailed information about EVT

can be found in Stuart Coles’ textbook on the subject [39]).

◮ Definition 4. A sample of input states and initial hardware states used for analysis is repres-

entative of the population of states that may occur during a future scenario of operation if the

property of interest (i.e. the pWCET distribution) derived from the sample of states used for

analysis matches or upper bounds the property that would be obtained from the population of

states that occur during the entire scenario of operation.

◮ Definition 5. As determined by MBPTA, the estimated pWCET distribution for a task (or

path through a task) is a statistical estimate of the probability distribution of the extreme values

of the execution time of that task (or path), valid for any future scenarios of operation that are

properly represented by the sample of input states and initial hardware states used in the analysis.

Ideally, MBPTA would provide a pWCET distribution that is valid for any of the many possible

future scenarios of operation; however, an important issue here is that there may not be one

single distribution of input states and hardware states that is representative of all possible future

scenarios of operation. This issue of representativity is a key open problem in research on the

practical use of MBPTA, see Section 2.3 of the companion survey [52] on probabilistic timing

analysis for a further discussion of this issue.

There are two main ways of applying MBPTA, referred to as per-path and per-program:

1. Per-path: MBPTA is applied at the level of paths. A measurement protocol is used to exercise

all feasible paths through the program, then the execution time observations are divided into

separate samples according to the path that was executed. EVT is then used to estimate the

pWCET distribution for each path. The pWCET distribution for the program as a whole is

then estimated by taking an upper bound (an envelope or point wise maxima on the 1 - CDFs)

over the set of pWCET estimates for all paths.

2. Per-program (or task): MBPTA is applied at the level of the program i.e. the task. A

measurement protocol is again used to exercise all paths. In this case, all of the execution time

observations are grouped together into a single sample. EVT is then applied to that sample,

thus estimating directly the pWCET distribution for the entire program.

With MBPTA, if the per-path approach is used, and it is known that the execution times for

each path vary only due to random elements in the hardware, and do not otherwise vary across

different input states that are in the same equivalence class (i.e. that drive the same path), then

probabilistic independence of the pWCET distribution is assured. (Recall that with the per-path

approach, the pWCET estimate for the task is an upper bound over the pWCET distributions for

all of its paths). Probabilistic independence of the pWCET distribution means that it can be used

to characterise the behaviour of any randomly selected job of the task, and also composed using

basic convolution to upper bound the interference from multiple jobs in probabilistic schedulability

analysis.

In other cases, the execution times obtained for a path may be dependent on the particular input

states used to drive it. These input states may themselves exhibit dependences and correlations.

Further, with the per-program approach, there may be dependences and correlations between

the paths taken on consecutive jobs of the task, as happens with a software state machine. For

systems with such dependences, then, assuming that the set of input states used during analysis

is representative of those occurring during operation, the estimated pWCET distribution will still

be valid in terms of characterising the extreme execution time behaviour of a randomly chosen

single job of the task. However, it will typically not be valid to compose the pWCET distributions
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using basic convolution. The reason is that the pWCET distribution is not necessarily a valid

estimate for the extreme execution time values of a job conditional on specific execution times

having occurred for previous jobs.

As an example, consider a program E that implements a software state machine with four

states and hence four paths that runs on time-randomised hardware. Here the main factor which

affects the execution time of the program is the path taken, which is determined by the value of

a software state variable. For this program, all valid scenarios of operation involve the software

state variable cycling through its four possible values in order, and hence the four possible paths

executing in order on any four consecutive runs of the program. Further, assume that there is

some variability in the execution time of each path due to an independent random element in the

hardware (e.g. a random number generator), which contributes either 5 or 10 time units to the

execution time for the path, with a probability of 0.5 in each case. The execution times of the

four paths are (i) 10 or 15, (ii) 20 or 25, (iii) 30 or 35, and (iv) 40 or 45. Note, each path has a

probability of 0.25 of being taken in a randomly chosen execution of the program.

The precise pWCET distribution valid for any scenario of operation is:

pWCETper−program =

(

0 10 15 20 25 30 35 40 45

1 0.875 0.75 0.625 0.5 0.375 0.25 0.125 0

)

Using the per-program approach, MBPTA may tightly upper bound this distribution. While

using the per-path approach, the pWCET distribution obtained would tightly upper bound the

following distribution for the longest path.

pWCETper−path =

(

0 40 45

1 0.5 0

)

We note that while the pWCETper−program distribution is valid to describe the execution time

behaviour of a randomly chosen job of the task, convolution of this distribution is not valid to

describe the overall execution time of two or more jobs. This is because the distribution is not valid

conditional on the execution times observed for previous jobs. For example, if an execution time

of 30 or 35 is observed for a specific job, then the execution time of the next job will necessarily

be either 40 or 45 (each with a probability of 0.5) due to the behaviour of the software state

machine. The probability that the total execution time of two consecutive jobs exceeds 70 is

therefore 0.1875, whereas the value computed by applying convolution to the pWCETper−program

distribution is 0.15625, which is optimistic due to an incorrect assumption of independence. In

this simple example optimism can be avoided by using the pWCETper−path distribution, which

would also be obtained by SPTA; however, this discards information and so gives a pessimistic

result, indicating that the probability of the total execution time of two consecutive jobs exceeding

70 is 1.

2.4 Probabilistic Inter-arrival Times

As well as probabilistic execution times and pWCETs, a few works on probabilistic schedulability

analysis have also considered tasks with inter-arrival times characterised by random variables (see

Section 4.1) or probabilistic Minimum Inter-arrival Times (pMIT) (see Section 3.3).

◮ Definition 6. The probabilistic Minimum Inter-arrival Time (pMIT) distribution for a task is

the greatest lower bound, in the sense of the less than or equal to operator � (see Definition 3),

on the inter-arrival time distribution of the jobs of the task for every valid scenario of operation,

where a scenario of operation is defined as an infinitely repeating sequence of job arrivals that

characterise a feasible way in which recurrent execution of the task may occur.
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For example, the pMIT of a task τi may be described by Ti =

(

5 10

0.2 0.8

)

meaning that the

probabilistic minimum inter-arrival time is lower bounded such that a job of τi has a probability

of 0.8 of arriving 10 or more time units after the previous job, and a probability of 1.0 of arriving

5 or more time units after the previous job.

The pMIT distribution provides the following information, by reading off the probability of

exceedance p (from the 1 - CDF) associated with a limit t on the inter-arrival time:

(i) An upper bound p on the probability (with a long-run frequency interpretation) equating to

the number of jobs that are expected to have an inter-arrival time of less than t, divided by

the total number of jobs in a long (tending to infinite) time interval.

(ii) An upper bound p on the probability that the inter-arrival time of a randomly selected job

will be less than t. (This is broadly equivalent to the above long-run frequency interpretation).

This contrasts with the sporadic task model which simply assumes that the minimum inter-

arrival time is bounded by some value Ti (which would be 5 in the above example), but gives no

information about how often longer inter-arrival times may occur.

The majority of works surveyed that model inter-arrival times as random variables assume that

the inter-arrival times between jobs of the same task and between consecutive jobs of one task and

consecutive jobs of another task are independent. For example, one practical application described

by Maxim and Cucu-Grosjean [106] is vehicle reverse parking systems. Here, the inter-arrival time

of the sensing task is randomised to avoid the possibility of systematic and repeated interference

between the parking sensors of two vehicles that are reversing towards each other.

We note, however, that dependences are easily possible as a consequence of particular imple-

mentations. For example, the inter-arrival times of a task could follow a fixed pattern due to the

operation of a software state machine which sets the next arrival time. This would give a fixed

but repeating sequence, such as (5, 10, 5, 10, . . .). Further, two tasks could have inter-arrival times

that are generated by a simple algorithm from the output values of a random number generator.

They would have pMITs that are easily found from the properties of the random number generator

and the algorithm used. In this case, the inter-arrival times of jobs of the same task would be

independent, but the inter-arrival times between consecutive jobs of the two tasks would be in

lock step i.e. correlated and dependent.

As with execution times and pWCETs, work on probabilistic schedulability analysis that

considers tasks with inter-arrival times or pMITs characterised by random variables must take

great care to either ensure that arrival times are independent or to handle dependences correctly.

2.5 Probabilistic Real-Time Constraints

In classical real-time systems, timing constraints are typically specified in terms of task deadlines.

The relative deadline Di of a task τi is inherited by all of it’s jobs. The deadline Di specifies

the maximum elapsed time that is permitted from the release of a job of the task until that job

completes its execution. The time from the release to the completion of a job is referred to as

its response time. The worst-case response time Ri of a task τi is the longest possible response

time of any of its jobs. If it can be proven, via schedulability analysis, that all jobs of a task will

always complete by their deadlines, i.e. that Ri ≤ Di, then the task is said to be schedulable. If

all the tasks in a system are schedulable, then the system itself is said to be schedulable.

Building upon these concepts, probabilistic real-time constraints are typically expressed in the

form of probabilistic deadlines defined as follows:

◮ Definition 7. The probabilistic deadline of a task τi is given by the combination of a relative
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deadline Di with a single (deterministic) value and a threshold ρi specifying the maximum

acceptable probability that the deadline may be exceeded.

The concept of a probabilistic deadline has, in a few works, been extended to relative deadlines

that may take a number of different values each with an associated probability, expressed as a

discrete random variable Di. Again, a threshold ρi specifies the maximum acceptable probability

that the deadline may be exceeded. In this survey, we use the term probabilistic deadline to refer

to the simpler form defined above with a single value for Di, and make a clear distinction when

describing work that considers deadlines as random variables.

In the classical view of hard real-time systems any deadline miss is sufficient to make a task,

and hence the system unschedulable, thus the pattern and probability of deadline misses are not

considered relevant. By contrast, in probabilistic real-time systems there are a number of different

ways in which the probability of a deadline miss can be considered and interpreted:

1. As a probability with a long-run frequency interpretation equating to the expected number of

missed deadlines divided by the total number of deadlines in a long (tending to infinite) time

interval.

2. As the probability that a randomly selected job will miss its deadline, which is broadly

equivalent to the long-run frequency interpretation.

3. As a bound on the probability that any specific job will miss its deadline.

These interpretations can be made considering the jobs belonging to (i) a specific task, (ii) a group

of tasks that comprise a given application, or (iii) the system as a whole (i.e. all tasks). In the

latter cases, there would be a threshold on the probability of deadline misses for each application,

or a single threshold for the system as a whole; rather than thresholds for each task.

In the literature, the term Deadline Miss Probability (DMP) is often used to refer to the long-run

frequency interpretation. This quantity is typically computed for task sets that are strictly periodic

and thus have a behaviour which repeats after the hyperperiod or Least Common Multiple (LCM)

of the task periods. In contrast, the term Worst-Case Deadline Failure Probability (WCDFP) is

used to mean a bound on the probability that any specific job of a task will miss its deadline.

This quantity is typically computed by reference to the probabilistic Worst-Case Response

Time (pWCRT) of a task.

◮ Definition 8. The probabilistic Response Time (pRT) of a job τi,j of task τi, denoted by Ri,j ,

describes the probability distribution of the response time of the j-th job of that task, indexed

from the start of the hyperperiod.

◮ Definition 9. The probabilistic Worst-Case Response Time (pWCRT) of a task τi, denoted by

Ri, is an upper bound on the worst-case response time distribution for any job of the task.

Note the pWCRT of a task can be computed for both periodic and sporadic tasks by taking

into account the worst-case arrival pattern.

If the tasks are strictly periodic (with a single value for their periods), then the deadline miss

probability for a task can be computed by taking the average of the deadline miss probabilities of

all of its jobs activated during a hyperperiod as follows:

◮ Definition 10. The Deadline Miss Probability DMPi for a task τi is given by :

DMPi =
1

nLCM

nLCM
∑

j=1

P (Ri,j > Di) (6)

where nLCM is the number of jobs of task τi activated during the hyperperiod.
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◮ Definition 11. The Worst-Case Deadline Failure Probability WCDFPi for task τi is an upper

bound on the probability that any single job of the task misses its deadline, computed directly

from the pWCRT distribution Ri and the deadline Di of the task as follows:

WCDFPi = P (Ri > Di) (7)

There are advantages and disadvantages to using the DMP and the WCDFP formulations. For

strictly periodic task sets, it is possible to compute the DMP over the hyperperiod. (Note, this

calculation becomes more complex if the task model permits a backlog of outstanding execution at

the end of the hyperperiod, see Section 3.2). For sporadic task sets the DMP formulation is not

viable. This is because the deadline miss probability for the periodic case does not provide an

upper bound on that for the sporadic case. As an example, consider a system with two tasks with

minimum inter-arrival times T1 = 10 and T2 = 15. Sporadic behaviour of task τ1 which aligns

every release of that task with a job of τ2 may result in a larger deadline miss probability than

strictly periodic behaviour with a period of 10. This can be seen by considering the degenerate

case where both tasks have an execution time and a deadline of 1 with task τ1 having the higher

priority. With all releases synchronised, i.e. both periods set to 15, task τ2 never meets its deadline,

while if task τ1 is released more frequently with a period of 10, and task τ2 has a period of 15,

then the deadline miss probability for task τ2 becomes 0.5. Attempting to account for all possible

phasings of jobs of sporadic tasks leads to problems of intractability, hence a different approach is

needed.

The WCDFP formulation potentially introduces some pessimism, since the relationship between

task periods means that not all jobs of a task may be subject to the maximum interference from

other tasks; however, it provides a valid upper bound on the probability of deadline misses for

systems where not all tasks have strictly periodic releases (i.e. for the sporadic task model).

Hard real-time systems in many application domains can in practice tolerate a small number of

consecutive deadline misses, but cannot tolerate long black-out periods when no deadlines are met.

In the literature on deterministic schedulability analysis these issues have been investigated in

work on weakly-hard real-time systems [24, 25], m-k firm deadlines [126], skip-over [78] techniques,

and typical worst-case analysis [7]. The problem of reconciling requirements on the length of

potential black-out periods (i.e. the number of consecutive missed deadlines) and a probabilistic

treatment of deadline misses has, as far as we are aware, received little attention in the literature.

There are a number of issues here, which reflect long-run versus short-run viewpoints and the

underlying issue of independence. We illustrate these problems via a simple example. Assume that

we have two periodic task systems A and B, both with a hyperperiod that equates to four jobs of

the task that we are interested in analysing. Further, let the probability that each of these jobs

misses its deadline be as follows: system A (0.75, 0.75, 0.25, 0.25) and system B (0.5, 0.5, 0.5, 0.5).

For both systems, the DMP for the task is 0.5; however, for system A, the WCDFP is 0.75, whereas

for system B it is 0.5. Further, in order to reason about the probability of a black-out period

equating to two consecutive deadline misses, we need to know if the response time distributions for

the jobs, and hence the probabilities of deadline misses are independent or if they are correlated

in some way. The probability that the first two jobs in the hyperperiod of system A both miss

their deadlines would be 0.5625 if independence is assumed; however, it could be as high as 0.75 if

the response times of the two jobs are positively correlated. We note that the response times of

consecutive jobs of the same task may fail to be independent as a direct result of their execution

times being dependent (e.g. due to dependences on shared software or hardware states, shared or

correlated input variables etc.) or as an indirect result of interference from jobs of another task

that exhibit execution time dependences.
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2.6 Summary

In this section we described the fundamental building blocks used in probabilistic schedulability

analysis, namely execution time distributions, response time distributions, and probabilistic

deadlines. We also discussed the key underlying assumption in much of the literature on this topic:

the independence of task execution times or pWCET distributions. We return to this issue in the

conclusions. The next eight sections review the existing literature on probabilistic schedulability

analysis.

3 Probabilistic Response Time Analysis

In this section we review work on probabilistic response time analysis. Comparing the probability

distribution of the response time of a job of a task to its deadline enables the probability of a

deadline miss for the job to be determined. For a task set with periodic release times, considering

all these values for each job of the task over the hyperperiod (Least Common Multiple of task

periods) enables the deadline miss probability for the task to be computed. Alternatively, some

works derive the probabilistic worst-case response time distribution with respect to any job of the

task, thus directly providing an upper bound on the worst-case deadline failure probability valid

for any job. This latter approach works for both periodic and sporadic task sets.

In the following subsections, we classify and review papers according to the underlying task

models that they support.

3.1 Analysis for Periodic Tasks with No Backlog

Initial work on probabilistic response time analysis focused on a simple task model where: (i) all

tasks are periodic, (ii) the execution times of the jobs of each task are independent of those of

other jobs of the same or different tasks, (iii) there is no backlog at the end of the hyperperiod,

i.e. the worst-case processor utilisation is ≤ 1 and so the processor is guaranteed to be idle at the

end of the hyperperiod.

In 1988, Woodbury and Shin [152] introduced analysis that computes the deadline miss

probability for periodic tasks. The analysis assumes that tasks can be described in terms of

multiple paths, each of which has a single deterministic execution time and a probability of

occurrence. Thus each job of a task effectively has a probability distribution for its execution time,

composed from the information about the paths. The analysis iterates over the hyperperiod in steps

equating to the Greatest Common Denominator of the task periods. It computes the execution

time remaining from higher priority jobs at the start of each step, and the joint distribution

of the execution time of the jobs released at the start of the step. This information is used to

derive the response time distribution for each job in the hyperperiod, and hence the probability of

deadline failure for each task over the entire hyperperiod (i.e. considering all of its jobs). The

technique is suitable for scheduling policies where the priority of a job does not change between

releases (i.e. fixed priority or EDF). We note that it is arguable whether meaningful analysis can

be obtained by assuming that the probability of taking a given path is known, and that the paths

taken by different jobs are independent. In practice, the path taken is typically determined by the

inputs, which are unlikely to be independent, for example sensor values may change only slowly

over time. Further, formulating the analysis on the basis of paths can lead to tractability issues,

since the number of paths could in practice be very large.

Probabilistic Time-Demand Analysis (PTDA) for fixed priority preemptive scheduling was

proposed by Tia et al. [143] in 1995, based on the time-demand analysis technique given for

the simpler case of WCETs by Lehoczky et al. [81]. With PTDA, at each scheduling point the

cumulative probability distribution is computed (via convolution) for all job releases up to that

point. This enables a bound to be computed on the probability that the task can meet its deadline.
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The authors also propose a transform-task method of scheduling where part of the execution time

distribution of each task (up to some specified value) is treated as a simple periodic task and

guaranteed by time-demand analysis [81]. The remaining part of the distribution is considered as

an additional sporadic task and runs under a sporadic server [139]. An alternative approach using

EDF and slack stealing is also considered.

Statistical Rate-Monotonic Scheduling (SRMS) was introduced in 1998 by Atlas and Bestav-

ros [13]. This method assumes that when a job is released then its execution time becomes

known. SRMS consists of two parts, (i) admission control and (ii) a fixed priority (rate-monotonic)

scheduling algorithm. The basic idea is to aggregate the capacity available to execute jobs of a

task over multiple periods, equating to the so called superperiod given by the period of the next

lower priority task. Jobs of a task are admitted if they can be executed within the remaining

budget for the superperiod, and there is time available to do so before the deadline of the job,

taking into account higher priority interference. Admitted jobs are then scheduled according to

fixed priorities with rate-monotonic priority assignment. The authors show how the probability of

admission can be computed for each period of a task within its superperiod. This allows quality

of service guarantees to be computed in terms of the probability that a randomly selected job of a

task will meet its deadline over an arbitrarily long time interval. Aside from the independence

assumptions, the main drawback of SRMS is the requirement that job execution times become

known upon release. In practice this is unlikely to be the case, however, in some cases execution

times could be estimated from the input values.

Stochastic Time-Demand Analysis (STDA) for fixed priority scheduling, was developed in 1999

by Gardner et al. [60]. They note an issue with the prior work by Tia et al. on PTDA [143] in

that it is only valid if there is no backlog at the deadline of a task. The problem is similar to the

classical case of fixed priority scheduling with arbitrary deadlines [82]. All jobs in a priority level-i

busy period need to be considered, since the first job is not necessarily the one that exhibits the

worst-case behaviour. The authors provide an analysis based on the priority level-i busy period

and the backlog present at subsequent releases of each job. They remark that the worst-case

pattern of releases might not necessarily be following synchronous release of all tasks. They explore

this aspect by considering different phasing in simulation, but did not find any cases where the

probability of deadline failure was higher for random phasing than in the synchronous case. The

convolution operations required as part of STDA are also discussed. Here, the authors indicate

that the Fourier transform may be used to reduce complexity from O(N2) to O(NlogN) where N

is the number of points in each distribution. To use a fast Fourier transform, the distributions

must have the same number of points and the same sampling rate.

In 2015, Tanasa et al. [141] studied the problem of determining probabilistic worst-case response

time (pWCRT) distributions and hence deadline miss probabilities for a set of periodic tasks

with execution times described by random variables. This work differs from earlier publications

in that it describes the distributions via continuous variables and tightly approximates them

with polynomial functions. This enables an analytical approach to be taken to their integration.

The authors provide methods to compute the response time distribution for each job in the

hyperperiod. They also introduce a method to compute the joint distribution between two jobs

i.e. the probability that the response time of job k1 ≤ r1 AND the response time of job k2 ≤ r2.

The methods used have exponential complexity and are thus limited in their application. In the

evaluation, the maximum utilisation is limited to 85% for the experiments examining the univariate

distributions and to no more than 40% for the joint distributions, using small hyperperiods of

25 or so jobs. The authors highlight an interesting observation, that even when the execution

time distributions are continuous, the response time distributions may be disjoint, containing

gaps where there are values that cannot be obtained. This occurs as a result of an additional

preemption from a higher priority task that has a minimum as well as a maximum execution time.
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3.2 Analysis for Periodic Tasks with Backlog

In contrast to classical task models, task sets containing a number of tasks with execution times

described by random variables can usefully have a total worst-case processor utilisation that

exceeds 1. This means that there is a backlog, meaning outstanding task execution with a finite

probability of occurrence, at the end of each hyperperiod. This backlog makes the analysis

of probabilistic response times for each job in the hyperperiod much more complex. Diaz et

al. addressed this problem in two seminal papers published in 2002 [54] and 2004 [55]. This work

has since been built upon by a number of other authors. Note the papers surveyed in this section

also assume independence between the execution times of jobs of the same and different tasks,

with the exception of the work of Ivers and Ernst [70] which addresses the important issue of

dependences.

In 2002, Diaz et al. [54] noted that prior work on PTDA [143] and SDTA [60] assumes that

the worst-case occurs for a job in the first busy period following synchronous release; however,

this is not necessarily correct when the worst-case processor utilisation exceeds 1, and may lead to

an under estimation of the response time distributions. They show that the backlog at the start of

each hyperperiod is stationary provided that the average utilisation is less than 1. As the backlog

at the end of one hyperperiod depends only on the backlog at the start of the previous hyperperiod,

it can be modelled as a Markov chain. The authors show how to compute the stationary backlog,

and use this backlog via a method of convolution (adding the execution of preempting jobs) and

shrinking (shifting the distribution left and then accumulating the probabilities for all negative

values at zero) to compute the response time distributions for each job of a given task over

the hyperperiod. (A useful illustrative example is given in later work by the same authors [55]).

By taking the average of these distributions, the response time distribution for the task can be

computed and hence a bound on its deadline miss probability determined. We note that the

method requires that the release times of jobs are fixed (i.e. periodic rather than sporadic), and

when the hyperperiod is large then finding the stationary backlog can be computationally very

expensive.

Subsequent research into the same problem by Diaz et al. [55] in 2004 discussed the concept of

pessimism in probabilistic analysis, and introduced the concept of greater than or equal to between

random variables (See Section 2, Definition 3). The authors note that any approximations in

the analysis, for example of response time distributions, must result in distributions that are

greater than or equal to the precise distribution in order to ensure soundness. They prove various

properties with respect to their analysis, including that approximating the backlog and execution

time distributions with distributions that are greater than or equal to (�) the precise distributions

produces sound results, i.e. there is no under-approximation of response time distributions. We

note that this concept is similar to the one of sustainability introduced later for deterministic

schedulability analysis by Baruah and Burns [21].

Diaz et al. [55] highlighted and addressed three issues with their previous work [54]:

(i) When the maximum utilisation exceeds 1, then the steady state backlog has an infinitely

long tail.

(ii) Starting with zero backlog and iterating over a number of hyperperiods, the backlog becomes

closer and closer to the steady state backlog; however, the estimation remains optimistic.

(iii) Probability distributions with a large number of points require a very large amount of

memory and processing resource.

The problem of the infinite tail is solved via truncation and accumulation of the probabilities

for larger values at ∞. A solution to the problem of a large number of points is suggested,

accumulating values to the right, effectively a sound form of re-sampling (see Section 10.1 for

later work in this area). The authors also show how blocking due to shared resource accesses
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can be accommodated as an extension to the task model by taking a supremum over all of the

distributions for the execution time of relevant resource accesses. They also provide a sketch proof

that the priority assignment algorithm of Audsley [15], which is optimal in the deterministic case,

remains optimal when execution times are described by probability distributions and schedulability

is defined as meeting the probabilistic deadline for each task. This was later confirmed by the

work of Maxim et al. [105]. In 2008, Lopez et al. [93] extended the work of Diaz et al. [54, 55]

providing: (i) a set of transformations that can be made to the parameters of a system which

are guaranteed to result in a response time distribution greater than or equal to (�) that for the

original system; (ii) addressing issues related to the use of finite precision arithmetic; (iii) handling

release jitter, by assuming the deterministic worst-case and its effect on the release times of jobs.

In 2005, Kim et al. [76] built upon the analysis framework set out by Diaz et al. [54, 55].

They discuss three solutions to obtaining the stationary backlog, an exact solution for the

Markov matrix which has a high computational cost, and two approximate solutions. The first

approximate solution truncates the matrix; however, the way in which truncation affects accuracy

is unresolved. The second approximation involves iteratively computing the backlog over a number

of hyperperiods, and examining its convergence. The number of iterations needed to provide a

given level of accuracy is however unknown in advance. The evaluation shows that the deadline

miss probability computed over the hyperperiod may be considerably smaller than that computed

for jobs in the busy period following a critical instant, e.g. via SDTA [60]. The complexity of

backlog computation is shown to be O(j2m2) per job, where j is the number of the job and m is

the number of points in the execution time distribution. In their conclusions the authors claim

that the method could be indirectly applied to sporadic task systems by modeling them as a

periodic system with periods equal to minimum inter-arrival times, and that this would give a

safe approximation. We note that this assertion is not correct, as shown by the example given in

Section 2.5.

The important problem of dependences between the execution times of jobs of the same task

and jobs of different tasks was first addressed by Ivers and Ernst [70] in 2009. They presented an

analysis that accounts for the effect of unknown dependences between the execution times of jobs of

tasks in a system using fixed priority preemptive scheduling. The authors give a motivating example

which illustrates how dependences can have a marked effect on the response time distribution.

Their simple example, which we presented as an exemplar in Section 2, shows that considering a

worst-case convolution (i.e. matching the largest values from each distribution) is in general not

sufficient to determine the worst-case deadline miss probability. The authors introduce a method

based on probability boxes which soundly bounds the response time distribution in the presence

of unknown dependences. The approach uses the concept of copulas to model the relationship

between marginal distributions and the joint distribution of two random variables, and Frechet

bounds that give upper and lower bounds on the relationship between the marginal distributions

and the joint distribution. Probabilistic bounds are then given on the sum of the two random

variables. These bounds have been shown to be sound and point-wise tight [151]. The method of

Diaz et al. [54, 55] is then lifted to probability boxes, enabling sound and tight bounds on the

response time distributions to be computed for systems with unknown dependences between job

execution times. Worked examples show that assuming independence when it does not exist can

easily result in substantial optimism in the results.

In 2013, Tanasa et al. [140] provided a probabilistic analysis of the response times of messages

transmitted via the dynamic segment of FlexRay. The system model assumes that messages are

queued for transmission periodically, but are subject to variable queuing jitter, stemming from

the task that queues them, and that this jitter may be modelled via some probability distribution.

The method determines the deadline miss ratio for each message over the hyperperiod of message
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periods and the FlexRay cycle. To achieve this it first computes the possible backlog vectors

at the end of the time interval by constructing a transition graph linking the backlog vector at

the start of the interval to those backlog vectors that can possible stem from it at the end of

the interval. We note that this transition graph may be very large depending on the length of

the hyperperiod, the number of messages, and the number of possibilities in terms of different

values of jitter. The authors use an MILP formulation to compute the transition graph and the

vectors. As a second step, the method computes the probability that message instances miss their

deadlines on each transition. In the third step, the deadline miss probability is computed by

iterating over a number of hyperperiods. This provides an under approximation as the backlog

converges towards a stationary value (see the earlier work of Diaz et al. [54]). The method is

computationally expensive and the authors implement part of it on a TeslaM2050GPU with 448

cores to help speed up processing.

3.3 Analysis for More Complex Task Models

Following initial work on periodic tasks, researchers have explored more complex task models.

The majority of the research published in this area emanates from Cucu-Grosjean and co-authors.

This includes work [41] on sporadic task models where inter-arrival times are described by random

variables, and subsequently the development by Maxim and Cucu-Grosjean of analysis [106]

for tasks with execution times, inter-arrival times and deadlines that are described by random

variables. Further work by Maxim et al. [105] explored issues of priority assignment. Note all of

the research described in this section assumes that task parameters such as execution times and

inter-arrival time are independent.

The first work in this area, by Cucu-Grosjean and Tovar [41] in 2006, considered a model

where tasks have constant execution times, but their inter-arrival times are modelled by random

variables and have known probability distributions. The authors introduce a method of computing

the probabilistic worst-case response time distribution for tasks under fixed priority preemptive

scheduling. This model is useful for message streams where the message length is fixed, or varies

very little, but the inter-arrival times may vary widely. In 2008, Cucu-Grosjean [40] applied the

method to the problem of deriving response time distributions for CAN messages where message

arrivals are assumed to be independent and described by probability distributions in a range

between some minimum and maximum values. The analysis assumes that the maximum utilisation

of the system is less than 1, thus avoiding issues relating to backlog.

In 2011, Maxim et al. [105] investigated three related problems of priority assignment in fixed

priority preemptive systems where task execution times are described by random variables. They

define the deadline miss probability for a job of a task, and the deadline miss probability6 for a

task, which is effectively the expected deadline miss probability over all of the jobs in some long

interval of time, for example the hyperperiod. The three priority assignment problems involve:

(i) Finding a priority assignment that results in the deadline miss probability of each task being

below the threshold specified for that task.

(ii) Finding a priority assignment that minimises the maximum deadline miss probability over

all tasks.

(iii) Finding a priority assignment that minimises the average deadline miss probability over all

tasks.

The authors give an example showing that rate-monotonic priority assignment is not optimal for

problem (i) in the case of implicit deadline tasks. Optimal solutions to problems (i) and (ii) are

6 Referred to as the deadline miss ratio in [105].
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given using a greedy approach similar to the optimal priority assignment algorithm of Audsley [15].

A greedy approach is shown to be non-optimal for problem (iii), and a tree-based search is proposed

as a potential solution.

In 2013, Maxim and Cucu-Grosjean [106] introduced exact probabilistic response time analysis

for tasks which may have their worst-case execution times, inter-arrival times and deadlines

described by independent random variables. The scheduler is assumed to be fixed priority

preemptive. Deadlines are assumed to be constrained, i.e. not greater than the inter-arrival time

to the next job of the same task. The authors show that for the task model considered, where

incomplete tasks are aborted at their deadline, the worst-case response time distribution of any

job of a task occurs for the first job in the synchronous busy period. The method presented is

exponential in the number of tasks and the size of the random variables. They note that as the

problem is a superset of the non-cyclic Generalised Multi-Frame (GMF) task model [115] there

cannot be a pseudo-polynomial time exact test. Re-sampling techniques [109] are shown to be

effective in reducing the complexity of the method in practice (see Section 10). The method

iteratively computes the response time distribution by considering each preemption following

synchronous release. For each preempting job, it convolves the pWCET distribution of that job

with the tail of the current response time distribution from the preemption point onwards. The

result is scaled by the probability of the job preempting at that time. This is repeated for all

possible preemption times for the job, and the resulting distributions coalesced. Iteration then

moves on to the next preempting job. Iteration ends when the next possible preemption is later

than the final point in the current response time distribution, or the deadline of the task under

analysis is exceeded. The probability of a deadline miss can then be found by subtracting the

deadline distribution from the final response time distribution, with the probability mass strictly

greater than zero giving the probability of a deadline miss. The analysis has been implemented

in a publicly available simulator and analysis tool called PanSim [104]. Note, motivation for

variable inter-arrival times comes from an automotive application where ultra-sound parking

sensors randomise their sampling frequency to avoid the reduced effectiveness that would occur if

the same sampling frequency were used by two vehicles reversing back-to-back.

In 2016 Ben-Amor et al. [23] derived probabilistic schedulability analysis for tasks with

precedence constraints with execution times described by random variables, scheduled under

EDF. They built upon the work by Chetto et al. [38] for tasks with deterministic parameters,

deriving an equivalent schedulability analysis for the probabilistic case. This includes proposing

a new comparison operator between distributions for probabilistic response times (or execution

times) and deadlines that are also described by independent random variables. This comparison

is equivalent to the method of subtracting the deadline distribution used by Maxim et al. [106].

The authors note that the greater than or equal to operator (�) of Diaz et al. [55] cannot be

used for such comparisons, since it would give optimistic results. For example, consider the two

distributions R =

(

1 3

0.9 0.1

)

and D =

(

2 4

0.8 0.2

)

. Even though D � R, there is still a

non-zero probability that the deadline is missed. This occurs when the response time has a value

of 3 and the deadline has a value of 2. Assuming independence, then such a combination has a

probability of 0.08 of occurring.

In 2018, Markovic et al. [103] presented a probabilistic schedulability analysis for the limited

preemption model where each task is scheduled using fixed priorities and preemption is only

permitted at fixed preemption points. A key aspect of this problem is the selection of preemption

points for each task from a larger set of possible preemption points. The system model used

assumes that each task is divided into sub-tasks, separated by possible preemption points. Further,

the execution time of each sub-task and the preemption overhead of allowing preemption at a
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particular point are represented by pWCET distributions. The authors utilise the approach of

Diaz et al. [54], adapted along the lines of existing deterministic analysis for limited preemptive

systems, to form a probabilistic schedulability analysis for limited preemption scheduling with

fixed preemption points. Further, they propose an algorithm for preemption point selection, with

the aim of minimising the deadline failure probability. This algorithm iterates over a number

of confidence levels, starting at 1.0 and decrementing by a small step. The confidence level is

used to reduce the pWCET distributions for sub-tasks and preemption point overheads to scalar

values. This is done by taking the minimum value that does not have a probability of being

exceeded that is more than the confidence level. This reduction of the random variables to scalar

values enables an existing deterministic method to be used for preemption point selection. Once a

set of preemption points have been selected then probabilistic schedulability analysis is used to

determine the corresponding probability of deadline failure. The final preemption point selection

is the one with the smallest probability of deadline failure found in any of the iterations. We note

that by starting with a confidence level of 1.0, the algorithm is guaranteed to always find feasible

solutions when the equivalent deterministic approach would do so.

Probabilistic Real-Time Calculus (an extension of Real-Time Calculus [142]) was proposed

in 2011 by Santinelli and Cucu-Grosjean [130] with an extended journal version published in

2015 [131]. The authors study a task model where both execution times and inter-arrival times

are described by independent random variables. A component model is used, with composability

according to an assume-guarantee abstraction providing the basis for schedulability analysis. The

model describes the resource demand of a task via a probabilistic upper bounding function (or

curve). This curve upper bounds the cumulative demand as a function of the interval length t such

that the probability that the actual demand exceeds the bound is less than a given probability

threshold. Similarly, the resource supply (or service) is described by a lower bounding function (or

curve) such that the probability that the actual supply is less than the bound is less than a

given probability threshold. Different request and service curves may be obtained for different

probability thresholds. The authors provide an algebra using Real-Time Calculus that facilitates

the composition of systems from components and associated probabilistic schedulability analysis.

The early work from 2011 [130] provides analysis for fixed priority scheduling, with extensions

to EDF and hierarchical scheduling given later in 2011 by Santinelli et al. [136]. The journal

extension [131] published in 2015 provides detailed proofs for the previous schedulability results.

The same component-based formulation was also considered by Khan et al. [74] in 2012 in the

context of multiprocessor scheduling, with identical cores, an interconnect (e.g. a TDMA bus),

and a fixed partitioning of tasks between cores. They propose a mapping between the level of

assurance (ASIL) needed for the safety of a function and its components and the probability

threshold used. In 2016, Santinelli [129] proposed a component-based formulation for networks,

similar to that previously proposed for tasks and processors [130, 131]. Here, the author considers

the probability distribution for message payloads and inter-arrival times. We note that possible

dependences between these distributions are not considered. The performance of the network is

calculated for the case of AFDX switches implementing FIFO queues.

In 2014, Carnevali et al. [34] proposed computing the probability of deadline misses within

a time interval t, based on modelling tasks using Stochastic Timed Petri Nets. They consider

fixed-priority non-preemptive scheduling of periodic tasks. Task execution times are modelled via

Erlang distributions, the parameters of which are selected to tightly upper bound the pWCET

distribution for the task obtained via EVT. This enables regenerative transient analysis based on

stochastic state classes to be used to compute the probability that each task misses a deadline

within a time t.
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3.4 Summary and Perspectives

Probabilistic response time analysis aims to compute either the response time distribution for

each job over a relevant interval (such as the hyperperiod for a set of periodic tasks) or the worst-

case response time distribution obtained for the worst-case scenario in terms of job releases (for

sporadic tasks). Deadline miss probabilities and hence schedulability can then be determined via

comparison between response time distributions and deadlines. We highlight three important

threads of research in this area:

1. Diaz et al. [54] showed how to compute the probabilistic response time distributions for a set

of jobs of periodic tasks taking into account the potential backlog accruing at the end of the

hyperperiod. They also proved key properties required to ensure that the results obtained

from probabilistic response time analysis are sustainable over-approximations [55].

2. Ivers and Ernst [70] showed that considering a worst-case convolution (i.e. matching the largest

values from each distribution) is not sufficient to obtain a sound response time distribution

when there are dependences between task execution times. They extended the approach of

Diaz et al. [54, 55] to tasks with execution times that are related via unknown dependences.

3. Maxim and Cucu-Grosjean [106] proved that for systems with constrained deadlines where

incomplete tasks are aborted at their deadline then the worst-case response time distribution

is assumed by the first job of each task following synchronous release. Using this result, they

derived probabilistic response time analysis for systems where execution times, inter-arrival

times, and deadlines are all described by independent random variables.

In a further thread of research, Santinelli and various co-authors [130, 136, 131, 129] explored

a probabilistic extension to Real-Time Calculus. We note that this approach relies heavily on

the assumption that both the execution times and inter-arrival times of consecutive jobs are

independent.

Two key problems that remain with probabilistic response time analysis are the tractability of

the analysis for task sets of practical sizes (see Section 10 for initial work in this area), and issues

relating to dependences between execution times.

4 Probabilistic Analysis assuming Servers

In this section, we review probabilistic schedulability analysis for tasks that are run within servers.

Servers provide a partitioning of the available processor time and thus isolate the execution of

each task from interference due to other tasks running on the same processor. This is useful in

simplifying the analysis and in removing concerns regarding dependences between the execution

times of jobs of different tasks.

4.1 Analysis for Server-based Systems

The majority of the research in this area has been published by Abeni and co-authors, including

the seminal initial work [2, 3] from the late 1990s that also introduced the Constant Bandwidth

Server, subsequent research that considers execution times [4, 121] and also inter-arrival times [6,

99, 122] described by independent random variables, and more recent work [59, 5] that considers

dependences between the execution times of jobs of the same task.

In 1998 and 1999, Abeni and Buttazzo [2, 3] provided analysis for soft real-time tasks that

have (i) variable execution times according to some probability distribution and fixed inter-arrival

times, or (ii) fixed execution times and variable inter-arrival times according to some probability

distribution. Jobs of a task are executed under a Constant Bandwidth Server (also introduced in

the paper). This ensures independence between tasks, since each task can only utilise the capacity
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of its own server. The authors provide statistical guarantees determining the probability that

jobs of a task will meet their deadlines. This is achieved by modelling the Constant Bandwidth

Server as a queue and determining the stationary solution of the Markov chain for those cases

where the queue is stable. Conditions for stability of the queue comprise ensuring that the average

utilisation does not exceed the server bandwidth. The output is the probability distribution of the

response time by which the jobs will finish. This can then be used to determine the probability

of meeting deadlines and hence the quality of service of the soft real-time tasks. Subsequently

in 2001, Abeni and Buttazzo [4] extended their earlier work [2] on variable execution times, by

relaxing the assumption that the server period must exactly divide the task period. They show

how to handle inter-arrival times that are expressed as a probability distribution by approximating

this distribution in accordance with the value of the server period. With this approximation,

larger server periods generally introduce more pessimism, but have the advantage of resulting in a

smaller number of context switches.

The more complex model where tasks have both execution times and arrival times modelled

via random variables with known probability distributions was addressed by Kaczynski et al. [72]

in 2007. They assume that there is no minimum time between arrivals for an aperiodic task and

thus motivate the use of servers to prevent unbounded interference on other tasks. The authors

extend the method introduced by Diaz et al. [54] (see Section 3.2) to this model, using a server

for each task.

In 2012, Abeni et al. [6] considered tasks with both execution times and inter-arrival times

described by probability distributions. Jobs of these tasks are scheduled via resource reservations

where each task has its own server. The authors present an efficient algorithm to compute a bound

on the probability of deadline failure. As part of the method, the inter-arrival time distributions

are soundly approximated by simpler distributions limited to multiples of the server periods.

Further, incomplete execution time distributions can be handled, provided that the remaining

probability for values over some limit is known. The method provides a valid bound provided

that the expected utilisation of each task does not exceed the capacity of its server. Evaluation

shows that the bound produced is sound and that the over-approximation is small compared

to exact analysis, which takes over 1000 times longer in some cases. In further works in 2012,

Manica et al. [99] and Palopoli et al. [122] also considered tasks with both execution times and

inter-arrival times described by probability distributions. Manica et al. [99] derived a model for

tasks scheduled by a Constant Bandwidth Server. They show that the model takes the form of a

Quasi-Birth-Death Process that can be solved using a numerical algorithm to determine a bound

on the probability of a deadline miss. Palopoli et al. [122] used a conservative model for the

evolution of a periodic task scheduled via a periodic server to construct a closed-form bound on

the probability of a deadline miss. The model again takes the form of a Quasi-Birth-Death Process

which enables efficient numerical computation of the probabilities required. For tasks with implicit

deadlines, the model is further simplified allowing analytical calculation of a lower bound on the

probability of meeting the deadline. This bound enables server bandwidth to be appropriately

sized in order to meet requirements on the maximum permitted probability of deadline failure.

Evaluation shows that the approximation error in the closed-form solution is high when the server

bandwidth is close to the expected utilisation of the task, but reduces to acceptable levels as

the bandwidth increases. In the former case, the probability of a deadline miss is in any case

high (> 60%), and so the cases where the approximation error is large are unlikely to be those

that are of practical interest. An important limitation of the methods proposed by Manica et

al. [99] and Palopoli et al. [122] relates to their pessimism due to the fact that the model used

neglects the server budget that may be shared between consecutive jobs of a task.
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In 2016, Palopoli et al. [121] considered periodic tasks with execution times described by

probability distributions. Jobs of these tasks are scheduled via resource reservations where each

task has its own Constant Bandwidth Server. They model the evolution of a task scheduled via

a resource reservation as a Discrete-Time Markov Chain that takes the form of a Quasi-Birth

Death Process. The outcome of the analysis is an expression for the steady state probability of

meeting the deadline. This is used to construct a numerical algorithm and also an analytical

bound that can be used to determine the probability of meeting the deadline. The evaluation

compares the performance of the analytical bound, the numerical algorithm, and the authors’

previous method [6]. The results show that the analytical bound has a runtime that can be orders

of magnitude faster, and provides a high degree of accuracy in the cases where the bandwidth

provided by the server is sufficient such that the probability of meeting the deadline is high (> 90%).

Further, the performance of the numerical algorithm can be tuned using a scaling factor, trading-off

between runtime and accuracy. The effectiveness of the approach is demonstrated using a case

study involving the playback of two video streams.

In 2017, Frias et al. [59] noted that many real-time applications exhibit a wide variation in

execution times and are resilient to occasional deadline misses. Such systems have previously been

afforded probabilistic schedulability guarantees based on the use of a resource reservation scheduler

and the assumption that execution times are independent and identically distributed (i.i.d.). They

consider robotic applications where the execution time of the vision algorithms depends on the

complexity of the scene while also exhibiting a random behaviour due to a random element of

the search. Thus the i.i.d. assumption does not hold. Instead execution times may be described

via a Hidden Markov Model (HMM). The authors show how to identify the different modes of

execution, and for each mode the distribution of execution times, which are independent within

the mode. The Markov Computation Time Model (MCTM) used enables an accurate estimation

of the probability of missing deadlines. The effectiveness of the approach is evaluated on a robot

vision case study (a lane detection algorithm for a robotic car) where it is shown to provide

accurate results. By comparison analysis based on an i.i.d. assumption leads to significant and

optimistic under-estimation of the probability of missing deadlines. In a further short paper in 2017,

Abeni et al. [5] show how the MCTM can be derived from a set of execution time measurements

using the theory of HMM. Here, a task is modelled as having a number of states (modes) with

probabilities for transitions between them. In each state the execution time is described by a

different probability distribution, while within a state, the execution times are i.i.d. The method

is able to estimate the number of modes from the raw execution time data. Assuming the number

of states is known, then existing techniques (Baum-Welch algorithm) can be used to estimate

the transition probability matrix and the probability distributions for the different modes. The

authors therefore propose a method of finding the correct number of states via a gradient-like

approach based on cross validation of the likelihood. The approach is validated on the robot vision

case study (discussed above). It is also shown to recover a single state, as expected, for standard

i.i.d. processes.

A software tool called PROSIT that supports the design and analysis of real-time systems

based on the idea of probabilistic deadlines was initially described by Palopoli et al. [120] in 2015,

with a more extensive description of a later version of the tool given by Frias et al. in 2018 [146].

PROSIT provides analysis for fixed priority preemptive scheduling of periodic tasks with execution

times described by random variables, based on the analysis of Diaz et al. [54, 55]. It also provides

an analysis of server-based scheduling of periodic and aperiodic tasks with execution times and

potentially also inter-arrival times described by random variables. Here, the execution times

can either be i.i.d. or a Markov process. The tool implements the various analyses proposed by

Palopoli et al. [122] and Frias et al. [59] . In the case of server-based scheduling, PROSIT can be

used to optimise the reservations (server budgets) for periodic tasks so as to optimise the global

quality of service.
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4.2 Summary and Perspectives

In this section, we reviewed work on probabilistic schedulability analysis for tasks that are run

within servers that provide a partitioning of the available processor time. The use of servers

has the advantage that the execution of each task is isolated from interference by other tasks;

however, it has the disadvantage that jobs requiring a long execution time cannot directly make

use of spare capacity freed up by jobs of other tasks that have a shorter than expected execution

time. Arguably, this removes one of the main advantages of probabilistic schedulability analysis,

which can otherwise take advantage of that fact that it is unlikely that jobs of multiple tasks will

simultaneously require their worst-case or near to worst-case execution times.

We highlight the important thread of research initiated by Abeni et al. [2, 3] on probabilistic

schedulability analysis for tasks that are run within servers, and the subsequent extensions of

the analysis by Abeni et al. [6], Manica et al. [99], and Palopoli et al. [122] to tasks with both

execution times and inter-arrival times described by independent random variables. While the

use of servers removes issues of dependences between tasks, the issue of dependences between

jobs of the same task remain. In practice, it is often the case that jobs of the same task exhibit

dependences between their execution times, due to input variables that change only slowly over

time, as well as execution starting from similar software and hardware states. Only in the recent

work of Frias et al. [59] has this issue of dependences begun to be investigated. The analysis

derived by Palopoli et al. [122] and Frias et al. [59] has recently been implemented in a software

tool called PROSIT [146].

5 Real-Time Queueing Theory

In this section, we review research based on Queuing Theory, which is the mathematical study of

queues with the aim of deriving information about queue lengths and waiting times. Problems

in queuing theory are typically described in Kendall’s notation [73] A/B/C where A is the

distribution of arrival times, B is the distribution of service (execution) times, and C is the number

of servers. For example M/G/1 implies a Poisson or Markovian (M) arrival process, a General (G)

execution time distribution, and a single (1) server.

5.1 Analysis based on Real-Time Queuing Theory

The majority of the research in this area has been published by Lehoczky and co-authors, including

the seminal paper [83] on Real-Time Queuing Theory from 1996, and its later mathematical

formalisation [56]. Subsequent work has investigated the impact of quantisation on EDF queues [67,

154], and extended the analysis to systems where jobs can be reneged, i.e. the remaining work of

a job is discarded if its deadline is reached before it has completed execution [79].

The origins of work in this area can be traced back to the 1950s. In 1957, Barrer [20] considered

the problem of queues with jobs that arrive according to a Poisson process, have execution times

that follow an exponential distribution, i.e. an M/M/1 queue in Kendall’s notation [73], and have

a single fixed deadline. This work computes the ratio of the rate at which jobs miss their deadlines

and are discarded to the arrival rate. In 1988, Panwar et al. [123] considered the problem of

single-server queues with deadlines on jobs which become known on their arrival. The aim here is

to schedule the jobs so that the fraction of jobs served within their deadline is maximised. The

authors show that the Shortest Time to Extinction (STE) policy is optimal for this problem, for a

class of non-preemptive M/G/1 queues that are work-conserving, i.e. do not permit inserted idle

time, and where execution times are i.i.d random variables. The STE policy schedules the ready

job with the earliest deadline that is still in the future. Jobs with expired deadlines are discarded.
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They also showed that when inserted idle time is permitted, then policies from the STEI class are

the best possible. (An STEI policy either schedules the job with the earliest unexpired deadline,

or inserts idle time).

Real-Time Queueing Theory was introduced in 1996 by Lehoczky [83] as a means of analysing

soft real-time systems where tasks have execution times that exhibit a large amount of variation.

In such systems, using deterministic upper bounds on response times would lead to the system

being significantly under-utilised on average. The method extends heavy traffic queueing theory

utilizing the fact that the number of tasks in the queue behaves like reflected Brownian motion

under heavy traffic. The theory can estimate the lead-time profile (meaning the time to go until

the deadline) for the tasks in the queue, based on the distributions of arrival time, execution time,

and deadline, and the queueing policy (EDF and processor sharing policies were considered). The

fraction of missed deadlines can be derived from the queue-length dependent lead-time profiles

and the distribution of queue lengths obtained via queueing theory. We note that the heavy

traffic phenomenon occurs only for processor utilisations close to 1, which implies long queues

and which may imply large latencies. Real-Time Queueing Theory was subsequently placed on

firm mathematical foundations by Doytchinov et al. [56] in 2001. The heavy traffic constraint was

subsequently relaxed by Zhu et al. [154]. Thus the main limitation in applying real-time queueing

theory is that the probability distributions for all tasks must belong to the same family.

In 2002, Hansen et al. [67] examined the effect that quantisation has on EDF queues with a

stochastic traffic model (arrival times, execution times and deadlines). Instead of using precise

relative deadlines, this method quantises them, assigning tasks the next smaller deadline from

a small set. The authors found via simulation that using just 3 bits (8 quantisation bins) was

sufficient to obtain performance for Q-EDF close to that of EDF. They found that a log bin

quantisation was more effective than a uniform one, since the log bins provide better granularity

for small deadlines. The small number of bits required is important for network scheduling where

this information takes up bandwidth. Also in 2002, following on from the work of Hansen et

al. [67], Zhu et al. [154] aimed to optimise the set of quantisation bins used by Q-EDF. Using

Real-Time Queueing Theory [83] they proved properties of a deadline distribution that would

result in the worst-case behaviour for Q-EDF. It has tasks with deadlines that are at either end

of the quantisation bins, leading to the maximum priority inversion. Hence they found that to

minimise the maximum number of deadline misses for an arbitrary distribution of deadlines with

the same minimum, maximum, and mean, one should create the bins by dividing the deadline

range in a uniform way. Further they showed that with uniform bins 3-bits (8 bins) were sufficient

for the performance of Q-EDF to converge to that of EDF in practical cases.

An alternative scheduling policy to EDF was examined by Gromoll and Kruk [63] in 2007.

They considered processor sharing where all active jobs in the queue receive an equal share of the

available processor time, and used heavy traffic queueing theory to obtain approximations for the

lead-time profile and the profile of times in the queue.

The analysis given by Lehoczky [83] and Doytchinov et al. [56] assumes that late jobs continue

to execute. Complementary work by Kruk et al. [79] in 2011 presented a heavy-traffic analysis of

the behaviour of a single queue under an EDF scheduling policy adapted so that when the deadline

of a job is reached, if the job has not yet completed, then its remaining work is discarded (referred

to as reneged). The performance metric used is the fraction of work that is lost (reneged) due

to missed deadlines. The authors show that this metric is minimised by using EDF scheduling.

The evolution of the lead-time distribution of jobs in the queue is described by a measure-valued

process. The heavy traffic limit of this process is shown to be a deterministic function of the

limit of the scaled workload process which in turn is identified to be a doubly reflected Brownian

motion. The fraction of reneged work in a heavily loaded system and the fraction of late work

LITES



04:28 A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

in the corresponding system without reneging are compared using formulas based on the heavy

traffic approximations. These formulas closely match simulation results, which show that the

amount of work lost (i.e. reneged or late) due to deadline misses is reduced by a factor of one to

two orders of magnitude if remaining work is discarded at the deadline.

5.2 Summary and Perspectives

In this section, we reviewed work on real-time queuing theory. The analysis used requires that the

traffic intensity / processor utilisation is close to 1, where the queues are long, and the latencies

may be high, which might not be acceptable in real systems. We note that although the theory

does not characterise system behaviour at lower traffic intensities, the probability of deadline

misses decreases as the traffic intensity decreases, all other parameters being equal. Thus the

results for heavy traffic can serve as bounds on the behaviour at lower intensities.

We highlight the important thread of research initiated by Lehoczky [83] and Doytchinov et

al. [56] on real-time queueing theory and its subsequent extension by Kruk at al. [79] to an EDF

scheduler that discards any incomplete jobs when their deadlines expire. The main limitation of

real-time queuing theory is that it requires job execution times, arrival times, and deadlines to be

independent, which may not be the case in real systems.

6 Probabilities from Faults

In this section we review work on probabilistic schedulability analysis where random variables are

used to represent the occurrence of some form of fault. Initial research focused on faults occurring

in tasks running on a processor and the impact of fault recovery operations; however, the main

thread of research in this area concerns Controller Area Network (CAN), a broadcast bus that is

widely used in the automotive industry for in-vehicle networks.

6.1 Analysis of Fault Recovery on Processors

Research into probabilistic schedulability analysis for systems with faults was initiated by Burns

and co-authors [33, 30, 27, 26], who considered the impact of fault recovery operations on tasks

running on a processor.

In 1999, Burns et al. [33] addressed fault tolerant hard real-time systems. They introduced

the concept of a probabilistic guarantee on schedulability for a fixed priority preemptive system.

This is achieved by incorporating the cost of fault recovery (e.g. re-running a task, recovery block,

executing since the last check point) into the analysis, along with the minimum time between

faults. It is assumed that a single fault causes a detectable error in a single task. Sensitivity

analysis is then used to determine a threshold on the minimum time between faults that can be

tolerated by the system, while still meeting all deadlines. This threshold and the lifetime of the

system are then used as parameters in a fault model which determines the probability that no

two faults will occur closer together than the threshold during the lifetime of the system. Faults

are modelled as a homogeneous Poisson process which enables this probability to be analytically

computed, or upper and lower bounded using a simpler approach. We note that the approach

is potentially somewhat pessimistic, since the schedulability analysis considers only a critical

instant corresponding to synchronous release, whereas over much of the lifetime of the system

the phasing of tasks may be such that a higher fault rate could be tolerated. Nevertheless, the

method provides a valid lower bound on the probability that all jobs will meet their deadlines

over the lifetime of the system.
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Further work by Burns et al. [30] in 2003 looked at how conventional response time analysis [71,

14] could be extended to provide probabilistic guarantees. They remarked on the limitations of a

deterministic approach: (i) in fault tolerant systems, fault arrivals are inherently stochastic, (ii)

more complex applications have widely varying execution times, (iii) even for simple applications,

advanced processor architectures (with cache, pipelines etc.) lead to wide variability in execution

times. The authors present two methods of accounting for fault arrivals in response time analysis.

The first method computes the maximum schedulable periodic fault rate from modified response

time equations using sensitivity analysis [124]. An upper bound can then be derived on the

probability of failure due to faults arriving closer together than the maximum tolerated rate. The

second method computes the response time assuming no faults and then determines the maximum

number of faults that could occur in that time with a probability higher than a specified threshold

on the probability of failure. This number of faults is then added and the extended response time

computed. This process iterates until it converges or the deadline is exceeded.

In 2004, Broster and Burns [27, 26] presented a simple method for computing probabilistic

worst-case response times when there is just one task that has arrivals described by a probability

distribution. This method is based on the approach taken to probabilistic modelling of fault

arrivals on CAN [28] (see Section 6.2). The method works by computing the response times R0
i to

Rm
i for task τi assuming 0 to m random arrivals of the higher priority task with random behaviour.

It then determines the probability that each response time occurs. For example to obtain response

time R2, there must be exactly two arrivals within that interval, excluding the case where there

are no arrivals in R0
i or exactly one arrival in R1

i , since the latter cases result in a smaller response

time. Once the probability of each response time has been computed, then the probability of

deadline failure can be determined.

Also in 2004, Kim and Kim [75] presented a method of probabilistic schedulability analysis

for harmonic task systems under Dual-Modular Temporal Redundancy (DMTR). DMTR utilises

two processors to simultaneously run duplicates of each task, with execution split into sub-tasks

that execute in defined time slots. At the end of each time slot, comparisons are made between

the outputs of the sub-task duplicates. If they are the same, then processing proceeds with the

next sub-task, otherwise the duplicates are re-executed and comparisons made between the four

outputs (two new and two previous). If two or three matching outputs are found, then processing

can proceed, otherwise the duplicate sub-tasks are executed again. A maximum of three time slots

can be used for each sub-task, corresponding to three separate temporary data areas available to

the processor. The authors derive a probabilistic schedulability analysis for the DMTR model,

assuming transient faults that occur according to a Markov model with arrivals according to a

Poisson process and an exponentially distributed duration. The approach is formulated using

state transition probability matrices. The authors use their formulation to determine the optimal

number of sub-slots to use given a fixed checkpointing overhead. They note that there are issues

with the complexity of the analysis and restrict their examples and evaluation to three tasks.

In 2011, Aysan et al. [18] provided a probabilistic schedulability analysis for tasks, running

under fixed priority preemptive scheduling, that are subject to faults in the form of error bursts.

The model of recovery is that errors detected at the end of a task lead to the subsequent execution

of an alternate, or the re-running of the original task. The error model analysed consists of bursts

of errors occurring with a minimum inter-arrival time (TE), with each burst having a duration

described by a probability distribution and a number of errors within it separated by an intra-burst

minimum inter-arrival time. Sensitivity analysis is used to compute the minimum value for TE for

each burst length in the distribution such that the task set remains schedulable if error bursts of

that duration are separated by at least TE . For each burst length and associated minimum value

of TE , the probability of the system remaining schedulable over its lifetime is computed, based
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on a Poisson distribution of events (burst arrivals). This information is then used to compose

the overall probability of the system remaining schedulable for its lifetime. The analysis takes

account of the fact that errors may impact both the task of interest (whose schedulability is being

checked) and higher priority tasks that may execute within its response time.

Error occurrence described by a two-state discrete Markov model was considered by Short

and Proenza in 2013 [138]. This model specifies two states G and B (Good and Bad) and the

probabilities for the transitions between them. Further, associated with each state is the probability

of error occurrence while in that state. This model is a general one that can describe bursts

of errors with probabilistic inter-arrival times between the start of each consecutive burst, and

probabilistic inter-arrival times between the errors within a burst. The authors derive an efficient

closed-form bound on the maximum number of errors occurring in an arbitrary time interval t

according to this model, subject to a required confidence level or probability r. This bound can be

used to provide a function giving the number of errors that must be tolerated as a function of t for

the system to operate with a probability of failure that is no more than 1 − r. The authors show

how this function can be incorporated into standard schedulability analysis for EDF providing a

“one-shot” analysis that can determine if a simple fault tolerant EDF-scheduled system can operate

with a probability of deadline failure that is lower than 1 − r. We note that a similar approach

could be applied to fixed priority scheduling by integrating the bound into response time analysis.

In 2016, Santinelli et al. [134] discussed the idea of a C-Space (the space of task execution times

that lead to a feasible, i.e. schedulable system) and how it can be adapted to a probabilistic model

of execution times. The authors consider separate pWCET distributions resulting from (i) no-

fault (or LO-safe) and (ii) fault (or HI-safe) behaviour for each task. These pWCET distributions

are used to determine discrete execution time budgets with a probability of being exceeded of,

for example, 10−9 for each task, assuming (i) no-fault and (ii) fault behaviour. The C-Space

can then be used to indicate the probability of each combination of execution time budgets

being exceeded (assuming i.i.d. execution times), and hence whether a particular set of execution

time budgets can be considered feasible for a given combination of behaviours that have to be

accommodated (for example task τ1 considering LO-safe behaviour with no faults, and task τ2

considering HI-safe behaviour with faults).

6.2 Analysis of Fault Recovery on CAN

Controller Area Network (CAN) is a broadcast bus used for in-vehicle networks. Messages sent on

CAN have a bounded length and are transmitted according to a fixed priority non-preemptive

scheduling policy, with the message ID also representing the message priority (see Davis et al. [50]

for full details of the protocol and its analysis). CAN has strong error checking mechanisms

that can detect faults that result in bit-errors on the bus and so cause message corruption. The

protocol ensures that any message that fails to be transmitted correctly will be later re-sent.

Hence faults result in an additional load on the bus due to re-transmissions, which can potentially

result in deadline misses. Even though CAN is a deterministic protocol and the messages have

bounded lengths, the random occurrence of faults means that analysis techniques are needed that

can determine the probability of messages failing to meet their deadlines. A significant thread

of research in this area began with the work of Navet et al. [117] in 2000. This was built upon

by Broster et al. [28, 29], and Davis and Burns [48], and later adapted to more complex message

arrival functions by Axer et al. [17].

In 2000, Navet et al. [117] proposed a fault model for messages on CAN based on random

arrivals, where faults are assumed to occur according to a Poisson distribution. They introduce

the idea of a tolerable error threshold, corresponding to the maximum number of errors that a

message can tolerate before it becomes unable to meet its deadline. This threshold is then used in

a calculation of the worst-case deadline failure probability (WCDFP).
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Subsequently, in 2002, Broster et al. [28, 29] extended the work of Navet et al. [117], correcting

and improving upon the WCDFP analysis. (We note that this work is based on early analysis

of CAN that contains a number of flaws, but the method could easily use the correct equations

that were derived by Davis et al. [51] in 2007). The analysis works by deriving the probability

p(Rm|K) that a worst-case response time of Rm|K occurs, where Rm|K corresponds to the

worst-case response time for message m when exactly K faults occur between it being queued

for transmission and transmission completing, i.e. within the response time of the message. The

calculation of Rm|K assumes the worst-case scenario, i.e. the maximum delay due to blocking,

maximum interference from higher priority messages, and maximum bit stuffing. The probability

that K faults occur in a given time interval is obtained from the Poisson distribution of faults.

The probability p(Rm|K) is computed for values of K from zero to the maximum number of faults

that the message can tolerate without missing its deadline. The sum of these probabilities lower

bounds the probability that the message will be successfully transmitted by its deadline, hence

subtracting this sum from 1 gives an upper bound on the worst-case deadline failure probability.

We note that due to the worst-case assumptions in the response time calculation, this WCDFP

may be significantly larger than the actual probability of deadline failure averaged over a large

number of instances of the message. In 2012, Axer et al. [17] extended the approach of Broster et

al. [28] to more complex arrival functions for messages, including the case where messages have

arbitrary deadlines.

The work of Broster et al. [28, 29] was improved upon by Axer and Ernst [16] in 2013. They

considered the probabilistic schedulability analysis of messages on CAN assuming a Poisson

distribution of faults. They present a method of probabilistic response time analysis based on the

use of probability distributions representing queueing delays, busy period lengths, and response

times. The key idea is to represent the worst-case total transmission time for each message

including its re-transmission due to faults as a probability distribution, based on the probability of

k faults occurring within transmission of that specific message. This is possible since the Poisson

fault model is memoryless. The schedulability analysis derives from the deterministic response

time analysis for CAN [51] adapted to consider probability distributions. The authors show how

to compute the longest priority level-i busy period that can occur with a probability that is above

some small threshold of interest. The response time distributions for each message of priority i

in the busy period are then computed using a process of convolution and splitting. An upper

bound on the probability that the response time of any message of priority i in the busy period

will exceed an arbitrary time t (e.g. its deadline) can then be obtained from these distributions.

Evaluation shows that the results given by the analysis are very close to the empirical distribution

obtained via Monte Carlo simulation. Further, the probability of failure using typical fault rates

for CAN is approximately one order of magnitude better than can be obtained via the analysis of

Broster et al. [28, 29]. The reason being that the latter approach pessimistically assumes that the

largest possible re-transmission time (for any higher priority message) occurs on every fault.

In 2009, Davis and Burns [48] introduced algorithms that determine Robust Priority Assign-

ments (RPA) [47] for messages sent over CAN. They also investigated a probabilistic variant of this

problem. This work builds on prior analysis of the worst-case deadline failure probability (WCDFP)

for CAN messages in the presence of faults by Navet et al. [117] and Broster et al. [28, 29]. The

authors derive a Probabilistic RPA algorithm which determines a robust and optimal priority

ordering, in the sense that it returns a priority ordering which minimises the maximum WCDFP

over all messages, provided that a schedulable priority ordering exists. The algorithm builds on

the optimal priority assignment algorithm of Audsley [15]. A case study example shows that using

the Probabilistic RPA algorithm can result in a worst-case failure rate that is orders of magnitude

better than that obtained using deadline monotonic priority assignment (e.g. a failure rate of 1 in

28,500 compared to values in the range 1 in 500 to 1 in 1000).
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With CAN, the physical layer employs bit stuffing to ensure that there are enough transitions in

polarity to maintain synchronisation between the nodes on the network. Thus within each message

transmission, a bit of opposite polarity is inserted after every five consecutive bits of the same

polarity. This increases the transmission time of the messages. In 2003, Nolte et al. [119] provided

a probabilistic worst-case response time analysis for messages on CAN. They used distributions

of the number of stuff bits, as opposed to worst-case values, to calculate probabilistic response

times based on the critical instant. The authors assume independence between the distributions

of the number of stuff bits for different messages and between those numbers for instances of the

same message. We note that it is unlikely that such independence would exist in practice. For

example consider the situation at start up, when the vehicle is not moving. Many of the signals in

the CAN messages may be at their default values e.g. zero, which incur a large number of stuff

bits. Further many values (temperatures, pressures etc.) change only slowly over time, thus it is

reasonable to expect a strong correlation between the values in one instance of a message and the

next, and hence a strong correlation between the numbers of stuff bits.

A probabilistic analysis for CAN messages and end-to-end latencies in an automotive system

was presented by Zeng et al. [153] in 2009. They build upon the basic approach of Diaz et

al. [54, 55] (see Section 3.2), with a number of approximations and adaptations for distributed

systems connected via CAN. Task execution times are assumed to be independent and described by

probability distributions. Similarly, the transmission times of CAN messages are also assumed to

be independent and described by probability distributions, in this case accounting for the varying

levels of bit-stuffing assuming variable message contents. The key approximation introduced for

CAN involves handling the lack of synchronisation between messages sent by different ECUs. (The

entire system is not simply periodic). This is done by approximating all messages sent by a remote

ECU via a single characteristic message that has a probability distribution and values for its

transmission time equating to the number of messages of priority i or higher that may be released

at the same time. For example if there are two messages with periods of 10 and 40 sent by the

ECU, then the characteristic message will have a period of 10 (the greatest common denominator)

and a probability distribution indicating 1 message with a probability of 0.75 and 2 messages with

a probability of 0.25. The authors note that this introduces some inaccuracy into the analysis

and it may be quite pessimistic for long intervals of time. Further, there is also the potential for

optimistic (i.e. unsound) results. The analysis is, however, intended as an approximation to be

used in design space exploration rather than as an upper bound. The characteristic message is

given an offset and random jitter to account for the lack of synchronisation between messages

transmitted by different ECUs. Messages sent by the same ECU as the message under analysis are

treated as individual messages, since their phasing with respect to the message of interest is known.

Blocking due to lower priority messages is also accounted for by assuming that the probability

of such messages being transmitted is uniform over the hyperperiod. Again, the authors note

this is a potential source of inaccuracy. The analysis method follows that of Diaz et al. [54, 55],

first the stationary backlog is computed at the start of the hyperperiod (of messages on the ECU

that transmits the message under analysis), then the backlog at the release time of each message

instance is computed, and finally, the response time distribution of each message instance within

the hyperperiod. These are averaged to obtain the response time distribution of the message.

The evaluation considers a 69 message case-study based on an experimental vehicle. The results

show that the stochastic analysis provides results that are close to those obtained via simulation

averaged over 108 different relative phasings. The analysis is subsequently extended to end-to-end

latency (i.e. tasks communicating across multiple ECUs and two CAN buses). Again, the analysis

results are a close fit to those obtained via extensive system level simulation. The key advantage

of the stochastic analysis over simulation is its speed e.g. 8 seconds of analysis versus 20 hours of

simulation. This means that the analysis is much better suited for use in design space exploration.
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Building on their prior work on probabilistic schedulability analysis for tasks [18], in 2012 Aysan

et al. [19] derived probabilistic schedulability analysis for CAN under a general fault model. This

model considers fault bursts of a duration described by a probability distribution. The analysis

proceeds in three steps: (i) For each potential burst duration in the distribution, sensitivity analysis

is used to determine the minimum inter-arrival time T burst
E of errors within that burst such that

the system remains schedulable. (ii) An upper bound is computed on the probability of a smaller

inter-arrival time than T burst
E occurring within the burst for each duration. These bounds are then

used to determine an upper bound on the probability that the minimum tolerable inter-arrivals

times for errors are violated for all potential fault durations over the mission duration. (iii) Finally,

the probability of unschedulability is computed from the probability of two bursts occurring too

close together and the probability of the minimum tolerable inter-arrival time of errors within a

burst being violated.

6.3 Summary and Perspectives

In this section we reviewed work on probabilistic schedulability analysis where random variables

are used to represent the occurrence of some form of fault. Beginning with initial work by

Burns et al. [33] in 1999, we can trace an important thread of research providing probabilistic

schedulability analysis for fixed priority systems, in particular Controller Area Network (CAN),

under an assumed fault model [117, 28, 29, 48, 16, 17]. This work derives effective estimates of the

worst-case probability of deadline failure, and provides the tools needed to assign message priorities

in such a way as to make the system as robust as possible to the occurrence of faults. The main

issue with this line of research is whether the fault models used reflect reality; however, the method

is sufficiently flexible to incorporate any reasonable fault model where the probability of some

number of faults is monotonically non-decreasing in the length of the time interval considered.

7 Statistical Analysis of Response Times

Previous sections reviewed work on probabilistic schedulability analysis based on analytical models

of the system. By contrast, in this section we review work that takes a statistical approach,

treating the system as a “black box” and making observations of response times from which an

estimation of the response time distribution and hence deadline miss probabilities can be derived.

One of the key methods used in this thread of research is Extreme Value Theory (EVT). An

overview of the use of EVT in measurement-based probabilistic timing analysis can be found in

the companion survey [52], with more detailed information given in Stuart Coles’ textbook on

the subject [39]. Here, we provide a brief synopsis, focusing on the Extreme Value Theorem (or

Fisher–Tippett–Gnedenko theorem). This theorem states that if the normalised maximum of a

sequence of i.i.d. random variables converges, then the limit distribution belongs to either the Gum-

bel, Frechet, or reversed Weibull family of distributions. In practice, EVT may be applied using the

Block Maxima method as follows: (i) obtain a representative sample of observations (e.g. response

times), (ii) check using appropriate statistical tests that the sample of observations collected is

analysable using EVT, (iii) divide the sample into blocks of observations of a fixed size, and take

the maxima for each block, (iv) fit a Generalised Extreme Value (GEV) distribution (i.e. reversed

Weibull, Gumbel, or Frechet distribution, depending on the shape parameter) to the distribution

of the maxima, (v) check the goodness of fit between the distribution of the maxima and the fitted

GEV distribution. The GEV distribution so obtained then approximates (estimates) the distribu-

tion of the extreme values of the sampled distribution. We note that if the underlying (measured)

distribution is badly behaved, then the normalised maximum may not converge to any of the limit

distributions, in which case the method is not applicable. This can be determined by appropriate

statistical tests.
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7.1 Statistical Estimation

A number of authors have sought to apply statistical methods to estimate response time distribu-

tions and deadline miss probabilities. The main thread of research in this area comes from Lu,

Nolte, and their co-authors [96, 97, 94, 95] with a recent investigation into the soundness of such

approaches by Maxim et al. [111].

The theory of Large Deviations [144] was applied by Navet et al. [116] in 2007 to the problem

of estimating the mean or the sum of the response times of a series of aperiodic jobs. This method

makes use of frequency histograms of response times that are obtained via measurement. It

assumes that the response times of jobs of an aperiodic task are i.i.d. The authors note that

this is not the case with the response times of periodic tasks, since the interference from other

tasks follows a pattern over the hyperperiod due to the release times of higher priority tasks. The

method provides an estimation of the probability that the mean response time of a sequence of n

jobs of the task will exceed some value x, for all values of x.

In 2010, Lu et al. [96] introduced a method of estimating probabilistic worst-case response

times (pWCRT) using Extreme Value Theory (EVT). They record observations of response times,

obtained from simulation. EVT is then applied to these observations, using the Block Maxima

method, with the distribution of the maxima fitted to a Gumbel distribution using a χ-squared

test. The authors present an algorithm which searches for an appropriate block size to use, while

enforcing a minimum of 30 blocks. The results are compared to those obtained via a Monte-Carlo

search (i.e. keeping the largest response time found from a set of randomised simulations) and

also via meta-heuristic search applied on top of Monte-Carlo simulation. The evaluation considers

three system models (M1-M3) indicative of those used in robotic control systems. Here, tasks

exhibit strong dependences through asynchronous message passing, shared global variables, and

runtime changes to task periods and priorities. The system models used in the evaluation vary

in complexity. The validation model based on M1 is amenable to conventional response time

analysis techniques, and so an exact worst-case response time could be determined. By contrast,

M3 has intricate dependences via message passing, global shared variables, and changes in task

periods and priorities. The evaluation results show that the EVT-based approach requires far

fewer simulation runs (approx. 6% as many) to produce meaningful results compared to the

Monte-Carlo and search-based methods. Following on from this work, Lu et al. [97, 94, 95] refined

the method, using a form of simple random sampling to break dependences between observations.

They also sought to ensure that the pWCRT value returned by their tool (RapidRT) for a given

probability of exceedance is an upper bound with an appropriate level of confidence. This is

done by repeating the process of obtaining observations and applying EVT n times to produce n

pWCRT distributions. The set of values at a probability of exceedance of 10−9 from each of these

distributions is then checked to see if it complies with a normal distribution. If so, the pWCRT

value returned is the one that corresponds to the desired level of confidence (e.g. 3σ ≈ 99.7%). In

their final work in this area, Lu et al. [95] evaluated their method using a case study based on

an industrial robotic control system with the results compared against a state of the art method

based on using meta-heuristic search to guide Monte Carlo simulation to determine parameters

that will lead to long response times. Note such simulation requires a detailed model of the system.

Four levels of system complexity were explored containing from 40-60 tasks, 7-12 queues, and in

the case of the most complex system, run-time priority and period changes, unbounded message

passing, and task offsets. The proposed method was shown to bound the estimates obtained via

meta-heuristic search and Monte Carlo simulation, with no more than 15% pessimism.

Subsequent work in 2013 by Liu et al. [91] applied EVT to the problem of estimating the

worst-case response times of messages on a CAN bus. Due to the scheduling policy used, the

distribution of observations and their maxima show multiple peaks. Such distributions are difficult
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to analyse, since they cannot be fitted to the known EVT distributions. To address this problem

the authors use a filtering method which aims to reduce the distributions to single peaks by

discarding observations below a threshold. (This threshold is set such that the mean value of

observations above the threshold is greater than or equal to their median value). Evaluation shows

that the method provides results that are only a few percent pessimistic compared to response

time analysis for CAN [50] using computed worst-case values.

The soundness and precision of applying statistical techniques to determine the probabilistic

worst-case response time (pWCRT) distribution of tasks was investigated by Maxim et al. [111]

in 2015. They noted that to obtain meaningful results, a ground truth is required. In other

words the pWCRT must be known. This is far from simple, and may not be possible for tasks

in a real system. Therefore they constructed a simulation of task behaviour based on pWCET

distributions, which could potentially be obtained from a real system. The approach obtains

the ground truth via probabilistic worst-case response time analysis using the method given by

Maxim et al. [106] (see Section 3.3), which determines precise pWCRT distributions from the input

pWCETs. The ground truth is compared to a number of statistical approaches. These include

fitting to Normal, reversed Weibull, and Gumbel distributions, and an EVT-based approach using

the Block Maxima method. The evaluation shows that fitting to a Normal or reversed Weibull

distribution is unsound with approximately half of the pWCRTs under-estimating the probability

of a deadline failure. Fitting to a Gumbel distribution produced better results in this respect with

about 10% unsound results. Using the EVT-based approach, none of the results were unsound;

however, there was an increase in pessimism compared to directly fitting a Gumbel distribution.

7.2 Summary and Perspectives

In this section we reviewed research that takes a statistical approach to estimating response time

distributions. Of particular note is the work by Lu et al. [96, 97, 94, 95] and Maxim et al. [111].

The former showing that EVT can provide meaningful predictions of the tail of response time

distributions even in the case of systems with intricate dependences, and the latter showing that

the results from EVT are sound compared to the ground truth, while those from directly fitting a

distribution to the observations are not.

All of the work reviewed in this area has focused on single processor systems. For tasks

running on COTS multi-core platforms there are significant difficulties involved in obtaining

precise worst-case response times via analytical methods due to issues of cross-core contention.

The application of statistical methods to directly predict the extreme values of the response time

distributions for tasks in such systems could potentially provide some solutions to this problem.

This is an interesting area for future research.

8 Probabilistic Analysis of Mixed Criticality Systems

The term Mixed Criticality System (MCS) is used to describe real-time systems where applications

with different criticality levels (meaning different levels of assurance required against failure) are

integrated onto the same hardware platform. This integration gives rise to research questions in

terms of how to reconcile the conflicting requirements of sharing for efficient resource usage and

separation for reasons of assurance [31]. In 2007, Vestal [145] described a mixed criticality task

model whereby LO-criticality tasks have a single worst-case execution time estimate C(LO), and

HI-criticality tasks have two estimates C(LO) and C(HI), with the latter, larger estimate obtained

via methods that give a higher level of confidence / assurance that it will not be exceeded. (For

example C(LO) might be an upper bound on the longest execution time observed during testing,

while C(HI) may be a conservative value obtained via detailed static timing analysis). The timing
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constraints placed on the system require that all tasks meet their deadlines provided the C(LO)

budgets are not exceeded; however, if a HI-criticality task exceeds its C(LO) budget, then it is

only required that the HI-criticality tasks meet their deadlines, assuming that they execute for at

most their C(HI) budgets. This required behaviour reflects the different failure rates that may

be acceptable at different criticality levels (see the discussion in Section 1). For more information

on research into scheduling mixed criticality systems, see the survey by Burns and Davis [31].

In this section we review recent research on probabilistic schedulability analysis for MCS. These

methods typically use a richer representation based on execution time or pWCET distributions,

rather than the discrete execution time budgets C(LO) and C(HI) at different criticality levels

assumed by Vestal’s model [145]. Here, one may consider the C(LO) and C(HI) budgets from

Vestal’s model as two points on the x-axis of the 1 - CDF of a pWCET distribution (see Figure 2

in Section 2), each with an associated probability of exceedance (i.e. the corresponding y-axis

value).

8.1 Analysis for Mixed Criticality Systems

Research into probabilistic schedulability analysis for mixed criticality systems is in its infancy

with a small number of papers published from 2015 onwards. The majority of these works are

short papers that have appeared in workshops. A necessarily brief review of them is given below.

In 2015, Santinelli and George [132] presented preliminary work on probabilistic schedulability

analysis for MCS scheduled using EDF. They investigated how schedulability varies with task

execution times, referred to as the probabilistic C-space. Later the same year, Guo et al. [64]

extended the mixed criticality task model with a single exceedance probability value for the

low assurance budget of each HI-criticality task, and used probabilistic analysis to improve

schedulability.

In 2016, Maxim et al. [107] adapted probabilistic response time analysis from [106] (see

Section 3.3) to fixed priority preemptive scheduling of MCS using the Adaptive Mixed Critical-

ity (AMC) and Static Mixed Criticality (SMC) schemes [22]. They compared this analysis to the

equivalent deterministic methods, highlighting the performance gains that can be obtained by

utilising more detailed information about worst-case execution time estimates described in terms

of probability distributions. This work was extended by Maxim et al. [108] to provide a more

precise analysis, and also to examine by how much the execution time budgets of LO-criticality

tasks can be increased by employing probabilistic rather than deterministic schedulability analysis

methods.

In 2016, Alahmad and Gopalakrishnan [9, 8] studied the problem of scheduling mixed criticality

job sets with execution times described by random variables. The aim of this work is to compute

implementable scheduling policies that meet the probabilistic timing constraints. The problem

is modelled as a Constrained Markov Decision Process (CMDP), with feasible policies obtained

using a linear program.

In 2016, Draskovic et al. [57] examined fixed priority preemptive scheduling of MCS of periodic

tasks with execution times described by random variables. They employed the method of Diaz

et al. [54] (see Section 3.2) to compute the probability of a deadline miss for every job in the

hyperperiod, and from that the overall deadline failure rate. They also computed the expected

time before a change to HI-criticality mode, and showed that this expected time depends on the

LO-criticality execution time budget allocated to HI-criticality tasks. A smaller budget results

in a lower probability of deadline failure, but a shorter expected time before a transition to

HI-criticality mode.

In 2017, Abdeddaim and Maxim [1] derived probabilistic response time analysis for mixed

criticality tasks under fixed priority preemptive scheduling, adapting the techniques of Maxim and
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Cucu-Grosjean [106] (see Section 3.3) to the MCS model. The analysis computes the probability of

deadline misses for each task in each criticality mode. This work does not assume any monitoring,

hence lower criticality tasks are assumed to continue executing in higher criticality modes.

In 2017, Kuttler et al. [80] introduced an algorithmic approach to probabilistic schedulability

analysis called symbolic scheduling. They considered an extension of AMC [22] where the priorities

of LO-criticality tasks are reduced (to below that of any HI-criticality task) when the system

switches to HI-criticality mode. Assuming this behaviour, they calculate the probability of each job

of a LO-criticality task meeting its deadline. The method applies to periodic tasks. Conceptually,

it considers every possible combination of execution times, forming a tree where each path from

root to leaf represents a possible behaviour of the system. The disadvantage of this naive approach

is that the tree quickly becomes very large. Symbolic scheduling is therefore used, whereby

paths that may have different execution times but agree on the order of jobs and their success or

otherwise in meeting deadlines are combined. The evaluation shows that considering only the

probabilistic worst-case response time (i.e. the behaviour at the critical instant) can be pessimistic

in its estimate of the probability of LO-criticality jobs missing their deadlines.

8.2 Summary and Perspectives

In this section we reviewed research on probabilistic schedulability analysis for Mixed Criticality

Systems (MCS). These methods consider MCS described using execution time or pWCET distribu-

tions rather than the conventional C(LO) and C(HI) WCET estimates / execution time budgets

of Vestal’s model [145]. This additional information provides the potential for improvements in

schedulability and in the size of the budgets that can be afforded to different tasks, see for example

the work of Maxim et al. [108]. MCS are a hot topic of real-time systems research. A probabilistic

view of MCS would appear to provide an excellent match to requirements that are specified in

terms of levels of assurance and failure rates. We note, however, that research in this area is

currently in its infancy with a small number of works starting in 2015, the majority of which are

workshop papers or other short publications. (For a comprehensive review of other research into

MCS see the survey by Burns and Davis [31]).

9 Miscellaneous

In this section, we review research that explores miscellaneous aspects of scheduling and schedulab-

ility analysis for probabilistic real-time systems, including task graphs and precedence constraints,

analysis for multiprocessor systems, miscellaneous models and techniques, and position papers.

9.1 Task Graphs and Precedence Constraints

The majority of the research in this area was published by Manolache et al. in a series of

papers [100, 101, 102] from 2001 to 2008.

In 2001, Manolache et al. [100] presented a method of analysing systems with precedence

relations between tasks described by task graphs, and task execution times described by probability

distributions. They assume that the tasks are periodic with a reasonably small hyperperiod. The

method is applicable only to non-preemptive scheduling algorithms such as fixed priority and EDF

that do not alter job priorities between scheduling points (i.e. task release times and deadlines).

It is assumed that if a job misses its deadline, then it is aborted. The first step in the analysis is

to divide the hyperperiod into so called Priority Monotonic Intervals (PMI) de-marked by job

release times and deadlines. The stochastic process is then constructed and analysed at the same

time, thus reducing memory requirements. A stochastic process state consists of the index of the
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currently running job, the start time of the job, and the indices of the ready jobs. The number of

next states depends on the number of possible execution times of the job. As this number can

be very large, states are grouped together, while still preserving the Markovian property. States

are processed in order, by PMI first, and then within a PMI by highest priority ready job. The

method thus determines the expected deadline miss probability for each task. Evaluation shows

that the method is effective for tasks sets of cardinality up to 20 and hyperperiods from 360 to

5040. Subsequently, in 2004, Manolache et al. [101] extended their earlier work [100] to the case

where tasks may continue to execute beyond their deadlines. Such overruns are restricted by

limiting the maximum number of jobs of the same task that can exist in the system at any given

time. On the release of a task, if this limit would be exceeded, then there are two options: discard

the oldest job of the task, or reject the new job. Evaluation shows that rejecting the new job leads

to much greater complexity, since a bound is removed on the number of successor states. The

authors also discuss possible extensions to preemptive scheduling, but note that the complexity of

the method would be greatly increased. Later, in 2008, Manolache et al. [102] proposed a solution

to the problem of task priority assignment and mapping in a multiprocessor system. The task

model is the same as in their previous works [100, 101]. The method is based on a Tabu search,

with various approximations used to reduce the complexity of computing estimates of the deadline

miss probability and thus the fitness function used in the search.

In 2003, Hua et al. [69] proposed a method of using probabilistic descriptions of task execution

times to optimise other parameters of interest in multimedia systems, such as energy consumption.

The model considered is a task graph, where the tasks in the graph are executed in a fixed order,

and must be completed by a given deadline. The application i.e. the task graph is executed

periodically. The system must meet a completion ratio condition, effectively a threshold on

the expected proportion of a large number of instances of the task graph that will meet their

deadlines. A simple formula is given for computing the completion ratio based on the execution

time distributions. This formula has exponential complexity, since it effectively considers all

combinations of possible task execution times from the distributions. An approximation is therefore

used that starts with each task assigned its WCET, and then while the deadline is not met, it

removes the largest value from one of the task execution time distributions. This lowers the overall

execution time, but decreases the completion ratio. Eventually, either the task graph is deemed

schedulable with an acceptable completion ratio, or the completion ratio becomes too small. The

value to remove is chosen in a greedy way, by selecting the one that gives the largest reduction in

overall execution time, weighted by how much the completion ratio is reduced. The authors also

describe an offline/online algorithm for minimising energy consumption via dynamic voltage and

frequency scaling (DVFS). The aim here is to either drop jobs or to extend their execution to

reduce energy consumption, while meeting the specified threshold on the completion ratio. We

note that it is implicitly assumed that the execution time of a job becomes known at the point

when it is released, which may not be possible to achieve in practice.

9.2 Multiprocessor Analysis

Below, we cover the few works on probabilistic schedulability analysis for multiprocessor systems.

The relative absence of work in this area contrast strongly with the wealth of research into con-

ventional schedulability analysis techniques for multiprocessor systems, (see Davis and Burns [49]

for a survey).

In 2002, Nissanke et al. [118] and Leulseged and Nissanke [86] described a probabilistic

framework for investigating the schedulability of tasks on a multiprocessor, with execution times

and deadlines modelled via probability distributions. Each task has a fixed period, and its

behaviour is represented by points on a cartesian graph of remaining execution time versus laxity.
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A set of non-zero probabilities characterise the task as arriving with a certain execution time and

laxity. Between arrival times, remaining computation times and laxities are also described by

probabilities, but evolve according to the scheduling algorithm, reaching either negative laxity

indicating a missed deadline or zero remaining computation time indicating completion. By

knowing the probability of realising each scenario, and the competition between tasks at the

same priority, the probability of a task being executed is computed. This enables calculation

of the execution patterns of all tasks over the hyperperiod, enabling the various properties of

interest to be derived. The movement of tasks through this scheduling domain depends on the

probability of m processors being assigned tasks to execute that are in a particular state (specified

by laxity and execution time), and also on the arrival rate. Overall, the framework can be used to

determine performance indicators such as expected deadline failure rate, success rate, number of

tasks executing, number of tasks at a particular point etc. The authors propose that a probabilistic

scheduling policy could be determined by prescribing a probability to executing tasks based on

their location in the scheduling domain. These probabilities could be obtained by solving an

optimisation problem with the aim of maximising some performance indicator of interest, such as

the expected success rate.

In 2010, Mills and Anderson [112] extended prior work on tardiness bounds for global

EDF (GEDF) scheduling to tasks with execution times described by i.i.d. random variables.

For such systems, they derived a bound on expected mean tardiness for all tasks. Subsequently in

2011, Mills and Anderson [113] generalised their previous work to address tasks with stochastic

execution times (specified via mean and variance) scheduled via sporadic servers under GEDF

or any other global scheduling algorithm with bounded tardiness. They proved a worst-case

tardiness bound when the system has a worst-case utilisation that is bounded by the number of

processors, and an expected or average-case tardiness bound when the average-case utilisation

is bounded by the number of processors. This latter bound does not require knowledge of the

task’s WCET, or even for the WCET to be bounded. Hence the average-case tardiness bound can

be computed on the basis of the mean and variance obtained from representative execution time

observations. An example shows that the computed tardiness bounds are much tighter that those

derived previously [112].

In 2014, Liu et al. [92] considered how to deal with dependencies between the execution times

of jobs of a task. They build upon the work of Mills and Anderson [113], thus assuming that

tasks are scheduled via sporadic servers under GEDF. The key idea is to represent the stochastic

execution times of the task via two components: (i) a fixed threshold, and (ii) an excess over that

threshold. The idea is that by tuning the threshold to an appropriate level, the non-zero excesses

over the threshold become independent. (This notion is similar to the one of extremal independence,

where extreme execution time values are sufficiently rare and far apart as to be independent).

Using an independence threshold for each task enables the system designer to balance the need

for a tractable probabilistic analysis based on modeling execution times as independent random

variables, and the need to avoid a pessimistic provision based on deterministic worst-case reasoning.

The authors integrate the concept of independence thresholds into the prior approach of Mills and

Anderson [113]. They present a measurement process based on statistical tests of independence

that is able to find the smallest threshold such that dependences are effectively eliminated. Finally,

they show via an MPEG video decoding case study that the overall approach is highly effective,

on average achieving a two-fold reduction in the required server execution time budgets compared

to deterministic worst-case provisioning.

In 2015 and a later journal extension in 2017, Wang et al. [149, 148] proposed a task partitioning

algorithm for fixed priority preemptive scheduling of tasks with execution times described by

independent random variables on a homogeneous multi-core platform. They explored four different
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heuristics that quantify the degree of harmonicity among the tasks assigned to a processor. These

are mean-based, variance-based, cumulative distribution-based, and distribution sum-based. The

evaluation shows that these heuristics significantly outperform existing (deterministic) methods

in terms of the number of cores required to ensure that probabilistic timing guarantees are

met (i.e. that all tasks meet their deadlines with an acceptable probability). Later work by Ren et

al. [128] built upon the above work addressing some of its drawbacks. In particular, the partitioning

approach employed by Wang et al. [149, 148] can suffer from fragmentation. Ren et al. address

this issue by combining a consideration of both harmonicity and probabilistic workload. Their

approach first orders the tasks by decreasing expected utilisation and selects the highest expected

utilisation task as a reference task. It then selects tasks to add to the subset containing the

reference task based on harmonicity. Tasks are added until no further task can be added without

the subset failing the probabilistic schedulability test for a single processor. The selected subset

of tasks is then assigned to one processor and the method repeats for the remaining unassigned

tasks. Evaluation using synthetic task sets shows that this approach is both more effective and

has a shorter average runtime than the previous partitioning approach of Wang et al. [149, 148].

9.3 Miscellaneous Models and Techniques

In this subsection we review work relating to miscellaneous models and techniques such as

randomised job dropping and imprecise computation.

In 2001, Hu et al. [68] studied fixed priority preemptive systems with task execution times

described by random variables. They argue that finding the probability of each task missing

its deadline does not give the full picture for a system and can be misleading. Instead, they

propose that the probability of failures is assessed over state cycles corresponding to the intervals

between job releases for periodic tasks. They reason that a state is only feasible if all of the

jobs that are ready in that state meet their deadlines. (A job with a long deadline may thus

affect the feasibility of multiple states). The overall probability of system feasibility is assessed

by determining the expected number of feasible states over the total number of states in the

hyperperiod, or as an approximation a shorter interval such as the task period. The focus on

states ensures that correlations between different jobs missing their deadlines are captured. We

note that this method does not consider the backlog at the end of the hyperperiod and thus is

only applicable if the worst-case processor utilisation does not exceed 1. Constrained deadline

periodic tasks are assumed. The method is also extended to EDF. The complexity of the method

is exponential in the number of values in the execution time distributions, with the exponent

being the number of releases of the task within the hyperperiod. It therefore seems unlikely that

the method is viable for systems that do not have both a small number of tasks and a short

hyperperiod.

Also in 2001, Hamann et al. [65] integrated a probabilistic description of execution times with

the imprecise computation model based on mandatory and optional components [90]. They assume

that each task is composed of a single mandatory part that must be guaranteed to complete by

its deadline and multiple optional parts for which only soft (probabilistic) guarantees are required.

It is assumed that the execution time distribution is provided for each part of a task, and that the

WCET is known for the mandatory part. A simple analysis is given that determines the size of

the reservation required to guarantee the mandatory part and to provide the desired probabilistic

guarantee that a required percentage of the optional parts complete. This is achieved by convolving

the execution time distributions, hence their independence is assumed. The approach is motivated

by multimedia examples involving the decoding of MPEG frames, with I and P frames mandatory

and B frames optional.
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In 2002, Kim et al. [77] proposed an alternative to task-level or job-level isolation based on

randomised dropping. The motivation for this approach is that isolation does not allow sharing of

processing resources when a job executes in less time than reserved for it. In the model addressed in

this work, periodic tasks are assumed to have independent execution times with known probability

distributions, and are assigned an execution time budget that they can use without triggering the

dropping mechanism. Typically this corresponds to the expected or average execution time. Job

scheduling is via EDF; however, each job also has one or more trigger values on the execution time

that it uses. When one of these trigger values is reached, there is an associated probability that

the job will be dropped. By tuning these values and the probabilities of dropping, the interference

on other jobs can be limited in a probabilistic way. The authors propose a stochastic analysis for

their model, based on a Markov process. They derive the Markov chain over multiple hyperperiods,

and compute the stationary backlog distribution. This is then used to determine the response

time distribution and deadline miss probability for each job, and hence also for each task. The

randomised dropping is modelled as an adjustment to the execution time distribution for each

task. Evaluation shows that the method is successful in achieving a high probability of deadlines

being met in an otherwise overloaded system.

In 2009, Gopalakrishnan [61] explored the idea of sharp utilisation thresholds in fixed priority

preemptive scheduling of periodic tasks. They show that for task sets chosen uniformly at random,

there is a transition around some utilisation U where the probability of an implicit deadline task

set being schedulable under rate-monotonic scheduling changes from 1 to 0. The width of this

transition depends on the cardinality of the task set and tends to a sharp threshold (i.e. an interval

of zero width) as the number of tasks tends to infinity. A similar result giving a sharp synthetic

utilisation (or density) threshold was obtained for aperiodic tasks, where a task’s density is given

by its execution time divided by its relative deadline. This work provides a highly efficient means

of admitting task sets at runtime based on a simple utilisation-based test, while ensuring that

there is a high probability that the task sets will be schedulable. For soft real-time systems this

approach could be much more effective than using hard utilisation bounds [89], below which there

are no task sets that are unschedulable.

9.4 Position Papers

The following works discuss some requirements for probabilistic schedulability analysis to be useful

in practice, as well as issues relating to independence.

In 2012, Quinton et al. [125] set out four requirements (or conditions) that must be satisfied

by probabilistic analysis for it to be useful: (i) it must be efficient enough to scale to real

systems, (ii) it must provide meaningful results for system designers, (iii) the model used must be

practical (i.e. simple enough to be provided by the designer) or automatically generated, (iv) any

assumptions made by the analysis must be formally described so they can be validated. They

note that most existing probabilistic approaches determine the distribution of response times,

but can say nothing about the behaviour of the system in a short and bounded time window. In

other words, they cannot answer the question, “can deadline misses occur in a burst?” (See the

discussion in Section 2.5).

In 2013, Cucu-Grosjean [42] considered different types of independence in the context of

probabilistic real-time systems. A key aspect of this work is the discussion covering the definition

of, and the differences between, probabilistic execution time distributions (pET) of jobs and

probabilistic worst-case execution time distributions (pWCET) of tasks. The author notes that

since the pWCET distribution upper bounds all the pET distributions for the jobs of a task (in

the sense of the greater than or equal to operator � on random variables defined in [55]), then the

pWCET distribution of a task is by definition probabilistically independent with respect to jobs
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of the same or different tasks. They also highlight the differences between independence between

tasks (as required by the Liu and Layland model [89]), probabilistic independence between

random variables (needed so that basic convolution may be used to determine probabilistic

response times), and statistical independence between observations of execution times. In a

paper accompanying an invited talk at the ETR summer school in 2013, Cucu-Grosjean [43]

discusses different types of independence (probabilistic, statistical) [42] and also recaps the work

on probabilistic schedulability analysis [54] and probabilistic WCET analysis [44] for real-time

systems, re-sampling techniques [109], and priority assignment policies [105].

9.5 Summary and Perspectives

In this section, we reviewed works that explore different aspects of scheduling and schedulability

analysis for probabilistic real-time systems. Here, we highlight the work of Liu et al. [92] that

provides a means of dealing with dependencies between the execution times of jobs of a task

via an independence threshold, and the work of Gopalakrishnan [61] that provides a simple but

highly effective probabilistic admission test for soft real-time task sets. We note that while there is

substantial literature on conventional schedulability analysis for multiprocessor systems (see Davis

and Burns [49] for a survey), with a handful of exceptions, research into probabilistic schedulability

analysis has focused on uniprocessor systems. Further, there are now a large number of papers

focused on providing conventional schedulability analysis for tasks running on multi-core platforms,

taking into account the effects of contention for shared hardware resources (interconnect, memory

hierarchy, I/O system etc.) between tasks running in parallel on different cores. There appears to

be little if any published work on probabilistic schedulability analysis for such systems. This is an

important area that could benefit from future research.

10 Addressing Issues of Intractability

Much of the research into probabilistic schedulability analysis relies on combining execution time

distributions via basic convolution. A naive assessment of basic convolution would assume that it

has exponential complexity O(mn) where m is the number of points in each distribution and n is

the number of distributions convolved. While this is correct in terms of the theoretical worst-case,

in practice the range of values in each distribution is such that the overall complexity is far lower.

For example, assuming that the largest (integer) value in an execution time distribution is N , then

the number of points in the intermediate distribution after m convolutions is at most mN , and

hence the overall complexity of m convolutions is O(Nm2). Nevertheless, probabilistic response

time analysis involving realistic numbers of tasks with a spread of periods of a few orders of

magnitude can involve significant computation. In this section, we review works that seek to

reduce the amount of computation required, while in some cases trading faster calculation for

pessimism in the results.

10.1 Re-sampling

Re-sampling reduces the number of values present in a discrete probability distribution, and

therefore reduces the amount of computation required in convolution operations involving that

distribution. This improvement in efficiency comes at a cost of reduced accuracy or pessimism in

the results.

In 2010, Refaat et al. [127] presented a method of reducing the complexity of the analysis

of Diaz et al. [54, 55] and Kim et al. [76] by re-sampling the execution time distributions used.

Their method involves taking k random samples from the probability distribution and assigning
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the probability for all excluded points to the worst-case value from the distribution, which is

always kept. This method provides a sound but pessimistic approximation [55]. Subsequently,

later in 2010, Maxim et al. [110] presented an alternative approach to re-sampling execution time

distributions that improves on the method introduced by Refaat et al. [127]. This approach keeps

the k − 1 values with the largest probability as well as the largest value. It then reassigns the

probability mass for each removed point to the retained point with the next larger value. This

is a sound approximation, with less pessimism than assigning the probability mass of excluded

points to the worst-case value.

Building on the earlier work in this area, in 2012, Maxim et al. [109] considered the need

for re-sampling probabilistic worst-case execution time (pWCET) distributions when computing

probabilistic worst-case response time (pWCRT) distributions. This computation involves repeated

use of the convolution operator. The runtime of convolution of arbitrary distributions can grow

rapidly, as the number of points (distinct execution times) in the existing distribution can in the

worst case be multiplied by the number of points in each pWCET distribution that is convolved

onto it. In theory, this leads to an exponential growth in the runtime. In practice, the number of

points in a discrete distribution cannot exceed max-et – min-et, where max-et and min-et are the

maximum and minimum values in the distribution. The authors address the complexity issues

with convolution by introducing sound ways of re-sampling the distributions created. A sound

re-sampling is one that does not move probability values right-to-left, thus never allocating them

to a smaller execution time. Although moving some values left-to-right introduces pessimism,

it ensures that the pWCRT produced over-approximates that which would be obtained without

re-sampling. The work considers uniform spacing, a re-sampling technique that is widely used

in other contexts. This method selects sample points that are uniformly spaced in terms of

probabilities, i.e. at equally spaced percentiles throughout the distribution. It provides a good

fit in terms of overall pessimism; however, the shape of the tail, which is important in pWCRT

calculation, can be heavily compromised. Two new re-sampling techniques are introduced: reduced

pessimism re-sampling, which seeks to minimise the probability mass moved to larger execution

time values, and domain quantisation, which re-samples at equally spaced points in the execution

time domain. Domain quantisation has the desirable property that it greatly reduces the number

of points in the distributions produced after convolution, and also provides a good fit to the tail of

the pWCET distributions. Evaluation shows that it gives the best compromise between runtime

and accuracy.

In 2015, Milutinovic et al. [114] examined methods of speeding up the discrete convolution

operations that are used a large number of times in SPTA. They consider methods that are

precision preserving, such as power operations used when the same distribution needs to be

convolved multiple times, and precision non-preserving methods such as re-sampling as proposed

by Maxim et al. [109]. They found that the precision preserving techniques speeded up convolution

by approximately a factor of two, while the precision non-preserving techniques traded off a

minimal amount of over-approximation (< 3%) for an order of magnitude increase in speed.

10.2 Analytical Methods and Other Techniques

While re-sampling, which reduces the number of values present in a discrete probability distribu-

tion, makes a trade-off between efficiency and precision in probabilistic schedulability analysis

calculations, analytic methods can result in greater improvements in runtime while retaining better

precision. In some cases, full precision can be retained while still making substantial improvements

in runtime efficiency.

In 2017, Chen and Chen [36] considered the problem of probabilistic response time analysis

and the computational complexity involved in repeated use of the convolution operator. They
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proposed a more efficient approach to computing the probability of deadline misses, based on

using the moment generating function (mgf) of random variables, and Chernoff bounds for the

probability that the sum of a number of random variables (e.g. the execution times of multiple

jobs) exceeds some bound (e.g. the deadline). The authors demonstrate how this approach can be

applied to probability distributions consisting of two values representing normal operation, and

abnormal operation in the event of a soft error. They also show how the approach can be extended

to distributions with more values, and to give the probability of l consecutive deadline misses. The

evaluation compares the proposed method to exact analysis [106] and to exact analysis with re-

sampling [109] applied. The results show that the proposed method is able to efficiently determine

slightly pessimistic bounds on the probability of deadline misses without the need to derive the

whole response time distribution, which can be inefficient. Exact analysis was not suitable for

more than 10 tasks in the experiments considered, while re-sampling, limiting the distributions to

a maximum of 100 values, resulted in highly pessimistic deadline miss probabilities (e.g 1) for task

set utilisation values > 70%.

In 2018, von der Bruggen et al. [147] considered the problem of determining the worst-case

probability of deadline misses for tasks under fixed priority preemptive scheduling. They note

that traditional convolution-based approaches to computing pWCRT distributions quickly become

intractable as the number of jobs within the deadline of a lower priority task that is being analysed

increases. To address this problem, they present a novel approach based on using multinomial

distributions, which they further improve via the use of a pruning technique. This method retains

full precision and is viable for much larger task sets than previous approaches. In the evaluation,

the technique is used for systems of up to 35 tasks and is shown to be viable for up to 100 tasks.

These task sets have a range of periods spanning two orders of magnitude. Hence there can be

up to 100 jobs of each higher priority task within the response time of the lower priority task

under analysis. The authors also present two methods based on analytical upper bounds based

on Hoeffding’s inequality and Bernstein’s inequality. These methods offer further substantial

improvements in runtime (two orders of magnitude faster than the precise multinomial-based

approach), but trade off some precision in the results.

Later in 2018, Chen et al. [37] studied the problem of determining the expected deadline miss

rate for tasks under fixed priority preemptive scheduling. The task model used assumes that

each task has a normal execution time and a longer abnormal execution time that occurs when

dealing with fault conditions. As the faults are assumed to be independent, the execution time

distribution for each task is i.i.d. Further, the probabilities for the different execution times

reflect the probability of fault occurrence. The authors make the realistic assumption that job

execution continues even if a deadline is missed. (By contrast, some other works assume that jobs

are aborted on reaching their deadline). The authors show that this difference in behaviour can

have a substantial effect in increasing the expected deadline miss rate, since the overrun of a

job affects the probability of the next job meeting its deadline. They derive an upper bound on

the expected deadline miss rate. This is done by considering the probability that a task has j

consecutive deadline misses within the same busy period, for all values of j up to some limit. The

method leverages the authors’ prior work [36, 147] to determine the probability of j consecutive

deadline misses. Using the convolution-based approach [147] results in bounds that are tighter

with respect to the simulation results, compared to using the analytical bound [36]. The trade-off

is however a significantly greater runtime.

10.3 Summary and Perspectives

Issues of tractability were once considered a substantial roadblock to the use of probabilistic

schedulability analysis on practical systems. This issue has been addressed, first by methods

based on re-sampling [109] that can reduce the amount of computation required to perform
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convolution (the basic operation used repeatedly in many probabilistic schedulability analyses)

while trading off additional pessimism in the results. More recently, analytical approaches have

been developed that have a much shorter runtime, but still trade off pessimism in the results [36].

Finally, the work of von der Bruggen et al. [147] in 2018, provides an approach which promises an

efficient method of computing deadline miss probabilities for large task sets without a significant

trade-off in precision.

11 Conclusions

In this survey, we reviewed research into schedulability analysis for probabilistic real-time systems.

We covered the main subject areas including probabilistic response time analysis, probabilistic

analysis assuming execution time servers, real-time queuing theory, probabilities emanating

from fault models, statistical analysis of the response times, and probabilistic analysis of mixed

criticality systems; as well as reviewing supporting mechanisms and analyses that address issues

of intractability.

We now conclude by identifying open issues, key challenges and possible directions for future

research. We present these as a series of questions and statements.

How to determine the (worst-case) execution time distribution for a task? This is the subject

of probabilistic timing analysis, see the companion survey [52] for a detailed discussion. We

note that in some cases the variation of the execution times over time may be such that using a

single valid distribution may be too pessimistic (e.g. when the system exhibits different modes

of behaviour).

How to handle issues relating to dependences between the execution times of jobs of (i) the

same task, and (ii) jobs of different tasks? The impact of these dependences may vary based

on how strong they are. Appropriate statistical studies are needed to investigate the types of

dependences and their impact on probabilistic schedulability analysis. Analyses are needed

that can address dependencies.

How to reconcile requirements on the maximum length of black-out periods (number of

consecutive missed deadlines) with a probabilistic treatment of deadline failures? This problem

relates to dependences between response times that may occur due to dependences between

the execution times of jobs of the task considered, and due to dependences in the amount of

interference from other tasks.

How to provide probabilistic schedulability analysis based on probabilistic Worst-Case Execu-

tion Time (pWCET) distributions when there are dependences between execution times of

consecutive jobs? This is particularly problematic in the case of pWCET distributions derived

via MBPTA techniques (see the discussion in Section 2.3).

How to provide appropriate solutions for multiprocessor schedulability analysis? While there

is a wealth of research into conventional schedulability analysis for multiprocessor systems,

research into probabilistic schedulability analysis has, with only a few exceptions, focussed on

uniprocessor systems.

How to adapt probabilistic models, using the richer description given by pWCET distributions,

in the context of Mixed Criticality Systems. Although expanding rapidly (see Figure 1), work

in this area is still in its infancy.

How to adapt the current statistical approaches such as Extreme Value Theory in the context

of response time analysis? The use of EVT has shown some promise in this area, but has not

been explored in detail.
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How to ensure that probabilistic schedulability analysis methods are viable for use in practical

systems? Issues here include validation of the methods, and ensuring that they can be applied

to problems of a practical size.

Since the initial work in the late 1980s and 1990s, significant progress has been made in the

development of probabilistic schedulability analysis techniques. However, there are still important

unanswered questions and open issues to be resolved, as well as a number of interesting areas

for future research that are only beginning to be explored. We end this survey with a brief

discussion of an important direction for future real-time systems research which probabilistic

analysis techniques may be able contribute to.

There is a continuing trend in industry sectors including avionics, automotive electronics,

consumer electronics, and robotics away from development and deployment on single-core processors

towards using significantly more powerful and complex Common-Off-The-Shelf (COTS) multi-core

and many-core hardware platforms. This trend is driven by requirements on size, weight and power

consumption, increasing cost pressures and the demand for more complex and capable functionality

delivered through software. The use of COTS multi-core hardware poses significant challenges

in terms of verifying timing behaviour and ensuring that real-time constraints are met. These

challenges stem from the complexity of the architecture and the way in which hardware resources

such as the interconnect and the memory hierarchy are shared between different processing

cores. Some researchers are seeking to address these problems through approaches based on

partitioning and separation (e.g. single-core equivalence [98]), while others aim for solutions based

on considering the explicit interference on each hardware resource from co-running programs and

how this demand can be served by the available resource supply [12, 46]. There is the potential

for probabilistic schedulability analysis and probabilistic timing analysis techniques (reviewed in a

companion survey [52]) to play a role in the timing verification of such complex real-time systems.

Work on probabilistic timing analysis and probabilistic schedulability analysis for multi-core

and many-core systems is in its infancy with opportunities for significant advances addressing this

important research challenge.
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